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LOCAL POINTWISE A POSTERIORI GRADIENT ERROR
BOUNDS FOR THE STOKES EQUATIONS

ALAN DEMLOW1 AND STIG LARSSON2

Abstract. We consider the standard Taylor-Hood finite element method for

the stationary Stokes system on polyhedral domains. We prove local a pos-
teriori error estimates for the maximum error in the gradient of the velocity

field. Because the gradient of the velocity field blows up near re-entrant cor-

ners and edges, such local error control is necessary when pointwise control of
the gradient error is desirable. Computational examples confirm the utility of

our estimates in adaptive codes.

1. Introduction

We consider finite element methods for the stationary Stokes equations

−∆u +∇p = f , in Ω,
∇ · u = g, in Ω,

u = 0, on ∂Ω.
(1.1)

Here we assume that Ω ⊂ Rn, n = 2, 3, is a polygonal (n = 2) or polyhedral
(n = 3) domain. We note that our main results also include the case of polyhedral
crack domains. We also require that

∫
Ω
g dx = 0 in order to ensure existence and∫

Ω
p dx = 0 in order to ensure uniqueness of solutions. With

V = (H1
0 (Ω))n, X = L2(Ω),

we introduce the bilinear form

L((u, p), (v, λ)) = a(u,v) + b(v, p)− b(u, λ),(1.2)

where

a(u,v) =
∫

Ω

n∑
i,j=1

∂ui
∂xj

∂vi
∂xj

dx, b(v, p) = −
∫

Ω

(∇ · v)p dx.(1.3)

Writing also

(f ,v) =
∫

Ω

n∑
i,j=1

fivi dx, (g, λ) =
∫

Ω

gλdx,
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2 A. DEMLOW AND S. LARSSON

we obtain the weak formulation of (1.1): find (u, p) ∈ V ×X such that

L((u, p), (v, λ)) = (f ,v) + (g, λ) ∀(v, λ) ∈ V ×X.

Let {Th} be a regular family of triangulations of Ω, generated for example by an
adaptive bisection algorithm. We assume that Vh ⊂ V and Xh ⊂ X are standard
Taylor-Hood finite element spaces corresponding to a mesh Th; properties are given
below. The finite element method for (1.1) is: find (uh, ph) ∈ Vh ×Xh such that

L((uh, ph), (vh, λh)) = (f ,vh) + (g, λh) ∀(vh, λh) ∈ Vh ×Xh.(1.4)

We enforce
∫

Ω
ph dx = 0 in order to ensure uniqueness.

Our goal in this paper is to prove local a posteriori error estimates for ∇(u−uh)
in the maximum norm. More precisely, let D ⊂ Ω be a given target subdomain.
We seek a posteriori control of

‖∇(u− uh)‖L∞(D) = sup
x∈D

max
i,j
|Di(uj − uh,j)(x)|.

In order to motivate our results, we briefly describe the PhD thesis [Sve06] by
E. D. Svensson. It considers the problem of computationally characterizing mixing
in incompressible flows. Let Ω ⊂ Rn, n = 2, 3, be an open set containing a fluid.
The motion v : [0,∞)× Ω→ Ω of the fluid is described by the system

(1.5)
∂v(t, x)
∂t

= u(v(t, x)), t > 0; v(0, x) = x,

of ordinary differential equations. Here x ∈ Ω is the starting point of the particle
path and u is the velocity field obtained by solving (1.1). In order to solve (1.5)
computationally, Svensson discretized both (1.5) and (1.1) by the finite element
method. In order to control the error in approximating (1.5), it is necessary to
control ‖u−uh‖L∞(Ω). Such bounds can be found for arbitrary polyhedral domains
in R2 or R3 in [SL06].

Svensson also developed a shadowing error estimate for (1.5), that is, an estimate
for the distance between the computed path and a true path not necessarily having
the same starting point. This estimate involves a linearization of (1.5), which
in turn requires pointwise error bounds for ∇(u − uh). Global pointwise gradient
bounds for the case when Ω is convex can be found in [SL06]. However, (1.5) is often
naturally formulated in nonconvex domains, and ∇u is generally not bounded near
reentrant corners and edges of ∂Ω. For this application, it is sufficient to provide a
posteriori control of ‖∇(u− uh)‖L∞(D) on regions D ⊂ Ω not abutting nonconvex
parts of ∂Ω. In this work we employ techniques developed in [Dem07] in the context
of Poisson’s problem in order to provide local pointwise gradient error control for
the Stokes system. We note that while [Dem07] provides a roadmap for the current
work, our proofs here also involve significant technical challenges not present in
scalar elliptic problems.

More precisely, letD ⊂ Ω withD lying a distance d > 0 from any reentrant vertex
(when n = 2, 3) or edge (when n = 3) of ∂Ω. Let Dd = {x ∈ Ω : dist(D,x) < d}.
We define the W 1

∞-type residual error indicator

η1,∞(T ) = hT ‖f + ∆uh −∇ph‖L∞(T )

+ ‖J∇uhK‖L∞(∂T ) + ‖g −∇ · uh‖L∞(T ), T ∈ Th.

Here J∇uhK is the jump in the (componentwise) normal derivative of uh across the
element boundary ∂T and hT = diam(T ). Let also h = minT∈Th hT . Finally, let
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TDd = {T ∈ Th : T ∩Dd 6= ∅}. We use the standard norms ‖·‖Lp(D), ‖·‖Wm
p (D) and

seminorms |·|Wm
p (D), |·|C1,β(D). Our main result is then the following.

Theorem 1. Let ρ ≤ c0 min{d, h} for a sufficiently small constant c0, and assume
that u ∈ C1,β(Dρ) for some β > 0. Under the above assumptions, we then have

‖∇(u− uh)‖L∞(D) ≤ C ln
d

ρ
max
T∈TDd

hT
hT + dist(T,D)

η1,∞(T )

+ Cρβ |u|C1,β(Dρ) + C
1
d
‖u− uh‖L∞(Ω).

The above estimate consists of a local residual term, a regularization penalty ,
and a global pollution term. The local residual term maxT∈TDd

hT
hT+dist(T,D)η1,∞(T )

measures local error contributions from a neighborhood of the target region D.
Since hT

hT+dist(T,D) = 1 when T ∩D 6= ∅, error contributions from D are measured
by the W 1

∞-type residual indicator η1,∞. Error contributions from elements in-
tersecting Dd but not touching D are measured by the term hT

hT+dist(T,D)η1,∞(T ).
The strength of this contribution decays smoothly from η1,∞(T ) to hT

d η1,∞(T ) as
hT + dist(T,D) increases from hT to O(d). The extra factor hT present in the
latter error indicator significantly de-emphasizes these contributions as the mesh
is refined, and in particular effectively measures the error contribution from these
regions in L∞ instead of W 1

∞. The regularization penalty ρβ |u|C1,β(Dρ) is due to
technicalities associated with bounding maximum norms. Note that u ∈ C1,β(Dρ)
for some β > 0 in the situation comtemplated here (cf. Section 5 of [MR06]), and
that we generally select ρ = hγ with γ sufficiently large. Thus, though a priori in
nature and therefore undesirable, this regularization penalty is generally of higher
order and asymptotically negligible. It may also be removed if a certain nondegen-
eracy condition holds; we discuss this in more detail below.

The pollution term C 1
d‖u− uh‖L∞(Ω) measures the influence of global solution

properties on the local solution quality. We next state a corollary in which the
pollution error is bounded a posteriori by means of Lemma 3 (stated below).

Corollary 2. In addition to the above assumptions, let Ω have a Lipschitz bound-
ary. Then

‖∇(u− uh)‖L∞(D) ≤ C ln
d

ρ
max
T∈TDd

hT
hT + dist(T,D)

η1,∞(T )

+ Cρβ |u|C1,β(Dρ) + C
(

ln
1
h

)αn 1
d

max
T∈Th

hT η1,∞(T ).
(1.6)

Here α2 = 2 and α3 = 4/3.

Because we expect convergence to be faster in L∞ than in W 1
∞, the pollution

term is of higher order when viewed from the perspective of a priori convergence
rates. Adaptive algorithms based on (1.6) can correspondingly be expected to
generate coarser meshes in Ω \ Dd than in Dd. Note also that the restriction in
Corollary 2, that ∂Ω is Lipschitz, excludes the case of crack domains. As we remark
below, this restriction is likely unnecessary.

We finally give a brief discussion of related literature. As mentioned above,
[SL06] contains global a posteriori error estimates in the maximum norm for the
Stokes equation. Local a posteriori estimates for maximum gradient errors for
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Poisson’s problem are proved in [Dem07]; related global maximum gradient error
estimators are developed in [Dem06]. Local a priori error estimates for the Stokes
equation are developed in [HXZL08] and used to justify a local parallel finite ele-
ment algorithm. Finally, global W 1

∞ a priori error estimates for the Stokes system
on convex polygonal and polyhedral domains can be found in the recent papers
[GNS04], [GNS05], and [GL10]; we also refer to these works for a more compre-
hensive overview of previous literature on maximum norm a priori analysis for the
Stokes problem.

An outline of the paper is as follows. In Section 2 we give several preliminary
definitions. In Section 3 we use a duality argument in order to represent the lo-
cal pointwise gradient error, and in Section 4 we complete the proof of Theorem
1 by proving a number of regularity estimates. Section 5 contains discussion of
refinements and extensions; in particular, we give a condition under which the reg-
ularization penalty in (1.6) can be removed and discuss the possibility of proving
local pointwise estimates for the pressure error p − ph. Finally, in Section 6 we
present a computational example.

2. Preliminaries

2.1. Finite element spaces and interpolants. We employ the standard Taylor-
Hood finite element spaces. Let Vh be the continuous piecewise polynomials of
degree k and let Xh be the continuous piecewise polynomials of degree k−1, k ≥ 2.
With this definition, existence of solutions to (1.4) is well known to hold, as well as
uniqueness so long as

∫
Ω
ph dx = 0 is enforced.

We also assume the existence of interpolation operators Ih : V → Vh, Jh : X →
Xh such that, for 1 ≤ p ≤ ∞,

‖Ihv − v‖W j
p (T ) ≤ Ch

m−j
T |v|Wm

p (PT ), j = 0, 1, m = 1, 2,(2.1)

‖Jhp− p‖Lp(T ) ≤ ChmT |p|Wm
p (PT ), m = 0, 1.(2.2)

These are standard properties of interpolants of Clément or Scott-Zhang type. Also,
PT is the patch of elements touching T , with a corresponding hierarchy of neighbor
patches of a simplex T ∈ Th defined by:

PT = ∪{S ∈ Th : S̄ ∩ T̄ 6= ∅},
P ′T = ∪{S ∈ Th : S̄ ∩ P̄T 6= ∅},
P ′′T = ∪{S ∈ Th : S̄ ∩ P̄ ′T 6= ∅}, etc.

We finally note that Ih and Jh may be defined so that, if v ∈ (H1
0 (Dd))n and

q ∈ L2(Ω) is supported in Dd, then Ihv and Jhq have support in TDd .

2.2. Reference domains. Our proofs involve carrying out duality arguments over
subdomains B of Ω. To describe these we recall that the target domain D is a
fixed distance away from reentrant corners or edges but may touch the remaining
parts of ∂Ω. We fix a point x0 ∈ D where the maximum gradient error over
D is attained. When dist(x0, ∂Ω) ≥ d we can choose our subdomain B to be
a square or cube with diameter d centered at x0. When x0 is close to ∂Ω we
must carefully control the size and shape of these subdomains in order to ensure
that regularity constants appearing in our estimates are uniformly bounded. We
thus define reference domains to which we may map portions of Ω lying near ∂Ω.
A similar approach was used in [Dem07], and we refer to §2.2 of that work for
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more detail. In particular, it is shown there that there exists a set {B̃1, ..., B̃M} of
reference domains of unit diameter, each of which is a convex polyhedron, with the
following properties.

There exists a constant d0 ≤ 1 depending on Ω such that whenever d ≤ d0, the
following hold: Assume that x0 ∈ Ω with dist(x0, e) ≥ d for all reentrant corners or
edges e of ∂Ω. Then there exist constants c1 > 0 and 0 < c2 ≤ 1, independent of
x0, and a subdomain B of Ω such that x0 ∈ B, dist(x0, ∂B \ ∂Ω) ≥ c1d, and such
that for some 1 ≤ i ≤M there is an affine bijection Ai : B̃i → B, where Ai consists
only of translation and scaling by cd for some c2 ≤ c ≤ 1.

We will also use a cut-off function ω. With x0 and c1 as above, let ω ∈
C∞0 (Bc1d(x0)) satisfy

ω ≡ 1 on Bc1d/2(x0).(2.3)

Here Br(x) denotes the open ball with radius r and center x. If Bc1d(x0) ∩ Ω is
not connected, then we assume that ω ≡ 0 on any component of Bc1d(x0) ∩ Ω not
containing x0. Note that ω = 0 on ∂B \ ∂Ω and that ω may be defined so that

‖ω‖W j
∞(B) ≤ Cjd

−j , j = 0, 1, 2, . . .(2.4)

2.3. A posteriori estimates in L∞. We quote a result from [SL06].

Lemma 3. Assume that Ω is a polyhedral domain in Rn, n = 2, 3. Then

‖u− uh‖L∞(Ω) ≤ C
(

ln
1
h

)αn
max
T∈Th

hT η1,∞(T ).

Here α2 = 2 and α3 = 4/3.

Remark 4. The arguments of [SL06] are valid for polyhedral domains with Lip-
schitz boundary, which excludes the case of crack domains. However, similar es-
timates for Poisson’s problem can also be obtained for polyhedral domains with
cracks (cf. [DG10]), and we expect the same to be true for the Stokes system. Our
numerical examples are carried out on a two-dimensional domain with a crack.

3. Error representation

In this section we represent ‖∇(u−uh)‖L∞(D) by employing a regularized Green’s
function.

3.1. Pointwise gradient error. Let

eu = uh − u, ep = ph − p.
We begin by selecting x0 ∈ D and i, j so that

‖∇eu‖L∞(D) = sup
x∈D

max
k,l
|Dkeul(x)| = |Dieuj(x0)| = |Dieu(x0) · kj |.

Here kj denotes the j-th basis vector. We shall express this by means of an ap-
proximate “delta function”: Dieu(x0) · kj ≈ (Dieu · kj , δ) = (Dieu, δkj).

In order to do so, we select a simplex Tx0 ∈ Th such that

x0 ∈ Tx0 .

Furthermore, we define a regularized “delta function” δ corresponding to the point
x0 (cf. [SW95]). Following §2.3 of [Dem07], we let ρ be as in Theorem 1 and fix a
shape-regular simplex T0 of diameter ρ such that x0 ∈ T0 ⊂ Tx0 . More precisely, T0

should satisfy the same regularity assumption as the simplices in the mesh family
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{Th}. Then δ ∈ C∞0 (T0) may be defined so that for any polynomial P of degree at
most k − 1 (where k is the polynomial degree of Vh),

P (x0) =
∫
T0

δP dx,

‖δ‖W j
p (T0) ≤ Cρ

−j−n(1− 1
p ), 1 ≤ p ≤ ∞, j = 0, 1.(3.1)

Following precisely the arguments in Proposition 2.3 of [Dem07], we obtain the
following.

Lemma 5. Assume that u ∈ C1,β(T0) for some β ∈ (0, 1] and vh ∈ Vh. Then

|Di(uj − vhj)(x0)| ≤ |(Di(uj − vhj), δ)|+ Cρβ |u|C1,β(T0).(3.2)

Employing (3.2), we obtain the following error representation.

Lemma 6. Under the assumptions of Theorem 1 we have

‖∇eu‖L∞(D) ≤ |(Dieu, δkj)|+ Cρβ |u|C1,β(Dρ).(3.3)

3.2. Localization. As above, we let d be the distance from the target subdomain
D to the nearest reentrant edge or vertex in ∂Ω. Let x0 ∈ D be a point where the
maximum gradient error is attained and choose the subdomain B and the cut-off
function ω as in Section 2.2. As in Theorem 1 we assume that ρ ≤ c0d for c0
sufficiently small. Hence, we may achieve ω ≡ 1 on supp(δ) and supp(δ) ⊂ T0 ⊂ B,
so that the main term in (3.3) becomes

(Dieu, δkj) = −(eu, Diδkj) = −(ωeu, Diδkj).(3.4)

We introduce a localized adjoint problem: find (v, q) ∈ VB ×XB such that

LB((w, λ), (v, q)) = (w, Diδkj) ∀(w, λ) ∈ VB ×XB ,(3.5)

where the form LB is defined as in (1.2)–(1.3) but with integrals extending only
over B and VB ×XB = (H1

0 (B))n × L2(B). The strong form is:

−∆v −∇q = Diδkj , in B,
∇ · v = 0, in B,

v = 0, on ∂B.

We extend v by zero outside of B. Then v ∈ (W 1
∞(Ω))n but has no higher global

regularity. Note also that ωeu ∈ VB because ω = 0 on ∂B \ ∂Ω and eu = 0 on ∂Ω.

3.3. Duality argument. We choose (w, λ) = (ωeu, ep) ∈ VB × XB in (3.5), use
(3.4), and recall that v = 0 outside B. Thus,

(eu, Diδkj) = (ωeu, Diδkj) = LB((ωeu, ep), (v, q))

= a(ωeu,v) + b(v, ep)− b(ωeu, q)

= a(eu,v)− a((1− ω)eu,v) + b(v, ep) + (∇ω · eu, q)− b(eu, ωq)

= L((eu, ep), (v, ωq))− a((1− ω)eu,v) + (∇ω · eu, q),

(3.6)

since
−b(ωeu, q) = (∇ · (ωeu), q) = (∇ω · eu), q) + (ω∇ · eu, q)

= (∇ω · eu, q)− b(eu, ωq).
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Writing a(u,v) =
∫

Ω
ui,jvi,j dx, setting Bd/2 = Bc1d/2(x0) ∩ B, and recalling that

ω = 0 on ∂B \ ∂Ω, eu = 0 on ∂Ω, and (2.3), we have

−a((1− ω)eu,v) = −
∫
B

((1− ω)eui),jvi,j dx

= −
∫
∂B

(1− ω)njeuivi,j dx+
∫
B

(1− ω)euivi,jj dx

= −
∫
∂B\∂Ω

njeuivi,j dx+
∫
B\Bd/2

(1− ω)euivi,jj dx.

Employing (3.6) and (2.4), and recalling that ∇ω = 0 on Bd/2, we conclude that

|(eu, Diδkj)| ≤ |L((eu, ep), (v, ωq))|+ ‖eu‖L∞(B)

(
‖∆v‖L1(B\Bd/2)

+ ‖∂v/∂n‖L1(∂B\∂Ω) + Cd−1‖q‖L1(B\Bd/2)

)
.

(3.7)

We now consider the term |L((eu, ep), (v, ωq))|. Galerkin orthogonality implies

L((eu, ep), (v, ωq)) = L((eu, ep), (v − Ihv, ωq − Jh(ωq)).(3.8)

Recalling that supp(v−Ihv) ⊂ TDd and employing standard techniques for proving
residual error estimates (cf. [Dem07] for similar computations), we next compute

L((eu, ep), (v − Ihv, ωq − Jh(ωq)) ≤ C
∑

T∈TDd

η1,∞(T )

×
(
h−1
T ‖v − Ihv‖L1(T ) + ‖∇(v − Ihv)‖L1(T ) + ‖ωq − Jh(ωq)‖L1(T )

)
≤ C max

T∈TDd

hT
hT + dist(T,D)

η1,∞(T )
∑

T∈TDd

hT + dist(T, Tx0)
hT

×
(
h−1
T ‖v − Ihv‖L1(T ) + ‖∇(v − Ihv)‖L1(T ) + ‖ωq − Jh(ωq)‖L1(T )

)
.

(3.9)

Here we used that hT + dist(T, Tx0) ≥ C(hT + dist(T,D)), so that hT
hT+dist(T,Tx0 ) ≤

C hT
hT+dist(T,D) .
Recall that we assume ρ ≤ c0h. We choose c0 so small that B2ρ(x0) ⊂ P ′Tx0

and then apply the interpolation estimates (2.1) and (2.2) to the terms in (3.9) as
follows. Recall that x0 ∈ Tx0 . For T ∈ P ′′Tx0

and for T with T ∩ (∂B \ ∂Ω) 6= ∅ we
apply (2.1) with m = 1, while for all other T ∈ TDd we apply (2.1) with m = 2.
Similarly, for T ∈ P ′′Tx0

we apply (2.2) with m = 0, while for all other T ∈ TDd we
apply (2.2) with m = 1. We also note that hT + dist(T, Tx0) ' hT for T ∈ P ′′Tx0

and that hT + dist(T, Tx0) ' dist(x, x0) for x ∈ T ∈ TDd \ P ′Tx0
.

More precisely, let

I(T ) =
hT + dist(T, Tx0)

hT

×
(
h−1
T ‖v − Ihv‖L1(T ) + ‖∇(v − Ihv)‖L1(T ) + ‖ωq − Jh(ωq)‖L1(T )

)
.

When bounding the sum
∑
T∈TDd

I(T ) in (3.9), we have for the terms with T ∈ P ′′Tx0∑
T∈P ′′Tx0

I(T ) ≤ C
∑

T∈P ′′Tx0

(
‖∇v‖L1(PT ) + ‖ωq‖L1(PT )

)
≤ C

(
‖∇v‖L1(P ′′′Tx0

) + ‖q‖L1(P ′′′Tx0
)

)
.
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For the terms with T 6∈ P ′′Tx0
, we use B2ρ(x0) ⊂ P ′Tx0

, (2.4), and that v, ωq vanish
outside B to obtain∑
T∩(∂B\∂Ω)=∅

T 6∈P ′′Tx0

I(T ) ≤ C
∑

T 6∈P ′′Tx0

(
hT + dist(T, Tx0)

)(
‖D2v‖L1(PT ) + ‖∇(ωq)‖L1(PT )

)

≤ C
∫
TDd\P

′
Tx0

|x− x0|
(
|∇ω||q|+ |ω||∇q|+ |D2v|

)
dx,

≤ C
∫
B

|q|dx+ C

∫
B\B2ρ(x0)

|x− x0|
(
|∇q|+ |D2v|

)
dx.

For the terms with T ∩ (∂B \ ∂Ω) 6= ∅, we have instead∑
T∩(∂B\∂Ω) 6=∅

T /∈P ′′Tx0

I(T ) ≤ C
∑

T∩(∂B\∂Ω)6=∅
T /∈P ′′Tx0

(
hT + dist(T, Tx0)

)
h−1
T ‖∇v‖L1(PT )

≤ C
∑

T∩(∂B\∂Ω)6=∅
T /∈P ′′Tx0

h−1
T

∫
PT

|x− x0||∇v| dx.

Thus, ∑
T∈TDd

I(T )

≤ C
(
‖∇v‖L1(B) + ‖q‖L1(B) +

∫
B\B2ρ(x0)

|x− x0|
(
|∇q|+ |D2v|

)
dx

+
∑

T∩(∂B\∂Ω)6=∅
T /∈P ′′Tx0

h−1
T

∫
PT

|x− x0||∇v| dx
)
.

(3.10)

Collecting the previous results, we obtain the following error representation.

Lemma 7. Under the assumptions of Theorem 1 we have

‖∇(u− uh)‖L∞(D) ≤ C max
T∈TDd

hT
hT + dist(T,D)

η1,∞(T )

×
(
‖v‖W 1

1 (B) + ‖q‖L1(B) +
∫
B\B2ρ(x0)

|x− x0|
(
|∇q|+ |D2v|

)
dx

+
∑

T∩(∂B\∂Ω) 6=∅
T /∈P ′Tx0

h−1
T

∫
T

|x− x0||∇v| dx
)

+ ‖u− uh‖L∞(Ω)

(
‖∆v‖L1(B\Bd/2) + ‖∂v/∂n‖L1(∂B\∂Ω)

+ Cd−1‖q‖L1(B\Bd/2)

)
+ Cρβ‖u‖C1,β(Dρ).

(3.11)

Proof. We collect (3.10) into (3.9) and subsequently into (3.8) and (3.7). Combining
the result with (3.3) yields (3.11). �
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3.4. Regularity estimates. The proofs of Theorem 1 and Corollary 2 will be
complete after the following regularity estimates are proved. The proof of these
estimates is carried out in Section 4. We remind the reader that Bd/2 = Bc1d/2(x0)∩
B; see (2.3).

Lemma 8. Let (v, q) ∈ VB ×XB be the solution of (3.5). Then

‖v‖W 1
1 (B) + ‖q‖L1(B) ≤ C ln

d

ρ
,(3.12)

‖∆v‖L1(B\Bd/2) ≤ Cd−1,(3.13)

‖∂v/∂n‖L1(∂B\∂Ω) ≤ Cd−1,(3.14)

‖q‖L1(B\Bd/2) ≤ C,(3.15) ∫
B\B2ρ(x0)

|x− x0|
(
|∇q(x)|+ |D2v(x)|

)
dx ≤ C ln

d

ρ
,(3.16)

∑
T∩(∂B\∂Ω)6=∅

T /∈P ′′Tx0

h−1
T

∫
PT

|x− x0||∇v(x)| dx ≤ C.(3.17)

4. Regularity estimates

In this section we prove Lemma 8. First we collect some basic regularity results
and properties of the Green’s function for Stokes’ problem from the literature and
then use them to analyze regularized Green’s functions.

4.1. Regularity and Green’s matrix estimates for the Stokes system. We
begin by stating a standard regularity result. Let B̃ = B̃i be one of the reference
domains B̃i defined in Subsection 2.2. Assume that (ṽ, q̃) ∈ VB̃ × XB̃ solves the
adjoint problem

LB̃((w, λ), (ṽ, q̃)) = (w, f̃)B̃ + (λ, g̃)B̃ , ∀(w, λ) ∈ VB̃ ×XB̃ ,(4.1)

where f̃ ∈ (H−1(B̃))n and g̃ ∈ XB̃/R. Then

‖ṽ‖H1
0 (B̃) + ‖q̃‖L2(B̃) ≤ C(‖f̃‖H−1(B̃) + ‖g̃‖L2(B̃)).(4.2)

Since B̃ is convex, we also have (cf. [MR07])

‖ṽ‖H2(B̃) + ‖q̃‖H1(B̃) ≤ C(‖f̃‖L2(B̃) + ‖g̃‖H1(B̃)).(4.3)

Next we state results for the Green’s matrix for the adjoint problem (4.1).

Lemma 9. Assume that B̃ ⊂ Rn, n = 2, 3, is a convex polyhedral domain and let
(ṽ, q̃) be the solution of (4.1). There exists {Glj(x̃, ξ̃)}1≤l,j≤n+1, (x̃, ξ̃) ∈ B̃ × B̃,
such that for x̃ ∈ B̃ and 1 ≤ l ≤ n,

ṽl(x̃) =
∫
B̃

n∑
j=1

Glj(x̃, ξ̃)f̃j(ξ̃) dξ̃ +
∫
B̃

Gl,n+1(x̃, ξ̃)g̃(ξ̃) dξ̃,

q̃(x̃) =
∫
B̃

n∑
j=1

Gn+1,j(x̃, ξ̃)f̃j(ξ̃) dξ̃ +
∫
B̃

Gn+1,n+1(x̃, ξ̃)g̃(ξ̃) dξ̃.

(4.4)
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Moreover, there is a constant C such that, for δl,n+1 + |α| ≤ 1 and δn+1,j + |β| ≤ 1,

|Dα
x̃D

β

ξ̃
Glj(x̃, ξ̃)| ≤

{
C|x̃− ξ̃|−κ, if κ > 0,
C ln |x̃− ξ̃|, if κ = 0,

(4.5)

where δl,j is Kronecker’s delta and

κ = n+ δl,n+1 + |α|+ δn+1,j + |β| − 2.

In case of three space dimension, these estimates can be found in [Ros10b],
[Ros10b], and [MR10]; cf. [MR05]. In the case n = 2, Lemma 9 does not appear
directly in the literature to our knowledge. In the case of Poisson’s problem, a
similar estimate for n = 2 is found in [Fro93] for generic convex domains. [NP94]
contains Green’s function estimates for elliptic scalar equations of order 2m on
(polygonal) cones in two space dimensions. The correct asymptotics for convex
polygonal domains may be derived from these estimates (cf. [Ros10a]), and the
authors also state that “The passage to the case of elliptic systems entails only
some notational complications”. We shall thus also assume the results of Lemma 9
in the two dimensional case.

Note that the constants C in (4.2), (4.3), and (4.5) do not depend on the choice
of the reference domain B̃ = B̃i, since B̃i lies in the finite set {B̃1, ..., B̃M}.

We finally remark that we only employ (4.5) with κ = n and κ = n − 1. The
logarithmic estimate occurring when κ = 0 is thus not used here; we only include
it for the sake of completeness.

Remark 10. An alternative to using Green’s function estimates is to employ W 1
q -

type regularity estimates as q ↓ 1. This was the approach taken in [SL06] for
proving gradient estimates for the Stokes system in the global maximum norm on
convex polyhedral domains. The disadvantage of this approach is that it requires
an unnatural restriction on the maximum interior dihedral angle when n = 3. The
a priori estimates of [GNS04], [GNS05] suffer from the same restriction, which was
subsequently overcome in [GL10] by the use of sharp Green’s function estimates.
We similarly avoid this restriction by employing sharp Green’s function estimates.
Note also that the techniques we employ here could be easily used to extend the
global W 1

∞ a posteriori estimates of [SL06] to include convex polyhedral domains
with no restriction on the maximum interior dihedral angle. In the context of
Poisson’s problem, we refer to [Dem06] for a posteriori estimates and to [GLRS09]
for a priori estimates which similarly use sharp Green’s function estimates to obtain
pointwise gradient bounds on any convex polyhedral domain.

In two space dimensions, the use of Lq-type regularity estimates leads to optimal
results with respect to domain geometry and thus provides a reasonable alternative
to using Green’s functions. The techniques of [SL06] could be extended to prove
local error estimates for n = 2 as well.

4.2. Transformation to a reference domain. We now map B to a reference
domain B̃ by translating and scaling B̃ by a factor cd for some c2 ≤ c ≤ 1 as in
Subsection 2.2. Let (v, q) be the solution of (3.5). With slight abuse of notation,
we assume c = 1 and define ṽ(x̃) = d−1v(dx̃), q̃(x̃) = q(dx̃), and δ̃(x̃) = δ(dx̃).
Note that δ̃ has radius of support ρ/d, since δ has radius of support ρ. We also
have

LB̃((w, λ), (ṽ, q̃)) = (w, Dx̃i δ̃kj), ∀(w, λ) ∈ VB̃ ×XB̃ .(4.6)
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4.3. Proof of Lemma 8. We can now prove regularity estimates for the localized
adjoint problem (3.5).
Proof of (3.12). We begin by bounding ‖v‖W 1

1 (B) + ‖q‖L1(B). Letting x̃0 ∈ B̃ be
the image of x0 ∈ B, we first compute

‖v‖W 1
1 (B) + ‖q‖L1(B) ≤ Cdn

(
‖ṽ‖W 1

1 (B̃) + ‖q̃‖L1(B̃)

)
≤ Cdn

(
‖ṽ‖W 1

1 (B2ρ/d(x̃0)) + ‖q̃‖L1(B2ρ/d(x̃0))

+ ‖ṽ‖W 1
1 (B̃\B2ρ/d(x̃0)) + ‖q̃‖L1(B̃\B2ρ/d(x̃0))

)
.

(4.7)

Using (4.2) with f̃ = Dx̃i δ̃kj , g̃ = 0, and (3.1), we next find that

dn
(
‖ṽ‖W 1

1 (B2ρ/d(x̃0)) + ‖q̃‖L1(B2ρ/d(x̃0))

)
≤ Cdn

(ρ
d

)n/2(
‖ṽ‖H1(B2ρ/d(x̃0)) + ‖q̃‖L2(B2ρ/d(x̃0))

)
≤ C(ρd)n/2

(
‖ṽ‖H1

0 (B̃) + ‖q̃‖L2(B̃)

)
≤ C(ρd)n/2‖δ̃‖L2(B̃) ≤ Cρ

n/2‖δ‖L2(B) ≤ C.

(4.8)

Employing (4.4) and (4.5), we have for x̃ ∈ B̃ \B2ρ/d(x̃0), that

Dx̃k ṽl(x̃) = Dx̃k

∫
B̃

Glj(x̃, ξ̃)Dξ̃i
δ̃(ξ̃) dξ̃ = −

∫
Bρ/d(x̃0)

δ̃(ξ̃)D2
x̃k ξ̃i

Glj(x̃, ξ̃) dξ̃

≤ ‖δ̃‖L1(B̃)‖D
2
x̃k ξ̃i

Glj(x̃, ·)‖L∞(Bρ/d(x̃0))

≤ d−n‖δ‖L1(B)C sup
ξ̃∈Bρ/d(x̃0)

|x̃− ξ̃|−n ≤ Cd−n|x̃− x̃0|−n.

(4.9)

Here we used that 1 ≤ l, j ≤ n, |α| = |β| = 1, so that κ = n, and that |x̃ − x̃0| ≤
|x̃− ξ̃|+ |ξ̃ − x̃0| ≤ |x̃− ξ̃|+ ρ/d ≤ 2|x̃− ξ̃|. Similarly,

q̃(x̃) ≤ Cd−n|x̃− x̃0|−n(4.10)

and

ṽ(x̃) ≤ Cd−n|x̃− x̃0|1−n.(4.11)

Thus, setting r = |x̃− x̃0| and transforming to polar coordinates leads to

dn
(
‖ṽ‖W 1

1 (B̃\B2ρ/d(x̃0)) + ‖q̃‖L1(B̃\B2ρ/d(x̃0)))

≤ Cdnd−n
∫ diam(B̃)

2ρ/d

rn−1r−n dr ≤ C ln
d

ρ
.

(4.12)

Collecting (4.12) and (4.8) into (4.7) completes the proof of (3.12).
Proof of (3.13). Next we bound ‖∆v‖L1(B\Bd/2)= ‖∆v‖L1(B\Bc1d/2(x0)), recalling
that Bd/2 = Bc1d/2(x0)∩B, see (2.3). We set c1 = 1 for simplicity. Let ω̃ be a cut-
off function with ω̃ = 1 on B̃\B1/2(x̃0), ω̃ = 0 on B1/4(x̃0), and with |ω̃|W j

∞(B̃) ≤ C,
j = 0, 1, 2. Noting that −∆ṽ +∇q̃ = 0 in B̃ \B1/4(x̃0), we compute that

−∆(ω̃ṽ) +∇(ω̃q̃) = ω̃(−∆ṽ +∇q̃) + (−v∆ω̃ − 2∇ω̃ · ∇ṽ + q̃∇ω̃)
= −v∆ω̃ − 2∇ω̃ · ∇ṽ + q̃∇ω̃,

∇ · (ω̃ṽ) = ω̃∇ · ṽ + ṽ · ∇ω̃ = ṽ · ∇ω̃.
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Thus, using (4.3) along with the Poincaré inequality ‖ṽ‖L2(B̃) ≤ ‖∇ṽ‖L2(B̃), we
have

‖∆v‖L1(B\Bd/2(x0)) ≤ Cdn−1‖∆ṽ‖L2(B̃\B1/2(x̃0)) ≤ Cd
n−1‖∆(ω̃ṽ)‖L2(B̃)

≤ Cdn−1
(
‖v∆ω̃ + 2∇ω̃ · ∇ṽ − q̃∇ω̃‖L2(B̃) + ‖ṽ · ∇ω̃‖H1(B̃)

)
≤ Cdn−1

(
‖∇ṽ‖L∞(B̃\B1/4(x̃0)) + ‖q̃‖L∞(B̃\B1/4(x̃0))

)
.

Employing (4.9) and (4.10) with |x̃− x̃0| ≥ 1
4 then finally yields

‖∆v‖L1(B\Bd/2(x0)) ≤ Cd−1.

Proof of (3.14). Since B is one of the unit reference domains B̃i scaled by a multiple
of d, we have

(4.13) ‖∂v/∂n‖L1(∂B\∂Ω) ≤ Cdn−1‖∂v/∂n‖L∞(∂B\∂Ω).

Let x ∈ ∂B \ ∂Ω and let x̃, x̃0 ∈ B̃ be the images of x and x0. Then |x̃− x̃0| ≥ C
for some constant C. Also ∇ṽ(x̃) = ∇v(x), so that (4.9) immediately yields∣∣∣∂v

∂n
(x)
∣∣∣ ≤ Cd−n.(4.14)

Combining (4.13) and (4.14) completes the proof of (3.14).
Proof of (3.15). We first compute, again with c1 = 1 for simplicity,

‖q‖L1(B\Bd/2) ≤ Cdn‖q̃‖L∞(B̃\B̃1/2(x̃0)).(4.15)

Using (4.4) and (4.5) with δl,n+1 + |α| = δj,n+1 + |β| = 1, κ = n, we have, for
x̃ ∈ B̃ \ B̃1/2(x̃0) and with j as in (4.6), that

q̃(x̃) =
∫

supp(δ̃)

Gn+1,j(x̃, ξ̃)Dξ̃i
δ̃(ξ̃) dξ̃ = −

∫
supp(δ̃)

δ̃(ξ̃)Dξ̃i
Gn+1,j(x̃, ξ̃) dξ̃

≤ ‖δ̃‖L1(B̃)‖Dξ̃i
Gn+1,j(x̃, ·)‖L∞(supp(δ̃)) ≤ Cd

−n.

(4.16)

Here we have used the fact that dist(supp(δ̃), B̃ \ B1/2(x̃0)) ≥ 1/4. Combining
(4.15) and (4.16) completes the proof of (3.15).
Proof of (3.16). Let d0 = 3

2
ρ
d and dj = 2j ρd , j ≥ 1. Let also Ωj = {x̃ ∈ B̃ : dj <

|x̃−x̃0| ≤ dj+1}, j ≥ 0 and Ω′j = Ωj−1∪Ωj∪Ωj+1; note that B̃\B2ρ/d(x̃0) = ∪Jj=1Ωj
with J ≈ ln d

ρ . Finally, we let ωj be a smooth cutoff function which is 1 on Ωj , 0
outside of Ωj−1 ∪ Ωj ∪ Ωj+1, and which satisfies ‖D`ωj‖L∞(B̃) ≤ Cd

−`
j , ` = 0, 1, 2.

Transforming to B̃, we then have∫
B\B2ρ(x0)

|x− x0|
(
|∇q(x)|+ |D2v(x)|

)
dx

≤ Cdn
∫
B̃\B2ρ/d(x̃0)

|x̃− x̃0|
(
|∇q̃(x̃)|+ |D2ṽ(x̃)|

)
dx̃

≤ Cdn
J∑
j=1

d
n/2+1
j

(
‖∇q̃‖L2(Ωj) + ‖D2ṽ‖L2(Ωj)

)
≤ Cdn

J∑
j=1

d
n/2+1
j

(
‖∇(ωj q̃)‖L2(B̃) + ‖D2(ωjṽ)‖L2(B̃)

)
.
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We apply (4.3) with ṽ replaced by ωjṽ and q̃ by ωj q̃. Then

f̃ = −∆(ωjṽ)−∇(ωj q̃) = −ṽ∆ωj − 2∇ṽ∇ωj − q̃∇ωj ,

since ωj(−∆ṽ −∇q̃) = 0. Also,

g̃ = −∇ · (ωjṽ) = −ṽ · ∇ωj ,

where integration by parts yields
∫
B̃
g̃ dx̃ =

∫
B̃
ωj∇· ṽ dx̃ = 0, since ṽ is divergence-

free. Employing (4.3), bounds for the derivatives of ωj , and Hölder’s inequality
then yields

Cdn
J∑
j=1

d
n/2+1
j

(
‖∇(ωj q̃)‖L2(B̃) + ‖D2(ωjṽ)‖L2(B̃)

)

≤ Cdn
J∑
j=1

d
n/2+1
j

(
‖ṽ∆ωj‖L2(B̃) + 2‖∇ṽ∇ωj‖L2(B̃)

+ ‖q̃∇ωj‖L2(B̃) + ‖ṽ · ∇ωj‖H1(B̃)

)
≤ Cdn

J∑
j=1

dnj

(
d−1
j ‖ṽ‖L∞(Ω′j)

+ ‖∇ṽ‖L∞(Ω′j)
+ ‖q̃‖L∞(Ω′j)

)
.

Inequalities (4.9), (4.10), and (4.11) then yield

Cdn
J∑
j=1

dnj

(
d−1
j ‖ṽ‖L∞(Ω′j)

+ ‖∇ṽ‖L∞(Ω′j)
+ ‖q̃‖L∞(Ω′j)

)

≤ Cdn
J∑
j=1

d−n(dn−1
j d1−n

j + dnj d
−n
j ) ≤ CJ ≤ C ln

d

ρ
.

Collecting the previous statements completes the proof of (3.16).
Proof of (3.17). Let T∂B = {T ∈ Th : T ∩ (∂B \∂Ω) 6= ∅, T /∈ P ′Tx0

}. We assert that
there exists c > 0 such that for any T ∈ T∂B and for any x ∈ PT , dist(x, supp(δ)) ≥
cd. Assume first that hT ≤ c̃d for a sufficiently small constant c̃. Assume also
that c0 ≤ 1

8 in the hypotheses of Theorem 1, so that ρ ≤ d
8 and dist(x, supp(δ)) ≥

|x − x0| − d
4 . Since PT ∩ ∂B 6= ∅, |x − x0| ≥ dist(PT , x0) ≥ dist(∂B, x0) − ChT ≥

d − Cc̃d ≥ Kd, where C is chosen so that diam(PT ) ≤ ChT . This completes the
proof in the case that hT is sufficiently small relative to d. In the case hT ∼ d,
note that there must in any case be at least one ring of elements P ′T \ PT between
PT and Tx0 , since T /∈ P ′Tx0

. By shape regularity, elements in this ring must have
diameter proportional to hT , and more generally this ring must have thickness
γhT for some γ depending on the shape regularity of the mesh. Thus, here also
dist(PT , supp(δ)) ≥ cd for any T ∈ T∂B .

Computing as in (4.8)–(4.9), we then have for x ∈ PT , T ∈ T∂B that

|∇v(x)| = |∇ṽ(x̃)| ≤ C|x− x0|−n ≤ Cd−n.
Applying Hölder’s inequality, we thus have for T ∈ T∂B ,

h−1
T ‖(· − x0)∇v‖L1(PT ) ≤ Chn−1

T ‖| · −x0|∇v‖L∞(PT ) ≤ Chn−1
T d1−n.

Note also that if T ∩ ∂B 6= ∅, then voln−1(PT ∩ ∂B) ∼ hn−1
T . This is because for

any x ∈ T , BchT (x) ∩ Ω ⊂ PT for some fixed c > 0 depending only on the shape
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regularity of Th. For any x ∈ T ∩ ∂B, we thus have voln−1(BchT ∩ ∂B) ≥ Chn−1
T .

Thus, ∑
T∈T∂B

h−1
T ‖(· − x0)∇v‖L1(PT ) ≤ C

∑
T∈T∂B

hn−1
T d1−n

≤ C
∑

T∈T∂B

vol(PT ∩ ∂B)d1−n.

Finally, we note that there is finite overlap of the sets PT ∩ ∂B, so that

C
∑

T∈T∂B

vol(PT ∩ ∂B)d1−n ≤ Cd1−n voln−1 ∂B ≤ C.

This completes the proof of (3.17).
The proof of Lemma 8, and hence also the proof of Theorem 1, is complete.

5. Extensions

5.1. Removing the regularization penalty. In [Dem07] a condition is given
under which the regularization penalty Cρβ |u|C1,β(Dρ) in (1.6) can be removed.
Precisely as in Corollary 1.2 of that work, we can prove the following.

Corollary 11. Let Ω, D, d, and Dd be as in Theorem 1. Assume also that there
exist a point x1 ∈ D and a radius ξ > 0 such that |Dγui(x1)| ≥ C∗ > 0 for some
1 ≤ i ≤ n and multi-index γ with |γ| = k+1, and such that ‖ui‖Wk+2

∞ (Bξ(x1)) ≤ C
∗∗.

Finally, assume that u ∈ C1,β(Dξ̃) for some 0 < β < 1 and ξ̃ > 0. Then

‖∇(u− uh)‖L∞(D) ≤ C`h,d max
T∈TDd

hT
hT + dist(T,D)

η1,∞(T )

+ C
(

ln
1
h

)αn 1
d

max
T∈Th

hT η1,∞(T ).

Here

`h,d =
∣∣∣ ln min

{1
d

( C∗

C∗∗ + C(d)‖u‖C1,β(Dξ̃)

) k+1
β

,
h
k+1
β

d
,
ξ
k+1
β

d
,
ξ̃
k+1
β

d

}∣∣∣.(5.1)

The conditions of Corollary 11 guarantee a lower bound for ∇(u− uh) near the
point x1. By choosing ρ properly in Theorem 1, we are then able to bound the
regularization penalty by an appropriate factor of ‖∇(u−uh)‖L∞(D), which in turn
is multiplied by a small constant and thus can be reabsorbed. The arguments are
entirely based on approximation theory and thus apply here precisely as in Section
3.2 of [Dem07], which we refer to for further details.

We also note that the logarithmic factor `h,d defined in (5.1) is dependent upon
a priori quantities in the pre-asymptotic range, but it becomes a standard log-
arithmic factor of the form ln(d/h) as h → 0. Note also that when bounding
maximum errors in function values instead of in gradients, it is possible to remove
the regularization penalty without introducing any a priori information into the
upper bound; cf. [NSSV06], [SL06], [DG10]. There is thus a substantial technical
difference between L∞ and W 1

∞ in the context of a posteriori error estimation.
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5.2. Estimates for the pressure. Because ‖ep‖Lp(Ω) essentially scales like the
quantity ‖eu‖W 1

p (Ω), it is reasonable to expect that ‖p− ph‖L∞(D) will be bounded
by the right hand side of (1.6) with appropriate adjustments to the regulariza-
tion penalty. However, the fact that

∫
D
ep dx 6= 0 provides additional technical

challenges. We provide a brief sketch of a proof of such an estimate.
We let x0 ∈ D be such that ‖ep‖L∞(D) = |ep(x0)| and otherwise retain the

definitions of B, D, d, ω, ρ, and δ. Let also δB = 1
|B|
∫
B
δ dx. Lemma 5 and

elementary manipulations yield

|ep(x0)| ≤ |(ωep, δ − δB) + (ep, ωδB)|+ Cρβ |p|C0,β(Dρ).(5.2)

Next let (v, q) ∈ VB ×XB solve

LB((w, λ), (v, q)) = (λ, δ − δB) ∀(w, λ) ∈ VB ×XB .

Elementary calculations as in Section 3.3 yield

(ωep, δ − δB) = LB((ωeu, ωep), (v, q))

≤ L((eu, ep), (ωv, ωq)) + |(v·∇ω, ep)|

+
1
d
‖eu‖L∞(Ω)

(
‖∇v‖L1(B\Bd/2) + ‖q‖L1(B\Bd/2) + d−1‖v‖L1(B\Bd/2)

)
.

(5.3)

The term L((eu, ep), (ωv, ωq)) in (5.3) may be handled much as in Section 3.3,
with some technical differences arising because v is multiplied by the cut-off function
ω in the present case, but not in Section 3.3. Similarly, the term in (5.3) involving
1
d‖eu‖L∞(Ω) can be bounded in much the same way as before.

The major difference arises in the terms (v · ∇ω, ep) in (5.3) and (ep, ωδB) in
(5.2). Note first that these terms can both be bounded by 1

d‖ep‖W−1
∞ (Ω), where

‖z‖W−1
∞ (Ω) = sup‖ψ‖

W1
1 (Ω)=1(z, ψ). Thus, we may bound the pollution error here by

1
d (‖eu‖L∞(Ω) + ‖ep‖W−1

∞ (Ω)). This bound for the pollution error is consistent with
previously published local a priori energy error bounds, which contain a term of
the form ‖ep‖H−1(Ω) (cf. [HXZL08]). Our technical development above completely
avoids global negative norm terms involving ep, which are relatively difficult to
bound. A similar observation was also recently made in [GL10], where local a
priori energy estimates for Stokes are proved with no factors of ep appearing in the
upper bound.

Employing negative norms is not necessarily the best way to bound the ep pol-
lution terms (v · ∇ω, ep) and (ep, ωδB), however. One may instead attack these
terms directly via a duality argument. For example, letting (z, ψ) ∈ V ×X be the
solution of L((w, λ), (z, ψ)) = (λ, ωδB − 1

|Ω|
∫

Ω
ωδB dx) ∀ (w, λ) ∈ V ×X, we have

(ep, ωδB) = L((eu, ep), (z, ψ))

≤ C max
T∈Th

(
hT η1,∞(T )

)(
‖z‖W 2

1 (Ω) + ‖ψ‖W 1
1 (Ω)

)
.

(5.4)

Bounds for ‖z‖W 2
1 (Ω) + ‖ψ‖W 1

1 (Ω) may be obtained as in Section 3.2 of [SL06], that
is, by proving bounds for ‖z‖W 2

q (Ω) + ‖ψ‖W 1
q (Ω) as q ↓ 1. Here the right-hand-

side data ωδB of the adjoint problem functions essentially as a scaled unit mass
with radius of support d instead of ρ, so the logarithmic factors arising in (5.4)
will depend on d instead of on ρ. We do not pursue the details or give a precise
statement of results.
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6. Computational example

6.1. Algorithm. In our tests we employ the standard adaptive finite element al-
gorithm given by

solve→ estimate→ mark→ refine.

Given D, d, and Dd as above, we let

η(T ) =


hT

hT + dist(T,D)
η1,∞(T ), T ∩Dd 6= ∅,

hT
d
η1,∞(T ), T ∩Dd = ∅.

(6.1)

We employ a maximum strategy in the “mark” step of the algorithm. More precisely,
we mark an element T ∈ Th for refinement if

η(T ) ≥ 0.5 max
T ′∈Th

η(T ′).

Note that greater efficiency can at times be obtained by calibrating constants more
carefully in (6.1), i.e., by weighting residual contributions hT

d η1,∞(T ) from elements
T ∈ Th \ TDd by a different constant than residual contributions from elements in
TDd . Fine-tuning the algorithm in this fashion does not affect rates of convergence
and is explored more thoroughly in [Dem07], so we do not consider it further here.

We use the polynomial degree k = 2 in our tests. The computations were carried
out using the finite element toolbox ALBERTA (cf. [SS05]).

6.2. Test function and subdomain. In our tests we let Ω = (−1, 1)× (−1, 1) \
[0, 1)×{0}, that is, the unit square with a “crack” consisting of the right half of the
x-axis removed. We let D = B1/4(−1,−1), Dd = B√2(−1,−1), and d =

√
2− 1

4 .
Let

w(x) =


1 + 384(x− 1)(x− 0.5)5 − 64(x− 0.5)6, x ≥ 0.5,
1, 0 ≤ x < 0.5,
w(−x), x < 0.

Note that w ∈W 3
∞(R). Letting (r, φ) be polar coordinates, we also define

γ(r, θ) = r1.5
(
3 sin(θ/2)− sin(3θ/2)

)
.

Finally, we let

u1(x, y) =
∂

∂y

(
w(x)w(y)γ(r(x, y), θ(x, y))

)
,

u2(x, y) =− ∂

∂x

(
w(x)w(y)γ(r(x, y), θ(x, y))

)
,

and

u(x, y) = (u1(x, y), u2(x, y)).

Then u satisfies homogenous Dirichlet boundary conditions on ∂Ω and also satisfies
∇ · u = 0 in Ω. Finally, we let

p(r, θ) = −6r−0.5 cos(θ/2).

Then −∆u +∇p = 0 for r < 0.5. For r > 0.5, we set f = −∆u +∇p.
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6.3. Results. In Figure 1 we display a logarithmic error plot showing optimal-order
decrease of the target error quantity ‖∇(u − uh)‖L∞(D). Note that the pollution
error ‖u− uh‖L∞(Ω) only decreases at the same rate as ‖∇(u− uh)‖L∞(D), which
is suboptimal for the L∞ norm but sufficient to maintain optimality for the target
error quantity. In Figure 2 we display a computational mesh having 28974 degrees
of freedom. Note that the heaviest refinement occurs in the lower left hand corner
in the target subdomain D and also near the singularity at the origin (crack tip).

0.001

0.01

0.1

1

10

100

1000

10 100 1000 10000 100000 1000000

Slope=-1

||grad(u-u_h)||_D

Estimator

||u-u_h||_Omega

Figure 1. Target error ‖∇(u − uh)‖L∞(D), error estimator
maxT∈Th η(T ), and pollution error ‖u− uh‖L∞(Ω).
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