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SUMMARY

We suggest a fictitious domain method, based on the NitscheVKmethod of Hansbo and Hansbo [6], that
employs a band of elements adjacent to the boundary. Inasinthe classical fictitious domain method uses
Lagrange multipliers on a line (surface) where the boundandition is to be enforced. The idea can be seen as
an extension of the Chimera method of of Hansbo, Hansbo, argbh [7], but with a hierarchical representation
of the discontinuous solution field. The hierarchical fotation is better suited for moving fictitious boundaries
since the sffness matrix of the underlying structured mesh can be retalneng the computations.

Our technique allows for optimal convergence propertiesspective of the order of the underlying finite
element method.

KEy worps.  Nitsche’s method, fictitious domain, extended finite elehmeethod.

1. INTRODUCTION

Fictitious domain methods were introduced in order to bee dbluse Cartesian meshes also for
solving problems on domains with complex boundaries. Thea ii$ to enforce Dirichlet boundary
conditions on a given curve (surface) that is discretizel&pendently of the mesh, cf. Glowinski et
al. [5]. On this curve, the boundary condition is enforcegijdally by use of Lagrange multipliers.
The system of equations can then be set up on a Cartesian meésheadegrees of freedom falling
outside of the boundary are discarded. The problem withapoach is that the derivatives of the
finite element solution normal to the curve cannot accomredth@ jump necessary to achieve optimal
order convergence, cf. [4]. Another problem is how to chdbseliscretization of the curve relative to
the elements it crosses in order for the problem to be wek@oGuidelines for this are given in [4]
but they are by necessity rather vague.

In this paper we introduce an alternative method based onghef Nitsche’s method in the vein of
Hansbo et al. [7] (building on [2] and [6]), where overlappimeshes were considered. We shall also

*Correspondence to: Peter Hansbo, Department of Matheh&uiences, Chalmers University of Technology, SE-412 96
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employ overlapping meshes in the form of (see Fig. 1)

1. the (structured) mesh on which the problem is set up and
2. a narrow band of elements that overlays the first mesh.

This allows for the direct use of the method proposed in [Here the elements on the underlying mesh
were cut by the overlying and the solution pasted togetherdgyof Nitsche’s method [9]. The outer
boundary of the band can then be used as the Dirichlet boundarremark at this point that another
strength of the approach in [7] is thay boundary condition can be applied at the outer boundary of
the band. This is not so straighforward in a classical fauitidomain method.

However, in [7] this was achieved by modifying the elemeritthe underlying mesh, which does
not allow for the system matrix on the underlying mesh to riemachanged. If the boundary were to
move continuously, the entries in the system matrix woudt &lave to be changed continuously. It is
desirable to have a fixed matrix for the underlying problem &mnsee the imposition of the boundary
condition as a set of additional degrees of freedom (as intiigénal fictitious domain approach where
the additional degrees of freedom are the Lagrange metgli

Figure 1. Underlying and overlying meshes.

As has been noted by Areias and Belytschko [1], the method]afdn be interpreted as an XFEM
method (which instead adds degrees of freedom in a hieaidashion) by a reordering of the degrees
of freedom. In this paper, we seize on the hierarchical cptrtceconstruct a fictitious domain method
which is formally identical to that of [7] (thus benefittinggfn the optimal order error analysis therein)
while still keeping the underlying system matrix unchanggdhe location of the boundary.
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Figure 2. Boundary and domain definitions.

Our method shares some characteristics with the fat boymakethod proposed by Maury [8], which
also makes use of an auxiliary band-like domain. Howevé8Jirthe original Poisson problem is recast
on the continuous level and requires a fixed point iteratreme to solve, like in classical domain
decomposition methods. In contrast, our method is definetherdiscrete level and can be solved
monolithically.

2. MODEL PROBLEM AND FINITE ELEMENT SPACES

2.1. The continuous problem

As a model problem, we consider Poisson’s equation
-Au=f InQ, u=0 onoQ, (1)

whereQ is a domain inR? with polygonal boundargQ and f is a given forcing term. We embe@
in a larger rectangular domaid so thatQ is completely contained in the interior @ Finally, we
introduce a third domaif; consisting of a band (the width of which may be mesh depehddrise
outer boundary coincides withQ2 and whose inner boundary forms a line, dendieth the interior
of Q. The remainder of2 is denoted by, := Q \ Q;. Clearly, the extension to three dimensions is
straightforward.

We now rephrase the problem (1) as an interface problenmu Fof2; U Q, we define the jump of
onT by [u] := wilr — Uzlr, Whereu; = ulg, is the restriction ofi to Q;. Conversely, fou; defined inQ;
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we identify the pailfus, up} with the functionu which equalsy onQ;. Then we may formulate (1) as:

-Au = f in QuUQy,

u = 0 on 0Q,

[l = 0 on T, (2)
[6u] = 0 on T.

Herenis the outward pointing unit normal @; andd,v = n- Vv.
For a bounded open connected domBimve shall use standard Sobolev spakégD) with norm
Il llr.o- The inner products ik°(D) = L»(D) is denoted { -)p.

2.2. Finite element spaces

Denote bny the triangulation of; and byTé1 the triangulation of2. We shall make a discretization on
the whole ofQ even though the solution has no physical significance caitid This is in line with
classical fictitious domain methods and means that tt#naetis matrix assembled froiﬁg remains
fixed even if the domain should change, as it must do in manicaions.

We will use the following notation for mesh related quasttiLethk be the diameter of an element
K e Thandh= MaXccth -1 2 k. To distinguish elements from the two meshes, we will somesi use

indexed element notatioK; € Tih for clarity. Furthermore, we introdud@" as the set of elements in
T intersected by,

G'=(KeThl:KnT¢0)
and the corresponding mesh-dependent domain
QGh = Ug, K.

We shall also need the mesh dependent boun@agy, which consists of the edges on element&in
that form the boundary dig,. This boundary is also split in the part exteriothpaQat and interior
toT, GO

The nodes oi of the elements iﬁ’{‘ , together with the points of intersection between elemiants
TQ andr’, define a partition of, " = Ujejhﬁ. Note that each paft! belongs to two elements, one from
each mesh. We denote these elementlsband Ké, respectively. A local meshsize éris defined by

h({ =hg, xe r. ©)

For any elemenkK e Tih, let Px = K N Q; denote the part df in €.
We make the following assumptions regarding the meshes:

Al: The triangulations are non-degenerate, i.e.,
he/poxk <C VKeT!, =12,

wherehk is the diameter oK andp is the diameter of the largest ball contained&in
A2: The meshes have locally compatible meshsize bvétore precisely, leK] € T andK) € T}
be the elements which contain a specific parof I'. We assume that

chg <hg <Chg Vjed



A HIERARCHICAL NXFEM FOR FICTITIOUS DOMAIN SIMULATIONS 5

Here and belowC andc denote generic constants.
We shall seek a discrete solutibh= (Uy, U, Uz, Us) in the spac&/ = VI x VIl x Vi x V', where

VI = {p e HY(Q1) : ¢l« is a polynomial of degrep VK € TY, ¢lsq = O},
Vi = {¢ € HY(Q) : ¢l« is a polynomial of degrep VK € T, ¢|,5 = O},
V= {p e HY(Qg,) : ¢l« is a polynomial of degrep VK € Gp, Plagg: = O},
VI = {p e HY(Qg,) : ¢l« is a polynomial of degrep VK € Gp, Flaoge = O}.

Note that functions inV" are, in general, discontinuous acrdsghe discontinuity is represented by
the hierarchical spaceg‘ X VQ. In Figure 3 we illustrate the concept: a discontinuous fiomcon a
one-dimensional element occupying the dom@i) = (0, 1) (solid line) can be written as the sum
of a continuous function (dashed line) frOI@ and piecewise continuous functions which are zero in
the nodes of the element (dash-dotted line) frgfnand Vf. Note that even though functions ff
andVQ are defined on all of)g,, we shall only use those parts that live on the respective sid’,
corresponding to the situation in Fig. 3.

2.5

Figure 3. A discontinuous trial function and its split inte@ntinuous and a discontinuous part.

2.3. The Finite Element Method
The method is defined by the variational problem: fih@ V" such that

a"(U,¢) =1(¢), VeV )
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where, if we denote)igﬁ = Qg, N Q2 andQ" = Qg, \Q'g;
a'(U,¢) = (VUg,Vi)a, + (VU2 Vé2)g + (VUz, V¢3)th +(VU2, V¢4)Qext
+(VUs, Vés)ap + (VUa, Vea)ogn + (VU3 V¢2)Q'm +(VUa, V(Pz)s)exI
—(5nU1,[¢])r— ([U], Ongp1)r + (/lh U1 [¢Dr.

(@) = (. ¢1)a, + (f.d2)g + (f, d3)am + (f, Pa)age,

with f extended, e.g., by zero outsife and wheréh is the local meshsize (3). Here, the juntp][is
interpreted a¥); — (U2 +U3). The continuity conditions af andd,u atT" are satisfied weakly by means
of a variant of Nitsche’s method [9] for consistent weak eoéonent of Dirichlet boundary conditions.
To ensure stability, the parametehas to be taken siiciently large, cf. [7].

To analyze the method and show its equivalence with that]jaf¢7introduce a second bilinear form

(U, ¢) = (YU, V)a,ue, = (U1, [#D)r = (U], dng2)r + (AU, [#D)r,

and right-hand side
l*(¢) = (f’ ¢)91UQZ'
It is straightforward to show that the method analyzed in§@jld then read: find)* € V" such that

U, ¢) = 1.(¢), VpeV", (5)

whereU*|q, = U1, U*lg, = Uz + Us, ¢lo, = ¢1 andgla, = @2 + ¢3, sSince we may ignore the solution
outsideQ we setgala,uas,) = 0- Note that the integrals here are taken only over the dofain

unlike the proposed method. However, since the solutiomtisptetely decoupled by the cut, it does
not matter what we do outside of the domain (e.g., how we extesmd how the boundary conditions
on 4 are specified). In the next section we prove that indgéee U|q and hence the analysis of [7]

carries over to our formulation.

3. APRIORI ERROR ESTIMATES

Consider the following mesh dependent norms:

M 21 = INY ™AV = ) MG

]EJh

2 1/2
M2y 50 = IRV = > i IVIG .
jEJh

and
IVIIZ = I9VIG 0,00, + 10aValZ 1 501 + IV 2 -

Proposition 3.1. Let U denote the solution d#) and U* the solution of(5). Then Ug = U*.
PROOF. The proof proceeds in three steps

1. Show the existence of a subsp&tec V;, such that

a'(U,9) = (U, ¢) andl(@) = 1.(§), VY € V.
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2. Show thaBiéy € Vi, such thatty|o = U and thaBéy. € Vi, such thatty.|o = U*.
3. Apply coercivity and Galerkin orthogonality to the dist& error using the results of [7].

Firstly let

Vhi=1{$€Vp: (;52|§)\(QZUQET]‘) =0 and@lggﬁ = —ézlggfk

Since the integrals ofi are the same ia"(-, ) gnda[l(-, -) we only need to prove the equivalence of the
volume integrals. By using the decompositiar= (Q\ (22 UQg9) & (Q2\ Q') & QF' ® Qg we may
write for all ¢ € Vy,

ah(U’ ¢) = (VU1, Véa)g, + (VUz, V¢2)f}\(gzuga‘t) + (VUz, V¢2)Q2\Qi£;
+ (V(Uz + Ua), V(g2 + ¢a))oge + (V(Uz + Us), V(g2 + ¢3)) o + Br(U, ¢), (6)

whereB(U, ¢) denotes the integrals ovEr It then follows that for alfy € Vj,

ah(U’ &5) = (VUl’ V&Sl)Ql + (VUZ, V&SZ)QZ\QQ’EI
+ (V(Uz + Us), V($2 + 553))93; + Br(U, )
= (VU1, Vé1)a, + (V(Uz + Us), V(2 + ¢3))a, + Br(U.4) = a)(U.4). (7)

The equalityl(¢) = |.(¢) is shown in a similar fashion.
Secondly observe that, only imposes constraints on components of the functiondeis, since
the constraint o, in Q'(’;‘; is compensated for by the freedomyaf Hence the existence of the sought

&y andéy-.
Finally we recall the following coercivity result from [7ior somec > 0 and for allv € V,, there
holds

c I vI? < al(v, ). ®)
In particular this holds fov = U — U* and hence, sincg) — &u- € Vi
cllU-uUtf?<al(U-Uu-U)=alU-Ué-&)
=a'(U, & - &u) - aAl(U% &y - &0)) = I(éu - €ur) - L(éu —&ur) = 0.

O
We have the following consistency relation.

Proposition 3.2. The discrete problem (4) is consistent in the sense thatj smiving (2) there holds

a'(u,¢) =1.(¢), VeV

or, equivalently,
a(u-U,¢) =0, V¢eV (9)

The proofis givenin [7].
We can now directly take advantage of the theory developpf] imhich shows that we have optimal
error estimates for any polynomial degree of the underlfimte element method:
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Theorem 3.3. For U solving (4) and u solving (2), the following a priori erestimates hold

lu= U] < ChPlulp.10, (10)

and
lu-Ulloa < ChP*ulp,1 0. (11)

We refer to [7] for the proof. Here we shall only point out orfetlee crucial points in the analysis.
Accuracy of the method is expressed by the orthogonaligticei (9), but to show convergence we
also need stability of the discrete problem as expresse8)bin(order to show that our system matrix
is positive definite, we rely on the following inverse inelityasee, e.g., Warburton and Hesthaven
[11].

Lemma 3.4. For ¢ € V", the following inverse inequality holds:

1On@1ll-1/20r < CiPIIVAlloq, -

The size of the consta@} can be found by solving a small local eigenvalue problemtiexpounds
are discussed in [11]. The consté&htdetermines the size af we are obliged to takeé > C2p? in order
to ensure coercivity. Here is the point of the band: if we udtthe mesh witt#Q and apply Nitsche’s
method on the cut elements, sliver elements would be geatktlaat would require extremely lar@g
in Lemma 3.4, leading to severe ill conditioning of the détersystem. We illustrate the problem in the
casep = 1. Thus, consider using applying Nithsche’s method diyeatl an element cut b§Q. Then
C, can be found, for a given elemelitas the largest eigenvalug.y in the eigenproblem of finding
U e P and. € R such that

(h/%0nU, 9aV)knaa = A(VU, Wkna YV € PE,

wherePﬁ denotes the space of polynomials of degree KomhenVv is constant on each element and
thus we have
8aVIIE ,knay = MeasK N aQ)Ianvi, (12)

where meas) denotes the length, area, or volume of the object in quesiiod
IVVIIE kg = 10aVIIE gy = MEBSK N Q)l0nv (13)

and it follows that
hk measK N Q)

meask O IVVIIE, kne): (14)

12, .2
1N “OnVIIL, knaey <

and thus we must choose
hk measK N Q)

measKk N Q)

The situation is illustrated in Fig. 4 whed® is represented by the dashed line. We note th@tas
moves to the left in Fig. 4, the area maas{ Q) will approach zero while the length me&s( Q)
remains bounded from below, which means thatust grow without bound. This situation is remedied
by inserting the band of elements between the cut and thedaoyn

In Burman and Hansbo [3], where no band was used, this condity problem was instead
eliminated by use of additional stabilizing terms, limgithe analysis to linear polynomials. In the
present formulation, we avoid the use of additional termsesithe mesh on the bam2 is always
shape regular.

/l>C|22
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Figure 4. An element cut by the boundary.

4. IMPLEMENTATION ASPECTS

The diference between the suggested approach and that of [7] is imeth hierarchical formulation.
Conceptually, this means that in the method of [7], therealg two finite element spaces: the one on
the band and the one inside the band consisting of elemeritsthp interfacd’. This gives two sets
of unknownsy; andu; say, and the system of equations becomes

BT Sz u2 h f2
whereS; is the stifthess matrix from the discretization on the ba&gfrom the cut meshB represents
the coupling terms, andl;, f, represents load terms. The degrees of freedom wutside the cut can
then be discarded already at the outset. One problem wglafiproach is that all matric& S;, and

S, change is we want to move the interface. This could be in a tiepeendent problem, or if we want
to use the scheme for the purpose of shape optimizationelprssent approach we instead obtain the

system
Sj_ B]_ Bg Usq fl
Bi s% Bs || uz [=] f,
B, B; & us fa

whereS, now denotes the $fhess matrix on the underlying mesh which does not changee $iris
matrix is by far the largest of the involved matrices, thisamgthat we only have to recompute small
matrices (corresponding in a sense to the multiplier medraf the original fictitious domain method).
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In our implementation, we have used Gaussian quadraturbeomterface using the band as the
master mesh. We have also used the boundary on the me@htorperform integration of jump and
consistency terms, this boundary will not precisely makehdut mesh if the boundary is curved since
we use linear cuts in the elements. This does not, howeffectahe convergence rates in our example
below.

5. NUMERICAL EXAMPLE

We consider a problem posed on a disc of radis 0.95. Withr the length of the radius vector,
we usef = r to obtain the exact solution = u = (rg - r3)/9. The stabilization parameter was set
toy = 10. In Fig. 5 we show the obtained convergence ratés(f®)— andH(Q)-norms, which are
optimal. An elevation of the solution is given in Fig. 6, andedevation of the solution on the whole
of Q is shown in Fig. 7. Note that we have extended r to hold on the whole aof) and imposed zero
boundary conditions 06Q. This is of no consequence since the solution is decouplEd at

6. CONCLUDING REMARKS

In this contribution we have shown that the NXFEM method idlwaited for fictitious domain
type simulations. It has optimal convergence for arbitrpojynomial order and does not require
Lagrange multipliers to enforce Dirichlet boundary coratis. Indeed, since the boundary conditions
are prescribed on a regular mesh, we can handle all typesuoidaoy conditions in the usual way.

Applications for the proposed method include shape optition, where the boundary of the domain
has to be moved in order to calculate sensitivities, and donpmutations involving objects moving
across a background mesh in general.
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