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ADAPTIVE FINITE ELEMENT METHOD FOR A COEFFICIENT

INVERSE PROBLEM FOR THE MAXWELL’S SYSTEM

LARISA BEILINA

Abstract. We consider a coefficient inverse problems for the Maxwell’ system in 3-D. The
coefficient of interest is the dielectric permittivity function. Only backscattering single mea-
surement data are used. The problem is formulated as an optimization problem. The key
idea is to use the adaptive finite element method for the solution. Both analytical and
numerical results are presented. Similar ideas for inverse problems for the complete time
dependent Maxwell’s system were not considered in the past.

1. Introduction

In this work we consider an adaptive hybrid finite element/difference method for an electro-
magnetic coefficient inverse problem (CIP) in the form of a parameter identification problem.
Our goal is reconstruct dielectric permittivity ǫ of the media under condition that magnetic
permeability µ = 1. We consider the case of a single measurement and use the backscatter-
ing data only to reconstruct this coefficient ǫ. Potential applications of our algorithm are in
airport security, imaging of land mines, imaging of defects in non-destructive testing, etc..
This is because the dielectric constants of explosives are much higher than ones of regular
materials, see tables in http://www.clippercontrols.com/info/dielectric constants.html.

To solve our inverse problem numerically, we seek to minimize the Tikhonov functional:

(1.1) F (E, ǫ) =
1

2
‖E − Ẽ‖2 +

1

2
γ‖ǫ− ǫ0‖2.

Here E is the vector of the electric field satisfying Maxwell´s equations and Ẽ is observed
data at a finite set of observation points at the backscattering side of the boundary, ǫ0 is
the initial guess for ǫ, γ is regularization parameter (Tikhonov regularization), and ‖ · ‖ is

the discrete L2 norm. The data Ẽ in our computations are generated in experiments, where
short electromagnetic impulses are emitted on the part of the boundary of the surrounding
media. The goal is to recover the unknown spatially distributed function ǫ from the recorded
boundary data Ẽ.

The minimization problem is reformulated as the problem of finding a stationary point of
a Lagrangian involving a forward equation (the state equation), a backward equation (the
adjoint equation) and an equation expressing that the gradient with respect to the coefficient ǫ
vanishes. To approximately obtain the value of ǫ, we arrange an iterative process via solving
in each step the forward and backward equations and updating the coefficient ǫ. In our
numerical example the regularization parameter γ [13, 32, 33] is chosen experimentally on
the basis of the best performance. An analytical study of the question of the choice of the
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2 LARISA BEILINA

regularization parameter is outside of the scope of this publication. We refer to [17] for a
detailed analysis of this interesting topic for the adaptivity technique.

The aim of this work is to derive a posteriori error estimate for our CIP and present
a numerical example of an accurate reconstruction using adaptive error control. Following
Johnson et al. [5, 4, 16, 14, 22], and related works, we shall derive a posteriori error estimate
for the Lagrangian involving the residuals of the state equation, adjoint state equation and
the gradient with respect to ǫ. In this work we use the called all-at-once approach to find
Frechét derivative for the Tikhonov functional. Rigorous derivation of the Frechét derivatives
for state and adjoint problems as well as of the Frechét derivative of the Tikhonov functional
with respect to the coefficient can be performed similarly with [7, 8] and will be done in a
forthcoming publication.

Given a finite element mesh, a posteriori error analysis shows subdomains where the biggest
error of the computed solution is. Thus, one needs to refine mesh in those subdomains. It is
important that a posteriori error analysis does not need a priori knowledge of the solution.
Instead it uses only an upper bound of the solution. In the case of classic forward problems,
upper bounds are obtained from a priori estimates of solutions [1]. In the case of CIPs,
upper bounds are assumed to be known in advance, which goes along well with the Tikhonov
concept for ill-posed problems [13, 33].

A posteriori error analysis addresses the main question of the adaptivity: Where to refine
the mesh? In the case of classic forward problems this analysis provides upper estimates
for differences between computed and exact solutions locally, in subdomains of the original
domain, see, e.g. [1, 14, 15, 16, 31]. In the case of a forward problem, the main factor
enabling to conduct a posteriori error analysis is the well-posedness of this problem. However,
every CIP is non-linear and ill-posed. Because of that, an estimate of the difference between
computed and exact coefficients is replaced by a posteriori estimate of the accuracy of either
the Lagrangian [6, 3, 17] or of the Tikhonov functional [7]. Nevertheless, it was shown in
the recent publications [4, 8] that an estimate of the accuracy of the reconstruction of the
unknown coefficient is possible in CIPs (in particular, see subsection 2.3 and Theorems 7.3
and 7.4 of [8]).

An outline of the work is following: in Section 2.1 we recall Maxwell´s equations and in
Section 2.2 we present the constrained formulation of Maxwell´s equations. In Section 3
we formulate our CIP and in Section 4 we introduce the finite element discretization. In
Section 5 we present a fully discrete version used in the computations. Next, in Section 6
we establish a posteriori error estimate and formulate the adaptive algorithm. Finally, in
Section 7 we present computational results demonstrating the effectiveness of the adaptive
finite element/difference method on an inverse scattering problem in three dimensions.

2. Statements of forward and inverse problems

2.1. Maxwell’s equations. The electromagnetic equations in an inhomogeneous isotropic
case in the bounded domain Ω ⊂ R

d, d = 2, 3 with boundary ∂Ω are described by the first
order system of partial differential equations
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∂D

∂t
−∇×H = −J, in Ω × (0, T ),

∂B

∂t
+ ∇× E = 0, in Ω × (0, T ),

D = ǫE,

B = µH,

E(x, 0) = E0(x),

H(x, 0) = H0(x),

(2.1)

where E(x, t),H(x, t),D(x, t), B(x, t) are the electric and magnetic fields and the electric and
magnetic inductions, respectively, while ǫ(x) > 0 and µ(x) > 0 are the dielectric permittivity
and magnetic permeability that depend on x ∈ Ω, t is the time variable, T is some final time,
and J(x, t) ∈ R

d is a (given) current density.
The electric and magnetic inductions satisfy the relations

(2.2) ∇ ·D = ρ, ∇ · B = 0 in Ω × (0, T ),

where ρ(x, t) is a given charge density.
Eliminating B and D from (2.1), we obtain two independent second order systems of partial

differential equations

ǫ
∂2E

∂t2
+ ∇× (µ−1∇× E) = −j,(2.3)

µ
∂2H

∂t2
+ ∇× (ǫ−1∇×H) = ∇× (ǫ−1J),(2.4)

where j = ∂J
∂t

. System (2.3)-(2.4) should be completed with appropriate initial and boundary
conditions.

2.2. Constrained formulation of Maxwell´s equations. To discretize Maxwell’s equa-
tions are available different formulation. Examples are the edge elements of Nédélec [27], the
node-based first-order formulation of Lee and Madsen [24], the node-based curl-curl formu-
lation with divergence condition of Paulsen and Lynch [29], the node-based interior-penalty
discontinuous Galerkin FEM [18]. Edge elements are probably the most satisfactory from
a theoretical point of view [25]; in particular, they correctly represent singular behavior at
reentrant corners. However, they are less attractive for time dependent computations, be-
cause the solution of a linear system is required at every time iteration. Indeed, in the case
of triangular or tetrahedral edge elements, the entries of the diagonal matrix resulting from
mass-lumping are not necessarily strictly positive [12]; therefore, explicit time stepping can-
not be used in general. In contrast, nodal elements naturally lead to a fully explicit scheme
when mass-lumping is applied [12, 23].

In this work we consider Maxwell’s equations in convex geometry without reentrant corners
and with smooth coefficient ǫ where value of ǫ does not varies much. Since we consider ap-
plications of our method in airport security and imaging of land mines such assumptions are
natural. Thus, we are able use the node-based curl-curl formulation with divergence condition
of Paulsen and Lynch [29]. Direct application of standard piecewise continuous [H1(Ω)]3- con-
forming FE for the numerical solution of Maxwell’s equations can result in spurious solutions.
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Following [29] we supplement divergence equations for electric and magnetic fields to enforce
the divergence condition and reformulate Maxwell equations as a constrained system:

ǫ
∂2E

∂t2
+ ∇× (∇× E) − s∇(∇ ·E) = −j,(2.5)

and

∂2H

∂t2
+ ∇× (ǫ−1∇×H) − s∇(ǫ−1∇ ·H) = ∇× (ǫ−1J),(2.6)

respectively, where s > 0 denotes the penalty factor. Here and below we assume that electric
permeability µ = 1.

For simplicity, we consider the system (2.5) – (2.6) with homogeneous initial conditions

∂E

∂t
(x, 0) = E(x, 0) = 0, in Ω,(2.7)

∂H

∂t
(x, 0) = H(x, 0) = 0, in Ω,(2.8)

and perfectly conducting boundary conditions

E × n = 0, on ∂Ω × (0, T ),(2.9)

H · n = 0. on ∂Ω × (0, T ),(2.10)

where n is the outward normal vector on ∂Ω. The choice of the parameter s depends on how
much emphasis one places on the gauge condition; the optimal choice is s = 1 [21, 29].

2.3. Statements of forward and inverse problems. In this work as the forward prob-
lem we consider Maxwell equation for electric field with homogeneous initial conditions and
perfectly conducting boundary conditions

ǫ
∂2E

∂t2
+ ∇× (∇× E) − s∇(∇ · E) = −j, x ∈ Ω, 0 < t < T,

∇ · (ǫE) = 0, x ∈ Ω, 0 < t < T,

∂E

∂t
(x, 0) = E(x, 0) = 0, in Ω,

E × n = 0, on ∂Ω × (0, T ).

(2.11)

The inverse problem for (2.6), (2.8), (2.10) can be formulated similarly and is not considered
in this work. Let Ω ⊂ R

3 be a convex bounded domain with the boundary ∂Ω ∈ C3. We
assume that the coefficient ǫ (x) of equation (2.11) is such that

ǫ (x) ∈ [1, d] , d = const. > 1, ǫ (x) = 1 for x ∈ R
3 \ Ω,(2.12)

ǫ (x) ∈ C2
(

R
3
)

.(2.13)

We consider the following
Inverse Problem. Suppose that the coefficient ǫ (x) satisfies (2.12) and (2.13), where

the number d > 1 is given. Assume that the function ǫ (x) is unknown in the domain Ω.

Determine the function ǫ (x) for x ∈ Ω, assuming that the following function Ẽ (x, t) is
known

(2.14) E (x, t) = Ẽ (x, t) ,∀ (x, t) ∈ ∂Ω × (0,∞) .

A priori knowledge of upper and lower bounds of the coefficient ǫ (x) corresponds well with
the Tikhonov concept about the availability of a priori information for an ill-posed problem
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[13, 33]. In applications the assumption ǫ (x) = 1 for x ∈ R
3 \ Ω means that the target

coefficient ǫ (x) has a known constant value outside of the medium of interest Ω. The function

Ẽ (x, t) models time dependent measurements of the electric wave field at the boundary of
the domain of interest. In practice measurements are performed at a number of detectors. In
this case the function Ẽ (x, t) can be obtained via one of standard interpolation procedures,
a discussion of which is outside of the scope of this publication.

3. Tikhonov functional and optimality conditions

We reformulate our inverse problem as an optimization problem, where one seek the per-
mittivity ǫ(x), which result in a solution of equations (2.11) with best fit to time domain obser-

vations Ẽ, measured at a finite number of observation points. Denote QT = Ω× (0, T ) , ST =
∂Ω × (0, T ) . Our goal is minimize Tikhonov functional

(3.1) F (E, ǫ) =
1

2

∫

ST

(E|ST
− Ẽ)2zδ(t)dxdt +

1

2
γ

∫

Ω
(ǫ− ǫ0)

2 dx,

where Ẽ is the observed electric field, E satisfies the equations (2.11) and thus depends on
ǫ, and γ is regularization parameter. Here zδ(t) is a cut-off function, which is introduced
to ensure that compatibility conditions at ST ∩ {t = T} are satisfied, and δ > 0 is a small
number. So, we choose such a function zδ that

zδ ∈ C∞ [0, T ] , zδ (t) =







1 fort ∈ [0, T − δ] ,

0 for t ∈
(

T − δ
2 , T

]

,

0 < zδ < 1 for t ∈
(

T − δ, T − δ
2

)

.

To solve this minimization problem we introduce the Lagrangian

L(u) = F (E, ǫ) −
∫

ΩT

ǫ
∂λ

∂t

∂E

∂t
dxdt +

∫

ΩT

(∇× E)(∇× λ) dxdt

+

∫

ΩT

∇ · (ǫE)λ dxdt+ s

∫

ΩT

(∇ ·E)(∇ · λ) dxdt +

∫

ΩT

jλ dxdt,

(3.2)

where u = (E,λ, ǫ), and search for a stationary point with respect to u satisfying ∀ū = (Ē, λ̄, ǭ)

(3.3) L′(u; ū) = 0,

where L′(u; ·) is the Jacobian of L at u.
We assume that λ (x, T ) = ∂tλ (x, T ) = 0 and seek to impose such conditions on the

function λ that in (3.2) L (E,λ, ǫ) := L (u) = F (E, ǫ) . In other words, the sum of integral
terms in (3.2) should be equal to zero. Then we will come up with the formulation of the
so-called adjont problem for the function λ.

To proceed further we use the fact that λ(x, T ) = ∂λ
∂t

(x, T ) = 0 and E(x, 0) = ∂E
∂t

(x, 0) = 0,
together with perfectly conducting boundary conditions n×E = n× λ = 0 and n · (∇ ·E) =
n · E = n · (ǫE) = 0 and n · (∇ · λ) = n · λ = 0 on ∂Ω. The equation (3.3) expresses that for
all ū,

0 =
∂L

∂λ
(u)(λ̄) = −

∫

ΩT

ǫ
∂λ̄

∂t

∂E

∂t
dxdt +

∫

ΩT

(∇×E)(∇ × λ̄) dxdt

+ s

∫

ΩT

(∇ · E)(∇ · λ̄) dxdt +

∫

ΩT

∇ · (ǫE)λ̄ dxdt+

∫

ΩT

jλ̄ dxdt,

(3.4)
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0 =
∂L

∂E
(u)(Ē) =

∫

ΩT

(E − Ẽ) Ē zδ dxdt

−
∫

ΩT

ǫ
∂λ

∂t

∂Ē

∂t
dxdt+

∫

ΩT

(∇× λ)(∇× Ē) dxdt

+ s

∫

ΩT

(∇ · λ)(∇ · Ē) dxdt −
∫

ΩT

ǫ∇λĒ dxdt,

(3.5)

(3.6) 0 =
∂L

∂ǫ
(u)(ǭ) = −

∫

ΩT

∂λ

∂t

∂E

∂t
ǭ dxdt−

∫

ΩT

E∇λǭ dxdt+ γ

∫

Ω
(ǫ− ǫ0)ǭ dx, x ∈ Ω,

The equation (3.4) is the weak formulation of the state equation (2.5) and the equation (3.5)
is the weak formulation of the following adjoint problem

ǫ
∂2λ

∂t2
+ ∇× (∇× λ) − s∇(∇ · λ) = −(E − Ẽ)zδ, x ∈ Ω, 0 < t < T,

∇ · (ǫλ) = 0, x ∈ Ω, 0 < t < T,

λ(·, T ) =
∂λ

∂t
(·, T ) = 0,

λ× n = 0 on ST .

(3.7)

Further, (3.6) expresses stationarity with respect to ǫ.

4. Finite element discretization

We discretize Ω×(0, T ) denoting by Kh = {K} a partition of the domain Ω into tetrahedra
K (h = h(x) being a mesh function defined as h|K = hK representing the local diameter of
the elements), and we let Jk be a partition of the time interval (0, T ) into time intervals
J = (tk−1, tk] of uniform length τ = tk − tk−1. We assume also a minimal angle condition on
the Kh [9].

To formulate the finite element method for (3.3) we introduce the finite element spaces Vh,
WE

h and W λ
h defined by :

Vh := {v ∈ L2(Ω) : v ∈ P0(K),∀K ∈ Kh},
WE := {w ∈ [H1(Ω × I)]3 : w(·, 0) = 0, w × n|∂Ω = 0},
WE

h := {w ∈WE : w|K×J ∈ [P1(K) × P1(J)]3,∀K ∈ Kh,∀J ∈ Jk},
W λ := {w ∈ [H1(Ω × I)]3 : w(·, T ) = 0, w × n|∂Ω = 0},
W λ

h := {w ∈W λ : w|K×J ∈ [P1(K) × P1(J)]3,∀K ∈ Kh,∀J ∈ Jk},

where P1(K) and P1(J) are the set of continuous piecewise linear functions on K and J ,
respectively.

We define Uh = WE
h ×W λ

h ×Vh. The finite element method now reads: Find uh ∈ Uh, such
that

(4.1) L′(uh)(ū) = 0 ∀ū ∈ Uh.



ADAPTIVE FINITE ELEMENT METHOD 7

5. Fully discrete scheme

We expand E,λ in terms of the standard continuous piecewise linear functions ϕi(x) in
space and ψi(t) in time and substitute this into (2.11) and (3.7) to obtain the following system
of linear equations:

M(Ek+1 − 2Ek + Ek−1) = −τ2F k − τ2KEk − sτ2CEk − τ2BEk,

M(λk+1 − 2λk + λ
k−1) = −τ2Sk − τ2Kλ

k − sτ2Cλ
k − τ2Bλ

k,
(5.1)

with initial conditions :

E(·, 0) = ∂E
∂t

(·, 0) = 0,(5.2)

λ(·, T ) = ∂λ
∂t

(·, T ) = 0.(5.3)

Here, M is the block mass matrix in space, K is the block stiffness matrix corresponding to
the rotation term, C and B are the stiffness matrices corresponding to the divergence terms,
F k and Sk are the load vectors at time level tk, Ek and λ

k denote the nodal values of E(·, tk)
and λ(·, tk), respectively, τ is the time step.

The explicit formulas for the entries in system (5.1) at each element e can be given as:

Me
i,j = (ǫ ϕi, ϕj)e,

Ke
i,j = (

1

µ
∇× ϕi,∇× ϕj)e,

Ce
i,j = (

1

µ
∇ · ϕi,∇ · ϕj)e,

Be
i,j = (∇ · (ǫϕi), ϕj)e,

F e
j,m = ((j, ϕjψm))e×J ,

Se
j,m = ((E − Ē, ϕjψm))e×J ,

(5.4)

where (·, ·)e denotes the L2(e) scalar product.
To obtain an explicit scheme we approximate M with the lumped mass matrix ML – see

[10, 20, 23]. Next, we multiply (5.1) with (ML)−1 and get the following explicit method:

Ek+1 = − τ2(ML)−1F k + 2Ek − τ2(ML)−1KEk

− sτ2(ML)−1CEk − τ2(ML)−1BEk −Ek−1,

λ
k−1 = − τ2(ML)−1Sk + 2λk − τ2(ML)−1Kλ

k

− sτ2(ML)−1Cλ
k − τ2(ML)−1Bλ

k − λ
k+1.

(5.5)

Finally, to approximate coefficient ǫ can be used one of the gradient-like methods with
an appropriate initial guess value ǫ0. The discrete version of gradient with respect to the
coefficient (3.6) takes the form:

(5.6) gh = −
∫

0

T ∂λk
h

∂t

∂Ek
h

∂t
dxdt −

∫ T

0
Ek

h∇λk
hdt+ γ(ǫkh − ǫ0).

Here, λk
h and EK

h are computed values of the adjoint and forward problems at time moment

k using explicit scheme (5.5), and ǫkh is approximated value of the coefficient.
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6. An a posteriori error estimate for the Lagrangian and an adaptive

algorithm

6.1. A posteriori error estimate. Following [3] we now present the main framework in the
proof of an a posteriori error estimate for the Lagrangian. Let C denote various constants of
moderate size. We write an equation for the error e in the Lagrangian as

e = L(u) − L(uh)

=

∫ 1

0

d

dǫ
L(uǫ+ (1 − ǫ)uh)dǫ

=

∫ 1

0
L′(uǫ+ (1 − ǫ)uh)(u− uh)dǫ

= L′(uh)(u− uh) +R,

(6.1)

where R denotes (a small) second order term. For full details of the arguments we refer to
[2] and [14].

Next, we use the splitting u− uh = (u− uI
h) + (uI

h − uh) where uI
h denotes an interpolant

of u, the Galerkin orthogonality (4.1) and neglect the term R to get the following error
representation:

(6.2) e ≈ L′(uh)(u− uI
h) = (I1 + I2 + I3),

where

I1 = −
∫

ΩT

(

ǫh
∂(λ− λI

h)

∂t

∂Eh

∂t
dxdt +

∫

ΩT

(∇× (λ− λI
h))(∇× Eh) dxdt

+ s

∫

ΩT

(∇ ·Eh)(∇ · (λ− λI
h)) dxdt

+

∫

ΩT

∇ · (ǫhEh)(λ− λI
h) dxdt +

∫

ΩT

j(λ − λI
h) dxdt,

(6.3)

I2 =

∫

ST

(Eh − Ẽ) (E −EI
h) zδ dxdt −

∫

ΩT

ǫh
∂λh

∂t

∂(E − EI
h)

∂t
dxdt

+

∫

ΩT

(∇× λh)(∇× (E − EI
h)) dxdt

−
∫

ΩT

ǫh∇λh(E − EI
h) dxdt + s

∫

ΩT

(∇ · λh)(∇ · (E − EI
h)) dxdt,

(6.4)

(6.5) I3 = −
∫

ΩT

∂λh

∂t

∂Eh

∂t
(ǫ− ǫIh) dxdt−

∫

ΩT

Eh∇λh(ǫ− ǫIh) dxdt+ γ

∫

Ω
(ǫh − ǫ0)(ǫ− ǫIh) dx.
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To estimate (6.3) we integrate by parts in the first, second and third terms to get:

I1 =

∫

ΩT

(

ǫh
∂2Eh

∂t2
+ ∇× (∇× Eh) − s∇(∇ ·Eh) + ∇ · (ǫhEh) + j

)

(λ− λI
h) dx dt

+
∑

k

∫

Ω
ǫh

[∂Eh

∂t
(tk)

]

(λ− λI
h)(tk) dx−

∑

K

∫ T

0

∫

∂K

(

nK × (∇× Eh)
)

(λ− λI
h) dsdt

+ s
∑

K

∫ T

0

∫

∂K

(∇ · Eh) (nK · (λ− λI
h)) dS dt = J1 + J2 + J3 + J4,

(6.6)

where Ji, i = 1, ..., 4 denote integrals that appear on the right of (6.6). In particular, J2, J3

result from integration by parts in space, whereas
[

∂Eh

∂t

]

appears during the integration by
parts in time and denotes the jump of the derivative of Eh in time. Here nK denotes the
exterior unit normal to element K.

To estimate J3 we sum over the element boundaries where each internal side S ∈ Sh occurs
twice. Let Es denote the function Eh in one of the normal directions of each side S and ns is
outward normal vector on S. Then we can write

(6.7)
∑

K

∫

∂K

(

nK × (∇× Eh)
)

(λ− λI
h) dS =

∑

S

∫

S

[

nS × (∇×ES)
]

(λ− λI
h) dS,

where
[

nS × (∇ × Es)
]

is the tangential jump of ∇ × Eh computed from the two elements

sharing S. We distribute each jump equally to the two sharing triangles and return to a sum
over all element edges ∂K as :

(6.8)
∑

S

∫

S

[

nS × (∇× Es)
]

(λ− λI
h) dS =

∑

K

1

2
h−1

K

∫

∂K

[

nS × (∇×Es)
]

(λ− λI
h)hK dS.

We formally set dx = hKdS and replace the integrals over the element boundaries ∂K by
integrals over the elements K, to get:
(6.9)
∣

∣

∣

∑

K

1

2
h−1

K

∫

∂K

[

nS×(∇×Es)
]

(λ−λI
h)hK dS

∣

∣

∣
≤ C

∫

Ω
max
S⊂∂K

h−1
K

∣

∣

∣

[

nK×(∇×Eh)
]
∣

∣

∣
·
∣

∣

∣
λ−λI

h

∣

∣

∣
dx,

with
[

nK × (∇ × Eh)
]∣

∣

∣

K
= maxS⊂∂K

[

nS × (∇ × Es)
]∣

∣

∣

S
. Here and later we denote by C

different constants of moderate size.
In a similar way we can estimate J4 in (6.6):

J4 = s
∑

K

∫

∂K

(∇ ·Eh) (nK · (λ− λI
h)) as

= s
∑

S

∫

S

[∇ ·Es] [nS · (λ− λI
h)] dS

= s
∑

K

1

2
h−1

K

∫

∂K

[∇ · Es] [nS · (λ− λI
h)]hK dS.

(6.10)
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Again, replacing the integrals over the boundaries by integrals over the elements we get the
following estimate for J4:

(6.11)
∣

∣

∣
J4

∣

∣

∣
≤ s C

∫

Ω
max
S⊂∂K

h−1
K

∣

∣

∣
[∇ ·Eh]

∣

∣

∣
·
∣

∣

∣
[nK · (λ− λI

h)]
∣

∣

∣
dx,

with [∇ · Eh]
∣

∣

∣

K
= maxS⊂∂K [∇ · Es]

∣

∣

∣

S
. J2 is estimated similarly with J3, J4.

We substitute expressions for J2, J3 and J4 in (6.6) to get:

∣

∣I1
∣

∣ ≤
∫

ΩT

∣

∣

∣

(

ǫh
∂2Eh

∂t2
+ ∇× (∇× Eh) − s∇(∇ · Eh) + ∇ · (ǫhEh) + j

)∣

∣

∣
·
∣

∣

∣
λ− λI

h

∣

∣

∣
dx dt

+ C

∫

ΩT

ǫhτ
−1 ·

∣

∣

[

∂Eht

]∣

∣ ·
∣

∣λ− λI
h

∣

∣ dxdt

+ C

∫

ΩT

max
S⊂∂K

h−1
K ·

∣

∣

∣

[

nK × (∇× Eh)
]
∣

∣

∣
·
∣

∣

∣
λ− λI

h

∣

∣

∣
dxdt

+ s C

∫

ΩT

max
S⊂∂K

h−1
K ·

∣

∣

[

∇ · Eh

]∣

∣ ·
∣

∣

∣

[

nK · (λ− λI
h)

]∣

∣

∣
dxdt.

(6.12)

where

[∂Eht] = [∂Ehtk
] on Jk

and [∂Ehtk
] is defined as the maximum of the two jumps in time on each time interval Jk:

(6.13) [∂Ehtk
] = max

Jk

([

∂Eh

∂t
(tk)

]

,

[

∂Eh

∂t
(tk+1)

])

.

Next, we use a standard interpolation estimate [3] for λ− λI
h to get

∣

∣I1
∣

∣ ≤
∫

ΩT

∣

∣

∣

(

ǫh
∂2Eh

∂t2
+ ∇× (∇× Eh) − s∇(∇ ·Eh) + ∇ · (ǫhEh) + j

)
∣

∣

∣
·
(

τ2

∣

∣

∣

∣

∂2λ

∂t2

∣

∣

∣

∣

+ h2
∣

∣D2
xλ

∣

∣

)

dx dt

+ C

∫

ΩT

ǫhτ
−1 ·

∣

∣

[

∂Eht

]
∣

∣ ·
(

τ2

∣

∣

∣

∣

∂2λ

∂t2

∣

∣

∣

∣

+ h2
∣

∣D2
xλ

∣

∣

)

dxdt

+ C

∫

ΩT

max
S⊂∂K

h−1
K ·

∣

∣

∣

[

nK × (∇× Eh)
]
∣

∣

∣
·
(

τ2

∣

∣

∣

∣

∂2λ

∂t2

∣

∣

∣

∣

+ h2
∣

∣D2
xλ

∣

∣

)

dxdt

+ s C

∫

ΩT

max
S⊂∂K

h−1
K ·

∣

∣

[

∇ ·Eh

]∣

∣ ·
[

nK ·
(

τ2

∣

∣

∣

∣

∂2λ

∂t2

∣

∣

∣

∣

+ h2
∣

∣D2
xλ

∣

∣

)]

dxdt.

(6.14)
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Next, in (6.14) the terms ∂2Eh

∂t2
,∇ × (∇ × Eh),∇(∇ · Eh) vanish, since Eh is continuous

piecewise linear function. We then estimate ∂2λ
∂t2

≈
[

∂λh

∂t

]

τ
and D2

xλ ≈
[

∂λh

∂n

]

h
to get:

∣

∣I1
∣

∣ ≤ C

∫

ΩT

∣

∣j + ∇ · (ǫhEh)
∣

∣ ·
(

τ2
∣

∣

∣

[

∂λh

∂t

]

τ

∣

∣

∣
+ h2

∣

∣

∣

[

∂λh

∂n

]

h

∣

∣

∣

)

dxdt

+ C

∫

ΩT

ǫhτ
−1

∣

∣

[

∂Eht

]
∣

∣ ·
(

τ2
∣

∣

∣

[

∂λh

∂t

]

τ

∣

∣

∣
+ h2

∣

∣

∣

[

∂λh

∂n

]

h

∣

∣

∣

)

dxdt

+ C

∫

ΩT

max
S⊂∂K

h−1
K ·

∣

∣

∣

[

nK × (∇× Eh)
]
∣

∣

∣
·
(

τ2
∣

∣

∣

[

∂λh

∂t

]

τ

∣

∣

∣
+ h2

∣

∣

∣

[

∂λh

∂n

]

h

∣

∣

∣

)

dxdt

+ s C

∫

ΩT

max
S⊂∂K

h−1
K ·

∣

∣

[

∇ ·Eh

]∣

∣ ·
[

nK ·
(

τ2
∣

∣

∣

[

∂λh

∂t

]

τ

∣

∣

∣
+ h2

∣

∣

∣

[

∂λh

∂n

]

h

∣

∣

∣

)]

dxdt.

(6.15)

We estimate I2 similarly:

∣

∣I2
∣

∣ ≤
∫

ΩT

∣

∣

∣

(

ǫh
∂2λh

∂t2
+ ∇× (∇× λh) − ǫhλh − s∇(∇ · λh)

)

∣

∣

∣
·
∣

∣

∣
E − EI

h

∣

∣

∣
dxdt

+

∫

ST

∣

∣

∣
Eh − Ẽ

∣

∣

∣
·
∣

∣

∣
E −EI

h

∣

∣

∣
zδ dxdt+

∣

∣

∣

∑

k

∫

Ω
ǫh

[∂λh

∂t
(tk)

]

(E − EI
h)(tk) dx

∣

∣

∣

+
∣

∣

∣

∑

K

∫ T

0

∫

∂K

(

nK × (∇× λh)
)

(E − EI
h) dSdt

∣

∣

∣

+ s
∑

K

∫ T

0

∫

∂K

(∇ · λh) (nK · (E − EI
h)) dS dt

∣

∣

∣
.

(6.16)

Next, we can estimate (6.16) similarly with (6.15) as

∣

∣I2
∣

∣ ≤
∫

ΩT

∣

∣

∣

∣

(

ǫh
∂2λh

∂t2
+ ∇× (∇× λh) − ǫh∇λh − s∇(∇ · λh)

)∣

∣

∣

∣

·
∣

∣E − EI
h

∣

∣ dxdt

+

∫

ST

∣

∣Eh − Ẽ
∣

∣ ·
∣

∣E − EI
h

∣

∣ zδ dxdt

+ C

∫

ΩT

ǫhτ
−1 ·

∣

∣

[

∂λht

]
∣

∣ ·
∣

∣E − EI
h

∣

∣ dxdt

+ C

∫

ΩT

max
S⊂∂K

h−1
K ·

∣

∣

∣

[

nK × (∇× λh)
]∣

∣

∣
·
∣

∣

∣
E − EI

h

∣

∣

∣
dxdt

+ s C

∫

ΩT

max
S⊂∂K

h−1
K ·

∣

∣

[

∇ · λh

]∣

∣ ·
∣

∣

∣

[

nK · (E − EI
h)

]
∣

∣

∣
dxdt.

(6.17)
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Again, the terms ∂2λh

∂t2
,∇× (∇× λh),∇(∇ · λh) vanish, since λh is also continuous piecewise

linear function. Finally we get

∣

∣I2
∣

∣ ≤
∫

ΩT

∣

∣ǫh∇λh

∣

∣ ·
(

τ2
∣

∣

∣

[

∂Eh

∂t

]

τ

∣

∣

∣
+ h2

∣

∣

∣

[

∂Eh

∂n

]

h

∣

∣

∣

)

dxdt

+

∫

ST

∣

∣Eh − Ẽ
∣

∣ ·
(

τ2
∣

∣

∣

[

∂Eh

∂t

]

τ

∣

∣

∣
+ h2

∣

∣

∣

[

∂Eh

∂n

]

h

∣

∣

∣

)

zδ dxdt

+ C

∫

ΩT

ǫhτ
−1 ·

∣

∣

[

∂λht

]
∣

∣ ·
(

τ2
∣

∣

∣

[

∂Eh

∂t

]

τ

∣

∣

∣
+ h2

∣

∣

∣

[

∂Eh

∂n

]

h

∣

∣

∣

)

dxdt

+ C

∫

ΩT

max
S⊂∂K

h−1
K ·

∣

∣

∣

[

nK × (∇× λh)
]
∣

∣

∣
·
(

τ2
∣

∣

∣

[

∂Eh

∂t

]

τ

∣

∣

∣
+ h2

∣

∣

∣

[

∂Eh

∂n

]

h

∣

∣

∣

)

dxdt

+ s C

∫

ΩT

max
S⊂∂K

h−1
K ·

∣

∣

[

∇ · λh

]
∣

∣ ·
[

nK ·
(

τ2
∣

∣

∣

[

∂Eh

∂t

]

τ

∣

∣

∣
+ h2

∣

∣

∣

[

∂Eh

∂n

]

h

∣

∣

∣

)]

dxdt.

(6.18)

To estimate I3 we use a standard approximation estimate in the form ǫ− ǫIh ≈ hDxǫ to get:
∣

∣

∣
I3

∣

∣ ≤ C

∫

ΩT

∣

∣

∣

∂λh

∂t

∣

∣

∣
·
∣

∣

∣

∂Eh

∂t

∣

∣

∣
· h

∣

∣Dxǫ
∣

∣ dxdt + C

∫

ΩT

∣

∣

∣
Eh

∣

∣

∣
·
∣

∣

∣
∇λh

∣

∣

∣
· h

∣

∣Dxǫ
∣

∣ dxdt

+ γ C

∫

Ω
|ǫh − ǫ0| · h

∣

∣

∣
Dxǫ

∣

∣

∣
dx

≤ C

∫ T

0

∫

Ω

∣

∣

∣

∂λh

∂t

∣

∣

∣
·
∣

∣

∣

∂Eh

∂t

∣

∣

∣
· h

∣

∣

∣

[ǫh]

h

∣

∣

∣
dxdt + C

∫

ΩT

∣

∣

∣
Eh

∣

∣

∣
·
∣

∣

∣
∇λh

∣

∣

∣
· h

∣

∣

∣

[ǫh]

h

∣

∣

∣
dxdt

+ γ C

∫

Ω
|ǫh − ǫ0| · h

∣

∣

∣

[ǫh]

h

∣

∣

∣
dx

≤ C

∫ T

0

∫

Ω

∣

∣

∣

∂λh

∂t

∣

∣

∣
·
∣

∣

∣

∂Eh

∂t

∣

∣

∣
·
∣

∣[ǫh]
∣

∣ dxdt+ C

∫

ΩT

∣

∣

∣
Eh

∣

∣

∣
·
∣

∣

∣
∇λh

∣

∣

∣
·
∣

∣

∣
[ǫh]

∣

∣

∣
dxdt

+ γ C

∫

Ω
|ǫh − ǫ0| ·

∣

∣[ǫh]
∣

∣ dx.

(6.19)

We therefore obtain the following:
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Theorem 5.1 Let L(u) = L(E,λ, ǫ) be the Lagrangian defined in (3.2), and let L(uh) =
L(Eh, λh, ǫh) be the approximation of L(u). Then the following error representation formula
for the error e = L(u) − L(uh) in the Lagrangian holds:

∣

∣e
∣

∣ ≤
3

∑

i=1

∫

ΩT

REi
σλ1

dxdt +

∫

ΩT

RE4
σλ2

dxdt +

∫

ST

Rλ1
σE1

zδ dxdt

+
4

∑

i=2

∫

ΩT

Rλi
σE1

dxdt +

∫

ΩT

Rλ5
σE2

dxdt +
3

∑

i=1

∫

ΩT

Rǫi
σǫ dxdt,

(6.20)

where residuals are defined by

RE1
=

∣

∣j + ∇ · (ǫhEh)
∣

∣, RE2
= ǫhτ

−1
∣

∣

[

∂Eht

]
∣

∣, RE3
= max

S⊂∂K
h−1

K

∣

∣

∣

[

nK × (∇× Eh)
]∣

∣

∣
,

RE4
= s max

S⊂∂K
h−1

K

∣

∣

[

∇ ·Eh

]
∣

∣,

Rλ1
=

∣

∣Eh − Ẽ
∣

∣, Rλ2
= |ǫh∇λh|, Rλ3

= ǫhτ
−1

∣

∣

[

∂λht

]
∣

∣,

Rλ4
= max

S⊂∂K
h−1

K

∣

∣

∣

[

nK × (∇× λh)
]∣

∣

∣
, Rλ5

= s max
S⊂∂K

h−1
K

∣

∣

[

∇ · λh

]
∣

∣,

Rǫ1 =

∣

∣

∣

∣

∂λh

∂t

∣

∣

∣

∣

·
∣

∣

∣

∣

∂Eh

∂t

∣

∣

∣

∣

, Rǫ2 = |Eh| · |∇λh|, Rǫ3 = γ |ǫh − ǫ0|,

and interpolation errors are

σλ1
= C

(

τ
∣

∣

∣

[∂λh

∂t

]∣

∣

∣
+ h

∣

∣

∣

[∂λh

∂n

]∣

∣

∣

)

, σλ2
= C

[

nK ·
(

τ
∣

∣

∣

[∂λh

∂t

]∣

∣

∣
+ h

∣

∣

∣

[∂λh

∂n

]∣

∣

∣

)]

,

σE1
= C

(

τ
∣

∣

∣

[∂Eh

∂t

]
∣

∣

∣
+ h

∣

∣

∣

[∂Eh

∂n

]
∣

∣

∣

)

, σE2
= C

[

nK ·
(

τ
∣

∣

∣

[∂Eh

∂t

]
∣

∣

∣
+ h

∣

∣

∣

[∂Eh

∂n

]
∣

∣

∣

)]

,

σǫ = C
∣

∣[ǫh]
∣

∣.

Remark 5.1

If solutions λh and Eh to the adjoint and state equations are computed with good accuracy,
then we can neglect terms

∑4
i=1

∫

ΩT
REi

σλ1
dxdt +

∑5
i=1

∫

ΩT
Rλi

σE1
dxdt +

∫

ΩT
Rǫ2σǫ dxdt

in a posteriori error estimation (6.20). Thus the term

(6.21) N(ǫh) =
∣

∣

∣

∫ T

0

∂λh

∂t

∂Eh

∂t
dt + γ (ǫh − ǫ0)

∣

∣

∣

dominates. This fact is also observed numerically (see next section) and will be explained
analytically in forthcoming publication.

Mesh refinement recommendation

From the Theorem 5.1 and Remark 5.1 follows that the mesh should be refined in such
subdomain of the domain Ω where values of the function N(ǫh) are close to the number

(6.22) max
Ω

|N(ǫh)| = max
Ω

∣

∣

∣

∫ T

0

∂λh

∂t

∂Eh

∂t
dt + γ (ǫh − ǫ0)

∣

∣

∣
.

6.2. The Adaptive algorithm. In this section we outline our adaptive algorithm using
the mesh refinement recommendation of section 5. So, on each mesh we should find an
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approximate solution of the equation N(ǫh) = 0. In other words, we should approximately
solve the following equation with respect to the function ǫh (x) ,

(6.23)

∫ T

0

∂λh

∂t

∂Eh

∂t
dt + γ (ǫh − ǫ0) = 0.

For each new mesh we first linearly interpolate the function ǫ0(x) on it. On every mesh we
iteratively update approximations ǫmh of the function ǫh, where m is the number of iteration
in optimization procedure. To do so, we use the quasi-Newton method with the classic BFGS
update formula with the limited storage [28]. Denote

gm(x) = γ(ǫmh − ǫ0) (x) +

∫ T

0
(Ehtλht) (x, t, ǫmh ) dt,

where functions Eh (x, t, ǫmh ) , λh (x, t, ǫmh ) are computed via solving state and adjoint problems
with ǫ := ǫmh .

Based on the mesh refinement recommendation of section 5, we use the following adaptivity
algorithm in our computations:

Adaptive algorithm

Step 0. Choose an initial mesh Kh in Ω and an initial time partition J0 of the time interval
(0, T ) . Start with the initial approximation ǫ0h = ǫ0 and compute the sequence of ǫmh
via the following steps:

Step 1. Compute solutions Eh (x, t, ǫmh ) and λh (x, t, ǫmh ) of state and adjoint problems of (
2.11) and (3.7) on Kh and Jk.

Step 2. Update the coefficient ǫh := ǫm+1
h on Kh and Jk using the quasi-Newton method, see

details in [3, 28]

ǫm+1
h = ǫmh + αgm(x),

where α is step-size in gradient update [30].
Step 3. Stop computing ǫmh and obtain the function ǫh if either ||gm||L2(Ω) ≤ θ or norms

||gm||L2(Ω) are stabilized. Otherwise set m := m + 1 and go to step 1. Here θ is the
tolerance in quasi-Newton updates.

Step 4. Compute the function Bh (x) ,

Bh(x) =
∣

∣

∣

∫ T

0

∂λh

∂t

∂Eh

∂t
dt + γ (ǫh − ǫ0)

∣

∣

∣
.

Next, refine the mesh at all points where

(6.24) Bh (x) ≥ β1 max
Ω

Bh (x) .

Here the tolerance number β1 ∈ (0, 1) is chosen by the user.
Step 5. Construct a new mesh Kh in Ω and a new time partition Jk of the time interval (0, T ).

On Jk the new time step τ should be chosen in such a way that the CFL condition is
satisfied. Interpolate the initial approximation ǫ0 from the previous mesh to the new
mesh. Next, return to step 1 and perform all above steps on the new mesh.

Step 6. Stop mesh refinements if norms defined in step 3 either increase or stabilize, compared
with the previous mesh.
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7. Numerical example

We test the performance of the adaptive algorithm formulated above on the solution of an
inverse electromagnetic scattering problem in three dimensions. In our computational example
we consider the domain Ω = [−9.0, 9.0] × [−10.0,−12.0] × [−9.0, 9.0] with an unstructured
mesh consisting of tetrahedra. The domain Ω is split into inner domain Ω1 which contains
scatterer, and surrounding outer domain Ω2 such that Ω = Ω1∪Ω2. The spherical part of the
boundary of the domain Ω1 we denote as ∂Ω1 and the boundary of the domain Ω we denote
as ∂Ω. The domain Ω1 is a cylinder covered by spherical surface from top, see Figure 1-a).
We set ǫ (x) = 10 inside of the inclusion depicted on Figure 1-b) and ǫ (x) = 1 outside of it.
Hence, the inclusion/background contrast in the dielectric permittivity coefficient is 10 : 1.
In our computational test we chose a time step τ according to the Courant-Friedrichs-Levy
(CFL) stability condition

(7.1) τ ≤
√
ǫmaxh√

3
,

where h is the minimal local mesh size, ǫmax is an upper bound for the coefficient ǫ.
The forward problem in our test is

ǫ
∂2E

∂t2
+ ∇× (∇× E) − s∇(∇ ·E) = 0, x ∈ Ω, 0 < t < T,

∇ · (ǫE) = 0, x ∈ Ω, 0 < t < T,

∂E

∂t
(x, 0) = E(x, 0) = 0, in Ω,

E × n = f(t), on ∂Ω1 × [0, t1],

E × n = 0, on ∂Ω1 × (t1, T ],

E × n = 0, on ∂Ω × [0, T ].

(7.2)

Let Ω1 ⊂ R
3 be a convex bounded domain which is split into upper Ωup and lower Ωdown

domains such that Ω1 = Ωup ∪Ωdown. We assume that we need to reconstruct coefficient ǫ(x)
only in Ωdown from back reflected data at ∂Ω1. In other words we assume that the coefficient
ǫ (x) of equation (7.2) is such that

ǫ (x) ∈ [1, d] , d = const. > 1, ǫ (x) = 1 for x ∈ R
3 \ Ωdown,(7.3)

ǫ (x) ∈ C2
(

R
3
)

.(7.4)

In the following example we consider the electrical field which is given as

(7.5) f(t) = −((sin (100t − π/2) + 1)/10) × n, 0 ≤ t ≤ 2π

100
.

We initialize (7.5) at the spherical boundary ∂Ω1 and propagate it into Ω. The observation
points are placed on ∂Ω1. We note, that in actual computations applying adaptive algorithm
the number of the observations points on ∂Ω1 increases from coarse to finer mesh.

As follows from Theorem 5.1, to estimate the error in the Lagrangian we need to compute
approximated values of (Eh, λh, ǫh) together with residuals and interpolation errors. Since
the residuals Rǫ1, Rǫ3 dominate we neglect computations of others terms in a posteriori error
estimate appearing in (6.20), see also Remark 5.1. We seek the solution of the optimization
problem in an iterative process, where we start with a coarse mesh shown in Fig. 1, refine
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this mesh as in step 6 of Algorithm in section 6, and construct a new mesh and a new time
partition.

To generate the data at the observation points, we solve the forward problem (7.2), with
function f(t) given by (7.5) in the time interval t = [0, 36.0] with the exact value of the
parameters ǫ = 10.0, µ = 1 inside scatterer, and ǫ = µ = 1.0 everywhere else in Ω. We start
the optimization algorithm with guess values of the parameter ǫ = 1.0 at all points in Ω.
The solution of the inverse problem needs to be regularized since different coefficients can
correspond to similar wave reflection data on ∂Ω1. We regularize the solution of the inverse
problem by introducing an regularization parameter γ (small).

The computations were performed on four adaptively refined meshes. In Fig. 2-b) we show
a comparison of Rǫ1 over the time interval [25, 36] on different adaptively refined meshes.
Here, the smallest values of the residual Rǫ1 are shown on the corresponding meshes.

The L2-norms in space of the adjoint solution λh on different optimization iterations on
adaptively refined meshes are shown in Fig. 2-a). Here, we solved the adjoint problem back-
ward in time from t = 36.0 down to t = 0.0. The L2-norms are presented on the time interval
[25, 36] since the solution does not vary much on the time interval [0, 25). We observe, that
the norm of the adjoint solution decreases faster on finer meshes.

The reconstructed parameter ǫ on different adaptively refined meshes at the final optimiza-
tion iteration is presented in Fig. 3. We show isosurfaces of the parameter field ǫ(x) with a
given parameter value. We observe that the qualitative value of the reconstructed parameter
ǫ is acceptable only using adaptive error control on finer meshes although the shape of the
inclusion is reconstructed sufficiently good on the coarse mesh.

However, since the quasi-Newton method is only locally convergent, the values of the iden-
tified parameters are very sensitive to the guess values of the parameters in the optimization
algorithm and also to the values of the regularization parameter γ. We use cut-off constrain
on the computed parameter ǫ, as also a smoothness indicator to update new values of the
parameter ǫ by local averaging over the neighbouring elements. Namely, minimal and max-
imal values of the coefficient ǫ in box constraints belongs to the following set of admissible
parameters ǫ ∈ P = {ǫ ∈ C(Ω)|1 ≤ ǫ(x) ≤ 10}.

8. Conclusions

We present and adaptive finite element method for an inverse electromagnetic scattering
problem. The adaptivity is based on a posteriori error estimate for the associated Lagrangian
in the form of space-time integrals of residuals multiplied by weights. We illustrate useful-
ness of a posteriori error indicator on an inverse electromagnetic scattering problem in three
dimensions.
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a) Computational mesh b) Scatterer to be reconstructed

Figure 1: Computational domain Ω
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Figure 2: Comparison of a) ||λh|| and b) Rǫ1 on different adaptively refined meshes. Here the
horizontal x-axis denotes time steps.
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a) 22205 nodes, ǫ ≈ 3.19 b) 23033 nodes, ǫ ≈ 4.84

c) 24517 nodes, ǫ ≈ 6.09 d) 25744 nodes, ǫ ≈ 7

Figure 3: Isosurfaces of the parameter ǫ on different adaptively refined meshes.
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[27] J.C. Nédélec, A new family of mixed finite elements in R

3, NUMMA, 50, 57-81, 1986.
[28] J. Nocedal, Updating quasi-Newton matrices with limited storage, Mathematics of Comp., V.35, N.151,

773–782, 1991.
[29] K. D. Paulsen and D. R. Lynch, Elimination of vector parasities in Finite Element Maxwell solutions,

IEEE Trans.Microwave Theory Tech., 39, 395-404, 1991.
[30] O.Pironneau, Optimal shape design for elliptic systems, Springer-Verlag, Berlin, 1984.



20 LARISA BEILINA

[31] S. I. Repin, A Posteriori Estimates for Partial Differential Equations, Berlin: de Gruiter, 2008.
[32] U. Tautenhahn, Tikhonov regularization for identification problems in differential equations, Int.Conf. Pa-

rameter Identification and Inverse problems in Hydrology, Geology and Ecology, Dodrecht, Kluwer, 261-
270, 1996.

[33] A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov and A. G. Yagola, Numerical Methods for the Solution

of Ill-Posed Problems (London: Kluwer), 1995.


