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Abstract

In order to find the maximum likelihood (ML) estimator of the param-
eter pair governing the immigration-death process (a continuous time
Markov chain) we derive its transition probabilities. The likelihood
maximisation problem is reduced from two dimensions to one dimen-
sion. We also show the consistency and the asymptotic normality of
the ML-estimator under an equidistant sampling scheme, given that
the parameter pair lies in some compact subset of the positive part of
the real plane. We thereafter evaluate, numerically, the behaviour of
the estimator and we finally see how our ML-estimation can be applied
to the so called Renshaw-Sérkka growth interaction model; a spatio-
temporal point process with time dependent interacting marks in which
the immigration-death process controls the arrivals of new marked points
as well as their potential life-times.
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1 Introduction

In the case of continuous time Markov chains, the likelihood theory based on
continuous observations of sample paths has been covered quite extensively in
the literature (see e.g. [2, 3, 13]; see [10] for inference related to branching pro-
cesses). However, in the case of maximum likelihood (ML) estimation based
on processes sampled according to a discrete sampling scheme much less is
done. But in later years general results for the asymptotic properties of ML-
estimators based on discretely sampled Markov jump processes have emerged
(see [5]) and these can be used to establish properties such as strong consis-
tency and asymptotic normality of the ML-estimators for discretely sampled
Markov chains.

In this paper we are considering the ML-estimation of the parameters of
a particular discretely sampled Markov chain, namely the immigration-death
process - sometimes also referred to as the M /M /oo-queue (see e.g. [1] or [9];
see [8] for the problem of parameter estimation for immigration-death models
when only death times are observed). It is a useful tool which can be used for
describing, not only a queue (where the customers arrive according to a Poisson
process and get served immediately upon arrival during iid exponential times),
but also the dynamics of a population size. Regarding the latter application,
one such instance is the role of the immigration-death process in the Renshaw-
Sdrkkd growth-interaction model (RS-model) (see [16], [17] and [4]), which has
been used to study, among other things, the development of forest stands in
time and space [17]. More specifically, the RS-model is a spatio-temporal
marked point process, X(t) = {[X;,m;(t)] : i € U}, t > 0, X; ~ Uni(W),
W C R%. Here € is an index set giving the points present in W at time ¢ and
the marks, m;(t) > 0, are allowed to interact with each other while growing.
The arrivals of new marked points, [X;, m;(t)], and the potential lifetimes of
these marked points (they may also die from competition) are governed by
an immigration-death process (see e.g. [11] and [18] for general treatments of
spatial point process statistics and e.g. [7], [15], and [19] for an overview of
spatio-temporal point processes).

We start by finding the transition probabilities of the immigration-death
process which give us the likelihood function. Furthermore, we derive its
jump intensity function and its transition kernel when viewed as a Markov
jump process (Section 2). Treating the process as a Markov jump process, we
then proceed to derive the strong consistency and the asymptotic normality
of the ML-estimators obtained by sampling the process at equidistant sample
times (Section 3). We finally evaluate the ML-estimators numerically (Section
3) and finish off by assessing how these ML-techniques can be used in the
RS-model (Section 4).



2 The immigration-death process

The immigration-death process, {N(t)},~, is a time-homogeneous irreducible
continuous-time Markov chain where the possible states for which transitions
i — j are possible are supplied by the state space £ = {0,1,...}. It is
governed by the parameter pair § = (a, u) which we henceforth, for technical
reasons, assume to take values in some parameter space © which is a compact
subset of R%Z. One way of viewing {N(t)}, is to treat it as a special case
of a birth-death process for which the infinitesimal transition probabilities are
given by

Ait + of(t) ifj=i+1
o . o) =it pa)t+o(t) ifj=i
pij(t;0) :=P(N(h+t) = j|N(h) =i) = it + o(t) ifj=i—1

o(t) if |j —i] > 1,

where the birth rates are given by \; = o, ¢ = 0,1,..., and the death rates
are given by p; = iu, i = 0,1,..., ([9], p. 268-270). Within this framework
the interpretation of {N(t)},~, is the following. By letting the arrivals of new
individuals to a population occur according to a Poisson process with intensity
«a and upon arrival assigning to all individuals independent and exponentially
distributed lifetimes with mean 1/u, N(t) gives us the number of individuals
alive at time t. Another possibility is to view it as an M/M /oo queuing
system; each customer (arriving according to a Poisson process with intensity
«) is being handled by its own server so that its sojourn time in the system is
exponential with intensity p and independent of all other customers.

Being a Markov process, the finite dimensional distributions of {N(¢)},~,
are controlled by its transition probabilities, p;;(t;6). The exact form of
pij(t; 0) is given by the following proposition.

Proposition 1. The transition probabilities of the immigration-death process
are given by

e_%(l_eiut) I ra\F Jj e~ U—k)ut 7!
mien = =5—3 (%) () r=emm=a=g -

J
- Z fPoz‘(p) (k)meu,e*ut) (7 = k), (2.1)
k=0

where i,j € E =N, 0 = (a,p) € © C R3, Feoir )

is the Binomial density

1s the Poisson density

with parameter p = & (1—e ), and me(i eﬂm(’)



with parameters i and e "t. Moreover, we have that

E[N(s +t)|N(s) =i = ie " 4p (2.2)
E[N?(s +t)|N(s) =i = i(i—1)e 2 +(1+2p)ie " +p* + p.
Proof. Given the probability generating function (p.g.f.), Gx (s) = E [SX], of

a discrete random variable X it possible to find P(X = k) by evaluating
Px =k =12 G (2.3)
T T Has XY '

s=0

Hence, one possible way of finding p;;(t;0) = P (N(h +t) = j|N(h) =1), h >
0, is to evaluate expression (2.3) for the p.g.f. of (N(h+t)|N(h) =1), G (s) :=
G N(h+t)|N(h)=i (8), which is given by ([9], p. 299)

G(s) = (1+(s—De ) exp{(a/p)(s—1) (1-e ")}
= (1+(s=1)er)erl D, (2.4)

where we for convenience have defined p = %(1 — e Ht),

Considering the first three derivatives G*)(s) = 9*G(s)/0s*, k = 1,2,3,
we get

aW(s) = G(s) (eut_ZHS - ,0> (2.5)
GO(s) = G(s) ((eui(:i)sf + 20— _il — p2>
GB(s) = G(s) (W + 3p(eﬂi(izi)s)2 + 3p2e“t 1+s + p3>

This suggests that

a9 (s) = G(s) kzj;)p’“ (i) — _11+ e (;'! " (2.6)
and thus
peit:8) = G(;)!(O)
- (1_],) ,;Pk (e i=o-m
S



Now we prove (2.6) by induction. Assume that (2.6) holds for j and let
a(s) = e -1+ s. Tt follows from (2.5) and (2.6) that

G~ e S () i
G =GR 2 ()= e=o=m

i
Thus,
20 (i) TG
- ki:o”k (i) a<s>]1+1—k (i —(j +Z‘1 —k))!
! : 4 <k ! 1) a(s)ﬂ‘1+1k (i—( 41—!1 —k))!
= ipk<jzl)a<s>ﬂ’1+l-k(i—(jfl—k))!jﬁzk

+§ N ES A il k
2P\ ) G G-
IR B 1 il g1k
TPk )i R - Grl—k) N\ 1 41

which implies that (2.6) holds for j + 1, and therefore completes the proof by
induction.
To describe p;;(t; ) as a sum of products of Poisson densities and Binomial




densities, recall that p = £(1 — e ") and rewrite p;;(¢;6) as

pyt0) = PTG
b =kl (1—e )ikl gl(i — (j — K))!
j k P . .
_ p-e ¢ —put\J—k —pt\i—(5—k)
-y (j_k>(e~) (1 - o htyi=G
k=0
J (Y]
= pro’i(ﬂ)(k)fBin(i,e*“t) pr0l</3) an(ze l‘t)(k)'

Also, the first two moments of (N (h + t)|N(h) = i) are given by

E[N(h+t)|N(h) =i] = lsi%?G(l)(s):ie_“t—l-p
E[N%(h+t)|N(h) =i = lsi%?[G(l)(s) + G (s)]

= de M ypti(i—1)e 2 4 2pie M 4 p?
= (i —1)e 2y (14 2p)ie M +p? + p.

O

We will make use of the following recursive expression for the transition
probabilities.

Corollary 1. The transition probabilities can be expressed recursively as

1 1 —7
pz’(j+1)(t? ) = —— ( +P> pij(t;0) + ot _1Pit- 1)(t 0)

j+1 -1
1

= W ((Z —-Jj+ P(eut _1)) pz‘j(t; 0) + sz‘(j—l)(t§ 9)) )

p
j+lent—

where 1,7 € E=N and p = % (1 — e*”t), and consequently

Pig-y(t0) G DE PG EBO) i e
pij(t;0) p pij(t; 0) p

Proof. From the proof of Proposition 1 we have that

GUtD(s) = (Za(_si +p) GY)(s)

j'G ]kpk<> ]
Yot a2 V=GR

5




where a(s) = e#! —1 + s, and by noting that

J
pij(t; ) = Z kaOi(p)(k)fBin(i’e—,u,i)(j —k)

k=0
j k —p . .

_ p-e t —pt\J=k (0 —ptyi—(j—k)

- LM <j—k>(e”) (=)™

l=k—1 - ple? i —pt\J—1=1 —pt\i—(j—1-1)
- plz; I (j—l—l>(e A

we get that
pigi+1)(t:6) i1 GUtD(0)
pit;0) (G +1)! GW(0)
_ b iy J! (4
= Tl <eMt 1 +p+ G(j)(O)(e“t _1)]7@](157 e)k)
1

e —1 PTG T pyy(£:0)

— 1 ii—1)(6; 0
_ (l J+p>+ p DPigi—1)(t;0)

_ ( i—j p Pig-n(t 9)>

Jj+1 \ert—1 Jj+1lett—1 p;(t;0)
._ . Zi t;e

_ p : <z Iy ont _q 4 PiG 1 ))'
G+t =1)\ p pi;(t;0)

O]

In practice it is often natural to condition on N(0) = 0. In this situa-
tion one can easily find that the marginal distribution of N(¢) is given by the
Poisson distribution with parameter p(t) = m (1 —e ) since P(N(t) = j) =
S22 i (L 0)P (N(0) = 4) = po;(t;0) = e M p(t)7/4!. Furthermore, in this
case we get that N(t) < Poi(a/p) as t — oo since limy_,o0 p(t) = a/pu. Ex-
tending this, the following proposition (see [1]) establishes the ergodicity of
{N(t)};>0 (Which together with the irreducibility gives us its positive recur-
rence) and its invariant distribution.

Proposition 2. The immigration-death process is ergodic with invariant dis-
tribution given by the Poisson distribution with mean o/ .

Note that this invariant distribution is unique due to the positive recur-
rence, and it is also the same as its asymptotic distribution since every asymp-
totic distribution is an invariant distribution.



‘On the interpretation of p;;(t;0) = P(N(h+1)=jIN(h)=1i;0) =
ZZ/\:jo fPoi(p) (.7 - k)fBin(i,e—l‘i)(k)v note that

fPoi(py)(J —k) = P(j — k new arrivals during (h,h +1))
fBin(ie—nt)(k) = P(k of the i individuals alive at time h survive (h, h + 1)),

thus implying that p;;(t;0) expresses the sum of the probabilities of all pos-
sible ways in which we can decrease ¢ individuals to j individuals. Further-
more, when i < j, we get that p;;(¢;60) simply represents the convolution of
a Bin(i,e ")-density and a Poi(p)-density, hence expressing the probabil-
ity that the sum of i iid Exp(e #)-distributed random variables added to a
Poi(p)-distributed random variable takes the value j.

A further characterisation of {N(t)},s, which we will exploit when we
establish the asymptotic properties of the ML-estimators is to consider
{N(t)},>¢ as a Markov jump process.

Proposition 3. Let 6§ = (a,p) € © C RE. {N(t)},5¢ is a Markov jump
process with state space B =N, jump intensity function

A#;1) =al{i =0} +min{a,ip}l1{i >0} i€k,
and transition kernel

r(0;i,j5) =

pp— (al{j=i+1}+pil{j=i—1}) i,je€E.

Proof. Let {N (t)}tzo be adapted to some suitable filtered probability space

(Q,]: AFt >0 ,]P’). Since a continuous-time Markov chain by definition is a

Markov jump process ([12], p. 243) it holds that {N ()}, is a Markov jump
process with state space £ = N. -

Let 0=19 <711 <7< ... (limy oo 7 = o0) be the jump-times of N(t) =
N(0) + > p2, Yi1{7, < t}, having appurtenant jump-sizes Y7,Ya, ..., where
Y = N(m,) — N(m,—1) € {—1,1}, k =1,2,... (we consider a right continuous
version of {N(t)},~). This is the embedded jump chain of {N(t)},~-

Since {N(t)},5( is a Markov jump process, each increment 75, — 7,1 will
be independent of F,, , and, given that N(7x_1) = 4, it holds that 7 —
Tk—1 is Exp (A\(0;14))-distributed. Noticing that the lifetimes of all individuals
generated by N(t), &1,&2, .. ., are iid Exp(p)-distributed and also that an inter-
jump-time, 7, of the (Poisson) arrival process, B(t), is Exzp(«)-distributed we
get that 7, — 71 4 min{7y,&1,...,&} fori € Z4, and clearly 7, — 73,1 4 To i
i = 0. Since the minimum of n independent exponential random variables with



parameters A, ..., \, is exponentially distributed with parameter Y ;" | \; (see
[6]) this implies that the jump intensity function is given by

A1) = (EO[Tk_Tk—1|N(Tk—1):i])_l
— al{i=0}+minfa,ig}1{i >0}, icE,

where Ey[-] denotes expectation under the parameter pair 6 = (o, ). Applying
again the arguments above we get that

r(0;i,i+1) = P(N(mx) =i+ 1|N(1k_1) = 1)
= P(7q <min(&,...,&) | N(k—1) = 1)

= /0 (1=e™) frin(er,....e0)N(re_1) (WD) dy

- 1-F [e—amin(ﬁl,...,gi)

N(Tk_l) =1

~1
= 1—<1+O‘.> =2
i) o+ ue
since a random variable X ~ FExp(v) has moment generating function mx (t) =

E[eX] = (1 — t/4)~!. Therefore the transition kernel of the Markov jump
process, r(6;-) = {r(6;i,7) : i,j € E}, is determined by

r(0;i,5) = P(N(7x) = jIN(mk-1) = 1)
Hj=i+1}P(N(1) =i+ 1N(1p-1) = 1)
P — i1,z >0} (1 —P(N(r) = i+ 1|N(rs1) = )

1
— (e =i i =i 1)),
for all 4,j € E since |[N(7%) — N(1)—1)| =1forall k =1,2,... O

3 Maximum likelihood estimation of o and p

Assume now that we sample {N(t)},~, as Ni,..., N, at the respective times
0=Ty<Ty <...< T, Since the likelihood function for § = (a,u) € O,
L, (0), is given by the joint density of the distribution of (N(T1),..., N(T})),
by the Markov property of N(t) it can be factorised into a product of tran-
sition probabilities, i.e. Ln(0) = P(N(T1) = N1)[[;_o Py, x, (t;6). Since by
assumption we condition on N(7j) = 0, the log-likelihood will be given by

(0) =Y logpy v (AT 1;0), (3.1)
k=1



where ATy 1 = Ty —Ti_1. In the case of equidistant sampling, i.e. AT 1 =1
for each kK =1,...,n, the log-likelihood takes the form

1n(0) = Y Nuli, §) log pi(£;0), (3.2)
1,JEE

where Ny (i,7) =Y p_q 1{(Nk_1,Ni) = (i,5)}.

Hereby, for each of the sampling schemes, the likelihood estimator of § =
(cr, 1) € © (obtained by replacing Ny by N (T), k = 0,1,.. ., in the expressions
(3.1) and (3.2)) will be defined as

(6, fin) = 0, = argmax L,,(6). (3.3)
0cO

3.1 The ML-estimators

The ML-estimator for § = («, p) is given by solving the system of equations

1n(0) = Y icp Nali, )2 logpij(t;0) =0 (3.4)
%ln(e) = Zi,jeENn(i,j)%l()gpij@;e):0-

As no closed form solution can be found by solving theses likelihood equations,
numerical methods have to be employed in order to get ML-estimates. What
is possible, however, is to express the estimator of « as a function of both
the sample and the parameter p, hence reducing the maximisation to a one
dimensional problem.

Proposition 4. The ML-estimator, 6, = (Qn, fin), 18 found by mazimising
Iy (G (1), 1) over O3 C Ry (the projection of © onto the second dimension of
R?), i.e.

fin = argmaxl,(a(), ) (3.5)
HEO2
Gp = ap (ﬂn)a

where &, (1) is given by expression (3.6).

Proof. The derivatives %log pi;(t;6) and %log pij(t;0) are given, respec-
tively, by (A.1) and (A.2) in Appendix A. Plugging these into the system
of equations (3.4) we first get



which gives us (recall that p = (1—er))

t;0)g
Zpr”te) = S(1-e)n
ek (t;0) 1
Furthermore,
—_—
_ t
0 = eut ZN@] eut ZEN”]_Zeu)
1,]€

T — ut pm ;1 0)k
Nu(
T AT, 1_e,ut Z Zj (t@)
’LJEE

which gives us (recall that 7 =1 — e # —pt e H)

pzy 0) pTT ,ut Z’L]EE (Z ])(] —ie Mt)
2 Nl ) - '

By putting these two expressions together we get

. uw/(l—e —ut
@ = = LY Nl i)
B I 1 (e N, — Ny
= — . E ( 1 e_Mt -+ Z Nk . (36)
2 (T —e M > -1 k=0

O

3.2 Asymptotic properties of the ML-estimators

We now wish to establish the consistency and the asymptotic normality of the
sequence of estimators (3.3). We do this by showing that the immigration-
death process fulfils the conditions under which the related theorems in [5]
hold. We first present the theorems of [5] and then give the results for
{N(t)},>, as corollaries to the theorems.

The general setting is the following. Let X(t) be a Markov jump
process with countable state space F, having transition kernel r(6;.) =
{r(0;i,7) :i,j € E} and intensity function A(¢;), which are controlled by the
parameter § = (01,...,0,) € © C RP. We let ) denote the actual value of
the underlying controlling parameter. Assume now that we sample X (¢) at
the times T,, = nt, n € N, ¢t > 0 (equidistant sampling). From the Markov

10



property of X (t) the observation chain, Z = (Zy):> (X (Tn))52,, will also

n=1 = n=1’

be a Markov chain having transition kernel ¢(6;-) = {q(0;i,7) :i,j € E} =
{P(X(T},) = j|X(Th—1) =1) :4,j € E}. The log-likelihood of (Z1,...,2Z,),
given that Zy = X (0) = z, is given by

In(0) = 1ogq(0; Zy—1, Z) = Y Nn(i, j)log q(0;i, 7).
k=1 i,jEE

where Ny, (4,7) = > p_y 1{(Zk-1,Zx) = (i,j)}. The likelihood estimator will
be defined as

0, = 1n(6).
arg max I, (6)

In the sequel we denote the partial derivatives of a function v (-) of 6 by
Dyip = 0v¢ /90, and D2 ) = 0% /00,00, u,v = 1,...,p.

Consider now the following series of conditions put on (Z,)nen-
General conditions (G):

Call any function 7(-) defined on [0,00) a continuity modulus if it is in-
creasing and lim,_.oy(z) = v(0) = 0.

(G1) Under 6y the Markov chain (Z,),en has a unique invariant proba-
bility measure mg, having moments of order a, for some a > 1, i.e.

Dicr |7, (1) < 0o

(G2) For any my,-integrable function ¢ : E — R, the following strong law of
large numbers holds:

i; &(Zp) =2 ; $(i)mg, (i) as n — oo.
(G3) O is a compact subset of RP.

(G4) For all § € ©, r(6; ) is an irreducible kernel and A(6;-) is positive.
(G5) For some constant C' and for all i,j € F,

|log q(0o3 . )| < C(1+ 1| + |j|*?)

(G6) There exists a continuity modulus 7(-) such that, for all i,j € F and
0,0 €0,

|log q(0; 4, 7) — log q(0';4, )| < (|0 — 6']) (1 + [i]7/% + |5]%/?).

11



Identifiability condition (I):

(I) For any 6 # 6, q(0;-) # q(fo; )

Normality conditions (N):

Assume that 6y is an interior point of © and that there is a neighbourhood
Ag, of 8y such that, for any § € Ag, and for any (i,7) € E?, the mapping
0— g(0;i,7) :=logq(bo;i,j) —logq(b;1,7) is twice continuously differentiable

and satisfies the following conditions for all u,v =1,...,p:
(N1) (i) max {|Dylogq(6o;, )|, D5y log q(bo; 8, )|} < C(L+[i|*2 +5]*2);
(ii) there exists a continuity modulus oy, such that, for 6 € Ag,, (7,7) €
E?,

|DZ,log q(00; 4, j)— D2, 1og (04, )| < 0w (|00—0]) (1+i|**+]5]*/?);

(N2) for every i € E, the family of transition kernels {q(6;i,-) : 6 € Ag,} is
regular at 6y, in the sense that

(1) Y (Dulogq(bo; i, ) q(bos i, 5) = 0;
jeEE
(i)
Lw(00;i) = > (Dulogq(bo;i, §)) (Dylog q(b0;, 7)) q(o3 i, §)
jeE
= =Y (D2, logq(bo;i, 7)) a(0osi, ).

JjEE

(N3) The matrix I(0o;4) = (Luv(00;4)), =1, is the Fisher information ma-
trix at 0 associated with the family of distributions {q(6;i,-) : § € Ag, }.
The (asymptotic) Fisher information of (Z,,)nen,

60) = > I(60; 1), (i),
i€l
is invertible.

Theorem 1. Let assumptions (G) and (I) hold Then the mazimum likelihood
estimator 0,, is strongly consistent, i.e. 0, 22 0y as n — .

Theorem 2. Let assumptions (G) and (N) hold. Then \/ﬁ(én - 00) con-

verges in distribution to the p-dimensional zero-mean Gaussian distribution
with covariance matriz 1(6p)~%, as n — oo, for every weakly consistent esti-
mator 6, of 0.

12



In the case of {N(t)}+>0 these theorems translate into the following corol-
laries. We start with the consistency (Corollary 2) and then show the asymp-
totic normality (Corollary 3).

Corollary 2. Let © be any compact subset of Ri. Then the mazimum likeli-
hood estimator for the immigration-death process satisfies

(@n, ,&n) e (QO’ ,U,())
as n — oo, where (o, o) € © is the true parameter pair.

Corollary 3. Let © be any compact subset of Ri. Furthermore, assume that
(log(ap + po) — log(aw))/po > 2t. Then, as n — 00, v/n ((an, fin) — (@0, f10))
converges in distribution to the two-dimensional zero-mean Gaussian distribu-
tion with covariance matriz, 1(6y)~t, given by expression (3.11).

Remarks: Note that the results in these corollaries still may hold for N(t)
under a different sampling scheme than equidistant sampling, although the
approach used to prove the results may be different.

Regarding the condition given in Corollary 3, g(ap,po) =
log(ao+p0)—log(ap) > 9
©o - ’

< g(ag,p0) < ==. This means that the condition will be ful-

Efl—ggo if 2t(ap + po) < 1,O[0Which is to say that we may sample the process
relatively sparsely when both oy and pg are small and, conversely, we have
to follow a tight sampling scheme when max(«, p1g) becomes large. In other
words, if there is a lot of activity going on in the process we need to monitor
it more frequently, compared to when arrivals and deaths occur rarely, in
order to ascertain that the condition is fulfilled. Note further that when ag
increases, with po kept fixed, we are required to sample the process more
densely in order for the condition to hold (lima,—e0 g(0, o) = 0) and when
we decrease aq, with pg fixed, it is more likely that the condition is fulfilled
(lima,—0 g(ao, o) = 00). Furthermore, when we let p increase while keeping
ag fixed, we move towards a situation where the condition will not be fulfilled
(limy,g—o0 g(cv0, 10) = 0). When we decrease 19, with o fixed, so that N(t) is
approaching a Poisson process, we get that lim,, .o g(ao, o) = 1/ag so that
the condition will be fulfilled provided that «q is not too big (note, however,
that when N(t) is a Poisson process, by exploiting its Lévy process properties
and the central limit theorem, one can easily show that the ML-estimator,
ay, is asymptotically Gaussian).

by the mean value theorem we get that

Proof of Corollary 2. Let © be a compact subset of R? (hence (G3) holds),
where (o, ) = 6 € ©. Furthermore, consider the observation chain of
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{N®)}>0, (Zn)nen, where Z,, = N(T,,) = N(nt), and define ¢(6;i,j) :=
pi;(t;0), i,j € E =N, which constitute the transition kernel ¢(6; -).

By Proposition 2 the invariant distribution of {N(t)},~, under 6y =
(v, o), Ty, is given by the Poi(ag/po)-distribution. Since mp, = mg,P(t)
for any ¢ > 0, where P(t) = (pi;(t))ijen is the matrix of transition proba-
bilities for the time increment ¢, we see that mp,(-) = P (Poi(ap/po) € -) is
also the invariant probability measure for (Z,,),cn, which has moments of all
orders a € N. Hence, condition (G1) is fulfilled.

Due to the positive recurrence of {N(t)},~, (provided by Proposition 2),
by an ergodic theorem (e.g. Theorem 1.10.2 in [14]) condition (G2) will be
fulfilled.

By Proposition 3 the Markov jump process {N(t)},~, has intensity
A1) = al{i=0} + min{e,ip}l {i > 0} which clearly is positive for all
6 € ©. Since {N(t)},~ is irreducible if and only if its embedded jump chain,
(Y3)n>1, is irreducible ([12], p. 244) we get that its transition kernel r(6;-) =
{r(6;4,7) : 4,5 € E}, r(6;4,7) = mia (@1{j =i+ 1} + pil{j =i —1}), is ir-
reducible for all § € © and thereby condition (G4) is fulfilled.

Since q(0p;i,7) > 0 for all 4,5 € E we have that |logq(fy;i,7)| < oo for
all 7,7 € E. Furthermore, the free choice of a € N allows us to create an
arbitrary large bound (1 + |i|*/? 4 |j|%/?), when i,j € {2,3,...}. Hence, by
choosing, say, C' = max; jcqo,1} |¢(6o; 7, 7)| we have shown that condition (G5)
holds since there are a € N such that |log q(fo; i, )| < C(1 + [i|*/? + |§]*/?).

We now wish to show that there is a continuity modulus, (-), such that

|log q(6;4, 5) —log q(0's4, /)| < (16 — 0'[)(1 + [i]*/* +[5]*/?),

for all 0,0" € © and for all i, j € E. Denoting by ©; and ©4 the projections
of © onto the first and the second dimension, respectively, by the compact-
ness of © C Ri we have that apm, = iInf ©1 > 0, aupee = sup©1 < o0,
Wmin = Inf Oy > 0 and e := sup ©2 < co. By using the bounds given by
expressions (A.3) and (A.4), we get that

D1 log q(6;4, )] < t+§§t+ J

< 0
Qmin

at? + (35 + i)t - Umazt® + (3j + i)t .
1 —e—Ht - 1 — e~ Hmint

|Dalogq(0;i,5)] <

Letting A = (mins @maz) X (min, fhmaz) We have, by the mean value theorem
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and the Schwarz-inequality, for 6, 0" € © and some 0 < ¢ < 1, that

log q(0;, j) — log q(6'; i, j) (3.7)

< -0 ‘Vlogq ((1 — c)9+09l;i7j>‘

= |0-¢ \/(D1 log g((1 — )0 +cf';i,5))* + (D2log q((1 — )0 + cf';, 5))
< 0-0 (|D1 log q((1 = ¢)0 + cf' i, j)| + D2 log q((1 — )0 + ce';z',j)l)
< |0—0| sup. (\Dl log q(6;1, )| + | D2 log q(a’;z’,j)|>
0,0'eA
J amath + (3-7 + i)t ! la/2 1a/2
< (t+ amzn + ]_ —e_u’mint ‘0_9 (1+ ‘Z‘ + ’j’ )7

where A denotes the closure of A. Since the free choice of a € N (the order of
the moment of 7p,) allows us to make (1 + [i|%/? 4 |5]%/?) as large as required,
provided that ¢ > 2 and/or j > 2, we only have to take into consideration the
cases where 4,7 € {0,1}. Since the right hand side of (3.7) is maximised when
i =7 =1 (given that i,j € {0,1}) we choose as continuity modulus
2
R e L

Qmin

and we have shown that condition (G6) holds.

To check the identifiability condition (I) consider the probability gener-
ating (p.g.f.) function of (N(h + t)|N(h) = i) under 0 € O, G; (s;0), given
by (2.4). If Gi(s;0) # G; (s;00), for 8 # 6y, it follows that {p;;(t;0) : i,j €
E} # {pij(t;6p) : i,j € E}. We check whether the assumption 1 = %
contradicts any of the three possible scenarios where 6 # 6y3. Note that
Gx (1) = E[1X] = 1 for all random variables X so we assume s # 1.

1. Assume a # ag and g = po:

holds iff ag = a..

1=

2. Assume o = g and p # po:
Since (1 —e™%)/x is a strictly decreasing function

1 — 1) e Fot\? 1 —eHot 1 _eht
e ()
s—1)e 1ot ut

-~

=1 iff po=p or i=0

can hold iff pug = p.
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3. Assume o # «ag and p # po:

e R )}

=1 iff po=p or =0 =(*)
If % = % we get (x) = 0 iff 4 = po (by the monotonicity of 1 —e™%),
and if 1 — e H = n(1 — e #o) where n = %ﬁ > 0, we also must require

1t = Ho-

Hence, there is a one-to-one correspondence between 6 and the kernel ¢(0;-).
The corollary hereby follows from Theorem 1. O

Proof of Corollary 3. Let © be a compact subset of Ri and let 0y = (o, po)
be an interior point of ©. Furthermore, consider the observation chain of
{N(®)};>0, (Zn)nen, where Z, = N(T,,) = N(nt), and define ¢(6;i,j) :=
pij(t;0), i, € E = N. From Corollary 2 we know that the estimators (3.3),
0, = (Gn, fin), are strongly consistent and that the general conditions (G)
hold.

Since the expression for ¢(6;1i,7), given by (2.1), contains the term e™”
where p = %(1 — e_“t), we get that, for all (i,5) € E? and for all § € O,
log q(0;1, j) is infinitely many times continuously differentiable w.r.t. 6. This
in particular implies that the mapping 0 — ¢(6;i,5) = logq(fo;i,j) —
log q(60;1i,7) is twice continuously differentiable for all # in some neighbour-
hood Ag, € © of 6.

Regarding condition (N1) we only have to be concerned with the cases
where i,7 € {0,1} since we may choose a as any positive integer, implying
that (14 |i|%2 4 |j]*/?) can be made as large as required when i > 2 and/or
Jj=>2.

Expressions (A.3), (A.4), (A.6), (A.10) and (A.13) in the appendix give us
bounds for | Dy log q(0o;i,4)| and | D2, logq(fo;i, )|, u,v = 1,2, from which
we get (recall from the proof of Corollary 2 the definitions of ©1, O2, min,
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Umazx, Hmin and ,uma;t)

max _|Djlogq(fo;i,j)| < max sup (J + t> = +t=:C1 < o0,
(i,j)E{O,I}Q jE{O,l} a€EBO1 & Omin
2+ (35 + i)t
max |Dsologq(o;i,7)] < max _ sup sup <W>
(i.7)€{0,1}2 (i:1)€{0.1}? €O, acO, L—e#
maxt? + 4t
— u = 02 < 00,

1 — e_umint

i o
max D} logq(fo;if)| <  max  sup T 20 TOES

(i.)€{0.1}2 (i./)E{0,1}2 aco, a?
1+ 2(1 4 amaat)?
(a2 mer ) =:C1 < 00,
min
max |D?ylogq(0o;i,5)| = max | D32 logq(0o;i,j
(z‘,j)e{O,l}Q’ 12 log q(0o; i, j) (i,j)e{o,l}z‘ 51108 q(003 4, 7))
2 . . . .
t t
< max _ sup sup u—katS—FM—i—tZ(l +7)
(1)€{0.1}? €O, aco, a (1 —e o

j4i. (G4 at)(at? + (35 +i)t)
L, Gt )

2 ot + 2l
Qmin mae (1 — e HFmint ) in
N 2 . (1 + Amazt)(4 + @maxt)

Lmin (1 — e Hmint) i

+ 2t?

t=:C1a < 00,

ma; D2, log q(6y:4,7)| <
(Z.7j)€{8f1}2| 5210g q(0o3 %, )]

(at2 + (35 + i)t>2
< max _ sup sup —_—
(1.1)€{0,1}2 11cO2 a€d I—e#

+ (724207 + ) + (20t + 1+ 20t + 223(1 + at)) j
+ @t + at(pPt? +2) + (j+ )2 + 20t (5 +14) + (5 + z'),u2t2) }

<ama2t2 + 4t

2
1 — e Hmint > + t2 (6 + 10amazt + a?na;ttQ + :U’gnazt2(6 + 3amaxt))

=: (99 < o0,
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so that by choosing C' = max{C1, C, C11,C12,C22} we have that
max {| Dy log ¢(6o3 i, §)|, | D3, log q(fos i, )| } < C(1+ [i|*/* + |j|*/?),
for all u,v = 1,2 and all (i, j) € E.

By the mean value theorem and the Schwarz-inequality it holds that

|DZ,log q(0;4,§) — D2, log q(6o; i, j)|

|VD, logq ((1— )0+ cbo; i, j)|
|60 — ol

IN

IN

|D1D3, log q((1 — )8 + cos i, )
+ | D2 D2, log q((1 — €)0 + cbo; i, 7))
where @ and 6y are in some open subset of R? (in particular 6,6, € Ag,) and
0 < ¢ < 1. Since, for all § € O, by expressions (A.15), (A.16), (A.17) and
(A.18), there are bounds such that (by the compactness of ©)

D?ll Iqu(Q,Z,j) < Blll(a)lu’ataj7i) < 00

D?lQIOgQ(97Z7]) < B112(a7,u’7t7j7i) < 00
Dlly)22 10gq(0,l7j) < B122(a7,u’7t7j7i) < 00
D§22 IOgQ(eazaj) < B222(a7/~1'7t7j7i) <00

by choosing the continuity indices according to

(i,j)E{O,l}z HEB2 €O MSSIYASSH

0'12(2) = 0'21(2:)

011(2) = max <Sup sup Blll(a7uat7jvi) + sup sup BllQ(aaM7t7ja 7’)) z

= ~ Inax sup sup Bll?(aﬂuatvjvi) + sup sup 3122(0[,/L,t,j,i) <
(173)6{0:1}2 HEB2 €O HEB2 €O

oi(z) = max [ sup sup Biss(a,pt,5,0) + sup sup Bas(a, i1, ],i) | 2
(173)6{071}2 HEBO2 €O MSSIYASSH

we have shown that condition (N1) holds.
@o

Turning now to condition (N2), with pg = 9¢(1 —e™#") and 79 = 1 —

e Mol —pnt e Mol we have that

(D1 log q(bo; i, 7)) q(bo; i, j) = % (pij—1)(t;60) — pij(t; 60))
and
. . T
(D2 log q(003%,.7)) a(0o3 4, 7) = G_?—M%M(pij(ﬁ 00) — pij-1)(t; o))
(4 —ieTth)t pot
_Wpij(t§ to) + mpi(j—l)(t; to)
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so that, by considering expression (2.2) and noticing that

> pii(t00) =D piio1)(t:00) =D pij2)(t;60) = 1,
=0 =0 =0

we find that

Z(DIIOgQ(HO;i>j)) (907Z>.7 sz] 1) t 90 Zpij(tsg(]) =0
jeE o
and

> (D2 log q(b0;i,5)) a(0os i, §) =

JEE

£0TO >
T A= el ZPU (t; 60) — Zpi(j—l)(t5 0o)

t , o pot
g (ij(t; o) —ie ““) + Tt 2 Pi-n (t:60) = 0.
=0 =0

2.
(—)po+le pot

Since

D?w‘](eo; i7 ])

202 (Dylog q(634,5)) (Do log q(6o34,5))
o(Ooii ) (Dulog q(fo; 7, 5)) (D log q(00; 4, 7))

D12w log Q(QO; ’L,]) =
checking the condition

Liy(0o3i) = > (Dulogq(fo:i, 7)) (Dylogq(00:d, 5)) q(00; i, 5)
JEE

= Z 2 log q(003, 7)) q(60;4, ).

JEE

is equivalent to checking

Z D?w‘](eo; ,Lv.]) =0,
JEE

which, according to expressions (A.7), (A.11) and (A.14), holds for all combi-
nations of w,v € {1,2}. Thus condition (N2) holds.
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Considering expressions (B.1), (B.2) and (B.3), we get that the Fisher
information matrix at 6y associated with {q(0;1,-) : 0 € Ag,} is given by

o (T1(005i) Ti2(6051)
I(0:%) = (I21(90;i) 122(903i))

= pz (G— 1) t 9
= A6 B(6y)i+ C(b) —1
o+ s oo (5t
7=0
where
0 — 0 0
A(bo) = (_t O‘(Q)#Ot(Qﬁ'LOO—IJ«Ot)> ) B(6o) = (0 aot? e_/"Ot) )
Ho poué H0P0
it po(pot—To0)
o) = &
0 po(pot—m0)  ed(ro—pot)® | °
I I

which implies that the (asymptotic) Fisher information is given by

ii—1) (T 6 2
I(6) = Albo) +B(00) Y img,(i) + C(60) | Y (P 1>(. 0))
i€E i,jEE pijo(tve)

= A(o) + %3(90) +(E-1)C(0o), (3.8)

. 2
where E= 3", .cp %W@O (7). It holds that I(fy) is invertible iff

t2 oty
det(I(6p)) = 2 (po(1+e M) (E—1)—1) #£0,
0
which is to say
1 14 e Hot
= +po(l+e ) (3.9)

po(1 +e~Hot)
By Corollary 1 we get that

- |+ 1) pig1)(E560) | j—i :
R Z ( (.] ) (j+1) + J _ (e,uot _1) Pi(j—1) (t, 90)7760(7/)

‘,jeE fg €708 pij(t;60) Po
pz (J+2) ( t; 0 ) .
= — + 2 pzj (t; 90)7T9 (Z)
ao ot ,]Ze:]_«j pz ]-i-l)(t 90) 0
ot 1 0o 0
—€ Zzngteo 7790 722]"’1_213137500)7790()
7=0 =0 po =0 5=0
= 51+ 55+ 55
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Since mg,(-) = P(Poi(ag/po) € -) is the invariant distribution under 6y we
have that

0 o
Sy — elot) ZZpU (t;00)ma, (1) =1 — Mot

7=0 =0
=7y (4)
and
=ao /1o =a&/#0
> 1
S3Z<1+Z]pr (t; 00) g, (i ZW% )sz’j(t590>> =
N
=g, (4) =1

so that

1 1 + e~ Hot +p0(e_“0t — euot)
E=S1+1—-eM'+— =8 +
! po po(1 + e~Hot)

)

whereby condition (3.9) is translated into

1+ po(1 +e7#0") — (1 4 e7H0" 4pg(e”H0" — elo))
po(l + e—l‘ot)
e Mot —po(1 4 e0")
po(1 + e #rot)

0 £ S —

= S+

(3.10)

Clearly S; > 0 and since po(1 + e #0!) > 0 we get that the right hand side
of (3.10) is positive if e Hot > pg(1 + erot) = %(e“ot — e Hot) which can be
expressed as e~ 2! (ag + o) > ap. Taking logarithms on both sides of the
latter inequality we end up with (log(ag+ po) —log(a))/ o > 2t, which holds
by assumption. This implies that I(6p) is invertible and we conclude that
condition (N3) is fulfilled. Its inverse is given by

- Z
I(0p)' = a +ew0t)50(5 - yey (3.11)

2
o (2To—uot(1—e’“0t))+%(E—1)(To—uot)2

x (1—erot)” tot
= = ot 2
1+ L%(2 = 1)(70 — pot) L(E—1)(1—eror)
s0 that /12 (G, fin) — (00, 1)) % N (0,1(8p)"), as n — oo. -
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3.3 Numerical evaluations

We here consider two different sets of parameter pairs, («o, o) = (2,0.05) and
(v, o) = (0.4,0.01), each from which we simulate 50 independent sample
paths of the immigration-death process, N(t), on [0,7], T = 150, N(0) =
0. Thereafter each sample path is sampled at times T = kt, t = 1, k =
1,...,150. For each sample path, based on these discrete observations, we
estimate (ag, po) three times; up to time 50, up to time 100 and up to time
150. Figures 1 and 2 give us normal probability plots of the estimates of our
two sets of parameter pairs based on the simulated trajectories. Furthermore,
Table 1 and Table 2 display the estimated means, biases, standard errors (s.e.),
covariances, skewness (the skewness of a normal distribution is 0) and kurtosis
(the kurtosis of a normal distribution is 3) for each parameter pair, (ag, fo),
based on its 50 discretely sampled sample paths.

000 099 099
098 098 098
095 - 095 . 085
0s0 + 090 0s0

099 4 099 - 099
008 098 098

002 003 004 005 006 007 008 009 01 003 004 005 008 007 008 004 0045 005 0055 006 0085 007
Estimates of i Estmates of Estimates of i

Figure 1: Normal probability plots of the estimates of (o, po) = (2,0.05)
based on 50 sample paths sampled at times T, = kt, t = 1, k = 1,...,T.
Upper row: The estimates of ag at final times 7" = 50 (left), 7" = 100 (middle)
and T' = 150 (right). Lower row: The estimates of pg at final times 7" = 50
(left), T'= 100 (middle) and T = 150 (right).

From Figure 1 we can see, not only that the empirical distributions more
or less are centred around the actual parameter values, but also how the tails
stepwise become lighter, approaching the behaviour of a normal distribution.
We can also see how the skewness of the data goes through a stepwise reduction
for every additional 50 time units we utilise in the estimation, which further is
also verified in Table 1. As a measure of the heaviness of the tails we consider
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Table 1: Estimated moments of the estimator for (g, puo) = (2,0.05), based
on the 50 sample paths sampled at times T, = kt, t =1, k=1,...,T.

Mean Bias (%) Std error Skewness Kurtosis
T =50: ar | 2.0305 1.5 0.4406 1.3284 5.0738
fr | 0.0503 0.6 0.0175 1.1350 4.4391
T =100: &r | 2.0605 3.0 0.3729 0.4076 2.6461
a7 | 0.0511 2.2 0.0112 0.5632 2.6832
T =100: ar | 2.0640 3.2 0.2667 0.1881 2.4832
far | 0.0517 3.4 0.0081 0.4088 2.2849

the kurtosis estimates given in Table 1; we see a strong reduction after the first
50 time units, going from something fairly heavy tailed to something a bit more
light tailed than a Gaussian distribution (note that there are robustness issues
with kurtosis estimators based on sample fourth moment estimators). From
Table 1 we also see that already after 50 sampled time units the biases are quite
small. Hence, the consistency of the estimator (&, fi,) becomes clear quite
quickly and although the parameter pair (ag, to) = (2,0.05) does not fulfil the
invertibility condition of Corollary 3, (log(ag + po) — log(aw)) /o > 2t = 2, it
asymptotically seems to behave Gaussian, thus indicating that the condition
may be improved.

Table 2: Estimated moments of the estimator for (ag, 110) = (0.4,0.01), based
on the 50 sample paths sampled at times T, = kt, t =1, k=1,...,T.

Mean Bias (%) Std error Skewness Kurtosis
T =50: ar | 0.4751 18.8 0.1372 -0.1604 2.1189
ar | 0.0137 37.0 0.0080 0.4021 2.3971
T =100: ar | 0.4251 5.4 0.1412 1.1873 4.4208
ar | 0.0126 26.0 0.0057 0.6537 3.2866
T =150: ar | 0.4166 4.2 0.1314 0.1742 2.9146
ar | 0.0123 23.0 0.0064 0.6493 2.8343

As opposed to the previous choice of parameters, the choice (ag, po) =
(0.4,0.01) does fulfil the invertibility condition of Corollary 3. In Figure 2,
just as in Figure 1, we can see that each empirical distribution centres around
the actual parameter value and the tails approach those of a normal distribu-
tion (further verified by the estimated means/biases and kurtoses in Table 2).
Regarding the skewness of the estimates, we see from Table 2 that we end up
at values fairly close to 0, i.e. close to that of a Gaussian distribution. Hence,
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Figure 2: Normal probability plots of the estimates of («, o) = (0.4,0.01)
based on 50 sample paths sampled at times T, = kt, t = 1, k = 1,...,T.
Upper row: The estimates of ag at final times 7" = 50 (left), 7' = 100 (middle)
and T = 150 (right). Lower row: The estimates of o at final times T' = 50
(left), T'= 100 (middle) and 7' = 150 (right).

as expected, also here we see that (&, fi,) approaches the actual parameter
pair and at 7" = 150 we have strong indications of approximate Gaussianity

of (6, fin)-

4 Application: The RS-model

We now turn our focus to a spatio-temporal point process with interacting
and size changing marks which here is defined in accordance with [17]. It
is defined on [0,00) in time and spatially we consider it on some region of
interest, W C RY, supplied with the Euclidean metric/norm.

More specifically, the process X(¢) = {[X;, m;(t)] : i € Q;} can be described
as follows. As time elapses, the arrivals in time of new individuals to W and
the time these individuals live in W are governed by an immigration-death
process, N(t), having parameter § = (av(W),u) € O, where v(-) denotes
volume in R? and © C R? is compact. We here denote the (Poisson) arrival
process by B(t) and the death process by D(t) so that N(t) = B(t) — D(t),
where N (0) = 0. Furthermore, upon arrival at time ¢, individual i is assigned
alocation X; ~ Uni(W) (thus far, at each fixed time ¢ this constitutes a spatial
Poisson process with intensity %(1 — e M), restricted to W) together with an
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initial mark, m;(t)) = m?, which is taken either as some fixed positive value (as
will be the case here), or as a value drawn from some suitable distribution ([17]
considers m{ ~ Uni(0,€), € > 0). When an individual’s (Ezp(u)-distributed)
life time has expired we say that the individual has suffered a natural death.

Once individual ¢ has received its initial mark it starts growing determin-
istically according to

m;(t) = m?—l—/tdmi(s), ) <t, (4.1)

where

dmi(t) = Flmi(t);0)dt— 3 h(mit).m(t), Xo, X5 0) d.

JEQ

J#
Here @ = {ie {1,...,B(t)} : individual ¢ is alive at time ¢}, the function
f(m;(t);¢) determines the individual growth of mark ¢ in absence of com-
petition with other (neighbouring) individuals and h (m;(t), m;(t), X, X;;9)
is a function handling the individual’s spatial interaction with other individu-
als.

In addition to the natural death, an individual can die competitively which
we consider to happen as soon as m;(t) < 0.

Numerous candidates can be thought of for the individual growth function
and the spatial interaction function , depending on the application in question
(see [17] for some examples), and here, motivated by the model’s forestry
applications (see [4]), we will focus on the logistic individual growth function,

Fonitgv) = wms(o) (1= "4 (42)

where ¢ = (A, K,c,r) € RZ x Rx Ry, A is the growth rate and K is the upper
bound (carrying capacity) of the individual’s mark size. Further, we choose
to consider the so called area interaction function,

v (B [Xi, rmi(t)] NnB [Xj, rm; (t)])

h (mq(t), my(t), Xi, X5 9) = ¢ v (B Xy, rmi(1)]) ’

(4.3)

where B [x,¢] denotes a closed ball in R? with center x and radius ¢ > 0.
This non-symmetric soft core interaction function has the effect that smaller
individuals affect larger individuals less than the other way around. Note that
r > 1 implies that the marks are not allowed to intersect whereas r < 1 implies
that some intersection between the marks will be allowed before interaction
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takes place. ¢ < 0 implies that individuals gain in size from being close to each
other and ¢ > 0 has the effect that individuals inhibit each other’s growths
once B [X;,rm;(t)] N B [X;,rm;(t)] # 0.

By the definitions of ©; and N (t), the number of individuals alive at time
t is given by

2] = N(t) — C(t) = B(t) — D(t) - C(t), (4.4)

where |A| denotes the cardinality of the set A and C(¢) > 0 denotes the inter-
active death process, i.e. the process counting the total number of individuals
who have suffered a competitive death in the time interval (0,¢]. We will
assume that C(7Tp) = 0 so that |Q7,| = 0.

4.1 Estimation

Assume now that we sample the process at times 0 = Ty < ... < T,, =
T. Then, for each k = 1,...,n, this gives rise to a sampled marked point
configuration X,ps(Tx) = {[xi, m;(Ty)] i € Q%’j}.

For clarity we here present the least squares approach which we employ
for the estimation of v = (A, K, ¢,7) € Ri x R x Ry and also, connected to it,
the way in which we label individuals as naturally dead. This approach was
originally suggested in [17] wherein it was shown to generate estimates of 1) of
good quality.

Let Xops (Ty) = {ml (Thr1;0, Xops(Tx)) s i € Q%’j} denote the set of predic-
tions of the actual data marks, {mi(TkH) 11 € Q%’j}, generated by equation
(4.1) under the regime of v, based on the configuration X,s(7%) (in practise we
employ the simulation algorithm presented in [17] in order to create each pre-
dicted set XobS(Tk) from each set X,p5(7%)). Once having produced Xops (Ty), if
m; (Ti+1;¢,X(Tx)) > 0 for an individual ¢ € Q%’;f but yet i ¢ Q%Zil, this pre-
dicted individual will be treated as having died by natural causes in (T, Ti11).
Our least squares estimates are then found by minimising

n—1
S() =Y Y i€ Q8 Y (Terrs v, Xons (Tk)) — mi (Thyr)]” (4.5)
k=1ieQ°Tl;j
with respect to ¢ = (A, K,c,7) € RZ x R x Ry, where 1{i € Q%’il} is an
indicator function being 1 if the actual data individual ¢ is alive at time Tj1.
Regarding the possible edge effects encountered, [4] suggests some edge
correction methods which manage to reduce biases generated in the estima-
tion of ¢. Furthermore, [4] also deals with numerical issues related to the
minimisation of S ().
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The way in which [17] estimates o and p is to estimate them separately
by approximate ML-estimators which we present here for the purpose of com-
parison. The ML-estimator used to estimate p in [17] is given by

nrt mT
fo=nr/ D> ti+Y s, (4.6)
i=1 j=1

where t1,...,t,, and si,..., s, denote, respectively, the lifetimes of the nr
individuals who have been labelled as dead from natural causes by time 1" and
the mp individuals who are still alive at time T'. Since the exact arrival times
and death times of the individuals remain unknown, with the only informa-
tion available being the intervals in which arrivals and deaths occur, the exact
lifetimes will remain unknown. The way [17] deals with this is to indepen-
dently draw each birth time occurring in (Ty—1, 7)) from the Uni(Tj—1, Tk)-
distribution while considering the death of an individual to occur at the last
sample time at which the individual has been observed.

Note that when estimating a we actually need only to consider the case
v(W) = 1 since we can write o as o’ = av(W), find the estimate o/ and then
get the estimate of o by considering & = o/ /v(W). The approach of [17] is to
ignore all deaths occurring by setting C (7)) = D(T}) = 0, thereby generating
the following ML-estimator

U
S

However, using this approach has the consequence that we ignore the interplay
between B(t) and C(t) and underestimate « and u (see [17]). In the case of «
this comes from paying no regard to the deaths, which will reduce the number
of observed individuals.

A more correct, and thus more sensible, way of estimating p and «, as
opposed to the above approach, is to incorporate the interplay between the
deaths and the arrivals of individuals in the estimation by utilising the actual
multivariate distribution of (N (711),..., N(T},)) in the ML-estimation, i.e. us-
ing the likelihood approach developed in the previous sections.

In the minimisation of S(v), if m; (Tx+1;%, X(Tk)) < 0 for an individual
1€ Q%’;S, it will be labelled as having died from competition in (T, Tj+1) and

the total number of such individuals is denoted by (C(T}) — C(Tk,l))fbs and
is used as an estimate of C(T)) — C(Ti—1). Note that by expression (4.4)
we can write N(Tk) = N(kal) + ’QTk| — ‘QTk_1’ + C(Tk) — C(kal) where

|Q7,| = C(Tp) = 0. The observed version of this is given by

éo (4.7)

Novs (Tx) = Nops (Ti—1) + |Q9°| = 19| + (C(Tx) — C(Tj-1))"

obs?
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where [Q¢| = 0.

When we here estimate § = (av(W),u) € © with our new likeli-
hood approach we use (Nyps(T1), - .., Nops(T3)) as observation of the sampled
immigration-death process, (N(71),...,N(T},)), and hence the log-likelihood
is given by

n
1,(0) = ZlogpNobs(kal)Nobs(Tk) (T, — Ti—1;av (W), ) .
k=1

5 Discussion

In this paper we have considered the immigration-death process, N(t), and
specifically we have treated the ML-estimation of the parameter pair governing
it, # = (o, u) € © C R2 | when © is compact and N(t) is sampled discretely in
time; 0 =Ty < Ty < ... < T),, and N(Tp) = 0. In order to find the likelihood
structure of this Markov process we have derived its transition probabilities,
and further, we have managed to reduce the likelihood maximisation from a
two-dimensional problem to a one-dimensional problem, where we maximise
the likelihood, L(a, ) = L(Gn (), i), over the projection of © onto the second
dimension of R? (u-axis). Furthermore, by considering N (t) as a Markov jump
process we have managed to show that, under an equidistant sampling scheme,
T, =kt,t >0,k =1,...,n, the sequence of estimators, én(N(Tl), ... N(T)),
is consistent and asymptotically Gaussian. The asymptotic normality requires
the invertibility condition (log(ao + o) — log(aw))/po > 2t, where (o, po)
is the underlying parameter pair. These results have been further corrob-
orated through simulations which also indicate that the estimates approach
the actual parameter pair. Furthermore, we see that the empirical distribu-
tion of the estimates show strong indications of Gaussianity, even when the
invertibility condition of Corollary 3 is not fulfilled. An interesting applica-
tion for the immigration-death process is the so called RS-model — a spatio-
temporal point process with time dependent interacting marks in which N ()
controls the arrivals of new marked points to our region of interest, W C R,
as well as their potential life-times — and we discuss how the ML-estimator,
0,(N(T1),...N(T})), could be applied to the RS-model.

The motivation for this work comes from the need of improving the esti-
mation of (o, u) in the RS-model (compared to the estimators given in [17])
and, as a note on future work, one should numerically study the possible
improvement achieved. A further extension is given by adding a Brownian
noise in the mark growth function of the RS-model (i.e. letting the marks
be controlled by dM;(t) = dm;(t) + dB;(t) where the B;(t)’s are independent
Brownian motions) so that it incorporates uncertainties in the mark sizes.
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Having made this extension we hope to find a full likelihood structure for
this SDE-driven RS-model, where L(«, 1) constitutes a part of the likelihood
structure. A further improvement that possibly can be made is to improve
the invertibility condition given in Corollary 3 so that asymptotic normality
holds for all (ag, o) € ©. Furthermore, in order to become more realistic in
applications, N(t) could be extended by letting the arrival intensity, «, and
the death rate, u, be non-constant functions of time or in themselves Markov
chains (in the latter case N (t) thus becomes a hidden Markov model) whereby,
possibly, results similar to the ones found in this paper can be established.
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Appendix

A Derivatives

Recall that

Pi59) (J') > (ZY (i) @ (I;) =

k=0

J
D oo B oy G — K,
k=0

where i,j € E =N, f, . () is a Poisson density with parameter p = m (1 —eHt)

and f is a Binomial density with parameters i and e #¢. Note further that

Bin(i,e”Ht) (>

J
Pij (t; Q)kz = Z szPO?‘(ﬂ) (k)fBin(i,e*#t) (‘7 B k)

k=0
J k —p i ke o
_ k2p € < > (e—ut)J (1 _ ef},ﬂf)l*(]f}{))
| j—
= k! ji—k
I=k—1 - Pl e’ i —pt\J—1-1 —pt\i—(j—1—1)

=l 1 —p : .
e i ni—1-1 i (i1
N I . : (j—l—l) (e=t) 71 (1 = emtyi=G=1-D)
=1 ’

J=2 —p ; .
k=i—1 ple i _ —2—k NG (9
= G- B0) + 7Y (j Qk) (e (L — eyl
k=0 ’

= ppig-n)(E0) + pPpigi—2) (t;0)

from which we see that

J
Pij (6 0)k =Y kf iy ) oo, (G = k) = ppigi 1) (£:0).
k=0
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With 7 = (1 — e " —ute ') we get that

0 k—p

aiafpoi(p)(k) = Tfpoi(p)(k)

9 _ Tlp—k)

@fpoi(p)(k) - mfpoi(p)(k)
0’ _ Tle=(k=p)*)

mfpoi(p)(k) - mfpm(p)(k)

0? 02+ k% —k(1+2p)
92 fPoz(p)(k) = 2 fPoi(p)(k)

0? B = —2p7(1 — e H) + p(1 — e 1) 22 e =1
87,[12 Poi(p)( ) = (1 —e_“t)QIuQ

p2T2 9 7_2

k
=m0 = e

—92 2 1— —ut\2 _ 2t2 —pt
T e i Y
(e )y
0 , =k —die M)t ‘
% Bin(i,c*“t)(] —k) = (1—e 1)y me(i e—Ht) (G —Fk)
0 , (G — k) —ie )22t + ((j — k) — i)p*t?e” ™!

o singienny U~ F) (1 — e ri)2y2

XfBin(i,c*Ht) (-7 - k)

Below we will make use of expression (2.2),

Zpi(j—2)(t;6‘) = Zpi(j—l)(t§9) = Zpij(t;e) =1
j=0 j=0 =0

and (by expression (2.2))

Z]p,(] n(t;0) = Z]—i—lp”te E[N(s+t)|N(s) =i] +1=die " +p+1.
7=0
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A.1 First order derivatives of p;;(t;6) and logp;;(t;0) with bounds

Opis (1:0) _ <~ Of iy () o ko ,

T da Z TfBin(i,e*“t) (] - k) - Z Tfpoi(/)) (k)fsin(i,efut)(j - k)

k=0 k=0

_ pij(t0)k — ppi; (£ 0)
«
Ologpi;(t:0) _ 1 Opi(t0) _ 1 (pig(ti0)k
da pij(t;0) O« a \ pij(t;0) P

p (Pig-1(t0) >
=—|\——FF -1 Al
a ( pij(t;0) (A1)

8fBin(i,e*ut) (] - k)
o

apij(t;g) ! af]’oi(p)(k) .
ST D e AN CEOES RO

k=0

72]-: pr GoieMpt o T—pt

e \(L-ehy (I—emthp T (1—emthp
X fPoi(p) (k)fBin(i,e*Ht) (] - k)

pT (j —de ")t

T — ut
= ————pi;(0) -
(et 60 = G,

pij(t;0) — mpij(t; )k

dlogpij(t;0) 1 Opij(t;0)
op pij(t;0)  Op
pT (j—ie M) put T—ut  pii(t;0)k

)
(= (=)
pT (j —ie™)

)

po (I—e ) piy(t:0)
pt p(r — pt) pig-1)(t;0)

(L—ertyy  (I—e )y (L—e ) py;(t0) (42

Note first that p = atl_Z;M <at, T <pt, T <P 0< 7T <1, pii(t:0) <
and p;;(t;0)g2 < j% since k < j for all k =0,...,5. Using the triangle inequality and

that a, p,t,4,5 > 0 together with these bounds we get that

’31%]'(75;9)‘ citr_J

=+t
Oa T« a+

dlogpi(t;0)| 1
Oa




‘8pij(t;9)’<pT+|j—ie‘“t|ut+p(ut—7)<(j+i+p)t_ (J+i)t | «

ou (1—eH)pu e * M

<1 <1
A ~ =
dlogpi;(t;0) T li e Ht —j] tT/ut+t pi;(t;0)
SRLL T < at® =t —
ou (ut) 1—e 1—e 1" p;(t;0)

<1

—
at?(1—e M) + (i + )t + 25t at? + (35 + 1)t
< <
1 —ent 1 —ent

(A.4)

A.2 Second order derivatives of p;;(t;6) and logp;;(t;§) with bounds

A 2
The expressions related to %:
«

82pi; (t;0) T2 k2 — k(1 +2p) .
# = Z 02 fPoi(p) (k)me(i,e—W) (.7 - k)
k=0
_ P?pi(t50) + pij (6 0) k2 — i (t; )i (1 + 2p)
o2
2
= 2 (Pigj—2)(t;0) — 2pi(j—1)(t;0) + pij (¢;0))
dlogpiy (1:0)\* _ p* (Pig-n(t0) |’ (A.5)
156" o? pi;(t;0) '
82 Ingij (t, 9) _ 1 82pij (t, 0) _ 3logp7] (t, 0) 2
0a? pij(t;0)  Oa? da

0? lt0 2 1 —eHt 2
% < 222:2<;) £ < 2t

1 |0%pii(t; 0 24424 5(142 ' j 2
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9% log pi;(t;0) < 1 9?pi;(t;0) n Jlogp;;(t;0) 2
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0?pij(t;0)  p?
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A.3 Third order derivatives of p;;(t;#) and logp;;(t;0) with bounds

The expressions related to %:
Since 78;9%((5;0) =2£ (pi(j,l)(t;e) —pij(t;G)), we get

T«

Ppi; (t; 9) P90 ) )
# Y (aapz'(j—m(t;@) —2%1%—(]-_1)(75;9) + apij(t;e)
3
p
= B (pigj—3)(t:0) = 3pi(j—2)(t; 0) + 3picj—1)(t; 0) — pi; (;0))
3
P
= 5 (pig-)(6:0) = 202 (1:0) + pigg-1)(:0))

3
_% (Pigj—2)(t;0) — 2pi(j—1)(t;0) + pij (£;0))
_ P (aZPij(t; )  0pi—n(t; 9))
(0%

da? Oa?

9% log pi;(t;0) 1 &pi;(t;0) 3 1 0%pi;(t;0) Olog pi;(t;0)

da? Cpij(t0)  0ad pi;j(t;6)  0a? O

Oa

Ppij(t:0)| | pPii-1)(t:0) 1 Ppi—1)(t;0)
da? a pij(t;0)  pig-1)(t;0) 0a?

. . 2 . . 2
J J plpi(t;0), (-1 j—1
t| L A Ll +
< a(a2+<a+>>+appij(t;9) o2 + o +

i+ (j + at)? i (i—1 i1 2
< ](])Hi(j _ +<]a+t)>
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9% log pi;(t; 6)
hullian=t o A A

oo’ -

L |&Ppiy(t0)], 5 L |9%pi(t:0)||9logpy;(t:0)
~ pii(t;0) da’ pi;(t;0) 0a? O
N 0log p;;(t;0) 3
da
t i~ 1 i—1 2
< irUrad?, (J 1, (J+t> )
a\ « a
3
43l t Ut o) “Lat (J+t) ( t)
a
= Blll(a M7t .77 (A15)
The expressions related to %:
Since
Ppij(t;6) _ P°pij (t;0) 4 pij (t; 0)r2 — pij(t; 0) (1 + 2p)
da? a?
2
0 1 14 2p
= 5 (a6 + (600 — 2500
2

P
= 2 (Pigj—2)(t:0) — 2pi(j—1) (£:0) + pij (£ 60))

and ,%572 = —2;’—;2 we get
Ppij(t;6) _ 9 pi;(t;6)
0a2ou o Oa?
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ap? p
2

a?

) B) B)
) (aupz'(jz)(t; 0) — 2@%(;’—1)(1& 0) + afupij(t; 9))

83 Ing,‘j (t; 0) _ 1 (93pi]‘ (t; 9) _9 1 32p¢j (t; 0) 8logpij (t; 9)
da2op pi;(t;0) 0a?0u pi;(t;0)  dadp da
| Ologpij(£:0) [ (Ologpi;(t;0) 2 9%logpi;(t:0)
ou O oa?
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pij(t:0) | Op (I—e)p  (I—e#)u  (L—e#)u pi(t;0)
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pi;(t;0) 0a20ou
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a? pij(t0)  pig-2)
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o pii(t;0)  pig—1)(t;0) Ou

— D o (t 0
(t;&) aupz(j 2)(7 )

t;0)

T 1pij(ﬁ§9)k¢2 _pij(t§9)k pij(t;H)k> p2 1 o
= e\t -2 - - Pij(t; 0
onQ (,0 pij(t;e) pij(t;g) a2 pij(t;a) 3,u J( )
L pij(t;0) g2 — pij(t;0)n 1 0
+— —Di(i— t; 9
a? pij(t;0) Pij—2)(t; 0) 3up (-2(%9)
p pij(t;0) 1 9

= Di(i—1)(t; 0
o? pij(t;e) pi(j71)(t;9) (9y,p (j 1)( )

1 63pij(t;€)
Dij (t; 9) 8052(9;1,
t2 1(5® +4) N G+i+)t
2— HTHT) 90} g2 (e UEIELE
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+a2(04t+1_em+]—2 +2ta at+1—e*ﬂt+j_1

43



0a2du
1 |pi(t;0) 1 |82pij(t;0) | |Dlogpi;(t;0)
pij(t;0) | O0a?op pij(t;0) | dadpu o
+ dlog pi;(t; 6) dlogpi;(t;0) ? _ 0% logpi;(t;0)
o o da2
£ 15+ 4) ) ) G+i+ 1t
< 2a<at+(1_e—ut)+23 +1 at+176_m+j
It Uizt . J G+t
+ o2 <t+ ot +Jj-2 +2ta at+1_e—/Lt+‘7 1
G2+t s JU D+ (G +at) (et + (35 +9)t)
+ at® + U
(1—eH)a

N at? + (35 +i)t [ ] j 2
j 2 g J

+ 21+ )+ 2 t>+ (Jt) <32+2(J+t)>
2 l—en o o

= 3112(04,Mat7jai) (A16)
The expressions related to %0#2:
Since
Opi;(t:0) _ pij(t;0)k — ppij(t; 0
and
P p_ p2r—(ut)’e ™
Za a (1—ert)u?
we get
D3p;j(t; 0) 9% p p [ 02 02
a0z (8u a) (pigj—1) (t:0) — pi;(£;0)) + o (Wpi(jn(ta@) - a/ﬂpij(t,e))
el GO GO P
= e e o \g@lun0 = gapto)
93 log p;j(t; 0) _ 1 33pi;(t;0) P 1 8%pi;(t;0) Ologp;;(t;0)
dadp? pij(t;0)  dady? pij(t;0)  dadp o
| Ologpi;(t:6) ( (Ologpi;(t:6) ? 0%logpi(t0)
O ou Ou?
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a s pii—1) (0
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— — 75Dt 0
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1
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Ou?
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1—ent <a *
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The expressions related to %:
Since
g;ﬁ _ ;i 6 8re Mt - 21+ 2(3*’“5)e*“tt2
dpua? a2\ 2 (1—e )2y (1 — ent)2
J
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J ko — : .
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where m = 0,1,2,... and p;;(t;0)ro = p;i;(£;6), we get
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A%Pu(t%@)w

A%pu(tﬂ)k

Apij (t:0) &

A%pz‘j (t:0)

Am;(t;f’)

9 logpi;(t;60)

6 8re M 2(1 +2e 1) emHt .2
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9% log pi; (t;0) <
ou? -

pi;(t;0) ous ou ou op?
at? + (35 +i)t\°
4 ( 1 —eHt

at? + (35 + i)t . N .
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B
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= 3222(avuataj7i) (A18)

B Derivation of the Fisher information matrix

See Section 3.2 for definitions.
The Fisher information matrix at 6y associated with {q(6;1,-) : 6 € Ay, } is given
by

. 111(90' Z) 112(90'i)
I(6p;1) = n QP
(00;) <I21(90;Z) I5(00;7)
By expression (2.2) we have that

N (i pigon(t60) = 1+ Eg[N(s+0)|N(s) =] —ie " =1+ py
7=0
(G —ie " )pij(t:f0) = Eg[N(s+1)|N(s) =1i] —ie " = p
7=0

=i Pitstn) = BoN (oot 07IN() =] et

hmg

—2ie Mt Ry [N(s+1)|N(s) =i
= (1—eMhje ol 452 4 po,

where Eg,[-] denotes expected value under 6y = (a, f19). Using these results and by
considering expressions (A.5), (A.8) and (A.12), we get that the entries of I(y;4) are
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given by
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