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Abstract

Second order buckling theory involves a one-way coupled coupled problem where the
stress tensor from a plane stress problem appears in an eigenvalue problem for the
fourth order Kirchhoff plate. In this paper we present an a posteriori error estimate
for the critical buckling load and mode corresponding to the smallest eigenvalue
and associated eigenvector. A particular feature of the analysis is that we take
the effect of approximate computation of the stress tensor and also provide an
error indicator for the plane stress problem. The Kirchhoff plate is discretized using
a continuous/discontinuous finite element method based on standard continuous
piecewise polynomial finite element spaces which can also be used to solve the
plane stress problem.

Key words: discontinuous Galerkin, adaptivity, a posteriori error estimate,
Kirchhoff plate, buckling

1 Introduction

Buckling of thin plates can be modeled by an eigenvalue problem involving the
stress tensor of the plane stress problem corresponding to a given load situation
tangential to the plate. The smallest eigenvalues corresponds to the critical
parameter multiplying the given plane stress load that results in buckling.

Thin plates are modeled by fourth order differential equations according to
the Kirchhoff–Love theory and require special attention when discretized using



the finite element method. In this paper we use the continuous/discontinuous
Galerkin (c/dG) method proposed by Engel et al. [1] which is based on stan-
dard continuous piecewise polynomial spaces of order greater or equal to two
inserted into a discontinuous Galerkin formulation, see Hansbo and Larson
[3], of the fourth order plate equation. We refer also to Wells and Dung [8] for
a method closely related to the one presented here.

The c/dG formulation has the advantage that it uses standard finite element
spaces, is easy to implement, and extends naturally to higher order polynomi-
als. Another important advantage in this particular problem is that we may
solve the plane stress problem using the same finite element spaces. Note that
this would not be the case if we, for instance, used nonconforming Morley el-
ements for the plate problem since this element can not be used for the plane
stress problem.

In this paper we derive a posteriori error estimates for the critical buckling
load and mode corresponding to the first eigenpair. The error estimates are
derived using duality techniques and are based on Larson [6] where a poste-
riori error estimates for the Laplacian was presented. A particular feature of
the estimates presented herein is that we also take the effect of discretization
of the plane stress problem into account. The error analysis of the buckling
problem results in a specific goal functional which should be controlled in
the plane stress solver. Here we follow the general approach to error estima-
tion for one-way coupled problems developed by Larson and Bengzon [7], and
adapted to second order plate theory in [2]. In this context we also mention
the work [5] by Heuveline and Rannacher where a posteriori error estimates
for a nonsymmetric eigenvalue problem related to the linearized stability of
the Navier-Stokes equations is presented. These estimates also involves the
effect of the accuracy in the computed flow field on the eigenvalue problem
and are thus related to our approach.

This paper is organized as follows: in Section 2 we present the Kirchhoff–
Love buckling problems and the continuous/discontinuous Galerkin method,
in Section 3 we derive the a posteriori error estimates, in Section 4 we present
some numerical results, and in Section 5 we present some conclusions.

2 The Buckling Problem and Finite Element Method

2.1 The Kirchhoff-Love Buckling Eigenvalue Problem

Let a plate occupy a domain Ω in R2 with boundary ∂Ω = ∂ΩC ∪ ∂ΩS parti-
tioned into a closed subset ∂ΩC and an open subset ∂ΩS where clamped and
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simply supported boundary conditions are respectively applied. The Kirchhoff-
Love buckling problem then takes the form: find the plate displacements uP

(orthogonal to the plate) such that

div div σP(∇uP) − div t(σM∇uP) = fP in Ω (1)

uP = 0 on ∂Ω (2)

n · ∇uP = 0 on ∂ΩC (3)

n · σP(∇uP)n = 0 on ∂ΩS (4)

where t denotes the thickness of the plate, fP is a given load, and the membrane
stress tensor

σM =
Y

1 + ν
ε(uM) +

Y ν

1 − ν2
tr ε(uM)I (5)

is determined by the following plane stress problem: find the membrane dis-
placements uM (tangential to the plate) such that

−div σM(uM) = fM in Ω (6)

uM = 0 on ∂ΩD (7)

n · σM(uM) = gM on ∂ΩN (8)

where fM and gM are given loads and ∂Ω = ∂ΩD ∪ ∂ΩN is a partition of the
boundary into a closed set ∂ΩD and an open set ∂ΩN where Dirichlet and
Neumann boundary conditions, respectively, are applied. Further

σP(ε) =
Y t3

12(1 − ν2)
((1 − ν)ε + νtr(ε) I) (9)

is the plate stress tensor, ε(v) = (∇v + (∇v)T )/2 is the strain tensor, Y is
the Young’s modulus, and ν is the Poisson ratio.

Scaling the membrane loads by a parameter λP, i.e., replacing the loads by
λPfM and λPgM we note that by linearity σM is replaced by λPσM. The critical
buckling loads are then determined by the eigenvalue problem: find uP and λP

such that

div div σP(∇uP) − div t(λPσM∇uP) =0 in Ω (10)

uP =0 on ∂Ω (11)

n · ∇uP =0 on ∂Ω (12)

The corresponding variational formulation reads: find the plate displacement
uP ∈ VP = {v ∈ H2(Ω) | v = 0 on ∂Ω and n · ∇v = 0 on ∂ΩC} and eigenvalue
λP ∈ R such that

aP(∇uP,∇v) + λPt(σM∇uP,∇v) = 0 ∀v ∈ VP (13)
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and σM ∈ [L2(Ω)]2×2 is defined by (5), with uM ∈ VM = [H1
0 (Ω)]2 the solution

of

aM(uM,v) = lM(v), ∀v ∈ VM (14)

Here the forms aP(·, ·), aM(·, ·), and lM(·, ·) are defined by

aP(θ,ϑ) = (σP(θ), ε(ϑ)) (15)

aM(θ,ϑ) = (σM(θ), ε(ϑ)) (16)

lM(v) = (fM,v) + (gM,v)∂ΩN
(17)

where (·, ·)ω is the L2(ω) inner product and, for brevity, we write (·, ·)Ω = (·, ·).

2.2 The Mesh and Finite Element Spaces

We consider a subdivision T = {T} of Ω into a geometrically conforming
finite element mesh that respects the two partitions of the boundary, ∂Ω =
∂ΩC ∪ ∂ΩS and ∂Ω = ∂ΩD ∪ ∂ΩN . We assume that the elements are shape
regular, i.e., the quotient of the diameter of the smallest circumscribed sphere
and the largest inscribed sphere is uniformly bounded. We denote by hT the
diameter of element T and by h = maxT∈T hT the global mesh size parameter.

Let the space of continuous piecewise polynomials of order k on be defined by

CPk = {v ∈ C0(Ω) : v|T ∈ Pk(T ) ∀T ∈ T } (18)

where Pk(T ) is the space of polynomials of order k defined on T .

We introduce the Scott-Zhang type interpolation operators πP : VP → CPk∩VP

and recall the following elementwise interpolation error estimate

|u− πPu|T,m ≤ Chs−m
T |u|N (T ),s (19)

where 0 ≤ m ≤ s ≤ k + 1 and N (T ) is the union of all elements which
are neighbors to element T . The corresponding interpolation operator for the
membrane problem is denoted by πM.

To define our method we introduce the set of edges in the mesh, E = {E},
and we split E into three disjoint subsets

E = EI ∪ EC ∪ ED (20)

where EI is the set of edges in the interior of Ω, ED is the set of edges on
∂ΩD, and ES is the set of edges on ∂ΩS . Further, with each edge we associate
a fixed unit normal n such that for edges on the boundary n is the exterior
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unit normal. We denote the jump of a function v ∈ Γh at an edge E by
[v] = v+ − v− for E ∈ EI and [v] = v+ for E ∈ EB, and the average 〈v〉 =
(v++v−)/2 for E ∈ EI and 〈v〉 = v+ for E ∈ EB, where v± = limǫ↓0 v(x∓ǫn)
with x ∈ E.

2.3 The Continuous/Discontinuous Galerkin Method

We shall solve the membrane equation using standard continuous Galerkin
and the plate problem with the continuous/discontinuous Galerkin method.
The method takes the form: find UP ∈ CPkP

∩ VP and ΛP ∈ R such that

AP(∇UP,∇v) + ΛPt(ΣM∇UP,∇v) = 0 ∀v ∈ CPkP
∩ VP (21)

where ΣM = Y/(1 + ν)ε(UM) + Y ν/(1 − ν2)tr ε(UM)I with UM ∈ [CPkM
]2∩

VM determined by

aM(UM,v) = (fM,v) ∀v ∈ [CPkM
]2 ∩ VM (22)

The bilinear form AP(·, ·) is defined by

AP(θ,ϑ) =
∑

T∈T

(σP(θ), ε(ϑ))T

−
∑

E∈EI∪EC

(〈n · σP(θ)〉, [ϑ])E

−
∑

E∈EI∪EC

([θ], 〈n · σP(ϑ)〉)E

+
Y t3

12(1 − ν)
γ

∑

E∈EI∪EC

h−1
E ([θ], [ϑ])E (23)

for all θ,ϑ ∈
⊕

T∈T [H1(T )]2. Here γ is a positive parameter and hE is defined
by

hE =
(

|T+| + |T−|
)

/(2 |E|) for E = ∂T+ ∩ ∂T− (24)

with |T | the area of T , on each edge E. See [4] for details on the value of γ.

3 A Posteriori Error Estimates

3.1 Preliminaries

We first define a projector onto the eigenspace Eig(λP) (corresponding to the
eigenvalue λP) which is associated with the natural scalar products involved
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in the variational statement. We define PλP
: VP → Eig(λP) as follows

AP(∇PλP
v,∇w) = AP(∇v,∇w) ∀w ∈ Eig(λP) (25)

Note that since w are eigenfunctions associated with λP the projection also
satisfies the following equation

(σM∇PλP
v,∇w) = (σM∇v,∇w) ∀w ∈ Eig(λP) (26)

We introduce the norm

|||v|||2 = AP(∇v,∇v), ∀v ∈ H2
0 (Ω) ∪ CPkP,0 (27)

and normalize computed eigenvectors UP as follows

|||∇UP|||
2 = AP(∇UP,∇UP) = |ΛP(ΣM∇UP,∇UP)| = 1 (28)

3.2 Error Representation Formulas

3.2.1 The Dual Problem.

To derive error representation formulas we introduce the following dual prob-
lem: find φP such that

div div σP(∇φP) − div tλP(σM∇φP) = ψP in Ω (29)

φP = 0 on ∂Ω (30)

n · ∇φP = 0 on ∂ΩC (31)

n · σP(∇φP)n = 0 on ∂ΩS (32)

Different choices of ψP will lead to estimates for the errors in eigenvalues and
eigenvectors; they will be chosen in such a way that the solution to the dual
problem is well defined. We return to these issues below.

6



Multiplying with the error eP = uP − UP and integrating by parts we obtain

(eP, ψP) =(eP, div div σP(∇φP))

− (eP, div tλP(σM∇φP)) (33)

=
∑

T∈T

(σP(∇eP), ε(∇φP))T

−
∑

E∈EI∪EC

([∇eP],n · σP(∇φP))E

+ λPt(σM∇eP,∇φP) (34)

=AP(∇eP,∇φP) + tλP(σM∇eP,∇φP) (35)

=−AP(∇UP,∇φP) − tλP(σM∇UP,∇φP) (36)

= − AP(∇UP,∇(φP − πPφP))

− ΛPt(ΣM∇UP,∇(φP − πPφP))

+ (ΛP − λP)t(σM∇UP,∇φP)

− ΛPt((σM −ΣM)∇UP,∇φP) (37)

where in (34) we used the fact that [∇eP] is parallel to the normal at each
edge and in particular for E ∈ ES we thus have ([∇eP],n · σP(∇φP))E =
([∇eP],n · σP(∇φP)n)E = 0; in (35) we used the fact that [∇φP] = 0; in (36)
we eliminated the exact solution; and in (37) we rearranged the terms using
the identity λPσM = ΛPΣM − (ΛP − λP)σM + ΛP(σM −ΣM) and finally used
Galerkin orthogonality (21) to subtract πPφP.

3.2.2 Representation of the Error in the Eigenvalue

Setting ψP = 0 and denoting the solution to the dual problem by φP,λP
we get

(ΛP − λP)t(σM∇UP ,∇φP,λP
) = AP(∇UP,∇(φP,λP

− πPφP,λP
))

+ ΛPt(ΣM∇UP,∇(φP,λP
− πPφP,λP

))

+ ΛPt((ΣM − σM)∇UP,∇φP,λP
) (38)

In this case the solution to the dual problem is an arbitrary eigenfunction
associated with λP, i.e., φP,λP

∈ Eig(λP). Choosing φP,λP
= PλP

UP/|||PλP
UP|||

we obtain the following estimate

|(ΛP − λP)t(σM∇UP,∇φP)|

= |(ΛP − λP)λ−1
P AP(∇UP,∇φP,λP

)|

= |(ΛP − λP)λ−1
P | |AP(∇PλP

UP,∇φP,λP
)|

= |(ΛP − λP)λ−1
P | |||∇PλP

UP||| (39)

We now assume that the computed eigenvalue ΛP approximates the exact
eigenvalue λP and that there are constants 0 ≤ δ < 1 and h0 such that

|||∇(I − PλP
)UP||| ≤ δ (40)
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for all meshes with maxT∈T hK ≤ h0. We remark that the validity of this
assumption follows from standard a priori convergence theory. Using (39),
(40), and the scaling (28) together with Pythagoras identity we obtain

|(ΛP − λP)t(σM∇UP,∇φP)| ≥ |(ΛP − λP)λ−1
P |(1 − δ2)1/2 (41)

Finally, combining (38), (41), and using the triangle inequality we arrive at

(1 − δ2)1/2|(ΛP − λP)λ−1
P | ≤ |AP(∇UP,∇(φP,λP

− πPφP,λP
))

+ ΛPt(ΣM∇UP,∇(φP,λP
− πPφP,λP

))|

+ |ΛPt((σM − ΣM)∇UP,∇φP,λP
)| (42)

3.2.3 Representation of the Error in the Eigenvector.

Following Larson [6] we define the error in an eigenvector to be the component
orthogonal to the exact eigenspace which it approximates an element in. Note
that this definition has the advantage that it covers also multiple eigenvectors.
More precisely we will estimate the error in the Hm(Ω) seminorm for m = 0, 1.
We then define the error eM as

eM = (I − PM)UP (43)

where PM is the orthogonal projection Hm(Ω) → Eig(λP) defined by (v −
P0v, w) = 0 and (∇(v − P1v,∇w) for all w ∈ Eig(λP) and m = 0, 1, respec-
tively. To represent the semi norm |eP|M we let ψP = ψP,m = (−∆)meP,m/|eP,m|M
with m = 0, 1 and we denote the corresponding solution to the dual problem
by φP,m, m = 0, 1. We then get

|eP,m|M = −AP(∇UP,∇(φP,m − πPφP,m))

− ΛPt(ΣM∇UP,∇(φP,u − πPφP,m))

+ (ΛP − λP)t(σM∇UP,∇φP,m)

+ λPt((ΣM − σM)∇UP,∇φP,m) (44)

In this case we require the solution φP,m to be orthogonal to Eig(λP) to achieve
uniqueness.

Next we estimate the second term on the right hand side as follows

λPt(σM∇UP,∇φP,m) = AP(∇UP,∇φP,m)

= AP(∇eP,m,∇φP,m)

≤ |eP,m|M|φP,m|4−m

≤ CM|eP,m|M|ψP,m|−m

≤ CM|eP,m|M (45)
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where we used the stability estimate |φP,m|4−m ≤ CM|ψP,m|−m and at last the
identity |ψP,m|−m = 1 which follows from the definition of ψP,m. Thus we have

|(ΛP − λP)t(σM∇UP,∇φP,m)| ≤ |(ΛP − λP)λ−1
P |CM|eP,m|M (46)

Now again assuming that the computed eigenvalue ΛP approximates the exact
eigenvalue λP and that there are constants 0 ≤ δ < 1 and h0 such that

|(ΛP − λP)λ−1
P |CM ≤ δ (47)

for all meshes with maxT∈T hK ≤ h0. We note again that the validity of this
assumption follows from standard a priori convergence theory. Combining (44),
(46), and (47) and using the triangle inequality we obtain the estimate

(1 − δ)|eP|M ≤ |AP(∇UP,∇(φP,m − πPφP,m))

+ ΛPt(ΣM∇UP,∇(φP,m − πPφP,m))|

+ |λPt((ΣM − σM)∇UP,∇φP,m)| (48)

Remark. The constant CM is of the form

CM =
cM

gap(λP)
(49)

where gap(λP) is the distance between λP and the closest eigenvalue. Thus as-
sumption (47) guarantees satisfactory resolution of the spectrum in the vicinity
of λP.

3.2.4 Representation of the Modeling Error.

Introducing the dual problem: find φM,X ∈ VM such that

aM(v,φM,X) = (σM(v)∇UP,∇φP,X), (50)

for all v ∈ VM, X ∈ {0, 1, λP}, we get, by setting v = eM and using Galerkin
orthogonality (22) for the membrane equation, the following error representa-
tion formula

((ΣM − σM)∇UP,∇φP,X) = (σM(eM)∇UP,∇φP,X)

= aM(eM,φM,X)

= aM(eM,φM,X − πMφM,X)

= lM(φM,X − πMφM,X)

− aM(UM,φM,X − πMφM,X) (51)

where at the final step we eliminated the exact solution using (6)
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3.3 Abstract A Posteriori Error Estimates

Combining the estimates above we obtain the following abstract error esti-
mates. For the error in the eigenvalue

(1 − δ2)1/2|(ΛP − λP)λ−1
P | ≤ |AP(∇UP,∇(φP,λP

− πPφP,λP
))

+ ΛPt(σM∇UP,∇(φP,λP
− πPφP,λP

))|

+ |lM(φM,λP
− πMφM,λP

)

− aM(UM,φM,λP
− πMφM,λP

)| (52)

and for the error in the eigenvector

(1 − δ)|eP|M ≤ |AP(∇UP,∇(φP,m − πPφP,m))

+ ΛPt(ΣM∇UP,∇(φP,m − πPφP,m))|

+ |l(φM,m − πMφM,m)

− aM(UM,φM,m − πMφM,m)| (53)

for m = 0, 1.

3.4 Error Estimates Using the Dual Weighted Residual Approach

Using standard procedures, involving integration by parts, the Cauchy-Schwartz
inequality, a trace inequality, and the interpolation error estimate (19), we ob-
tain the following estimate

|AP(∇UP,∇(φP,X − πPφP,X)) + ΛPt(ΣM∇UP ,∇(φP,X − πPφP,X))|

≤
∑

T∈Th

RP,TWP,X,T (54)

where the plate element residual RP,T and weight WP,X,T are defined by

R2
P,T = ‖fP − div div σP(∇UP)‖2

T

+ h−1
T ‖[n · div σP(∇UP)]‖2

∂T

+ h−3
T ‖[n · σP(∇UP)]‖2

∂T + γ2h−5
E ‖[∇UP]‖2

∂T (55)

WP,X,T = h
αP,X

T |φP,X |N (K),αP
, 0 ≤ αP,X ≤ kP + 1 (56)

Here the regularity parameter αP,X reflects the regularity properties of the
solutions to the dual problems. For the membrane problem we have the cor-
responding estimate

|aM(eM,φM,X − πMφM,X)| ≤
∑

T∈Th

RM,TWM,X,T (57)
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where the residual and weight are defined by

R2
M,T = ‖fM + div σM(UM)‖2

T

+ h−1
T ‖[n · div σM(UM)]‖2

∂T\∂Ω

+ h−1
T ‖gM − n · div σM(UM)‖2

∂T∩∂ΩN
(58)

and

WM,X,T = hαM

T |φM,X |N (K),αM,X
(59)

for 0 ≤ αM,X ≤ kM + 1, X ∈ {λP, 0, 1}. Collecting these estimates and the
abstract a posteriori error estimates we finally arrive at the following dual
weighted residual a posteriori error estimates

(1 − δ2)1/2|(ΛP − λP)λ−1
P | ≤

∑

T∈Th

RP,TWP,λ,T +
∑

T∈Th

RM,TWM,λ,T (60)

and for the error in the eigenvector

(1 − δ)|eP|m ≤
∑

T∈Th

RP,TWP,m,T +
∑

T∈Th

RM,TWM,m,T (61)

m = 0, 1. Considering the expected optimal regularity of the dual problems
we get

αP,λ = kP + 1, αP,m = 4 −m, αM,m = αM,λ = 2 (62)

3.5 Residual Based Estimates

Using stability estimates for the solutions to the dual problems we obtain the
residual based estimates

(1 − δ2)|(ΛP − λP)λ−1
P |2 ≤ C





∑

T∈Th

h
2αP,λP

T R2
P,T +

∑

T∈Th

h
2αM,λ

T R2
M,T



 (63)

and for the error in the eigenvector

(1 − δ)2|eP|
2
m ≤ C





∑

T∈Th

h
2αP,m

T R2
P,T +

∑

T∈Th

h
2αM,m

T R2
M,T



 (64)

m = 0, 1.
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4 Numerical Examples

4.1 Known Stress Tensor

We consider the L-shaped domain (0, 1)× (0, 1) \ (1/2, 1)× (0, 1/2). The plate
is simply supported on all boundaries (u = 0), and the in-plane stress tensor
is chosen as the unit tensor. Thus, we have no error contribution from the
membrane problem. We set Y = 1, ν = 1/4, and t = 1. We use the adaptive
algorithm for the computation of the lowest three eigenvalues. The singularity
in the inward-pointing corner is excited for the first two but not for the third,
which is also clearly visible in the adaptation of the meshes shown in Figures
1–3. In Figure 4, we give the corresponding eigensolution, and in Figure 5
we give the corresponding effectivity indices (approximate error in eigenvalue
divided by exact error). The third eigenvalue can be computed analytically,
the first two have been estimated by an approximate solution on a dense
mesh. The effectivity indices have been computed on a sequence of meshes
obtained using a fixed ratio refinement technique where the elements with
the highest 25% element error indicators have been refined in each step. The
unknown constant in the error representation formula has been set so that the
effectivity index is of medium size; the same constant has been used for all
three eigenvalues.

4.2 Computed Stress Tensor

For our second example, we use the same domain, material data, and boundary
conditions for the plate. For the elasticity computations, we use a body force
f = (r,−9 r/10), where r denotes the distance from the inward pointing
corner. The boundary conditions were: clamped conditions at x = 1/2, y ≤
1/2, at y = 0, at x = 1, and at y = 1/2, x ≥ 0. The remaining boundaries
were traction free.

In Figure 5 we give the adapted mesh using the full estimate, and, for compar-
ison, we also give, in Figures 6–7, the corresponding meshes when only partial
estimates, plate residual and stress residual, respectively, are used. In Figure
9 we show the lowest buckling mode for which the estimate is aiming. Finally,
we show, in Figure 10, how the different residuals behave asymptotically as
estimates of the eigenvalue error. Clearly, in order to obtain an effectivity in-
dex that does not increase or decrease, we need the full residual, though we
concede that the balance between these two residuals may be difficult to ascer-
tain. Here we have willfully chosen the balance in order to obtain a reasonably
constant effectivity index for the full residual. However, if we instead use the
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dual weighted residual method and solve the dual problems numerically we
can compute the weights numerically and obtain the proper weighting between
the plate and membrane residuals.

5 Conclusions

We have formulated a continuous/discontinuous Galerkin method for the buck-
ling problem with second order effects. The method has the advantage that
we can solve both the membrane and plate problem with the same standard
finite element spaces of continuous piecewise polynomials defined on triangles
or bricks. Furthermore, we proved a posteriori error estimates for both the
error in the eigenvalue (critical buckling load) and the eigenvectors (buckling
modes) with the special feature that also the effect of approximate solution
of the membrane problem is taken into account. Based on the estimates we
constructed an adaptive algorithm for adaptive mesh refinement.
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Fig. 1. Adapted mesh for the first eigenvalue
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Fig. 2. Adapted mesh for the second eigenvalue
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Fig. 3. Adapted mesh for the third eigenvalue
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Fig. 4. The first three eigensolutions
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Fig. 5. Computed effectivity indices for the first three eigenvalue computations.
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Fig. 6. Adapted mesh using the full estimate.

Fig. 7. Adapted mesh for a partial estimate (only the plate residual).
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Fig. 8. Adapted mesh for a partial estimate (only the stress residual).

Fig. 9. Buckling mode.
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Fig. 10. Computed effectivity indices for the full estimate and the partial estimates
(plate residual and stress residual).

22


