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Abstract 

In practice the severity of extreme ship response is measured by high 

quantiles of long term distribution of the response. The distribution is 

estimated by combining the short term distribution of the response with a 

long term probability distribution of encountered sea states. The paper 

employs an alternative approach, the so called Rice's method, based on 

estimation of expected number of up-crossings of high levels by stress 

during one year. The method requires description of long term 

variability of the standard deviation, skewness, kurtosis and zero up-

crossing frequency of ship response. It is assumed that the parameters 

are functions of encountered significant wave height, heading angle and 

the vessel service speed. The relation can be estimated from the measured 

stresses or computed by dedicated software assuming rigid ship hull 

model. Then Winterstein’s transformed Gaussian model is utilized to 

estimate the up-crossings rates of response during a sea state. The 

proposed method is validated using the full-scale measurements of a 2800 

TEU container ship during the first six months of 2008. Numerical 

estimation of 4400 TEU container ship extreme response illustrates the 

approach when no measurements are available.  

 

Key words:  Extreme Response, transformed Gaussian process, long term 

distribution, significant wave height.  

1, Introduction and some preliminaries 

Evaluating the risk of the ship response exceeding the component strengths is an 
important consideration during ship design. Usually, the components are designed, 
such that, the probability of the design response exceeding the component strength is 
very low. For highly reliable designs, the ships are designed for responses with high 
return periods. In this paper, the design return periods that are considered are of at 
least 20 years or longer and the response quantity of interest is the stress at specified 
locations in the ship structure. 

If long records of response measurements are available and if stationary shipping can 
be assumed, then standard statistical methods to predict the extreme values could be 
employed. The three approaches that have been classically used are based on selecting 
a suitable quantile of the fitted cumulative distribution function (cdf) as the design 
value. Specifically, these methods are as follows:  
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A. The most commonly used method is to fit the so called “long term” 
cdf to the observed peaks of the response. Often, the two parameter 
Weibull cdf is used; see DNV [1]. 

B. The second approach is to extract the maxima in blocks of 
measurements, e.g., to find hourly, yearly maxima of the response, 
and then fit Gumbel or Generalized Extreme Value distribution to the 
maxima, see Coles [2]. 

C. The third method is known as the Peak Over Threshold (POT) 
method, which is a systematic way to analyze the tails of a 
distribution by means of exceedances over some high levels. In the 
standard version, POT employs the so called Generalized Pareto 
Distribution to model the tails of a response, see Coles [2]. 

 
In the present paper, the so called Rice's method, which is similar to the approach B, 
will be used to estimate the design values. The proposed method uses the expected 
number of up-crossings of the response, across some fixed level, to bound the yearly 
response maxima. More precisely, if we denote the maximum stress X, say, during a 
chosen period of t years, by M, then the design extreme stress xT is the t/T quantile in 
M-distribution, i.e., solution of the following equation 

T

t
xMP T => )( .      

 
Let N+

(x) be the expected number of up-crossings of a high level x by X(τ) during a 
period t years. Then the M-cdf can be bounded as follows  
 

))0(()()( xXPxNxMP >+≤> + ,    
 
see Cramer and Leadbetter [9] for a more detailed discussion. Now, since the 
probability of the stress at t = 0, i.e., X(0) being larger than the design extreme stress 
xT  is negligible, Rice's method proposes to conservatively estimate the up-crossing of 
xT  as 
 

T

t
xN T =+ )( .                             (1) 

 
With respect to the stress levels in a ship, estimation of N+

(x) is not an easy task. Here, 
we shall follow a standard way of estimating N+

(x) based on the assumption that the 
encountered wave environment is a series of stationary sea conditions, called sea 
states, lasting from 20 minutes to several hours. Most often, sea states are 
characterized by some parameters, such as significant wave height Hs, wave period Tp, 
etc., gathered in a vector W, say. Then the encountered wave environment is described 
by a sequence of sea states parameters Wi, i = 1, … , K. Here K is the average number 
of sea states encountered during t years. The distribution of Wi is called long term 
distribution of sea states parameters. It is a statistical description of the variability of 
encountered sea condition. Obviously, the cdf is dependent on the shipping routes, 
maritime decisions of the captains and many other factors. In the following, the pdf of 
the long term sea state parameters will be denoted by f(W). 
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The variability of the ship response, caused by the encountered wave environment, 
can also be modeled as “locally” stationary processes. A stationary sea condition is 
often modeled by means of linearly interacting Gaussian cosine waves and for heavy 
seas, by non-Gaussian second order Stokes waves. For response analysis, one needs to 
model the interaction between the ship structure and the applied waves, and this can 
be very complex. However, for the moment, we assume that we can compute  µ+

(x|W) 
- the frequency of up-crossings of level x by a stress X, for the sea conditions 
described by parameter W. Then, if the long term pdf, f(W), of encountered sea states 
is available and the expected number of encountered sea states K during the period t 
has been estimated, then we can write 
 

∫
++ ∆⋅= dWWfWxtKxN )()|()( µ  ;                (2) 

 
where, ∆t is the duration of the (stationary) sea state. Often, ∆t = 30 minutes.  
 
The paper is organized as follows. In Sections 2 and 3, methods to compute the 
crossing frequencies µ+

(x|W) is presented. The estimation of the long term pdf f(W) of 
the encountered sea states is addressed next in Section 4. Finally, in Section 5, the 
accuracy of the proposed method is validated using full-scale measurements of a 2800 
TEU container. In addition, extreme stresses in another 4400TEU container ship are 
estimated in order to illustrate how to use the method when there are no stress 
measurements are available.  
 

2, Expected number of up-crossings of levels by response  

If the joint probability density function (pdf) of ship response X and its derivative X&

under a stationary sea state W is known, then the up-crossing frequency of the level x, 
 µ+

(x|W), can be computed by means of Rice's formula(Rice [3, 4]) viz. 
 

dzWzxzfWx
XX

)|,()|(
0 )0(),0(∫
∞

+ = &µ .         (3) 

 

For Gaussian responses, the integral in Eq. (3) can be evaluated analytically if the 
standard deviations of the stress and its instantaneous time derivative, denoted 
respectively by Xσ  and 

X&
σ , are known. (Estimating Xσ  and 

X&
σ  is not easy. If no 

stress measurements are available, a dedicated software has to be used to compute 
these parameters for a fixed location in the ship and for sea conditions described by 
parameters W.) Obviously, when the relations )(WXσ  and )(W

X&
σ  are established, if 

the expected number of encountered sea states K is determined and the long term 
distribution of sea states f(W) is estimated, then N+

(x) can be computed by means of 
Eq. (2). The steps involved in calculating N

+
(x) in the case of Gaussian response, 

sketched above, can be generalized as follows:  
 

A. Find a parametric family of pdfs )|,()0(),0( Θzxf
XX & , where Θ is a vector 

collecting statistical parameters of ship response under sea states W; 
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B. Establish the relation between sea states W and the parameter vector Θ, 

i.e., a function Θ (W): W→Θ; 

C. Find the statistics for encountered wave environment, i.e., K and f(W); 

D. Estimate the design extreme stress xT by means of Formulas (1, 2 and 3). 

However, it is well known that in severe sea conditions, the stresses are non-Gaussian. 
In such situations, employing a Gaussian model for the stresses may lead to 
underestimation of the design values by 100%, see Mao et al. [5]. 
 

2.1  Modeling non-Gaussianity of response 

A simple Gaussian model largely underestimates the up-crossings since the 
interaction between the ship structure and the encountered waves which result in a 
very complicated nonlinear dynamical system, is neglected. In this paper we shall not 
model the interaction but propose random models for the variability of stresses. 
 
A new class of flexible models (includes the Gaussian responses) - the so-called 
Laplace Moving Average (LMA) processes, have been recently proposed to describe 
the non-Gaussian responses, see Åberg et al. [6]. In Mao et al. [7], Laplace processes 
were used to model the non-Gaussian ship responses and the Laplace model predicted 
well the up-crossing rates observed in measured stresses. The LMA models require 
knowledge of response power spectrum, skewness and kurtosis of the stresses. The 
spectrum of the response can be parameterized. 
 
However, a limitation of the Laplace model, similar as for the second order Stokes 
waves, is that the pdf )|,()0(),0( Θzxf

XX &  is not available in an analytical form. (The 

pdf is defined in the frequency domain by its characteristic function and has to be 
computed using numerical methods.) Since in order to evaluate N+

(x) an integral in 
Eq. (2) has to be numerically computed, a simpler model for the non-Gaussian 
responses giving analytical expression for  µ+

(x|W) would be preferable. 

 
The transformed Gaussian model proposed in Winterstein et al. [10], is employed here. 
The transformation is defined by the third order Hermite polynomial which is 
calibrated so that the variance, skewness and kurtosis of the transformed Gaussian 
model match the corresponding moments of the responses X, viz. mean stress m, 
standard deviation σX, skewness [ ] 33

3 /)0( XXE σα = ,  and kurtosis [ ] 44
3 /)0( XXE σα = . 

Consequently, the vector Θ consists of (m, Xσ , 
X&

σ , α3, α4). Note that for some sea 
states W, the transformation is not defined for extreme levels and some modifications 
of the transformation is needed for such cases. However, this is a small problem in 
comparison to the advantage obtained by having an analytical expression for the 
crossing frequency µ+

(x|W). 
 

Given the parameter Θ(m, Xσ , 
X&

σ , α3, α4), the transformed Gaussian process is 
defined by 
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[ ]))(())(())(())(()( 332210 τττκσττ YHcYHcYHmHYGx X +++== ,             (4) 
 

where, Hi are Hermite polynomials and Y is a standard Gaussian process (in what 
follows, the mean stress m = 0). The other parameters in Eq. (4) are given by 
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Let 1−
G  be the inverse function of G, then ))(()( 1 ττ YGY −= and hence, 









−=Θ

−
+

2

)(
exp)|(

21 xG
fx zµ ,    

X

X

zf
σ

σ

π

&

2
1

= .                (6) 

 

3, Estimation of relation ΘΘΘΘ (W) 

In order to use the transformed Gaussian model, the parameters in Θ as a function of 
the sea state W, are necessary. In the following, the sea conditions are characterized 
by a single parameter - the significant wave height Hs. In the previous work by the 
present authors, Mao et al. [8] and Mao et al. [5], estimation of the standard deviation 
of response, )(WXσ , and the zero up-crossing frequency, fz(W), were already 
discussed. Hence, here only the relation between skewness and kurtosis and the 
encountered significant wave height will be considered. 
 
Skewness and kurtosis are measures of non-Gaussianity of a response. It is well 
known in ocean engineering that the effects of non-linear interactions between ship 
and waves are no longer negligible for large sea states. Therefore, we expect skewness 
and kurtosis to depend mostly on the encountered significant wave height. We 
investigate the relation using full scale-measurements of stresses of the 2800TEU 
container ship during first six months of 2008. The measured places are located at the 
1/4 ship length forward of after perpendicular (denoted as after section), and amidship 
(denoted by mid section), respectively. The measurements contain both winter and 
spring voyages, which can be used to represent the variability of longer term wave 
environments. Since we are interested in crossings of high levels, only measured 
stresses under heavy seas will be considered, and hence only sea states with 
significant wave height Hs above 4 meters are considered. 
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3.1 Regression model for Skewness 

In Fig. 1, the skewness of responses under large sea states against the encountered 
significant wave height Hs is plotted. In the figure the linear regression model is also 
presented. As shown in Fig. 1, the value of skewness will increase with the 
encountered Hs. 
 
The regressed models for both sections are, 
 

35.011.0_3 −= saft Hα ,                  

39.0063.0_3 −= smid Hα .                 (7) 

 
where, aft_3α and mid_3α represent the skewness of after section and mid section, 

respectively. In the study, one has tried to regress skewness on other parameters, e.g. 
heading angle, but the more complex models did not explain the variability of Hs any 
better than the simple regression on Hs. 

 

 
Fig. 1: Linear Regression of Skewness as a function of significant wave heights. 
Upper plot: Results for After-section; Lower plot: Results for Mid-section. 
 

3.2 Estimation of Kurtosis 

In Fig. 2, estimates of kurtosis 4α  for sea states with 4≥sH m, are presented. There 
is no significant trend in the data and hence we propose to model the kurtosis by its 
mean value, here 3.5. For some pairs of parameters ( 3α , 4α ) the Winterstein's 
transformation was not defined in the tail area. One has resolved this problem by 
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alternating the value of kurtosis. This approach is motivated by an observation that the 
computed expected number of up-crossings N

+
(x) was not very sensitive for small 

variations in the kurtosis. 
 

 
Fig. 2: Kurtosis of measured responses for both mid-section and after-section.  

 

Note that estimates of skewness and kurtosis from 30 minutes long records are quite 
uncertain, i.e. the statistical error is significantly large. In order to illustrate the error, 
we have simulated the 30 minutes Gaussian signals with spectrums estimated in the 
response; see Fig. 3. In Fig. 3, we observe that estimates of skewness and kurtosis 
vary around their expected values - zero and three. We expect that statistical 
uncertainty of the estimates is even larger for non-Gaussian signals. 

 

 
Fig. 3: Skewness (Upper) kurtosis (Lower) estimated from 30 minutes Gaussian 
responses with power spectrum estimated from the measured stresses for both mid-
section and after-section. 
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4, Estimation of long term distribution of Hs 

The statistical parameters (collected in the vector Θ ) of a ship response under a sea 
state W, are denoted as Θ = ( Xσ , zf , 3α , 4α ) here. The sea state W is described by its 

significant wave height Hs. Hence, the relation Θ(W) is actually a mapping Hs → ( Xσ , 

zf , 3α , 4α ). For the computation of up-crossings, apart from the relation Θ (W), one 
also needs estimates of the expected number of encountered sea states K and the long 
term distribution of significant wave height Hs. The first quantity is related to the 
expected sailing time while the second depends on the shipping. Since the available 
stress measurements are from North Atlantic, this region will be considered in what 
follows. 
 
The variability of sea environments, mainly Hs, has been extensively studied and 
many databases are available. In the following, 3 different estimates will be compared: 
(a) fitted distribution to encountered sea states measured by onboard radar on 
2800TEU container ship during the first six months of 2008 (in Figure 4 the routs are 
presented); (b) distribution based on Spatio-temporal modeling of satellite 
measurements of Hs along the routs undertaken by 2800TEU container ship, see 
Baxevani et al. [14] and the appendix in Mao et al. [8], and (c) Weibull distribution 
recommended by DNV [12] for the North Atlantic. 
 
In Fig. 5 one can see that the long term cdf estimated from the onboard radar 
measurements agrees well with the cdf determined from the Spatio-temporal model 
for small and moderate values of Hs; when Hs lies between 2 and 6m. However, the 
two cdf differ for higher Hs values. (The observed significant wave-heights are 
significantly smaller than the one found in the satellite data.) 
 

 
Fig. 4: Ship routes between EU to Canada from full-scale measurements during first 6 months 
of 2008. 
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Fig. 5: Empirical distribution of Hs measured by onboard radar and long term distribution of 
Hs recommended by DNV [12] and obtained from the spatio-temporal model for Hs presented 
in Baxevani et al. [14]. 
 
The DNV recommended long term Weibull cdf agrees well with the one derived from 
the spatio-temporal model for high Hs values, which are essential for the estimation of 
extreme response. (The two distributions differs for small and moderate Hs values.) 
Consequently, the prediction of the extreme responses based on the DNV 
recommended Weibull cdf and the one derived from Spatio- temporal model will give 
similar values, while the long term cdf of Hs estimated from on-board measurements 
will lead to smaller design stresses xT , see Table 2 and 3. 
 
The large difference between the statistics of Hs encountered by the ship and the one 
recommended by DNV or derived from Spatio-temporal model could be a 
consequence of the routing plan system installed in the measured ship. However, the 
difference could also be due to just statistical error since the first estimate is based 
only on half year measurements while the second and third estimates are based on 
data collected over many years. 
 

 

Fig.6: Empirical distribution of Hs measured by onboard radar, and long term distribution of 
Hs from DNV Rule. 
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The distribution of on-board observed significant wave heights (and also derived from 
the Spatio-Temporal) contains much more moderate seas than the cdf recommended 
by DNV, see Figure 6. This region of cdf is important for fatigue estimation. In Mao 
et al. [8], it was reported that the predictions of accumulated fatigue damage in the 
ship detail based on DNV recommended Weibull cdf for significant wave height, 
underestimated the observed damage by 50%. On the other hand, the long term cdf 
derived from spatio-temporal model gave predictions of the fatigue life well agreeing 
with the one estimated from the measured stresses.  

5, Estimation of extreme responses 

In this section, two examples of estimation of extreme responses are presented. The 
first example is carried out for a 2800TEU container vessel based on the full-scale 
measurements of two locations on the ship during the first 6 months of 2008. The 
measured places are located at the 1/4 ship length forward of after perpendicular 
(denoted as after section), and amidship (denoted by mid section), respectively. The 
measurements contain both winter and spring voyages, which can be used to represent 
the variability of longer term wave environments. The second example is performed 
on the basis of the numerical analysis of a similar 4400TEU container ship. The 
locations, chosen as the similar places of the previous ship and also denoted as after 
section and mid section, are used for estimations. The expected up-crossings of both 
after section and mid section are computed to predict the extreme response, e.g. 100-
year stress x100. 
 
In both examples, we use the relations Θ (W) i.e. Hs → ( Xσ , zf , 3α , 4α ), and three 
long term distributions of Hs presented in the previous section. The 100 years return 
values will be computed by means of Formulas (1, 2 and 3). 

5.1 Example 1: Extreme prediction with measurements 

5.1.1 Parameters of mean up-crossing models 
 
In Section 3.1 the relations between skewness 3α  and Hs were derived; see Eq. (7). 

The parameter 4α  (kurtosis) is taken to be a constant and equal to 3.5 as before. The 
expected number of zero up-crossings by the stress process X, is approximated by a 
relation derived in Mao et al. [8] viz. 
 

ss

z
gH

U

H
f

64.17
)cos(2

2.4

1 βπ
+=  ,      (8) 

 
where, U is the service speed of the vessel, β the heading angle and g the gravity 
acceleration constant. 
 
Finally, the standard deviation of ship responses Xσ , is determined through its 

relation with Hs viz sX HUC ),(βσ = . The values ),( UC β  of are computed by a 
linear strip theory. Table 1 lists its value in terms of heading angle β under service 
ship speed U = 10 m/s for the 2800TEU container ship.  
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Table 1: The expected relation ),( UC β  computed using a linear strip software with ship 
speed U = 10m/s, for both after and mid sections. Note that 0 for head sea, and 180 for 
following sea. 
 

β 0 10 20 30 40 50 60 70 80 
Cmid(β) 25.66 25.77  25.58 25.10 24.37 23.47 22.47 21.48 20.65 
Caft(β) 12.73 12.76  12.62 12.35 11.96 11.46 10.99 10.51 10.13 
Β 90 100 110 120 130 140 150 160 170 

Cmid(β) 20.10 19.92  20.16 20.77 21.65 22.66 23.67 24.56 25.24 
Caft(β)  9.89  9.84  9.99  10.32 10.78 11.29 11.79 12.23 12.55 

 

5.1.2 Estimation of extreme responses 

Fig. 7 presents the expected number of up-crossings by different methods (de- noted 
as Method 1 to 4), together with the observed up-crossings. Methods 1 to 4 are all 
based on Winterstein's transformed Gaussian approach while using various parameter 
Hs as input. Method 1 uses observed Hs along ship voyages, see Fig.4; Method 2 uses 
Hs of the fitted Weibull distribution from observed Hs; Method 3 uses Hs from the 
Spatio-temporal model proposed by Baxevani et al. [14]; Method 4 uses Hs of the 
Weibull distribution recommended by DNV [12] for the North Atlantic Ocean. 
 
Finally, the extreme response xT is estimated by means of Equations (1 - 5) (note that t 
= 0.5 year in Eq. (1)). For extreme response prediction, only the modeling of right tail 
areas in Fig. 7 is of interest. The intersection between the estimated expected up-
crossings and horizontal lines with the value of Y-axis equal to 0.025, 0.01, and 0.005 
represent the predicted value of extreme stresses x20, x50, x100 respectively. The values of 
the quantiles are given in Table 2. 
 
In Fig. 7, the expected number of up-crossings computed by Method 1 and 2 are 
shown to be very close to the observed up-crossings. The deviations are much larger 
for the up-crossings computed by Methods 3 and 4. This can be explained by the fact 
that the significant wave heights Hs that have been used in methods 3 and 4 are 
obtained from the Spatio-temporal model proposed by Baxevani et al. [14] and 
Weibull distribution recommended by DNV [12]. It must be noted that the latter two 
models predict much higher values of Hs than encountered during half year of 
measurements, see Fig. 5. Obviously, adequate estimate of the long term cdf 
encountered sea states is very important when extreme response are studied. 
 
Note that the values of the design extreme stresses presented in Table 2 do not appear 
to be realistic. It must be noted, however, that the estimation method is somewhat 
crude. Experimentally, one has been measuring the strains; the stresses were 
subsequently computed by an elastic strain-stress relation with a stress concentration 
factor 2. This crude method may overestimate the stress here due to the plasticity 
characteristics of materials with extreme stresses. Obviously, one could predict 
extreme strains instead of extreme “computed” stresses, but the present paper is 
focusing only on the methodology of extreme prediction rather than the engineering 
problems. 
 
 



12 
 

 

 
Fig. 7: Expected number of up-crossings computed by Winterstein's transform Gaussian 
approach on the basis of 6 months' full-scale measurements: Method 1 uses observed Hs; 
Method 2 uses Hs of the fitted Weibull distribution from the observed Hs; Method 3 uses Hs 
from Spatio-temporal model; Method 4 uses Hs of Weibull distribution recommended by 
DNV [12]. Horizontal dash-dotted lines represent the expected number of up-crossings related 
to x20, x50, and x100 respectively. Upper plot: Results for After-section; Lower plot: Results for 
Mid-section.  
 
Table 2:  Estimation of extreme stresses, i.e. the so-called 20-year, 50-year and 100-year 
stresses denoted by x20, x50, and x100 respectively, based on the full-scale measurements. 
Method 1 to 4 represent different methods to compute the expected number of up-crossings, 
same as Fig. 7. 
 

Method 
 No. 

After section (Mpa) Mid section (Mpa) 

x20 x50 x100 x20 x50 x100 

1 201.8 216.7 228.9 313.2 334.1 350.0 

2 171.0 180.9 188.6 318.4 339.0 355.4 

3 249.3 265.6 277.9 423.5 456.1 480.8 

4 255.6 272.3 285.0 561.2 607.1 642.2 
 

5.2 Example 2: Extreme prediction without measurements 

The 4400 TEU container ship is used as an illustration of how one could use the 
method introduced in this paper when no measurements of responses are available. In 
order to compute the expected up-crossings using Winterstein's transformed Gaussian 
approach, we need to first compute the parameters of this model, i.e. standard 
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deviation of responses Xσ , zero up-crossing response frequency fz, and the skewness 

and kurtosis of the response 3α , 4α . As in the previous example, kurtosis 4α , which 
do not appear to influence the up-crossing frequencies, is assumed to be constant at 
3.5. Further, fz is approximated by the encountered wave frequency; see Eq. (8). Once 
this information is available, one needs to estimate the relations between significant 
wave height Hs, the standard deviation Xσ and the skewness 3α of the response. 
 
An estimate of the required relations can be achieved by carrying out some 
simulations. In performing the simulations, one assumes a stationary sea state of 
durations 3 hours. Only the mission condition with heading angle β = 0 and service 
speed U = 10m/s are considered. The stress is studied at two sections, similar as in the 
2800TEU container vessel. Further, it was assumed that stress is only caused by 
vertical bending moment.  
 

5.2.1 Estimation of Xσ and 3α  

The real non-Gaussian ship responses (stresses) usually contain wave frequency 
responses and high frequency responses. The wave frequency responses are related to 
wave induced loadings, and high frequency responses are referred to wave induced 
vibrations. The responses caused by wave induced loading are usually dominating 
under moderate and calm sea states. However, in the presence of big storms, the 
transient loading, such as the slamming, will induce high frequency vibration (also 
known as whipping) of the ship structure. The high frequency vibrations can be very 
close to the ship's natural vibration frequency, and can lead to the resonance of ship 
structures, also known as springing. Both whipping and springing make it very hard to 
correctly model the ship responses. Additionally, a numerical analysis considering 
these two phenomenons can be extremely time consuming. Therefore, estimation of 
the skewness of the ship responses is not an easy task when no measurements are 
available. 
 
First, we use the available stress measurements on 2800 TEU container ship to 
investigate the dependence of the parameters Xσ , 3α on the high frequency vibrations. 
This was done by (a) extracting from the signal the wave induced stress, (b) 
evaluating variance and skewness of the stress and (c) comparing with the estimated 
values from the original stress measurements. Since the estimates of skewness was 
only marginally affected by “smoothing”, i.e. removing the high frequency response, 
one decided to model the relation between Hs and Xσ , 3α  by the general non-linear 
numerical analysis, considering only wave induced loading. The above approach 
requires significantly less computational efforts in comparison to the full stress 
analysis to reach sufficient accuracy. 
 
In the nonlinear hydrodynamic analysis, the ship hull is assumed to be a rigid body. 
Its dynamic response, when operated in the ocean, can be computed by the spring-
mass system as 
 

gdh FFFCXXDXAM ++=+++ (t)(t)(t))( &&&

,     (9) 
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where M is the mass matrix, A is the added mass, D and C are the coefficients of 
damping and stiffness, respectively, and X denotes the displacement of ship hull 
elements nodes. On the right hand side of Eq. (9), Fh represents the hydrodynamic 
wave excitation force by the income waves and the hydrostatic restoring force. Fd is 
the diffraction force. Fg is the inertial force due to the gravity acceleration.  
 
Wave surface elevations, modeled as a random field, are usually described by the sum 
of a series of harmonic waves. The amplitude of each regular wave can be computed 
from the wave spectrum in terms of significant wave height Hs and wave period Tp. 
Wave phase is then chosen as a random variable to model the random wave elevations. 
If the wave amplitude is very small, the Froude- Krylov and hydrostatic pressure can 
be integrated over the mean free surface and mean wetted surface. This linear 
approach is a good approximation when the ship operates in relatively calm waters, 
with small motions. In this paper, we study the large storm phenomena to predict the 
extreme response. The assumption of mean wetted surface may make the analysis too 
crude. Instead, the exact wetted surface is used to compute the correct wave excitation 
force and restoring force. Hence, in the time domain analysis, the relative motion in 
Eq. (9) is computed to determine the wetted surface for each time step. 
 
Further, when ship operates with a high forward speed, the effect of diffraction and 
radiation cannot be neglected. After getting the hydrodynamic loads for each time step, 
structural responses can be computed using either the FEM method or a simplified 
beam model calculation. 
 
In Fig. 8 the skewness 3α  estimated from the simulated responses (at both sections) 
are plotted against significant wave height Hs. The fitted linear regression on Hs is also 
shown in the figure. We observe that the relation between skewness of ship responses 
and significant wave heights Hs is quite linear. The responses at the after section are 
more skewed than the one at the mid section; a similar trend was observed for the 
2800 TEU container ship. The following skewness models, i.e. aft_3α  for after section 

and mid_3α  for mid section, is used to estimate mean up-crossings by transformed 

Gaussian approaches: 
 

332.0032.0_3 += saft Hα ,    

231.0078.0_3 −= smid Hα .                       (10) 

 
In principle, the relation between standard deviation of responses and significant wave 
heights Hs can be simply computed by a linear numerical analysis, as it was done for 
the 2800 TEU container. However, in this example, additionally the nonlinear 
responses used in skewness computations are available and could also be used to 
determine the relation between Xσ  and Hs. If the nonlinear responses are used to 
compute the standard deviation, then the relation may no longer be linear, i.e. 

sX H100C ),(≠σ . In other words, C could be a function of Hs. However, as shown in 

Fig. 9, the fraction sX HC /σ= does not deviate too much from 4 for after section, 
and 7.5 for mid section. Hence, in the current analysis, the standard deviations of 
responses of both midsection and after section are estimated by means of

saftX H4=_σ , smidX H57._ =σ , respectively. 
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Fig. 8: Skewness models from the computed responses. 
 
 

 
Fig. 9: Relation between standard deviation and significant wave height sX HC /σ=  for 

both after section and mid section,  by means of non-linear numerical analysis. 
 

5.2.2 Encountered wave environment Hs 
For computing the expected up-crossings of the ship response during 6 months period 
using Winterstein's Transformed Gaussian approach, we need to calculate the 
encountered significant wave heights Hs. Estimates of Hs  are obtained using the three 
approaches outlined in Section 4. 
 
The 4400TEU container ship is assumed to be operated in the same routings as 
measured in Fig. 4. The measured wave environments are then applied to compute the 
expected up-crossings for the 4400TEU container ship. Consequently, we consider the 
same long term cdf as in the previous example. 
 

5.2.3 Results of the extreme prediction 
The design values are computed and compared in the same way as in Section 5.1.1. 
The expected numbers of up-crossings estimated for Methods 1 to 4, defined in 
Section 5.1.1, are presented in Fig. 10. The values of extreme responses, x20, x50, and 
x100 are listed in Table 3. The results of these extreme stresses also follow the same 
trend as the computed mean up-crossings in Fig. 10. Note again that the values of the 
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extreme responses appear to be too high. This can be attributed to the crude model of 
elastic stress-strain relation and assuming the stress concentration factor (SCF=2). 
The estimates of the extreme stresses for the two vessels are very close. Additionally, 
the simplicity of the approach gives hope that the method could be useful in real 
engineering applications. 
 

 
 

 
Fig. 10: Expected number of up-crossings and prediction of T-year extreme stresses xT, 
computed by Winterstein's transform Gaussian approach on the basis of non-linear numerical 
analysis. Methods here represented are defined in Fig. 7. Upper plot: Results for After-section; 
Lower plot: Results for Mid-section. 
 
Table 3: Estimation of extreme stresses on the basis of non-linear numerical analysis of the 
4400TEU container ship. The methods used here are the same as Table 2. 
 

Method 
 No. 

After section (Mpa) Mid section (Mpa) 

x20 x50 x100 x20 x50 x100 

1 228.1 230.1 253.1 484.6 520.3 549.2 

2 242.4 243.1 253.2 470.0 502.0 530.0 

3 314.4 334.0 349.9 724.3 785.2 831.9 

4 349.9 374.0 392.2 803.4 873.3 927.5 
 

6, Discussions and Conclusions 

This paper presented a simple approach for the prediction of extreme response, e.g. 
100-year stress x100, by means of Rice's method combined with Winterstein's 
transformed Gaussian model for stresses. The accuracy of this model is validated by 
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the full-scale measurements of a 2800TEU container ship. The parameters in the 
Winterstein transformation are given by analytical functions of significant wave 
height only. The functions are estimated by means of a simple nonlinear numerical 
analysis assuming the ship hull as a rigid body.  
 
The proposed method is also used to estimate extreme responses of a 4400 TEU 
container ship, for which no measurements are available. Results were similar to the 
2800 TEU ship. Further validation of this method should be carried out for other types 
of container ships and other locations in the ship. Hopefully, for the ship the 
measurements would be available. 
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