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Abstract

In this paper we construct an approximation that uses midpoints of edges on tetra-
hedra in three dimensions. The construction is based on the three–dimensional ver-
sion of the rotated Q1–approximation proposed by Rannacher and Turek [5]. We
prove a priori error estimates for finite element solutions of the elasticity equa-
tions using the new element. Since it contains (rotated) bilinear terms it performs
substantially better than the standard constant strain element in bending. It also
allows for under–integration in near incompressible situations. Numerical examples
are included.

1 Introduction

Automatic mesh generation is now standard in commercial software for tetra-
hedral meshes, whereas completely automated hexahedral meshing remains
unsolved. In using low order elements for elasticity applications, the trilinear
hexahedral (hex) element has some substantial advantages over the constant
strain tetrahedral (tet) element. It performs better in bending (is less prone
to “shear locking”) on comparable meshes and it allows for under–integration
in near incompressibility which allows for avoiding volumetric locking. With
automatically generated tet meshes, typically a piecewise quadratic approx-
imation is therefore used. In this paper we show that it is possible to have
a type of trilinear approximation also on tet meshes if one accepts that the
method is nonconforming. We build our approximation on the rotated Q1 ap-
proximation of Rannacher and Turek [5], a nonconforming method for use on
quadrilateral and hex meshes. We prove optimal a priori error estimates for
the elasticity problem and give numerical evidence of the superior behaviour
in bending as well as the effect of under–integration in near incompressibility.

An outline of the paper is as follows: in Section 2 we recall the rotated Q1

element, based on a reference configuration (unlike [5]), and discuss some



crucial aspects of the approximation on tet elements. In Section 3 we give
application to the problem of linearized elasticity, for which we prove optimal
convergence. Finally, in Section 4 we give some numerical examples to show
the properties of the approximation.

2 The rotated Q1 approximation

2.1 The 2D case

Consider a subdivision of a bounded region Ω ⊂ R
2 into a geometrically

conforming finite element partitioning Th = {K} of Ω consisting of convex
quadrilaterals. In Rannacher and Turek [5], there is given the following non-
parametric definition of a nonconforming element: for any element K ∈ Th,
let (ξ̄, η̄) denote a coordinate system obtained by joining the midpoints of the
opposing faces of K, see Fig. 1. On each K we set

QR
1 (K) := span{1, ξ̄, η̄, ξ̄2 − η̄2}.

One can now choose what type of continuity one wants. In the following, we
shall deal exclusively with enforced continuity at the midpoints of the faces,
which is the simplest choice.

There is a parametric version of QR
1 (K), which means that there exists a ref-

erence configuration K̂ for the approximation (a fact not noted in [5]). There
is also the possibility of expressing the approximation in global coordinates
(x, y). To define the reference configuration, we must separate the geometry
(based on the usual bilinear map) from the approximation itself. Consider
thus a reference element defined for 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1. Using the dou-
ble numbering of Figure 1, we use numerical subscripts to denote quantities
associated with sides, so that {mi} denotes the physical location of the side
midpoints, and {φi} denotes the nonconforming basis functions, and alpha-
betical subscripts to denote quantities related to the corners. We now define
a local basis for the approximation using the (r, s) system of Fig. 1, with
0 ≤ r ≤ 1, 0 ≤ s ≤ 1, given directly as

φ1 = (1 − r)(1 − s), φ2 = r (1 − s), φ3 = r s, φ4 = (1 − r) s.

It may be more natural to define the basis functions in the (ξ, η) system,
however, which can (for instance) be found by rotation and stretch of the
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(r, s) system, in inverted form as
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yielding

φ1 = 3/4 + ξ − ξ2 − 2η + η2, φ2 = −1/4 + ξ2 + η − η2,

φ3 = −1/4 + ξ − ξ2 + η2, φ4 = 3/4 − 2ξ + ξ2 + η − η2.

In order to compute derivatives of the basis functions, we define a map F :
(ξ, η) → (x, y) by

(x, y) = F (ξ, η) :=
∑

i

φi(ξ, η)mi.

Now, we have that m1 = (xa + xb)/2, m2 = (xb + xc)/2, m3 = (xc + xd)/2
and m3 = (xd + xa)/2, so a straightforward computation shows that

x(ξ) =
(xb + xc − xa − xd)ξ

2
+

(xc + xd − xa − xb)η

2

+
3xa + xb − xc + xd

4
.

i.e., the map F is affine. The affinity of F implies that we obtain a parallelo-
gram by joining the midpoints of the sides of a general quadrilateral. This is
a well known fact first proven by Varignon, cf. Oliver [4]. The proof applies to
skew quadrilaterals in spaces of any dimension, a fact that we shall exploit in
the following.

2.2 Mapping to the edges of a tetrahedron in 3D

In the three–dimensional case we define the rotated approximation by

QR
1 (K̂) := span{1, ξ, η, ζ, ξ2 − η2, ξ2 − ζ2},

where K̂ is the reference configuration 0 ≤ ξ, η, ζ ≤ 1. This gives six unknowns
for the six faces of a hexahedron element. We remark that η2 − ζ2 ∈ Q1(K̂)
(it can be written as the linear combination ξ2 − ζ2 − (ξ2 − η2)), so all rotated
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bilinear terms are still present in the approximation. A nodal basis for Q1(K̂)
based on the side numbering in Fig. 2 is readily found as

φ1 =
1

3
(2 + 2 ξ − 7 η + 2 ζ − 2 ξ2 + 4 η2 − 2 ζ2),

φ2 =
1

3
(−1 − ξ + 2 η + 2 ζ + 4 ξ2 − 2 η2 − 2 ζ2),

φ3 =
1

3
(−1 + 2 ξ − η + 2 ζ − 2 ξ2 + 4 η2 − 2 ζ2),

φ4 =
1

3
(2 − 7 ξ + 2 η + 2 ζ + 4 ξ2 − 2 η2 − 2 ζ2),

φ5 =
1

3
(2 + 2 ξ + 2 η − 7 ζ − 2 ξ2 − 2 η2 + 4 ζ2),

φ6 =
1

3
(−1 + 2 ξ + 2 η − ζ − 2 ξ2 − 2 η2 + 4 ζ2).

There are also six edges on a tetrahedron, so we may define a map F :
(ξ, η, ζ) → (x, y, z) from the reference configuration to the physical tetra-
hedron by

x = F (ξ) :=
∑

i

φi(ξ)mi,

where now mi denotes the midpoints of the edges on the tetrahedron. Using
the numbering of Fig. 3, we find

x(ξ) = xa +
ξ

2
(−xa + xb + xc − xd) +

η

2
(−xa − xb + xc + xd)

+
ζ

2
(−xa + xb − xc + xd)

where the subscript denotes the numbers of the vertices of the tetrahedron.
Again the map is affine. Thus, by solving for (ξ, η, ζ) we may immediately
determine the basis functions in physical coordinates, associated with the point
values of a scalar function at the center of the edges on the tetrahedron.

To define the new finite element, let Th be a conforming, shape regular tetra-
hedrization of Ω, let Fh denote the set of all element faces, F int

h the faces not
on the boundary, and Eh the set of all element edges in the mesh. We introduce
the non-conforming finite element space constructed from the basis previously
discussed by defining

Vh := {v : v|K ∈ [QR
1 (K̂)] : v is continuous at the

midpoint of E, ∀E ∈ Eh},
(1)
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For this approximation we have the following property.

Proposition 1 Denoting by [v] the jump across internal faces F ∈ F int
h of

v ∈ V h, we have

∫

F

[v] dA = 0. (2)

PROOF. Due to the affinity of the map from the reference configuration, the
approximation is at most a second degree polynomial at F . A second degree
polynomial is exactly integrated by quadrature points in the midpoint of the
edges, precisely the points where v has zero jump. Thus the jump integrates
to zero over F .

We next introduce the edge based interpolation operator πhu constructed by
taking the discrete function that matches the function u ∈ H2(Ω) at the
midpoints xm of the edges. Since the basis includes polynomials complete to
first degree and by the existence of a reference element from which we can
scale, we have, by the Bramble–Hilbert Lemma (cf. [1]), the following basic
estimates:

‖u − πhu‖L2(Ω) ≤ Ch2‖u‖H2(Ω), (3)

and

‖u − πhu‖1,h ≤ Ch‖u‖H2(Ω), (4)

where

‖u‖1,h =





∑

K∈Th

‖u‖2
H1(K)





1/2

and h denotes the meshsize. This element thus has the properties necessary to
prove optimal a priori convergence estimates for standard elliptic problems.
We shall next give the details for a particular example, the elasticity problem,
which is the main application for this element.

3 Application to the elasticity problem
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3.1 Problem formulation and finite element approximation

We consider the equations of linear elasticity describing the deplacement of an
elastic body occupying a domain Ω in R

3: find the displacement u = [ui]
3
i=1

and the symmetric stress tensor σ = [σij ]
3
i,j=1 such that







































σ = λ ∇ · uI + 2µε(u) in Ω,

−∇ · σ = f in Ω,

u = 0 on ∂ΩD,

n · σ = h on ∂ΩN.

(5)

Here ε (u) = [εij(u)]3i,j=1 is the strain tensor with components

εij(u) =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

,

∇ · σ =
[

∑3
j=1 ∂σij/∂xj

]3

i=1
, I = [δij ]

3
i,j=1 with δij = 1 if i = j and δij = 0

if i 6= j, f and h are given loads, and n is the outward unit normal to ∂Ω.
Furthermore, λ and µ are the Lamé constants, satisfying 0 < µ1 < µ < µ2

and 0 < λ < ∞. In terms of the modulus of elasticity, E, and Poisson’s ratio,
ν, we have that λ = Eν/((1 + ν)(1 − 2ν)) and µ = E/(2(1 + ν)). Introducing
the space

W := {v : v ∈ [H1(Ω)]3 : v is zero on ∂ΩD},

the weak form of (5) can be written: find u ∈ W such that

a(u, v) = (f , v)Ω + (h, v)∂ΩN
∀v ∈ W, (6)

where

a(u, v) :=
∫

Ω

σ(u) : ε(v) dV, (7)

where σ : τ =
∑

ij σijτij denotes tensorial contraction, and (·, ·)S denotes the
L2 scalar product over S.
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To define the finite element method, we introduce the non-conforming finite
element space constructed from the space Vh in (1) by defining

Wh := {v : v|K ∈ [Vh]
3 : v is zero at the midpoint of edges on ∂ΩD}.

The finite element method is to find uh ∈ Wh such that

ah(uh, v) = (f , v)Ω + (h, v)∂ΩN
∀v ∈ Wh. (8)

Here

ah(u, v) :=
∑

K∈Th

∫

T

σ(u) : ε(v) dV (9)

has to be written as a sum over the elements due to the nonconformity of the
approximation.

3.2 A priori error estimates

We first remark that there is no problem with coercivity with this element
as long as at least one face is situated on ∂ΩD since we can then stop rigid
body rotations by having the displacement prescribed in three (non-colinear)
nodes. The element thus fulfills a discrete Korn’s inequality, cf. Wang Ming
[7]. This not the case, e.g., for the Crouzeix-Raviart [2] and Rannacher–Turek
[5] elements (which are typically used for the version of Stokes problem in
which the Laplace operator is employed and need stabilization for elasticity,
cf. Hansbo and Larson [3]).

Introducing the norm ‖u‖h :=
√

ah(u, u) we have the following basic estimate.

Proposition 2 Suppose u ∈ [H2(Ω)]3 ∩ W solves (6) and uh ∈ Wh solves
(8). Then

‖u − uh‖h ≤ Ch‖u‖H2(Ω), (10)

where the constant C depends only on the material data.

PROOF. By Strang’s lemma we have that

‖u − uh‖h ≤ C

(

inf
v∈Wh

‖u − v‖h + sup
w∈Wh

|ah(u − uh, w)|

‖w‖h

)
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for ‖w‖h 6= 0. The first term is of the right order according to (4). The second
term can be estimated as follows. We have that

ah(u, w) =
∑

T∈Th

∫

T

σ(u) : ε(w) dV

=
∫

Ω

(−∇ · σ(u)) · w dV +
∑

F∈Fh

∫

F

(σ(u) · n) · [w] dA

where n denotes the normal vector taken in the direction of the jump. Here
the jump is zero on faces on ∂ΩN and equal to w on faces on ∂ΩD. By (5) and
(8) we thus have

ah(u − uh, w) =
∑

F∈Fh

∫

F

(σ(u) · n) · [w] dA.

Since the jumps have zero mean, we find, with t := σ(u) · n, that

∑

F∈Fh

∫

F

t · [w] dA =
∑

F∈Fh

∫

F

(t − c1t) · [w − c2] dA

≤
∑

F∈Fh

‖t − c1‖L2(F )‖[w − c2]‖L2(F )

where c1 and c2 denotes arbitrary constant vectors on each F . Further, using
the trace inequality (proven again by scaling from the reference element, cf.
[6])

‖v‖2
L2(∂K) ≤ C

(

h−1
K ‖v‖2

L2(K) + hK‖v‖2
H1(K)

)

, ∀v ∈ H1(K), (11)

we see that, with c1 chosen as the projection of t onto piecewise constants,

∑

F∈Fh

‖t − c1‖L2(F ) ≤ Ch1/2‖u‖H2(Ω),

and by the inverse inequality

‖v‖2
L2(∂T ) ≤ Ch−1

T ‖v‖2
L2(T ), ∀v ∈ Wh, (12)

we find that, with c2 chosen as the projection of w onto piecewise constants
and using Korn’s inequality,

∑

F∈Fh

‖[w − c2]‖L2(F ) ≤ Ch1/2‖w‖h.
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Thus,

|ah(u − uh, w)| ≤ Ch‖u‖H2(Ω‖w‖h

and the Proposition follows.

Proposition 3 Under the assumptions of Proposition 3, assuming ∂ΩD = ∅
and that the domain is smooth enough, we have

‖u − uh‖L2(Ω) ≤ Ch2‖u‖H2(Ω), (13)

again with C depending on the material data.

PROOF. Consider the auxiliary problem of finding z such that

−∇ · σ(z) = u − uh in Ω, z = 0 on ∂Ω.

Assuming ∂Ω is smooth enough to allow the regularity estimate

‖z‖H2(Ω) ≤ C‖u − uh‖L2(Ω), (14)

we have

‖u − uh‖
2 = (u − uh,−∇ · σ(z))Ω

= ah(u − uh, z) −
∑

F∈Fh

∫

F

(σ(z) · n) · [u − uh] dA

Here we can estimate as previosly, using also (14),

∑

F∈Fh

∫

F

(σ(z) · n) · [u − uh] dA ≤ Ch‖z‖H2(Ω‖u − uh‖h

≤ Ch2‖u − uh‖L2(Ω)‖u‖H2(Ω),

and we further have

ah(u − uh, z) = ah(u − uh, z − πhz) −
∑

F∈Fh

∫

F

(σ(u) · n) · [z − πhz] dA

≤ ‖z − πhz‖h

(

‖u − uh‖h + Ch‖u‖H2(Ω

)

≤ Ch2‖z‖H2(Ω‖u‖H2(Ω

≤ Ch2‖u − uh‖L2(Ω)‖u‖H2(Ω).
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The result follows.

4 Numerical examples

To verify the convergence estimate, we first consider the unit cube [0, 1]3 with
prescribed displacements on all sides and volume load corresponding to the
exact solution given by

ux = uy = uz = (1 − x)x(1 − y)y(1− z)z.

With ν = 0.25 and E = 103 we obtain second order convergence in L2 as
shown in Fig. 5.

Our second example concerns material locking and underintegration of the
term related to λ as λ becomes large (ν → 0.5). Though it is likely that this
element behaves like a standard Q1 element with respect to locking (so that
it for example cannot safely be used with P0 pressures for Stokes), one point
integration should alleviate locking in many circumstances. We compare the
solution (shown L2-projected onto the space of linears) for the rotated Q1

approximation with one point integration in the λ–related term with a linear
approximation for the domain with corners in the plane at (0, 0), (4.8, 4.4),
(4.8, 6) and (0, 4.4). This domain is then extruded in the z−direction from
z = 0 to z = 0.3. In Fig. 6 We show the displacements for the linear and
rotated Q1 at ν = 0.45 and in Fig. 7 at ν = 0.49. In these computations,
f = (0,−1, 0), E = 103, and the solid was fixed at x = 0. The marked locking
of the linear element is alleviated with the underintegrated rotated Q1 element.
Finally in Fig. 8 we compare the behavior in locking of the linear, rotated Q1

and rotated Q1 with underintegration. Note that only the underintegrated
element is locking free, as expected.

Our third example concerns bending. We bend the unit plate of thickness
0.1 by a unit volume load. The material parameters where ν = 0.25 and
E = 103. The plate is fixed at x = 0. In Fig 9 we give the linear solution
and the Q1 solution in the same scale. The spurious bending stiffness of the
linear element is marked. For comparison, we give the solution using piecewise
quadratic polynomials in Fig. 10.

5 Concluding remarks
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We have proposed a rotated Q1 tetrahedral element for elasticity. The ele-
ment performs better than its linear counterpart in bending and allows for
underintegration for avoiding material locking.
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Fig. 6. Linear solution (left) and rotated Q1 (right) for ν = 0.45.

Fig. 7. Linear solution (left) and rotated Q1 (right) for ν = 0.49.
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Fig. 9. Bending solution for linears (left) and rotated Q1 (right).
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Fig. 10. Bending solution for quadratic polynomials.
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