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Abstract

We present a continuous-discontinuous finite element method for the Mindlin-Reissner
plate model based on continuous polynomials of degree k ≥ 2 for the transverse displace-
ments and discontinuous polynomials of degree k − 1 for the rotations. We prove a priori
convergence estimates, uniformly in the thickness of the plate, and thus show that locking
is avoided. We also derive a posteriorierror estimates based on duality, together with cor-
responding adaptive procedures for controlling linear functionals of the error. Finally, we
present some numerical results.
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1 Introduction

Plates are very common simplified models for thin structures in engineering prac-
tice. The most basic plate models are the Kirchhoff model, which is a fourth order
partial differential equation, and the Mindlin-Reissner (MR) model, which is a sys-
tem of second order partial differential equations. The Kirchhoff model can be seen
as the limit of the MR model as the thickness of the plate tends to zero. Finite
element approximations of plate models would seem to be easier to handle with
the MR model, since then only C0 continuity is required, as opposed to the C1-
continuous elements needed for the Kirchhoff model. However, in order for a finite
element method to work asymptotically as t → 0 in the MR model, typically rather
complicated approximations must be used.

In this paper, we will consider a family of simple continuous-discontinuousGalerkin
finite element methods for the MR model, first proposed in [10], based on discon-



tinuous piecewise polynomials for the discretization of the rotations and continuous
piecewise polynomials of one degree higher for the transverse displacements.

When the thickness of the plate tends to zero we obtain the Kirchhoff plate and our
scheme simplifies to the method proposed in [9]. In this context we also mention
the discontinuous Galerkin methods for the Kirchhoff plate developed by Hansbo
and Larson [12] and for the Mindlin-Reissner model by Bösing, Madureira, and
Mozolevski [4].

2 The continuous problem

The Mindlin-Reissner plate model is described by the following partial differential
equations:

−∇ · σ(θ) − κ t−2 (∇u − θ) = 0, in Ω ⊂ R
2,

−κ t−2 ∇ · (∇u − θ) = g, in Ω,
(1)

where u is the transverse displacement, θ is the rotation of the median surface, t is
the thickness, assumed constant, t3 g is the transverse surface load, and

σ(θ) := 2µε(θ) + λ∇ · θ 1

is the moment tensor. Here, 1 is the identity tensor and ε is the strain operator with
components

εij(θ) =
1

2

(

∂θi

∂xj

+
∂θj

∂xi

)

.

The material constants are given by the relations

κ :=
E k

2(1 + ν)
, µ :=

E

24(1 + ν)
, λ :=

νE

12(1 − ν2)
,

where E and ν are the Young’s modulus and Poisson’s ratio, respectively, and k is
a shear correction factor usually set to k = 5/6. For simplicity, we shall assume
that the domain Ω is a convex polygon and consider the case of clamped boundary
conditions: θ = 0 and u = 0 on ∂Ω.

The differential equations describing the MR plate model can be derived from min-
imization of the sum of the bending energy, the shear energy, and the potential of
the surface load,

F(u, θ) := 1
2
a(θ, θ) + 1

2
b(u, θ; u, θ) − (g, u)Ω. (2)

where (·, ·)Ω denotes the L2 scalar product over the indicated domain, the bending
energy a(·, ·) is defined by

a(θ,ϑ) := (σ(θ), ε(ϑ))Ω,
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and the shear energy b(·, ·; ·, ·) by

b(u, θ; v,ϑ) :=
κ

t2
(∇u − θ,∇v − ϑ)Ω . (3)

The difficulty with this model, from a numerical point of view, is the matching of
the approximating spaces for θ and u. As t → 0, the difference ∇u − θ must tend
to zero; if this is not allowed by the approximating spaces the result is a deteriora-
tion of the numerical solution known as shear locking (the shear energy increases
without bound). The situation is particularly difficult if we wish to use low order ap-
proximations. One useful approach has been to use projections in the shear energy
term and consider modified energy functionals of the type

Fh(u, θ) := 1
2
a(θ, θ) + 1

2
b(u,Rhθ; u,Rhθ) − (g, u)Ω,

where Rh is some interpolation or projection operator. This idea underpins, e.g.,
the MITC element family of Bathe and co-workers, first introduced in [2], and
has been used extensively in the mathematical literature to prove convergence, see,
e.g., [1,6,8,14]. It should be noted that if the approximation corresponding toRhθ

were to be used also for the bending energy, the element would be non-conforming,
and potentially unstable. This means that we in effect have to construct and match
three different finite element spaces, and this is indeed how the approach was orig-
inally conceived: as a mixed method with an auxiliary set of unknowns (the shear
stresses), cf. [2].

3 The finite element method

For simplicity, we shall consider the case of clamped boundary conditions. The
transverse displacement and rotation vector are solutions to the following varia-
tional problem: find θ ∈ [H1

0 (Ω)]2 and u ∈ H1
0 (Ω) such that

a(θ,ϑ) + b(u, θ; v,ϑ) = (g, v)Ω (4)

for all (v,ϑ) ∈ H1
0 (Ω) × [H1

0 (Ω)]2.

To define the method, consider a subdivision T = {T} of Ω into a geometrically
conforming, quasiuniform, finite element mesh. Denote by hT the diameter of el-
ement T and by h = maxT∈T hT the global mesh size parameter. We shall use
continuous, piecewise polynomial, approximations of the transverse displacement,

Vh = {v ∈ H1(Ω) : v|T ∈ P k(T ) for all T ∈ T},

and discontinuous polynomials for the rotations:

Θh := {ϑ ∈ [L2(Ω)]2 : ϑ|T ∈ [P k−1(T )]2 for all T ∈ T},
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where k ≥ 2.

We note that the approximating spaces are compatible in the sense that

∇v ∈ Θh, ∀v ∈ Vh. (5)

In the limit t → 0, functions in Θh are then allowed to belong to ∇Vh which
alleviates locking.

To define our method we introduce the set of edges in the mesh, E = {E}, and we
split E into two disjoint subsets

E = EI ∪ EB,

where EI is the set of edges in the interior of Ω and EB is the set of edges on the
boundary. Further, with each edge we associate a fixed unit normal n such that
for edges on the boundary n is the exterior unit normal. We denote the jump of a
function v ∈ Vh (and analogously for v ∈ Θh) at an edge E by [v] = v+ − v− for
E ∈ EI and [v] = v+ for E ∈ EB, and the average 〈v〉 = (v+ + v−)/2 for E ∈ EI

and 〈v〉 = v+ for E ∈ EB , where v± = limǫ↓0 v(x∓ ǫn) with x ∈ E.

Our method can now be formulated as follows: find θh ∈ Θh and uh ∈ Vh such
that

ah(θ
h,ϑ) + b(uh, θh; v,ϑ) = (g, v)Ω (6)

for all (v,ϑ) ∈ Vh × Θh. In (6), the bilinear form ah(·, ·) is defined by

ah(θ
h,ϑ) =

∑

T∈T

(σ(θh), ε(ϑ))T −
∑

E∈E

(〈n · σ(θh)〉, [ϑ])E

−
∑

E∈E

(〈n · σ(ϑ)〉, [θh])E (7)

+ (2µ + 2λ) γ
∑

E∈E

(h−1
E [θh], [ϑ])E .

Here γ is a positive constant and hE is defined by

hE =
(

|T+| + |T−|
)

/(2 |E|) for E = ∂T+ ∩ ∂T−, (8)

with |T | the area of T , on each edge.

Using Green’s formula, we readily establish the following Lemma.

Lemma 1 The method(6) is consistent in the sense that

ah(θ − θ
h,ϑ) + b(u − uh, θ − θh; v,ϑ) = 0

for all ϑ ∈ Θh andv ∈ Vh.
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4 Stability estimates

For our analysis, we introduce the following edge norm

‖ϑ‖2
E =

∑

E∈E

‖ϑ‖2
L2(E). (9)

and mesh dependent energy-like norm

|||ϑ|||2 =
∑

T∈T

(σ(ϑ), ε(ϑ))T +
1

2µ + 2λ
‖h

1/2
E 〈n · σ(ϑ)〉‖2

E

+ (2µ + 2λ)‖h
−1/2
E [ϑ] ‖2

E, (10)

The mesh dependent norm ||| · ||| can be used to bound the broken H1(Ω) norm on
Θh, which is the statement of the following Lemma.

Lemma 2 There is a constantc, independent ofh, µ, andλ such that
∑

T∈T

‖ϑ‖2
H1(T ) ≤ c|||ϑ|||2 for all ϑ ∈ Θh. (11)

PROOF. This is a discrete Korn-type inequality that results from the control of the
rigid body rotations given by the jump terms. A complete proof can be found in [5].

In order to show that the method (6) is stable, we shall first show that ah (·, ·) is
coercive with respect to the norm ||| · |||, given that γ is sufficiently large.

Lemma 3 If γ > c0, with c0 sufficiently large, then the following estimate holds

c |||ϑ|||2 ≤ ah(ϑ,ϑ), (12)

for all v ∈ Θh.

PROOF. We first note that the following inverse estimate holds

‖h1/2〈n · σ(ϑ)〉‖2
E ≤ cI

∑

T∈T

‖σ(ϑ)‖2
L2(T ). (13)

This inequality is proved by scaling and finite dimensionality (see, e.g. [15]). Next
we note that

1

2µ + 2λ
‖σ(ϑ)‖2

L2(T ) ≤ (σ(ϑ), ε(ϑ))T ,

cf. Hansbo and Larson [11], and thus we conclude that

1

2µ + 2λ
‖h1/2〈n · σ(ϑ)〉‖2

E
≤ cI

∑

T∈T

(σ(ϑ), ε(ϑ))T . (14)
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Next, we have, for each E ∈ E, that

2(〈n · σ(ϑ)〉 , [ϑ])E ≤ δ(2µ + 2λ)−1‖h1/2 〈n · σ(ϑ)〉 ‖2
L2(E)

+ δ−1(2µ + 2λ)‖h−1/2[ϑ]‖2
L2(E),

where we used the Cauchy-Schwarz inequality followed by the arithmetic-geometric
mean inequality. Using these estimates and choosing, e.g., δ = (4 cI)

−1, we obtain

ah(ϑ,ϑ) ≥
1

2

∑

T∈T

(σ(ϑ), ε(ϑ))T

+ (2µ + 2λ)(γ − 2cI)‖h
−1/2[ϑ]‖2

E

+
1

4cI
(2µ + 2λ)−1‖h1/2 〈n · σ(ϑ)〉 ‖2

E

≥ c|||ϑ|||2,

whence we must choose γ ≥ c0 > 4 cI . (We remark that a more careful analysis
shows that the form ah(·, ·) will in fact be coercive on the discrete space as long as
γ > cI .)

We have thus shown the following stability property of the method.

Proposition 4 Choosingγ ≥ c0 > 4 cI , the following coercivity condition holds:

ah(ϑ,ϑ) +
κ

t2

∫

Ω
|∇v − ϑ|2dΩ ≥ C

(

|||ϑ||| + κ1/2t−1‖∇v − ϑ‖L2(Ω)

)2

, (15)

for all (ϑ, v) ∈ Θh × Vh.

We finally remark that the constant cI in the inverse estimate (13) is computable
and thus the lower bound c0 on γ is available, see [13] for details.

5 A priori error estimates

In this section, we will derive a priori error estimates for CDG methods in the case
k = 2, and show that they hold uniformly in t. For higher order methods, edge
effects will typically preclude global estimates because of the lack of regularity of
the exact solution.

6



5.1 An estimate in energy norm

For convenience, we introduce the scaled shear stress ζ and its discrete counterpart
ζh, defined by

ζ := κ1/2(∇u − θ)/t2 and ζh := κ1/2(∇uh − θh)/t2. (16)

We also split the Mindlin-Reissner displacement u into the corresponding Kirch-
hoff solution u0 corresponding to the limit case t → 0, and a remainder ur, so that
u = u0 + ur. We then have the following stability estimate.

Lemma 5 Assume thatΩ is convex andg ∈ L2(Ω). Then

‖u0‖H3(Ω) +
1

t
‖ur‖H2(Ω) + ‖θ‖H2(Ω) + t‖ζ‖H1(Ω) ≤ C

(

‖g‖H−1(Ω) + t‖g‖L2(Ω)

)

.

For a proof, see [7,1].

For the purpose of analysis, we introduce the nodal interpolation operators π1 :
[H2(Ω)]2 →W h, where

W h := {v ∈ [H1(Ω) ∩ C0(Ω)]2 : v|T ∈ [P 1(T )]2 for all T ∈ T},

and π2 : H2(Ω) → Vh. We also define the operators P u : [H2(Ω)]2 → Θh and
Qu : [H2(Ω)]2 → Θh defined by

P uθ := ∇π2u0 − π1∇u0 + π1θ

and
Quζ := κ1/2 (∇π2ur − π1∇ur)) /t2 + π1ζ.

Noting that

t2

κ1/2
Quζ = ∇π2ur − π1∇ur + π1∇(ur + u0) + π1θ = ∇π2u −P uθ,

and using Lemma 1, we then find

ah(θ − θ
h,P uθ) + t2(ζ − ζh,Quζ)Ω = 0. (17)

We will need the following approximation properties of our finite element sub-
spaces.
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Lemma 6 We have the following interpolation estimate:

|||θ − P uθ||| + t‖ζ −Quζ‖L2(Ω) ≤ Ch
(

‖θ‖H2(Ω) + ‖u0‖H3(Ω) + t−1‖ur‖H2(Ω)

+ t‖ζ‖H1(Ω)

)

.

PROOF. We first recall the trace inequality (cf. [15])

h−1
T ‖ϑ‖2

L2(∂T ) ≤ C
(

h−2
T ‖ϑ‖2

L2(T ) + ‖ϑ‖2
H1(T )

)

, (18)

for all ϑ ∈ [H2(T )]2. For the edge norm we have that

h−1
E ‖[θ − P uθ]‖

2
L2(E) ≤ Ch−1

E

(

‖θ − P uθ‖
2
L2(∂T1) + ‖θ − P uθ‖

2
L2(∂T2)

)

for E shared by adjacent elements T1 and T2, and since, by quasiuniformity, hTi
≤

hE/C, i = 1, 2, we find, using (18),

h−1
E ‖θ − P uθ‖

2
L2(∂Ti)

≤ Ch−1
Ti
‖θ − P uθ‖

2
L2(∂Ti)

≤ C
(

h−2
Ti
‖θ − P uθ‖

2
L2(Ti)

+ ‖θ − P uθ‖
2
H1(Ti)

)

.

Using the definition of P u and applying the triangle inequality, we find

‖θ −P uθ‖ ≤ ‖θ − π1θ‖ + ‖∇u0 −∇π2u0‖ + ‖∇u0 − π1∇u0‖,

so that, by standard interpolation theory,

h−1
E ‖θ −P uθ‖

2
L2(∂Ti)

≤ Ch2
T

(

‖θ‖2
H2(Ti)

+ ‖u0‖
2
H3(Ti)

)

.

Similarly,

hE‖σ(θ − P uθ)‖
2
L2(∂Ti)

≤ C
(

‖θ − P uθ‖
2
H1(Ti)

+ h2
Ti
‖θ −P uθ‖

2
H2(Ti)

)

≤ Ch2
Ti

(

‖θ‖2
H2(Ti)

+ ‖u0‖
2
H3(Ti)

)

,

and
(σ(θ − P uθ), ε(θ − P uθ))T ≤ Ch2

T

(

‖θ‖2
H2(T ) + ‖u0‖

2
H3(T )

)

.

By summation it thus follows that

|||θ − πuθ||| ≤ Ch
(

‖θ‖H2(Ω) + ‖u0‖H3(Ω)

)

.
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Finally, by the triangle inequality and standard interpolation arguments,

‖ζ −Quζ‖L2(Ω) ≤ ‖ζ − π1ζ‖L2(Ω) +
κ1/2

t2
‖∇ur −∇π2ur‖L2(Ω)

+
κ1/2

t2
‖∇ur − π1∇ur‖L2(Ω)

≤ Ch
(

t−2‖ur‖H2(Ω) + ‖ζ‖H1(Ω)

)

,

which completes the proof of the lemma.

We can now prove the following best approximation result.

Lemma 7 We have that

|||θ − θh||| + t‖ζ − ζh‖L2(Ω) ≤ C
(

|||θ − P uθ||| + t‖ζ −Quζ‖L2(Ω)

)

.

PROOF. By the triangle inequality

|||θ − θh||| + t‖ζ − ζh‖L2(Ω) ≤ |||θ − P uθ||| + |||P uθ − θ
h||| + t‖ζ −Quζ‖L2(Ω)

+ t‖Quζ − ζ
h‖L2(Ω).

Further, by (17), we have that

|||θh −P uθ|||
2 + t2‖ζh −Quζ‖

2
L2(Ω)

≤ C
(

ah(θ
h − P uθ, θ

h −P uθ) + t2(ζh −Quζ, ζ
h −Quζ)

)

= C
(

ah(θ −P uθ, θ
h − P uθ) + t2(ζ −Quζ, ζ

h −Quζ)
)

≤ C
(

|||θ − P uθ||| + t‖ζ −Quζ‖L2(Ω)

)

×
(

|||θh − P uθ||| + t‖ζh −Quζ‖L2(Ω)

)

,

and the lemma follows.

Finally, combining Lemmas 5, 6, and 7, we obtain

Theorem 8 If Ω is a convex domain andg ∈ L2(Ω) we have, for(θh, uh) solving
(6) and(θ, u) solving(4), and using the definition(16),

|||θ − θh||| + t‖ζ − ζh‖L2(Ω) ≤ Ch
(

‖g‖H−1(Ω) + t‖g‖L2(Ω)

)

,

uniformly int.
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5.2 An estimate inL2-norm

Consider the following auxiliary problem of finding z and ψ such that

−∇ · σ(ψ) − κ t−2 (∇z −ψ) = θ − θh, in Ω,

−κ t−2 ∇ · (∇z −ψ) = u − uh, in Ω,
(19)

which, with eu = u − uh and eθ = θ − θh, leads to

‖eu‖
2
L2(Ω) + ‖eθ‖

2
L2(Ω) = ah(eθ,ψ) + b(eu, eθ; z,ψ)

using integration by parts and the symmetry of the forms. Proceeding as in the
energy estimate, we define

η := κ1/2(∇z −ψ)/t2, (20)

and the split z = z0 + zr. We also define eζ = ζ − ζh and introduce the operators
Qz and P z defined as in Lemma 5 (with z in the place of u and ψ in the place of
θ). Then, by Lemma 1, we find that

‖eu‖
2
L2(Ω) + ‖eθ‖

2
L2(Ω) = ah(eθ,ψ −P zψ) + t2(eζ ,η −Qzη)

≤ C
(

|||eθ||| + t‖eζ‖L2(Ω)

)

×
(

|||ψ − P zψ||| + t‖η −Qzη‖L2(Ω)

)

.

Proceeding as in Lemma 6, and using the stability result

‖z0‖H3(Ω) +
1

t
‖zr‖H2(Ω) + ‖ψ‖H2(Ω) + t‖η‖H1(Ω) ≤ C

(

‖eu‖L2(Ω) + ‖eθ‖L2(Ω)

)

.

adapted from [7,1], we finally obtain (under the conditions of Theorem 8) the a
priori estimate:

‖u − uh‖L2(Ω) + ‖θ − θh‖L2(Ω) ≤ Ch2
(

‖g‖H−1(Ω) + t‖g‖L2(Ω)

)

. (21)
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6 A posteriori error estimates and adaptive algorithms

6.1 A duality-baseda posteriori estimate

For duality-based a posteriorierror analysis, we consider the following variant of
(19): find z and ψ such that

−∇ · σ(ψ) − κ t−2 (∇z −ψ) = f θ, in Ω,

−κ t−2 ∇ · (∇z −ψ) = fu, in Ω,
(22)

with zero Dirichlet boundary conditions for z and ψ. With eθ = θ − θh and eu =
u − uh we find, using Lemma 1, that

(f θ, eθ)Ω + (fu, eu)Ω = ah(ψ, eθ) + b(z,ψ; eu, eθ)

= ah(eθ,ψ − πhψ) + b(eu, eθ; z − π̃hz,ψ − πhψ),

where πh and π̃h now denote arbitrary interpolants (or projections) onto the respec-
tive subspaces. Using the equilibrium equations we find that

(fθ, eθ)Ω + (fu, eu)Ω = (g, z − π̃hz) − ah(θ
h,ψ − πhψ)

− b(uh, θh; z − π̃hz,ψ − πhψ).
(23)

This exact relation forms the basis of our adaptive error control algorithm. Follow-
ing Becker and Rannacher [3], we can now select the terms fθ and fu to try to
control general linear functionals of the errors in displacement and rotation, as long
as we have good estimates of the a priori terms z − π̃hz and ψ − πhψ.

6.2 Implementation

We shall establish a practical adaptive method based on (23). To this end we need
to approximate the (unknown) solution of the continuous dual plate problem (22).
In the numerical examples presented in Sections 7.1–7.2, we strive to control errors
in terms of displacements, which implies fθ = 0, and the discretized dual plate
formulation becomes: find z̃ ∈ V ∗

h and ψ̃ ∈ Θ
∗
h such that

ah(ψ̃,ϑ) + b(z̃, ψ̃; v,ϑ) = (fu, v)Ω, ∀(v,ϑ) ∈ V ∗
h ×Θ

∗
h, (24)

where the enriched function spaces, V ∗
h ⊃ Vh and Θ

∗
h ⊃ Θh, are constructed

by subjecting the primal triangulation T to regular subdivision. For simplicity we
let k = 2, and thus employ the lowest-order scheme, thereby obtaining quadratic
and linear approximations of the transverse displacements and the rotation vector,
respectively. The bilinear form (7) includes a Nitsche-like term, which penalizes

11



jumps in the rotation components along edges. It is important that the positive con-
stant γ is large enough to ensure the coercivity of ah(·, ·). A discussion on how to
compute the stability parameter, in the context of the Kirchhoff plate model, can
be found in [11]. Typically γ increases with the order of the polynomial approxi-
mation. Here we set γ = 10, which is larger than the asymptotic value, γ0 = 3/2.
We also note that the presence of the shear energy functional (3), an inner prod-
uct, in the Mindlin-Reissner model stabilizes the numerical method (6) further. The
implications of the choice of stability parameter on different types of meshes are
discussed in Section 7.4.

Now, after solving (24), we have a means to obtain local error indicators: the er-
ror estimate (23) is evaluated elementwise, so that each Tj ∈ T, j = 1, . . . , N ,
contributes ηj to the total error

L(eu) = (fu, eu)Ω ≈
N
∑

j=1

ηj = L(ẽu).

Error contributions in (23) which emanate from internal edges are split equally
between neighboring elements. Moreover, π̃h : V ∗

h → Vh is chosen to be the nodal
interpolant, extracted directly from z̃, whereas πh : Θ

∗
h → Θh is an elementwise

L2-projection of the rotation components. The stopping criterion of the adaptive
algorithm, summarized in Algorithm 1, is imposed on the relative error

erel := |L(eu)/L(u)| ≤ TOL, (25)

where TOL > 0 is a prescribed tolerance. If (25) is not satisfied, an arbitrary fixed-
ratio r = 0.2 of the elements, those carrying the largest absolute error indicators
|ηj|, are selected for refinement. New elements are introduced locally using longest-
edge bisection. The performance of the a posteriorierror estimator is evaluated in
terms of the effectivity index

Ieff := |L(ẽu)/L(eu)| .

When the computational mesh is sufficiently resolved, we want the estimator to be
robust and accurate. However, since we resort to numerical approximations of the
continuous dual plate problem (22), one cannot expect Ieff = 1 exactly, albeit it
should be close to unity.

7 Numerical examples

We apply Algorithm 1 to a set of simpler model problems in order to: 1) exemplify
the behavior of the adaptive procedure; 2) study convergence rates of the finite
element method (6) with respect to meshsize and plate thickness; and 3) study how
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Algorithm 1: Adaptive scheme

Data: initial mesh T0, user-specified tolerance TOL
Result: FE-solutions uh and θh, estimated goal quantity L(uh), local error

indicators ηj

for i = 0, 1, . . . do
solve primal plate problem (6) for uh and θh on Ti

construct dual mesh T̃i by regular subdivision
solve dual plate problem (24) for z̃ and ψ̃ on T̃i

compute local error indicators by element- and edgewise integration in (23)
if TOL > erel then

refine primal mesh locally by longest-edge bisection: Ti → Ti+1

else
break

end
end

the choice of stability parameter affects the approximation on different types of
meshes.

The stopping criteria were set to require a reasonable number of refinement levels,
given initial meshes T0 not too coarse. The shear correction factor k = 5/6.

7.1 An L-shaped membrane

The polygonal domain Ω, with vertices at (0, 0), (1
2
, 0), (1

2
, 1

2
), (1, 1

2
), (1, 1), and

(0, 1), represents a clamped plate (u|∂Ω = 0 and θ|∂Ω = 0). The material param-
eters ν = 1/3, E = 1, and the thickness t = 10−2. The plate is subjected to a
uniform transverse load g = 1.

We set fu = 1 to control the error in mean displacement. The exact goal quantity
was approximated by

L(uapp) =
∫

Ω
uapp dx, x = (x, y) ∈ Ω, (26)

where uapp had been solved for on a densely adapted mesh. Hence the effectivity
index can be expected to increase slowly during the adaptive process. Due to the
symmetry of the domain and the uniform load, consecutive meshes should also
be symmetric. A concentration of elements is expected in the vicinity of the non-
convex corner singularity at (1

2
, 1

2
).

The FE-solution uh, shown in Figure 1, was computed on the nearly symmetric
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(about the symmetry line y = 1 − x) final mesh T10, visualized in Figure 2(b).
Local refinements were prominent at the interior corner, and along the boundaries
of the domain, where the magnitude of the curvature of the plate becomes large.
The initial mesh is shown in Figure 2(a). The error estimator is accurate and robust,
judging by the effectivity indices shown in Figure 3(b). The adaptive strategy, as
compared to uniform refinement, is more efficient in terms of accuracy per degree
of freedom, according to the results presented in Figure 3(a). Data from the adaptive
process is summarized in Table 1.

7.2 The unit square

Let Ω = [0, 1]× [0, 1] represent a fixed plate (θ|∂Ω= 0). Reuse material parameters
and thickness from the preceding example, i.e., E = 1, ν = 1/3, and t = 10−2.
The rotation vector is given explicitly by

θ =







2(x − 1)x(2x − 1)(y − 1)2y2

2(y − 1)y(2y − 1)(x − 1)2x2






, (27)

and the symmetric surface load

g(x, y) =
2E

1 − ν2

(

x(x − 1)(x2 − x + 2) + y(y − 1)(y2 − y + 2)

+ 12x(x − 1)y(y − 1) + 1
3

)

.

This corresponds to the transverse displacements

u(x, y) =
t2

5(ν − 1)

(

12x(x − 1)y(y − 1)(x2 − x + y2 − y)

+ 2(x2(x − 1)2 + y2(y − 1)2)
)

+ x2(x − 1)2y2(y − 1)2,

(28)

whose boundary values are applied as Dirichlet data. Note that the displacements
will depend on the thickness of the plate, so that we regain the Kirchhoff solution,
u0(x, y) = x2(x − 1)2y2(y − 1)2, in the limit t → 0.

We let the datum of the dual plate problem be a Dirac delta function

fu = δ(x − x̄, y − ȳ), (x̄, ȳ) = (3
4
, 3

4
),

so that the error in the goal quantity simplifies to L(eu) = u(x̄, ȳ) − uh(x̄, ȳ); we
thus try to control the displacement error in a single point. Since the analytical
solution is symmetric, we expect consecutive meshes to be symmetric as well, with
respect to the symmetry line y = x. The final mesh should be densely resolved
about (x̄, ȳ).
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The FE-solution uh, shown in Figure 5, was computed on the nearly symmetric
final mesh T11, visualized in Figure 4(b). The initial mesh, shown in Figure 4(a),
has been optimized by local refinements: foremost in the vicinity of (x̄, ȳ), but
also along adjacent boundary regions. Advocated by the results in Figure 6(b), the
effectivity index was stable, with L(ẽu) slightly overestimating L(eu). By the com-
parison presented in Figure 6(a), the adaptive strategy would be more efficient than
uniform refinement. The absence of singularities, however, makes it less so.

7.3 Convergence in meshsize and plate thickness

We now consider convergence rates α of the numerical solution in terms of mesh-
size and plate thickness. To this end, the preceding model problem in Section 7.2,
with known analytical solutions (27) and (28), will be employed.

For the displacements the result in Figure 7(a) indicates the optimal rate of second-
order convergence in L2-norm, as warranted by the order of the polynomial ap-
proximation. The same result can be seen in Figure 7(b), asymptotically as h → 0,
for the scaled shear stresses (16). These numerical convergence rates concur with
(21). For the rotations, in Figure 8(a), we observe first-order convergence in the
broken H1-norm, which then, by Lemma 2, numerically justifies the error estimate
in Theorem 8. The latter is also confirmed by the results in Figure 8(b). Moreover,
Theorem 8 predicts uniform convergence in t, which is shown in Figure 9 for a set
of different plate thicknesses, ranging from 10−1 to 10−6.

Lastly, in order to avoid shear locking, the difference ∇u − θ must vanish in the
limit t → 0. The results in Figure 10 show that ‖∇uh−θh‖L2(Ω) converges to zero,
almost quadratically, as t → 0 for fixed h (as in the analytical solution). Hence the
computed shear energy 1

2
b(uh, θh; uh, θh) does as well.

7.4 Choice of stability parameter

We study the sensitivity of the numerical solution to the choice of stability parame-
ter γ. This is done on three different types of meshes: 1) a mesh with directionality;
2) an unstructured mesh; and 3) a criss-cross mesh. We reuse our model problem
in Section 7.2, and consider the error in the midpoint displacement, as a function
of γ and plate thickness. The different meshes were constructed to have a similar
number of elements.

The numerical method (6) has a mesh sensitivity with respect to γ for low-order
k, as discussed in [11], in context of the Kirchhoff plate model. If γ is chosen too
large locking will occur, unless a global C1-approximation is contained in the trial
space. The effect is evident for thin plates, as seen in Figures 11 and 12, where
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Table 1
Goal-oriented adaptive procedure: controlling the error in mean displacements on an L-
shaped membrane

iter. # elements # DOF goal quantity est. error est. exact error effectivity

1 384 3 137 5.18 · 10−4 8.08 · 10−5 8.62 · 10−5 0.93

2 492 4 001 5.44 · 10−4 5.92 · 10−5 5.93 · 10−5 0.99

3 604 4 899 5.64 · 10−4 4.03 · 10−5 3.98 · 10−5 1.01

4 830 6 737 5.75 · 10−4 3.14 · 10−5 2.92 · 10−5 1.07

5 1 090 8 831 5.84 · 10−4 2.20 · 10−5 2.01 · 10−5 1.09

6 1 422 11 499 5.90 · 10−4 1.53 · 10−5 1.38 · 10−5 1.11

7 1 954 15 803 5.94 · 10−4 1.15 · 10−5 1.01 · 10−5 1.14

8 2 686 21 699 5.96 · 10−4 8.67 · 10−6 7.40 · 10−6 1.17

9 3 567 28 760 5.98 · 10−4 6.37 · 10−6 5.30 · 10−6 1.20

10 4 740 38 179 6.00 · 10−4 4.76 · 10−6 3.83 · 10−6 1.24

Table 2
Goal-oriented adaptive procedure: controlling the displacement error in a point on the unit
square

iter. # elements # DOF goal quantity est. error exact error effectivity

1 512 4 161 1.1857 · 10−3 5.49 · 10−5 5.07 · 10−5 1.08

2 654 5 297 1.2062 · 10−3 3.36 · 10−5 3.02 · 10−5 1.11

3 840 6 793 1.2159 · 10−3 2.26 · 10−5 2.04 · 10−5 1.10

4 1 122 9 061 1.2216 · 10−3 1.70 · 10−5 1.48 · 10−5 1.14

5 1 468 11 831 1.2248 · 10−3 1.34 · 10−5 1.16 · 10−5 1.15

6 1 996 16 093 1.2277 · 10−3 1.00 · 10−5 8.70 · 10−6 1.15

7 2 672 21 515 1.2302 · 10−3 7.29 · 10−6 6.26 · 10−6 1.16

8 3 604 28 995 1.2318 · 10−3 5.43 · 10−6 4.61 · 10−6 1.17

9 4 810 38 675 1.2331 · 10−3 3.85 · 10−6 3.30 · 10−6 1.16

10 6 492 52 177 1.2341 · 10−3 2.76 · 10−6 2.35 · 10−6 1.17

11 8 662 69 561 1.2346 · 10−3 2.13 · 10−6 1.79 · 10−6 1.18
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the degradation of the numerical solutions on oriented and unstructured meshes is
shown. On a criss-cross mesh, however, the finite element method is robust with
respect to locking: the existence of a C1-approximation on this type of mesh was
shown by Zhang in [16]. In Figure 13 we also note how ur → u0 as t → 0. Finally,
we remark that there is no numerical locking for thicker plates; here γ can be set
arbitrarily large.

8 CONCLUDING REMARKS

We have presented a novel finite element method for the Mindlin-Reissner plate
model, based on the discontinuous Galerkin approach. We show that our method
does not lock as long as we make a proper choice of a free, but computable, pa-
rameter. Our approach avoids the current paradigm of projections of the rotations
in the shear energy functional, which, at least from a conceptual point of view, re-
quires a mixed implementation. We pay the prize of having to use a higher number
of degrees of freedom; in consequence, the presented approach may not be com-
putationally competitive with the “best” elements available. Nevertheless, we feel
that it is a very simple and straightforward method; in particular it is free of special
mixed element approximations.
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Fig. 1. The adapted FE-solution uh at the last refinement level i = 10

(a) Initial mesh T0 (b) Final mesh T10

Fig. 2.
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Fig. 5. The adapted FE-solution uh at the last refinement level i = 11
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(a) 8 198-element unstructured mesh.
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(a) 8 192-element criss-cross mesh.
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