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STOCHASTIC DOMINATION FOR THE ISING AND FUZZY

POTTS MODELS

MARCUS WARFHEIMER

Abstract. We discuss various aspects concerning stochastic domination for
the Ising model and the fuzzy Potts model. We begin by considering the
Ising model on the homogeneous tree of degree d, T

d. For given interaction
parameters J1, J2 > 0 and external field h1 ∈ R, we compute the smallest
external field h̃ such that the plus measure with parameters J2 and h dominates
the plus measure with parameters J1 and h1 for all h ≥ h̃. Moreover, we discuss

continuity of h̃ with respect to the three parameters J1, J2, h and also how
the plus measures are stochastically ordered in the interaction parameter for
a fixed external field. Next, we consider the fuzzy Potts model and prove that
on Z

d the fuzzy Potts measures dominate the same set of product measures
while on T

d, for certain parameter values, the free and minus fuzzy Potts
measures dominate different product measures. For the Ising model, Liggett
and Steif proved that on Z

d the plus measures dominate the same set of product
measures while on T

2 that statement fails completely except when there is a
unique phase.

1. Introduction and main results

The concept of stochastic domination has played an important role in probability
theory over the last couple of decades, for example in interacting particle systems
and statistical mechanics. In [13], various results were proved concerning stochastic
domination for the Ising model with no external field on Zd and on the homogeneous
binary tree T2 (i.e. the unique infinite tree where each site has 3 neighbors). As
an example, the following distinction between Zd and T2 was shown: On Zd, the
plus and minus states dominate the same set of product measures, while on T2 that
statement fails completely except in the case when we have a unique phase. In this
paper we study stochastic domination for the Ising model in the case of nonzero
external field and also for the so called fuzzy Potts model.

Let V be a finite or countable set and equip the space {−1, 1}V with the following
natural partial order: For η, η′ ∈ {−1, 1}V , we write η ≤ η′ if η(x) ≤ η′(x) for all
x ∈ V . Moreover, whenever we need a topology on {−1, 1}V we will use the product
topology. We say that a function f : {−1, 1}V → R is increasing if f(η) ≤ f(η′)
whenever η ≤ η′. We will use the following usual definition of stochastic domination.

Definition 1.1 (Stochastic domination). Given a finite or countable set V and
probability measures µ1, µ2 on {−1, 1}V , we say that µ2 dominates µ1 (written
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2 MARCUS WARFHEIMER

µ1 ≤ µ2 or µ2 ≥ µ1) if
∫

f dµ1 ≤

∫

f dµ2

for all real-valued, continuous and increasing functions f on {−1, 1}V .

It is well known that a necessary and sufficient condition for two probability
measures µ1, µ2 to satisfy µ1 ≤ µ2 is that there exists a coupling measure ν on
{−1, 1}V ×{−1, 1}V with first and second marginals equal to µ1 and µ2 respectively
and

ν( (η, ξ) : η ≤ ξ ) = 1.

(For a proof, see for example [12, p. 72-74].) Given any set S ⊆ R and a family of
probability measures {µs}s∈S indexed by S, we will say that the map S ∋ s 7→ µs

is increasing if µs1
≤ µs2

whenever s1 < s2.

1.1. The Ising model. The ferromagnetic Ising model is a well studied object in
both physics and probability theory. For a given infinite, locally finite (i.e. each
vertex has a finite number of neighbors), connected graph G = (V,E), it is defined
from the nearest-neighbor potential

ΦJ,h
A (η) =











−Jη(x)η(y) if A = {x, y}, with 〈x, y〉 ∈ E,

−hη(x) if A = {x},

0 otherwise

where A ⊆ V , η ∈ {−1, 1}V , J > 0, h ∈ R are two parameters called the coupling
strength and the external field respectively and 〈x, y〉 denotes the edge connecting
x and y. A probability measure µ on {−1, 1}V is said to be a Gibbs measure (or
sometimes Gibbs state) for the ferromagnetic Ising model with parameters h ∈ R
and J > 0 if it admits conditional probabilities such that for all finite U ⊆ V , all
σ ∈ {−1, 1}U and all η ∈ {−1, 1}V \U

µ(X(U) = σ |X(V \ U) = η)

=
1

ZU,η
J,h

exp

[

J

(

∑

〈x,y〉∈E,x,y∈U

σ(x)σ(y) +
∑

〈x,y〉∈E,x∈U,y∈∂U

σ(x)η(y)

)

+ h
∑

x∈U

σ(x)

]

where ZU,η
J,h is a normalizing constant and

∂U = { x ∈ V \ U : ∃y ∈ U such that 〈x, y〉 ∈ E }.

For given J > 0 and h ∈ R, we will denote the set of Gibbs measures with param-
eters J and h by G(J, h) and we say that a phase transition occurs if |G(J, h)| > 1,
i.e. if there exist more than one Gibbs state. (From the general theory described
in [2] or [12], G(J, h) is always nonempty.) At this stage one can ask, for fixed
h ∈ R, is it the case that the existence of multiple Gibbs states is increasing in
J? When h = 0 it is possible from the so called random-cluster representation of
the Ising model to show a positive answer to the last question (see [5] for the case
when G = Zd and [7] for more general G). However, when h 6= 0 there are graphs
where the above monontonicity property no longer holds, see [15] for an example
of a relatively simple such graph.
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Furthermore, still for fixed J > 0, h ∈ R, standard monotonicity arguments can

be used to show that there exists two particular Gibbs states µJ,+
h , µJ,−

h , called the
plus and the minus state, which are extreme with respect to the stochastic ordering
in the sense that

(1.1) µJ,−
h ≤ µ ≤ µJ,+

h for any other µ ∈ G(J, h).

To simplify the notation, we will write µJ,+ for µJ,+
0 and µJ,− for µJ,−

0 . (Of course,
most of the things we have defined so far are also highly dependent on the graph
G, but we suppress that in the notation.)

In [13] the authors studied, among other things, stochastic domination between
the plus measures {µJ,+}J>0 in the case when G = T2. For example, they showed
that the map (0,∞) ∋ J 7→ µJ,+ is increasing when J > Jc and proved the

existence of and computed the smallest J > Jc such that µJ,+ dominates µJ′,+

for all 0 < J ′ ≤ Jc. (On Zd, the fact that µJ1,+ and µJ2,+ are not stochastically
ordered when J1 6= J2 gives that such a J does not even exist in that case.) Our
first result deals with the following question: Given J1, J2 > 0, h1 ∈ R, can we find

the smallest external field h̃ = h̃(J1, J2, h1) with the property that µJ2,+
h dominates

µJ1,+
h1

for all h ≥ h̃? To clarify the question a bit more, note that an easy application

of Holley’s theorem (see [3]) tells us that for fixed J > 0, the map R ∋ h 7→ µJ,+
h is

increasing. Hence, for given J1, J2 and h1 as above the set

{ h ∈ R : µJ2,+
h ≥ µJ1,±

h1
}

is an infinite interval and we want to find the left endpoint of that interval (possibly
−∞ or +∞ at this stage). For a general graph not much can be said, but we have

the following easy bounds on h̃ when G is of bounded degree.

Proposition 1.1. Consider the Ising model on a general graph G = (V,E) of

bounded degree. Define

h̃ = h̃(J1, J2, h1) = inf{ h ∈ R : µJ2,+
h ≥ µJ1,+

h1
}.

Then

h1 −N(J1 + J2) ≤ h̃ ≤ h1 +N |J1 − J2|,

where N = sup
x∈V

Nx and Nx is the number of neighbors of the site x ∈ V .

For the Ising model, we will now consider the case when G = Td, the homo-
geneous d-ary tree, defined as the unique infinite tree where each site has exactly
d + 1 ≥ 3 neighbors. The parameter d is fixed in all that we will do and so we
suppress that in the notation. For this particular graph it is well known that for
given h ∈ R, the existence of multiple Gibbs states is increasing in J and so as a
consequence there exists a critical value Jc(h) ∈ [0,∞] such that when J < Jc(h)
we have a unique Gibbs state whereas for J > Jc(h) there are more than one Gibbs
states. In fact, much more can be shown in this case. As an example it is possible
to derive an explicit expression for the phase transition region

{ (J, h) ∈ R2 : |G(J, h)| > 1 },

in particular one can see that Jc(h) ∈ (0,∞) for all h ∈ R. Moreover,

Jc := Jc(0) = arccoth d =
1

2
log

d+ 1

d− 1
,

see [2] for more details. (Here and in the sequel, := will mean definition.)
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To state our results for the Ising model on Td, we need to recall some more facts,
all of which can be found in [2, p. 247-255]. To begin, we just state what we need
very briefly and later on we will give some more details. Given J > 0 and h ∈ R,
there is a one-to-one correspondence t 7→ µ between the real solutions of a certain
equation (see (2.3) and the function φJ in (2.2) below) and the completely homo-
geneous Markov chains in G(J, h) (to be defined in Section 2). Let t±(J, h) denote
the real numbers which correspond to the plus and minus measure respectively. (It
is easy to see that the plus and minus states are completely homogeneous Markov
chains, see Section 2.) We will write t±(J) instead of t±(J, 0). Furthermore, let

h∗(J) = max
t≥0

(

dφJ (t) − t
)

and denote by t∗(J) the t ≥ 0 where the function t 7→ dφJ (t)− t attains its unique
maximum. In [2], explicit expressions for both h∗ and t∗ are derived:

h∗(J) =







0 if J ≤ Jc

d arctanh
(

d tanh(J)−1
d coth(J)−1

)1/2

− arctanh
(

d−coth(J)
d−tanh(J)

)1/2

if J > Jc

t∗(J) =







0 if J ≤ Jc

arctanh
(

d−coth(J)
d−tanh(J)

)1/2

if J > Jc

In particular one can see that both h∗ and t∗ are continuous functions of J and
by computing derivatives one can show that they are strictly increasing for J > Jc.

Interaction parameter J

h
∗
(J

)

Interaction parameter J

t∗
(J

)

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

-1

0

1

2

-1

0

1

2

Figure 1.1. The functions h∗ and t∗ in the case when d = 4.
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Theorem 1.2. Consider the Ising model on Td and let J1, J2 > 0, h1 ∈ R be

given. Define

f±(J1, J2, h1) = inf{ h ∈ R : µJ2,+
h ≥ µJ1,±

h1
}

g±(J1, J2, h1) = inf{ h ∈ R : µJ2,−
h ≥ µJ1,±

h1
}

and denote τ± = τ±(J1, J2, h1) = t±(J1, h1) + |J1 − J2|. Then the following holds:

(1.2) f±(J1, J2, h1) =

{

−h∗(J2) if t−(J2,−h
∗(J2)) ≤ τ± < t∗(J2)

τ± − dφJ2
(τ±) if τ± ≥ t∗(J2) or τ± < t−(J2,−h

∗(J2))

(1.3) g±(J1, J2, h1) =

{

h∗(J2) if − t∗(J2) < τ± ≤ t+(J2, h
∗(J2))

τ± − dφJ2
(τ±) if τ± ≤ −t∗(J2) or τ± > t+(J2, h

∗(J2))

Remarks.

(i) Note that if 0 < J2 ≤ Jc, then h∗(J2) = 0 and

t−(J2,−h
∗(J2)) = t∗(J2) = t+(J2, h

∗(J2)) = 0

and hence the first interval disappears in the formulas and we simply get

f±(J1, J2, h1) = g±(J1, J2, h1)

= τ±(J1, J2, h1) − dφJ2
(τ±(J1, J2, h1)).

(ii) By looking at the formulas (1.2) and (1.3), we see that there are functions
ψ, θ : (0,∞) × R 7→ R such that

f±(J1, J2, h1) = ψ(J2, τ±(J1, J2, h1)) and

g±(J1, J2, h1) = θ(J2, τ±(J1, J2, h1)).

(Of course, ψ(J2, t) and θ(J2, t) are just (1.2) and (1.3) with t instead of
τ±.) It is easy to check that for fixed J2 > 0, the maps t 7→ ψ(J2, t) and
t 7→ θ(J2, t) are continuous. A picture of these functions when J2 = 2,
d = 4 can be seen in Figure 1.2.

(iii) It is not hard to see by direct computations that f+ satisfies the bounds in
Proposition 1.1. We will indicate how this can be done after the proof of
Theorem 1.2.

(iv) We will see in the proof that if

t−(J2,−h
∗(J2)) ≤ τ±(J1, J2, h1) < t∗(J2),

then

{ h ∈ R : µJ2,+
h ≥ µJ1,±

h1
} = [−h∗(J2),∞),

and if −t∗(J2) < τ±(J1, J2, h1) ≤ t+(J2, h
∗(J2)), then

{ h ∈ R : µJ2,−
h ≥ µJ1,±

h1
} = (h∗(J2),∞).

Hence in the first case the left endpoint belongs to the interval, while in
the second case it does not.

Our next proposition deals with continuity properties of f± and g± with respect to
the parameters J1, J2 and h1. We will only discuss the function f+, the other ones
can be treated in a similar fashion.
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t

t 7→ ψ(J2, t)

t

t 7→ θ(J2, t)

-20 -10 0 10 20

-20 -10 0 10 20

-10

0

10

-10

0

10

Figure 1.2. The functions t 7→ ψ(J2, t) and t 7→ θ(J2, t) in the
case when J2 = 2 and d = 4.

Proposition 1.3. Consider the Ising model on Td and recall the notation from

Theorem 1.2. Let

a = a(J1, J2) = t−(J1,−h
∗(J1)) + |J1 − J2|

b = b(J1, J2) = t+(J1,−h
∗(J1)) + |J1 − J2|

a) Given J1, J2 > 0, the map R ∋ h1 7→ f+(J1, J2, h1) is continuous except

possibly at −h∗(J1) depending on J1 and J2 in the following way:

If J1 ≤ Jc or J1 = J2 then it is continuous at −h∗(J1).
If J1 > Jc and 0 < J2 ≤ Jc then it is discontinuous at −h∗(J1).
If J1, J2 > Jc, J1 6= J2 then it is discontinuous except when

t−(J2,−h
∗(J2)) ≤ a < t∗(J2) and t−(J2,−h

∗(J2)) ≤ b ≤ t∗(J2).

b) Given J2 > 0, h1 ∈ R, the map (0,∞) ∋ J1 7→ f+(J1, J2, h1) is continuous

at J1 if 0 < J1 ≤ Jc or J1 > Jc and h1 6= −h∗(J1). In the case when

h1 = −h∗(J1) it is discontinuous at J1 except when

t−(J2,−h
∗(J2)) ≤ a < t∗(J2) and t−(J2,−h

∗(J2)) ≤ b ≤ t∗(J2).

c) Given J1 > 0, h1 ∈ R, the map (0,∞) ∋ J2 7→ f+(J1, J2, h1) is continuous

for all J2 > 0.

We conclude this section with a result about how the measures {µJ,+
h }J>0 are

ordered with respect to J for fixed h ∈ R.

Proposition 1.4. Consider the Ising model on Td. The map (0,∞) ∋ J 7→ µJ,+
h is

increasing in the following cases: a) h ≥ 0 and J ≥ Jc, b) h < 0 and h∗(J) > −h.
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1.2. The fuzzy Potts model. Next, we consider the so called fuzzy Potts model.
To define the model, we first need to define the perhaps more familiar Potts model.
Let G = (V,E) be an infinite locally finite graph and suppose that q ≥ 3 is an
integer. Let U be a finite subset of V and consider the finite graph H with vertex
set U and edge set consisting of those edges 〈x, y〉 ∈ E with x, y ∈ U . In this way,
we say that the graph H is induced by U . The finite volume Gibbs measure for the
q-state Potts model at inverse temperature J ≥ 0 with free boundary condition is
defined to be the probability measure πH

q,J on {1, 2, . . . , q}U which to each element
σ assigns probability

πH
q,J (σ) =

1

ZH
q,J

exp

(

2J
∑

〈x,y〉∈E,x,y∈U

I{σ(x)=σ(y)}

)

,

where ZH
q,J is a normalizing constant.

Now, suppose r ∈ {1, . . . , q − 1} and pick a πH
q,J - distributed object X and for

x ∈ U let

(1.4) Y (x) =

{

−1 if X(x) ∈ {1, . . . , r}

1 if X(x) ∈ {r + 1, . . . , q}.

We write νH
q,J,r for the resulting probability measure on {−1, 1}U and call it the fi-

nite volume fuzzy Potts measure onH with free boundary condition and parameters
q, J and r.

We also need to consider the case when we have a boundary condition. For
finite U ⊆ V , consider the graph H induced by the vertex set U ∪ ∂U and let
η ∈ {1, . . . , q}V \U . The finite volume Gibbs measure for the q-state Potts model
at inverse temperature J ≥ 0 with boundary condition η is defined to be the
probability measure on {1, . . . , q}U which to each element assigns probability

πH,η
q,J (σ) =

1

ZH,η
q,J

exp

(

2J
∑

〈x,y〉∈E,x,y∈U

I{σ(x)=σ(y)}

+ 2J
∑

〈x,y〉∈E,x∈U,y∈∂U

I{σ(x)=η(y)}

)

,

where ZH,η
q,J is a normalizing constant. In the case when η ≡ i for some i ∈

{1, . . . , q}, we replace η with i in the notation.
Furthermore, we introduce the notion of infinite volume Gibbs measure for the

Potts model. A probability measure µ on {1, . . . , q}V is said to be an infinite volume
Gibbs measure for the q-state Potts model on G at inverse temperature J ≥ 0, if it
admits conditional probabilities such that for all finite U ⊆ V , all σ ∈ {1, . . . , q}U

and all η ∈ {1, . . . , q}V \U

µ(X(U) = σ |X(V \ U) = η) = πH,η
q,J (σ)

whereH is the graph induced by U∪∂U . Let {Vn}n≥1 be a sequence of finite subsets
of V such that Vn ⊆ Vn+1 for all n, V =

⋃

n≥1 Vn and for each n, denote by Gn the

induced graph by Vn∪∂Vn. Furthermore, for each i ∈ {1, . . . , q}, extend πGn,i
q,J (and

use the same notation for the extension) to a probability measure on {1, . . . , q}V

by assigning with probability one the spin value i outside Vn. It is well known (and
independent of the sequence {Vn}) that there for each spin i ∈ {1, . . . , q} exists
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a infinite volume Gibbs measure πG,i
q,J which is the weak limit as n → ∞ of the

corresponding measures πGn,i
q,J . Moreover, there exists another infinite volume Gibbs

measure denoted πG,0
q,J which is the limit of πGn

q,J in the sense that the probabilities on
cylinder sets converge. The existence of the above limits as well as the independence
of the choice of the sequence {Vn} when constructing them follows from the work
of Aizenman et al. [1].

Given the infinite volume Gibbs measures {πG,i
q,J }i∈{0,...,q}, we define the corre-

sponding infinite volume fuzzy Potts measures {νG,i
q,J,r}i∈{0,...,q} using (1.4).

In words, the fuzzy Potts model can be thought of arising from the ordinary q-
state Potts model by looking at a pair of glasses that prevents from distinguishing
some of the spin values. From this point of view, the fuzzy Potts model is one of
the most basic examples of a so called hidden Markov field [11]. For earlier work
on the fuzzy Potts model, see for example [8, 9, 10, 14, 6].

Given a finite or countable set V and p ∈ [0, 1], let γp denote the product measure
on {−1, 1}V with γp(η : η(x) = 1) = p for all x ∈ V . In [13] the authors proved
the following results for the Ising model. (The second result was originally proved
for d = 2 only but it trivially extends to all d ≥ 2.)

Proposition 1.5 (Liggett, Steif). Fix an integer d ≥ 2 and consider the Ising

model on Zd with parameters J > 0 and h = 0. Then for any p ∈ [0, 1], µJ,+ ≥ γp

if and only if µJ,− ≥ γp.

Proposition 1.6 (Liggett, Steif). Let d ≥ 2 be a given integer and consider the

Ising model on Td with paramteters J > 0 and h = 0. Moreover, let µJ,f denote

the Gibbs state obtained by using free boundary conditions. If µJ,+ 6= µJ,−, then

there exist 0 < p′ < p such that µJ,+ dominates γp but µJ,f does not dominate γp

and µJ,f dominates γp′ but µJ,− does not dominate γp′ .

In words, on Zd the plus and minus state dominate the same set of product
measures while on Td that is not the case except when the we have a unique phase.

To state our next results we will take a closer look at the construction of the
infinite volume fuzzy Potts measures when G = Zd or G = Td. In those cases it

follows from symmetry that νG,i
q,J,r = νG,j

q,J,r if i, j ∈ {1, . . . , r} or i, j ∈ {r+1, . . . , q},
i.e. when the Potts spins i, j map to the same fuzzy spin. For that reason, we let

νG,−
q,J,r := νG,1

q,J,r and νG,+
q,J,r := νG,q

q,J,r when G = Zd or Td. (Of course, we stick to our

earlier notation of νG,0
q,J,r.) Our first result is a generalization of Proposition 1.5 to

the fuzzy Potts model.

Proposition 1.7. Let d ≥ 2 be a given integer and consider the fuzzy Potts model

on Zd with parameters q ≥ 3, J > 0 and r ∈ {1, . . . , q − 1}. Then for any k, l ∈

{0,−,+} and p ∈ [0, 1], νZ
d,k

q,J,r ≥ γp if and only if νZ
d,l

q,J,r ≥ γp.

In the same way as for the Ising model, we believe that Proposition 1.7 fails
completely on Td except when we have a unique phase in the Potts model. Our
last result is in that direction.

Proposition 1.8. Let d ≥ 2 be a given integer and consider the fuzzy Potts model

on Td with parameters q ≥ 3, J > 0 and r ∈ {1, . . . , q − 1} where e2J ≥ q − 2. If

the underlying Gibbs measures for the Potts model satisfy πT
d,1

q,J 6= πT
d,0

q,J , then there

exists 0 < p < 1 such that νT
d,0

q,J,r dominates γp but νT
d,−

q,J,r does not dominate γp.
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2. Proofs

We start to recall some facts from [2] concerning the notion of completely ho-
mogeneous Markov chains on Td. Denote the vertex set and the edge set of Td

with V (Td) and E(Td) respectively. Given a directed edge 〈x, y〉 ∈ E(Td) define
the “past” sites by

] −∞, 〈x, y〉[= { z ∈ V (Td) : z is closer to x than to y }.

For A ⊆ V (Td) denote by FA the σ-algebra generated by the spins in A. A

probability measure µ on {−1, 1}V (Td) is called a Markov chain if

µ( η(y) = 1 | F]−∞,〈x,y〉[ ) = µ( η(y) = 1 | F{x} ) µ-a.s.

for all 〈x, y〉 ∈ E(Td). Furthermore, a Markov chain µ is called completely homo-
geneous with transition matrix P = {P (i, j) : i, j ∈ { −1, 1} } if

(2.1) µ( η(y) = u | F{x} ) = P (η(x), u) µ-a.s.

for all 〈x, y〉 ∈ E(Td) and u ∈ {−1, 1}. Observe that such a P necessarily is a
stochastic matrix and if it in addition is irreducible denote its stationary distribution
by ν. In that situation, we get for each finite connected set C ⊆ V (Td), z ∈ C and
ξ ∈ {−1, 1}C that

µ(η = ξ) = ν(ξ(z))
∏

〈x,y〉∈D

P (ξ(x), ξ(y))

where D is the set of directed edges 〈x, y〉, where x, y ∈ C and x is closer to z
than y is. In particular, it follows that every completely homogeneous Markov
chain which arise from an irreducible stochastic matrix is invariant under all graph
automorphisms.

Next, we give a short summary from [2] of the Ising model on Td. For J > 0,
define

(2.2) φJ (t) =
1

2
log

cosh(t+ J)

cosh(t− J)
, t ∈ R.

The function φJ is trivially seen to be odd. Moreover, φJ is concave on [0,∞),
increasing and bounded. (In fact, φJ (t) → J as t → ∞.) Furthermore, there is
a one-to-one correspondence t 7→ µt between the completely homogeneous Markov
chains in G(J, h) and the numbers t ∈ R satisfying the equation

(2.3) t = h+ dφJ (t).

In addition, the transition matrix Pt of µt is given by

(2.4)

(

Pt(−1,−1) Pt(−1, 1)
Pt(1,−1) Pt(1, 1)

)

=

(

eJ−t

2 cosh(J−t)
et−J

2 cosh(J−t)
e−J−t

2 cosh(J+t)
eJ+t

2 cosh(J+t)

)

.

Given h ∈ R and J > 0 the fixed point equation (2.3) has one, two or three solu-
tions. In fact Lemma 2.1 below tells us exactly when the different situations occur.

The largest solution, denoted t+(J, h), corresponds to the plus measure µJ,+
h and

the smallest, denoted t−(J, h), to the minus measure µJ,−
h . To see why the last

statement is true, let µ± = µt±(J,h) and note that Lemma 2.2 from Section 2.2 im-
plies that µ− ≤ µ ≤ µ+ for any µ ∈ G(J, h) which is also a completely homogeneous

Markov chain on Td. Moreover, equation (1.1) implies that µJ,−
h ≤ µ± ≤ µJ,+

h and

so µ± = µJ,±
h will follow if µJ,±

h are completely homogeneous Markov chains. To
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t

t 7→ h+ dφJ (t)

-20 -10 0 10 20
-20

-10

0
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20

Figure 2.1. A picture of the fixed point equation (2.3) when d =
5, h = 8 and J = 3/2. In this particular case we have a unique
solution.

see that, note that equation (1.1) also implies that µJ,±
h are extremal in G(J, h)

which in turn (see Theorem 12.6 in [2]) gives us that they are Markov chains on

Td. Finally, from the fact that µJ,±
h are invariant under all graph automorphisms

on Td, we obtain the completely homogeneous property (2.1).

Lemma 2.1 (Georgii). The fixed point equation (2.3) has

a) a unique solution when |h| > h∗(J) or h = h∗(J) = 0,
b) two distinct solutions t−(J, h) < t+(J, h) when |h| = h∗(J) > 0,
c) three distinct solutions t−(J, h) < t0(J, h) < t+(J, h) when |h| < h∗(J).

2.1. Proof of Proposition 1.1. For the upper bound, just invoke Proposition

4.16 in [3] which gives us that µJ2,+
h ≥ µJ1,+

h1
if h ≥ h1 +N |J1 − J2|.

For the lower bound, we argue by contradiction as follows. Assume

h̃ < h1 −N(J1 + J2)

and pick h0 such that

(2.5) h̃ < h0 < h1 −N(J1 + J2).

The right inequality of (2.5) is equivalent to

2(h0 +NJ2) < 2(h1 −NJ1)

and so we can pick 0 < p1 < p2 < 1 such that

2(h0 +NJ2) < log(
p1

1 − p1
) < log(

p2

1 − p2
) < 2(h1 −NJ1).
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t

(t∗(J), φJ (t∗(J)))

-10 -5 0 5 10
-10

-5

0

5

10

Figure 2.2. A picture of the fixed point equation (2.3) when d =
5, h = 0 and J = 3/2.

By using the last inequalities together with Proposition 4.16 in [3], we can conclude
that

µJ2,+
h0

≤ γp1

µJ1,+
h1

≥ γp2
.

Since p1 < p2 this tells us that µJ2,+
h0

� µJ1,+
h1

. On the other hand we have h0 > h̃

which by definition of h̃ implies that µJ2,+
h0

≥ µJ1,+
h1

. Hence, we get a contradiction
and the proof is complete. 2

2.2. Proof of Theorem 1.2. We will make use of the following lemma from [13]
concerning stochastic domination for completely homogeneous Markov chains on
Td.

Lemma 2.2 (Liggett, Steif). Given two 2-state transition matrices P and Q, let

µP and µQ denote the corresponding completely homogeneous Markov chains on Td.

Then µP dominates µQ if and only if P (−1, 1) ≥ Q(−1, 1) and P (1, 1) ≥ Q(1, 1).

Proof of Theorem 1.2. To prove (1.2), let J1, J2 > 0 and h1 ∈ R be given and note

that we get from Lemma 2.2 and equation (2.4) that µJ2,+
h ≥ µJ1,±

h1
if and only if

et+(J2,h)−J2

2 cosh(t+(J2, h) − J2)
≥

et±(J1,h1)−J1

2 cosh(t±(J1, h1) − J1)
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and
et+(J2,h)+J2

2 cosh(t+(J2, h) + J2)
≥

et±(J1,h1)+J1

2 cosh(t±(J1, h1) + J1)
.

Since the map R ∋ x 7→ ex

2 cosh(x) is strictly increasing this is equivalent to

t+(J2, h) ≥ t±(J1, h1) + J2 − J1

and
t+(J2, h) ≥ t±(J1, h1) + J1 − J2

which in turn is equivalent to

(2.6) t+(J2, h) ≥ t±(J1, h1) + |J1 − J2| = τ±(J1, J2, h1),

and so we want to compute the smallest h ∈ R such that (2.6) holds. Note that
since the map h 7→ t+(J2, h) is strictly increasing and t+(J2, h) → ±∞ as h→ ±∞
there always exists such an h ∈ R. If τ± ≥ t∗(J2) or τ± < t−(J2,−h

∗(J2)), then
the equation

h+ dφJ2
(τ±) = τ±

is equivalent to
t+(J2, h) = τ±

and so in that case the smallest h ∈ R such that (2.6) holds is equal to

τ± − dφJ2
(τ±).

If t−(J2,−h
∗(J2)) ≤ τ± < t∗(J2), then since t+(J2, h) ≥ t∗(J2) whenever h ≥

−h∗(J2) and t+(J2, h) < t−(J2,−h
∗(J2)) whenever h < −h∗(J2), we have in this

case that
{ h ∈ R : µJ2,+

h ≥ µJ1,±
h1

} = [−h∗(J2),∞),

and so the h we are looking for is given by −h∗(J2).

For (1.3), we note as above that µJ2,−
h ≥ µJ1,±

h1
if and only if

(2.7) t−(J2, h) ≥ τ±(J1, J2, h1).

If τ± ≤ −t∗(J2) or τ± > t+(J2, h
∗(J2)) then we can proceed exactly as in the

first case above. If −t∗(J2) < τ± ≤ t+(J2, h
∗(J2)), then t−(J2, h) < τ± whenever

h ≤ h∗(J2) and t−(J2, h) > τ± whenever h > h∗(J2) and so in that case we have

{ h ∈ R : µJ2,−
h ≥ µJ1,±

h1
} = (h∗(J2),∞),

which yields (1.3) and the proof is complete. 2

We will now indicate how to compute the bounds in Proposition 1.1 in the special
case when G = Td. By looking at the formula for f+ and using the definition of h∗

we get that

f+(J1, J2, h1) ≤ τ+(J1, J2, h1) − dφJ2
(τ+(J1, J2, h1)).

Substituting τ+ and using the bounds −J ≤ φJ (t) ≤ J for all t ∈ R we get the
upper bound in Proposition 1.1 with N = d + 1. For the lower bound, first note
that

τ+ − dφJ2
(τ+) = h1 + d

(

φJ1
(t+(J1, h1)) − φJ2

(t+(J1, h1))
)

+ |J1 − J2|

≥ h1 − (d+ 1)(J1 + J2).

Moreover it is easy to check that

−h∗(J2) ≥ h1 − (d+ 1)(J1 + J2)
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when

t−(J2,−h
∗(J2)) ≤ τ+ ≤ t∗(J2) = t+(J2,−h

∗(J2))

and so the lower bound follows at once.

2.3. Proof of Proposition 1.3. Before we prove anything we would like to recall
the fact that we can write (see Remark (ii) after Theorem 1.2)

f+(J1, J2, h1) = ψ(J2, τ+(J1, J2, h1)) J1, J2 > 0, h1 ∈ R,

where

τ+(J1, J2, h1) = t+(J1, h1) + |J1 − J2|

and the map t 7→ ψ(J2, t) is continuous (see Figure 1.2 for a picture). In the rest
of the proof, we will use this fact without further notification. For example, the
above immediately gives that h1 7→ f+(J1, J2, h1) is continuous at a point h1 ∈ R
if h1 7→ t+(J1, h1) is so.

Proof of Proposition 1.3. We will only prove part a) and c). The proof of part b)
follows the same type of argument as the proof of part a).

To prove part a), we start to argue that for given J1 > 0 the map h1 7→ t+(J1, h1)
is right-continuous at every point h1 ∈ R. To see that, take a sequence of reals
{hn} such that hn ↓ h1 as n → ∞ and note that since the map h1 7→ t+(J1, h1)
is increasing, the sequence {t+(J1, hn)} converges to a limit t̃ with t̃ ≥ t+(J1, h1).
Moreover, by taking the limit in the fixed point equation we see that

(2.8) t̃ = h1 + dφJ1
(t̃)

and since t+(J1, h1) is the largest number satisfying (2.8) we get t̃ = t+(J1, h1).
Next, assume h1 6= −h∗(J1) and hn ↑ h1 as n → ∞. As before, the limit of

{t+(J1, hn)} exists, denote it by T . The number T will again satisfy (2.8). By
considering different cases described in Figure 2.3, we easily conclude that T =
t+(J1, h1). Hence, the function h1 7→ t+(J1, h1) is continuous for all h1 6= −h∗(J)
and so we get that h1 7→ f+(J1, J2, h1) is also continuous for all h1 6= −h∗(J1).

Now assume h1 = −h∗(J1). By considering sequences hn ↓ −h∗(J1) and hn ↑
−h∗(J1) we can similarly as above see that

τ+(J1, J2,−h
∗(J1)+) : = lim

h↓−h∗(J1)
τ+(J1, J2, h) = t+(J1,−h

∗(J1)) + |J1 − J2|

τ+(J1, J2,−h
∗(J1)−) : = lim

h↑−h∗(J1)
τ+(J1, J2, h) = t−(J1,−h

∗(J1)) + |J1 − J2|

and so

τ+(J1, J2,−h
∗(J1)+) = τ+(J1, J2,−h

∗(J1)−) ⇐⇒ h∗(J1) = 0.

Since h∗(J1) = 0 if and only if 0 < J1 ≤ Jc the continuity of h1 7→ f+(J1, J2, h1) at
−h∗(J1) follows at once in that case. If J1 = J2, then

τ+(J1, J2,−h
∗(J1)+) = t+(J2,−h

∗(J2))

τ+(J1, J2,−h
∗(J1)−) = t−(J2,−h

∗(J2))

and since

ψ(J2, t+(J2,−h
∗(J2))) = ψ(J2, t−(J2,−h

∗(J2))),

the continuity is clear also in that case. If J1 > Jc and 0 < J2 ≤ Jc, then

τ+(J1, J2,−h
∗(J1)+) 6= τ+(J1, J2,−h

∗(J1)−)



14 MARCUS WARFHEIMER

t

|h1| < h∗(J1), h
∗(J1) > 0

t

h1 = h∗(J1) > 0

t

|h1| > h∗(J1)
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Figure 2.3. A picture of the different cases in the fixed point
equation that can occur when h1 6= −h∗(J1). Here, d = 4 and
J1 = 3.

and the map t 7→ ψ(J2, t) becomes strictly increasing, hence h1 7→ f+(J1, J2, h1) is
discontinuous at −h∗(J1). For the case when J1 > Jc, J2 > Jc, J1 6= J2 just note
that h1 7→ f+(J1, J2, h1) is continuous at −h∗(J1) if and only if a and b (defined in
the statement of the proposition) are in the flat region in the upper graph of Figure
1.2.

To prove part c) we take a closer look at the map (J2, t) 7→ ψ(J2, t). By definition,
this map is

ψ(J2, t) =

{

−h∗(J2) if t−(J2,−h
∗(J2)) ≤ t < t∗(J2)

t− dφJ2
(t) if t ≥ t∗(J2) or t < t−(J2,−h

∗(J2)).

From the continuity of t 7→ ψ(J2, t) for fixed J2 and the facts that J2 7→ t∗(J2),
J2 7→ t−(J2,−h

∗(J2)), J2 7→ −h∗(J2) and (J2, t) 7→ t− dφJ2
(t) are all continuous,

we get that ψ is (jointly) continuous and so the result follows. 2
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2.4. Proof of Proposition 1.4. To prove the statement, we will show that the
inequality

(2.9)
∂

∂J
t+(J, h) ≥ 1

holds if a) h ≥ 0 and J ≥ Jc or b) h < 0 and h∗(J) > −h. By integrating equation
(2.9) the statement follows. The proof of equation (2.9) will be an easy modification
of the proof of Lemma 5.2 in [13]. The proof is quite short and so we give a full
proof here, even though it is more or less the same as the proof in [13].

Write φ(J, t) for φJ (t) and use subscripts to denote partial derivatives. By dif-
ferentiating the relation

h+ dφ(J, t+(J, h)) = t+(J, h)

with respect to J and solving, we get

∂

∂J
t+(J, h) =

dφ1(J, t+(J, h))

1 − dφ2(J, t+(J, h))
.

To get the left hand side bigger or equal to one, we need

(2.10) dφ2(J, t+(J, h)) < 1

and

(2.11) φ1(J, t+(J, h)) + φ2(J, t+(J, h)) ≥
1

d
.

The first inequality is immediate since in the cases a) and b) above, the function
t 7→ h+ dφ(J, t) crosses the line t 7→ t from above to below. For (2.11), note that

φ1(J, t) =
1

2

(

tanh(J + t) − tanh(J − t)
)

φ2(J, t) =
1

2

(

tanh(J + t) + tanh(J − t)
)

and so

φ1(J, t) + φ2(J, t) = tanh(J + t),

which yields that φ1+φ2 is increasing in both variables. Moreover, since tanh(Jc) =
1
d (see [2]), we get

φ1(Jc, 0) + φ2(Jc, 0) =
1

d
and so

(2.12) φ1(J, t) + φ2(J, t) ≥
1

d
if J ≥ Jc, t ≥ 0.

To complete the proof, observe that in the cases a) and b), we have J ≥ Jc and
t+(J, h) ≥ 0. 2

2.5. Proof of Proposition 1.7. In the proof we will use the following results from
[13] concerning domination of product measures.

Definition 2.1 (Downward FKG, Liggett, Steif). Given a finite or countable set
V , a measure µ on {−1, 1}V is called downward FKG if for any finite A ⊆ V , the
conditional measure µ( · | η ≡ 0 on A ) has positive correlations.

Here, as usual, positive correlations is defined as follows:
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Definition 2.2 (Positive correlations). A probability measure µ on {−1, 1}V where
V is a finite or countable set is said to have positive correlations if

∫

fg dµ ≥

∫

f dµ

∫

g dµ

for all real-valued, continuous and increasing functions f, g on {−1, 1}V .

Theorem 2.3 (Liggett, Steif). Let µ be a translation invariant measure on

{−1, 1}Z
d

which also is downward FKG and let p ∈ [0, 1]. Then the following are

equivalent:

a) µ ≥ γp.

b) lim sup
n→∞

µ( η ≡ −1 on [1, n]d )1/nd

≤ 1 − p.

Remarks.

(i) In particular, Theorem 2.3 gives us that if two translation invariant, down-
ward FKG measures have the same above limsup, then they dominate the
same set of product measures.

(ii) In [13], it is a third condition in Theorem 2.3 which we will not use and so
we simply omit it.

Before we state the next lemma we need to recall the following definition.

Definition 2.3 (FKG lattice condition). Suppose V is a finite set and let µ be a
probability measure on {−1, 1}V which assigns positive probabilty to each element.
For η, ξ ∈ {−1, 1}V define η ∨ ξ and η ∧ ξ by

(η ∨ ξ)(x) = max(η(x), ξ(x)), (η ∧ ξ)(x) = min(η(x), ξ(x)), x ∈ V.

We say that µ satisfies the FKG lattice condition if

µ(η ∧ ξ)µ(η ∨ ξ) ≥ µ(η)µ(ξ)

for all η, ξ ∈ {−1, 1}V

Given a measure µ on {−1, 1}Z
d

we will denote its projection on {−1, 1}T for
finite T ⊆ Zd by µT .

Lemma 2.4. The measures νZ
d,±

q,J,r are FKG in the sense that νZ
d,±

T,q,J,r satisfies the

FKG lattice condtion for each finite T ⊆ Zd.

Proof. For n ≥ 2, let Λn = {−n, . . . , n}d and denote the finite volume Potts mea-

sures on {−1, 1}Λn with boundary condition η ≡ 1 and η ≡ q by πn,1
q,J and πn,q

q,J .

Furthermore, let νn,−
q,J,r and νn,+

q,J,r denote the corresponding fuzzy Potts measures.

Given the convergence in the Potts model, it is clear that νn,±
T,q,J,r converges weakly

to νZ
d,±

T,q,J,r as n → ∞ for each finite T ⊆ Zd. Since the FKG lattice condition is

closed under taking projections (see [4, p. 28]) and weak limits we are done if we

can show that νn,±
q,J,r satisfies the FKG lattice condition for each n ≥ 2. In [6] it is

proved that for an arbitrary finite graph G = (V,E) the finite volume fuzzy Potts
measure with free boundary condition and parameters q, J , r is monotone in the
sense that

(2.13) νG
q,J,r(Y (x) = 1 |Y (V \ {x}) = η) ≤ νG

q,J,r(Y (x) = 1 |Y (V \ {x}) = η′)
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for all x ∈ V and η, η′ ∈ {−1, 1}V \{x} with η ≤ η′. We claim that it is possible

to modify the argument given there to prove that νn,±
q,J,r are monotone for each

n ≥ 2. (Recall from [4] the fact that if V is finite and µ is a probabilty measure
on {−1, 1}V that assigns positive probabilty to each element, then monotone is
equivalent to the FKG lattice condition.) The proof of (2.13) is quite involved.
However, the changes needed to prove our claim are quite straightforward and so
we will only give an outline for how that can be done. Furthermore, we will only
consider the minus case, the plus case is similar.

By considering a sequence η = η1 ≤ η2 ≤ · · · ≤ ηm = η′ where ηi and ηi+1 differ
only at a single vertex, it is easy to see that it is enough to prove that for all x,
y ∈ Λn and η ∈ {−1, 1}Λn\{x,y} we have

νn,−
q,J,r(Y (x) = 1, Y (y) = 1 |Y (Λn \ {x, y}) = η)

≥ νn,−
q,J,r(Y (x) = 1 |Y (Λn \ {x, y}) = η)

· νn,−
q,J,r(Y (y) = 1 |Y (Λn \ {x, y}) = η).

(2.14)

Fix n ≥ 2, x, y and η as above. We will first consider the case when x and y
are not neighbors. At the end we will see how to modify the argument to work
when x, y are neighbors as well. Define V− = {z ∈ Λn \ {x, y} : η(z) = −1} and
V+ = {z ∈ Λn\{x, y} : η(z) = 1}. Furthermore, denote by En the set of edges 〈u, v〉
with either u, v ∈ Λn or u ∈ Λn, v ∈ ∂Λn and let P denote the probability measure
on W = {1, . . . , q}Λn∪∂Λn × {0, 1}En which to each site u ∈ Λn ∪ ∂Λn chooses a
spin value uniformly from {1, . . . , q}, to each edge 〈u, v〉 assigns value 1 or 0 with
probabilities p and 1 − p respectively and which does those things independently
for all sites and edges. Define the following events on W

A = {(σ, ξ) : (σ(u) − σ(v))ξ(e) = 0, ∀e = 〈u, v〉 ∈ En },

B = {(σ, ξ) : σ(z) ∈ {1, . . . , r} ∀z ∈ V−, σ(z) ∈ {r + 1, . . . , q} ∀z ∈ V+},

C = {(σ, ξ) : σ(z) = 1, ∀z ∈ ∂Λn },

and let P′ and P′′ be the probability measures on {1, . . . , q}Λn ×{0, 1}En obtained
from P by conditioning on A∩C and A∩B∩C respectively. (P′ is usually referred
to as the Edward-Sokal coupling, see [3].) It is well known (and easy to check)

that the spin marginal of P′ is πn,1
q,J and that the edge marginal is the so called

random-cluster measure defined as the probability measure on {0, 1}En which to
each ξ ∈ {0, 1}En assigns probability proportional to

qk(ξ)
∏

e∈En

pξ(e)(1 − p)1−ξ(e),

where k(ξ) is the number of connected components in ξ not reaching ∂Λn. In a
similar way it is possible (by counting) to compute the spin and edge marginal of

P′′: The spin marginal π′′ is simply πn,1
q,J conditioned on B and the edge marginal

φ′′ assigns probability to a configuration ξ ∈ {0, 1}En proportional to

1Dr
k0(ξ)(q − r)k1(ξ)qkx(ξ)+ky(ξ)

∏

e∈En

pξ(e)(1 − p)1−ξ(e),

where k0(ξ) is the number of clusters intersecting V− but not reaching ∂Λn, k1(ξ)
is the number of clusters intersecting V+, kx(ξ) (resp ky(ξ)) is 1 if x (resp y) is
in a singleton connected component and 0 otherwise and D is the event that no
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connected component in ξ intersects both V− and V+. Observe that (2.14) is the
same as

π′′(X(x) ∈ {r + 1, . . . , q}, X(y) ∈ {r + 1, . . . , q})

≥ π′′(X(x) ∈ {r + 1, . . . , q})π′′(X(y) ∈ {r + 1, . . . , q}).
(2.15)

An important feature of the coupling P′′ is that it gives a way to obtain a spin
configuration X ∈ {1, . . . , q}Λn distributed as π′′:

(1) Pick an edge configuration ξ according to φ′′.
(2) Assign X = 1 to the connected components of ξ that intersect ∂Λn and

denote the union of those components by C̃.
(3) Assign independently spins to a connected component C 6= C̃ of ξ where

the spin is taken according to the uniform distribution on

{1, . . . , r} if C intersects V−,
{r + 1, . . . , q} if C intersects V+,
{1, . . . , q} if C is a singleton vertex x or y.

By defining the functions fx, fy : {0, 1}En → R as

fx(ξ) =











0, if Cx = C̃ or Cx intersects V−,
q−r

q , if Cx is a singleton,

1, otherwise,

where Cx is the connected component of ξ containing x (fy defined analogously),
we see as in [6] that (2.15) follows if

(2.16)

∫

fxfy dφ
′′ ≥

∫

fx dφ
′′

∫

fy dφ
′′.

The significance of fx and fy is that fx(ξ) is the conditional probability thatX(x) ∈
{r+1, . . . , q} given ξ and similarly for fy, and that the events X(x) ∈ {r+1, . . . , q}
and X(y) ∈ {r+1, . . . , q} are conditionally independent given ξ. With all this setup
done it is a simple task to see that to prove (2.16) we can proceed exactly as in [6,
p. 1154-1155].

To take care of the case when x and y are neighbors, observe that everything
we have done so far also works for the graph with one edge deleted, i.e. the graph
with vertex set Λn and edge set En \ {〈x, y〉}. Hence we can get (2.15) for that
graph. However the observation in [6, 1156] gives us (2.15) even in the case when
we reinsert the edge 〈x, y〉. �

Proof of Proposition 1.7. Let k, l ∈ {0,−,+} be given and let An = [1, n]d, n ≥ 2.
We are done if there exists 0 < c < 1 (independent of k, l and n) such that

νZ
d,k

q,J,r( η ≡ −1 on An ) ≥ c|∂An|νZ
d,l

q,J,r( η ≡ −1 on An ) for all n.

As for the Ising model, it is well known that the infinite volume Potts measures
satisfy the so called uniform nonnull property (sometimes called uniform finite
energy property), which means that for some c > 0, the conditional probability of
having a certain spin at a given site given everything else is at least c. (See for
example [8] for a more precise definition.) We get for arbitrary σ ∈ {1, . . . , q}∂An

(2.17) νZ
d,k

q,J,r( η ≡ −1 on [1, n]d ) ≥ c|∂An|πAn,σ
q,J (Y ≡ −1 on An ).
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Since νZ
d,l

q,J,r( η ≡ −1 on [1, n]d ) can be written as a convex combination of the terms

in the far right side of (2.17) the result follows at once. 2

2.6. Proof of Proposition 1.8. Let ρ denote the root of Td and let Vn be the
set of all sites in Td with distance at most n from ρ. If x is on the unique self-
avoiding path from ρ to y, we say that y is a descendant of x. Given x ∈ Td, let
Sx denote the set of vertices of all descendants of x (including x). Moreover, let
Tx denote the subtree of Td whose vertex set is Sx and edge set consisting of all
edges 〈u, v〉 ∈ E(Td) with u, v ∈ Sx. In the proof of Proposition 1.8, we will use
the following Lemma from [13]:

Proposition 2.5 (Liggett, Steif). Let p ∈ [0, 1], {P (i, j) : i, j ∈ { −1, 1} } be a

transition matrix for an irreducible 2-state Markov chain with P (−1, 1) ≤ P (1, 1)
and let µ be the distribution of the corresponding completely homogeneous Markov

chain on Td. Then the following are equivalent:

a) µ ≥ γp.

b) lim sup
n→∞

µ( η ≡ −1 on Vn )1/|Vn| ≤ 1 − p.

c) P (−1, 1) ≥ p.

Proof of Proposition 1.8. Fix J > 0, q ≥ 3 and r ∈ {1, . . . , q−1} with e2J ≥ q−2.

In [9], it is proved that νT
d,0

q,J,r is a completely homogeneous Markov chain on Td for
all values of the parameters with transition matrix

(

e2J+r−1
e2J+q−1

q−r
e2J+q−1

r
e2J+q−1

e2J+q−r−1
e2J+q−1

)

.

Hence, from Proposition 2.5 we get that νT
d,0

q,J,r ≥ γp if and only if

(2.18) p ≤
q − r

e2J + q − 1
.

Furthermore, in [9, p. 10] the authors also derive the transition matrix for πT
d,1

q,J

from which we can compute the following:

νT
d,−

q,J,r ( η ≡ −1 on Vn ) ≥

r
∑

i=1

πT
d,1

q,J (X ≡ i on Vn )

=
b

b+ q − 1

(

ce2J

ce2J + q − 1

)|Vn|−1

+
r − 1

b+ q − 1

(

e2J

c+ e2J + q − 2

)|Vn|−1

where

b =
πT

d,1
q,J (X(ρ) = 1 )

πTd,1
q,J (X(ρ) = 2 )

c =
πTx,1

q,J (X(x) = 1 )

πTx,1
q,J (X(x) = 2 )

, x 6= ρ.
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(Of course, homogeneity gives that the last quotient is independent of x.) We get
that

lim sup
n→∞

νT
d,−

q,J,r ( η ≡ −1 on Vn )1/|Vn|

≥
ce2J

ce2J + q − 1
+

e2J

c+ e2J + q − 2
.

(2.19)

Now, assume that the underlying Gibbs measures for the Potts model satisfy πT
d,1

q,J 6=

πT
d,0

q,J . It is known [1] that this is equivalent to having

πT
d,1

q,J (X(x) = 1 ) >
1

q
, ∀x ∈ Td.

In [9], the authors observed that if a = πT
d,1

q,J (X(ρ) = 1 ), then from symmetry
reasons

b =
(q − 1)a

1 − a
.

Hence, if a > 1
q we get b > 1. Moreover, from the recursion formula in [9, p. 9] we

obtain

(2.20) b =
(ce2J + q − 1)d+1

(c+ e2J + q − 2)d+1
.

It is easy to see from (2.20) that if b > 1 then c > 1. Hence, we can choose p ∈ (0, 1)
such that

(2.21)
q − r

ce2J + q − 1
< p ≤

q − r

e2J + q − 1
.

Moreover, an easy calculation gives us that

ce2J

ce2J + q − 1
+

e2J

c+ e2J + q − 2
≥
ce2J + q − 2

ce2J + q − 1

and since

1 − p <
ce2J + r − 1

ce2J + q − 1
≤
ce2J + q − 2

ce2J + q − 1

we get from (2.19)

lim sup
n→∞

νT
d,−

q,J,r ( η ≡ −1 on Vn )1/|Vn| > 1 − p.

It is now clear that for p as in (2.21) we have that νT
d,0

q,J,r dominates γp but νT
d,−

q,J,r

does not dominate γp. 2

Remark. By deriving the transition matrix for πT
d,q

q,J it is probably possible to

prove that there exists p ∈ (0, 1) such that νT
d,0

q,J,r dominates γp but νT
d,+

q,J,r does not
dominate γp.
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3. Conjectures

We end with the following conjectures concerning the fuzzy Potts model. The
corresponding statements for the Ising model are proved in [13].

Conjecture 3.1. Let q ≥ 3, r ∈ {1, . . . , q − 1} and consider the fuzzy Potts model

on Zd. If J1, J2 > 0 with J1 6= J2, then νZ
d,+

q,J1,r and νZ
d,+

q,J2,r are not stochastically

ordered.

Conjecture 3.2. Let q ≥ 3, r ∈ {1, . . . , q − 1} and consider the fuzzy Potts model

on Zd. If 0 < J1 < J2, then

sup{ p ∈ [0, 1] : νZ
d,+

q,J1,r ≥ γp } > sup{ p ∈ [0, 1] : νZ
d,+

q,J2,r ≥ γp }.

Conjecture 3.3. Let J > 0, q ≥ 3, r ∈ {1, . . . , q− 1} and consider the fuzzy Potts

model on Td. Define the sets:

D+ = { p ∈ [0, 1] : νZ
d,+

q,J,r ≥ γp },

D− = { p ∈ [0, 1] : νZ
d,−

q,J,r ≥ γp },

D0 = { p ∈ [0, 1] : νZ
d,0

q,J,r ≥ γp },

(3.1)

If the underlying Gibbs measures for the Potts model satisfy πT
d,1

q,J 6= πT
d,0

q,J , then the

sets in (3.1) are all different from each other.

Conjecture 3.4. Let q ≥ 3, r ∈ {1, . . . , q − 1} and consider the fuzzy Potts model

on Td. Denote the critical value corresponding to non-uniqueness of Gibbs states

for the Potts model by Jc. If Jc < J1 < J2 then νT
d,+

q,J1,r ≤ νT
d,+

q,J2,r.

Remark. If J1 < J2 < Jc, then

νT
d,+

q,J1,r( η(x) = 1 ) = νT
d,+

q,J2,r( η(x) = 1 ) =
q − r

q

and so in that case, νT
d,+

q,J1,r and νT
d,+

q,J2,r can not be stochastically ordered.
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