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Abstract

A finite element method which combines the Kirchhoff and Mindlin-Reissner plate models is in-
troduced. For this purpose a recently developed family of closely related continuous-discontinuous
finite element methods is used: the transverse displacements are approximated by continuous
polynomials of degree d ≥ 2, whereas the rotation vector is approximated by discontinuous poly-
nomials of degree d− 1. The matrix formulation of the discrete problem is stated. An algorithm
is exemplified by simple examples in which the underlying model has been adapted locally in a
heuristic manner.

Keywords: Kirchhoff plate; Mindlin-Reissner plate; Nitsche’s method; model adaptivity

1 INTRODUCTION

The idea of adapting the underlying physical model for a discrete problem is compelling: the least
computationally demanding model in an hierarchy, providing sufficient accuracy, should ideally be
used. In the context of plate theory, when considering bending problems for thin to moderately thick
structures, the hierarchy would include the Kirchhoff and Mindlin-Reissner (MR) plate models. The
former is given by a linear fourth-order partial differential equation (PDE), whose weak formulation
typically requires continuous first-order derivatives. However, the conforming approximation can be
cumbersome to construct, e.g., a well-known C1 element, the Argyris triangle, carries 21 degrees of
freedom for a quintic approximation. In this paper the focus is different: a continuous-discontinuous
Galerkin (c/dG) finite element method (FEM) is used. It was first proposed by Engel et. al. [1], and
further developed for the Kirchhoff plate theory by Hansbo and Larson [5, 4]. The c/dG FEM is based
on a continuous polynomial approximation of degree d for the transverse displacement, but rather
than being a property of the approximating space, the continuity in the normal derivatives is enforced
weakly by means of Nitsche’s method [6]. The MR plate theory, which is an enhanced model by ac-
counting for first-order shear effects, in fact seems simpler from an implementation point-of-view: it
consists of a system of two second-order PDEs, and thus only requires a C0 approximation. Neverthe-
less, for a FEM to work asymptotically, as the thickness of the plate tends to zero, the approximating
spaces for the transverse displacement and the rotation vector need to match. Should their difference
not vanish, the numerical solution is degraded by shear locking, caused by an increasing shear energy.
Hansbo and Larson [2] proposed a c/dG FEM which avoids shear locking, where the rotation vector
is approximated explicitly by discontinuous polynomials of degree d − 1: in the limit the MR model
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simply transposes into the original Kirchhoff model. Consequently, there is the means to construct a
low-order c/dG FEM for combing the Kirchhoff and MR plate models; by doing so this paper extends
previous work with applications to model adaptivity in mind. The method is advocated as straightfor-
ward to implement by the formulation the discrete matrix problem. Lastly, the suggested c/dG FEM is
exemplified by simple problems, where the local model is refined by substituting Kirchhoff elements
for MR elements.

2 THE CONTINUOUS PROBLEMS

The continuous problems for the Kirchhoff and MR plate models—the strong and the corresponding
variational formulations—are introduced under the following assumptions: the domain Ω is a con-
vex polygon, clamped at its boundary ∂Ω, such that u|∂Ω= 0 and n · ∇u|∂Ω= 0; the constitutive
parameters and the plate thickness are constants.

The standard plate theory, established by Kirchhoff, is described mathematically by the fourth-
order PDE ∑

ij

∂2σij(∇u)

∂xi∂xj
= f, in Ω ⊂ R2, (1)

which expresses equilibrium between internal and external forces. u is understood to be the transverse
displacement, whereas σ represents the moment tensor,

σ(∇u) := λ∇ · ∇u1+ 2µε(∇u),

given the constitutive relation corresponding to a linearly elastic material. Here 1 is the identity tensor,
and ε is the curvature tensor, whose components are

εij :=
1

2

(
∂2u

∂xi∂xj
+

∂2u

∂xj∂xi

)
, for i, j = 1, 2.

The constitutive parameters are defined by

λ =
Eν

12(1− ν)2
, µ =

E

24(1 + ν)
,

where E and ν are Young’s modulus and Poisson’s ratio, respectively. From (1) t3f is recognized as
the surface load, acting on a plate with thickness t.

For thicker plates, however, the accuracy of the Kirchhoff solution tends to decay. The model is
then commonly replaced by the MR plate theory,

−∇ · σ(θ)− κt−2(∇u− θ) = 0,

−κt−2∇ · (∇u− θ) = f,
(2)

where θ denotes the rotation of the median surface of the plate, the material parameter κ = Ek/(2(1+
v)), and k = 5/6 is a shear correction factor.

The virtual work equation related to (2) can be derived by minimizing the sum of the bending
energy, the potential of the surface load, and the shear energy:

(u,θ) = min
v,ϑ

F(v,ϑ) = 1
2a(ϑ,ϑ) +

1
2b(v,ϑ; v,ϑ)− (f, v)Ω. (3)
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Here v and ϑ belong to admissible function spaces, and (·, ·)Ω represents the L2 inner product over
the indicated domain. The bending energy is defined in terms of the tensor contraction

a(θ,ϑ) :=

∫
Ω
σ(θ) : ε(ϑ) dx, (4)

and the shear energy using

b(u,θ; v,ϑ) := κt−2(∇u− θ,∇v − ϑ)Ω. (5)

By omitting b(·, ·; ·, ·) and substituting ϑ = ∇v in (3), the corresponding minimization problem for
the Kirchhoff plate theory is obtained. Notice that when the displacement gradient equals the rotation
vector, higher regularity is required of the solution, owing to the second-order derivatives present in
the bilinear form (4). Solving (3) yields the equivalent variational formulations: find uK ∈ V (Ω) and
(uM ,θ) ∈ H1

0 (Ω)× [H1
0 (Ω)]

2 such that

a(∇uK ,∇v) = (f, v)Ω, for all v ∈ V (Ω),

a(θ,ϑ) + b(uM ,θ; v,ϑ) = (f, v)Ω, for all (v,ϑ) ∈ H1
0 (Ω)× [H1

0 (Ω)]
2,

where the function space V = {v ∈ H2
0 (Ω) : n · ∇v = 0 on ∂Ω}.

3 THE DISCRETE PROBLEMS

3.1 The mesh

Consider the partition Th = {T} of Ω into a geometrically conforming, quasi-uniform finite element
triangulation. Let hT denote the local mesh size

hT = diam(T ) = max
y1,y2∈T

∥y1 − y2∥, for all T ∈ Th,

and have
h = max

T∈Th

hT

to be the global mesh size parameter. Moreover, define a set E = {E} to represent the edges in the
mesh, which can be divided into two disjoint subsets, E = EI ∪ EB , where EI = E \ ∂Ω and EB are
the sets of interior and boundary edges, respectively. Each edge is associated with a fixed unit normal
n, such that on the boundary, n is the exterior unit normal.

3.2 Function spaces

The function space
Vh :=

{
v ∈ H1

0 (Ω) : v|T∈ Pd(T ) for all T ∈ Th

}
of continuous, piecewise polynomials of degree d, that vanish on the boundary, is used to approximate
the transverse displacement. Likewise, for the rotation vector,

Θh :=
{
ϑ ∈ [L2(Ω)]

2 : ϑ|T∈ [Pd−1(T )]
2 for all T ∈ Th

}
is the function space of discontinuous polynomials of degree d − 1. The choice of approximating
spaces, as mentioned by Hansbo et. al. [3, Section 3], makes them compatible in the sense that

∇v ⊂ Θh, for all v ∈ Vh.
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This property is important, since in the limit as t → 0, it allows for functions in Θh to belong to
∇Vh. Hence there exists non-trivial approximations, such that the difference ∇u − θ in the shear
energy functional (5) vanishes, and consequently shear locking is alleviated. Another idea would be
to replace the rotation vector in (5) by a suitable projection. This approach was introduced by Bathe
et. al. [8]; the associated MITC element family has been further described in the literature [9, Section
5.4].

3.3 Jumps and averages

Two quantities on E are introduced: the jump J·K and the average ⟨·⟩. To this end, let T1 and T2 be
two neighboring elements, sharing the interior edge E. For a scalar function v ∈ Vh defineJvK := v− − v+, for E ∈ EI , JvK := v−, for E ∈ EB,

⟨v⟩ := v− + v+

2
, for E ∈ EI , ⟨v⟩ := v−, for E ∈ EB,

where
v− = lim

ϵ→0+
v(x− ϵn), v+ = lim

ϵ→0+
v(x+ ϵn), for x ∈ E.

The definitions for a vector-valued function ϑ ∈ Θh are analogous.

3.4 The finite element method

The c/dG FEMs can now be formulated as follows: find uhK ∈ Vh and (uhM ,θh) ∈ Vh ×Θh such that

ah(∇uhK ,∇v) = (f, v)Ω, for all v ∈ Vh, (6)

ah(θ
h,ϑ) + b(uhM ,θh; v,ϑ) = (f, v)Ω, for all (v,ϑ) ∈ Vh ×Θh, (7)

where the discrete bilinear form—which stems from using Nitsche’s method (see e.g. [5])—is defined
by

ah(θ
h,ϑ) :=

∑
T∈Th

∫
T
σ(θh) : ε(ϑ) dx−

∑
E∈E

(⟨n · σ(θh)⟩, JϑK)E
−

∑
E∈E

(⟨n · σ(ϑ)⟩, JθhK)E + (2µ+ 2λ)γ
∑
E∈E

(h−1
E JθhK, JϑK)E . (8)

The last term in (8) penalizes jumps in the rotation vector, or the displacement gradient, across element
edges. Its stabilization parameter γ must be chosen large enough to enforce coercivity on ah(·, ·); the
penalty term in this sense controls the other edge integrals, the first of whom makes the formulation
consistent, whereas the addition of the second brings symmetry1. (They will be referred to collectively
as the symmetry terms.) Precise values of γ, for an arbitrary polynomial approximation d ≥ 2, have
been calculated by Hansbo and Larson [4, Section 2.3] for the Kirchhoff plate model. Further analysis
[3, Section 4] shows that the results are valid also for the MR plate model (the presence of the shear
energy functional (5) in (7) rather stabilizes the numerical problem by being an inner product.) Lastly,
hE is given by

hE =

{ |T1|+|T2|
2|E| , for E ∈ EI ,

|T |/|E|, for E ∈ EB,

1If applying a direct method to the discrete linear system, the stiffness matrix can now be subjected to Cholesky factor-
ization.
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where |·| denotes the area of T or the length of E.

4 IMPLEMENTATION

To define the method when combing both plate models, i.e., how to combine (6) and (7), the resulting
matrix problem Sω = f is considered. For simplicity the lowest-order scheme is applied with d = 2,
and the basis consists of standard Lagrange finite element shape functions. Hence all elements T ∈ Th

carries six degrees of freedom associated with the transverse displacements, and should T be an MR
element, another six related to the rotation vector. The local element and edge matrices, which are
assembled into the global stiffness matrix S, are constructed. Note then that the suggested c/dG FEM
employs the same trial and test spaces. Finally a simple refinement criterion is introduced to exemplify
the use of the method in a model adaptive context.

4.1 Kirchhoff plate model

4.1.1 Domain integral

Consider the domain integral of the bilinear form (8). The integrand can be rewritten using the Voigt
form in the symmetric tensor contraction,∫

T
σ(∇uhK) : ε(∇v) dx =

∫
T
εT

v (∇uhK)Dε(∇v) dx, (9)

where

εv(∇uhK) =


∂2uh

K

∂x2
1

∂2uh
K

∂x2
2

2
∂2uh

K
∂x1∂x2

 =


∂2φ1

∂x2
1

. . . ∂2φ6

∂x2
1

∂2φ1

∂x2
2

. . . ∂2φ6

∂x2
2

2 ∂2φ1

∂x1∂x2
. . . 2 ∂2φ6

∂x1∂x2


u1...
u6

 = B̂TuT .

Here {φi} ∈ Vh are the local shape functions on element T , whereas uT represents its nodal transverse
displacements, and the constitutive matrix is defined by

D =

λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 µ

 .

Next substitute ∇v = ∇φi in (9) for i = 1, . . . , 6, on which the integrand becomes constant, and the
element contribution to the stiffness matrix reduces to

ŜT = |T |B̂T
TDB̂T , for all T ∈ Th. (10)

4.1.2 Symmetry terms

Firstly, at an interior edge common to the neighbors T1 and T2, consider

n · σ(∇uhK) =

[
n1σ11 + n2σ12
n1σ21 + n2σ22

]
=

[
n1 0 n2

0 n2 n1

]
DB̂TuT = NDB̂TuT ,

where n = [n1, n2]
T is the exterior unit normal to T1 on E. Let B̂Ti and uTi be defined on the i:th

element. Now the average is

⟨n · σ(∇uhK)⟩ = 1
2ND(B̂T1uT1 + B̂T2uT2) =

1
2NDB̂totutot, (11)
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with B̂tot = [B̂T1 , B̂T2 ] and utot = [uT
T1
, uT

T2
]T. At a boundary edge the average (11) simplifies to

⟨n · σ(∇uhK)⟩ = NDB̂TuT . The introduction of the gradient matrix

GT =

[
∂φ1

∂x1
. . . ∂φ6

∂x1

∂φ1

∂x2
. . . ∂φ6

∂x2

]
,

allows writing ∇uhK = GTuT . Consequently, at an interior edge, the related jump is

J∇uhKK = GT1uT1 −GT2uT2 = Gtotutot, (12)

where Gdiff = [GT1 , −GT2 ]. Similarly, at a boundary edge, (12) reduces to J∇uhKK = GTuT . Hence
the integrands of the symmetry terms in (8) follow as

⟨n · σ(∇uhK)⟩ · J∇vK = {
1
2G

T
diffNDB̂totutot, for E ∈ EI ,

GT
TNDB̂TuT , for E ∈ EB,

when testing against the local shape functions: either the union of {φi} on T1 and {φj} on T2 for
E ∈ EI , or {φi} on T for E ∈ EB . In the sequel a shorter notation is adopted,

⟨n · σ(∇uhK)⟩ · J∇vK = α⋆Σ̂⋆u⋆,

in this case by letting Σ̂⋆ = GT
⋆NDB̂⋆. When a quantity is indexed accordingly (⋆) it can be

evaluated at any edge E ∈ E; thus

⟨n · σ(∇v)⟩ · J∇uhKK = {
αIΣ̂

T
totutot, for E ∈ EI ,

αBΣ̂
T
TuT , for E ∈ EB,

with αI = 1/2 and αB = 1. Thereby the edge contributions to the stiffness matrix, Ŝsym
I and Ŝ

sym
B ,

can be written
Ŝsym
⋆ =

∫
E
α⋆

(
Σ̂⋆ + Σ̂T

⋆

)
ds, for all E ∈ E, (13)

for short.

4.1.3 Penalty term

From (12) it is clear that

J∇uhKK · J∇vK = {
GT

diffGdiffutot, for E ∈ EI ,

GT
TGTuT , for E ∈ EB,

when testing against the local shape functions, and the edge contributions to the stiffness matrix, Ŝp
I

and Ŝ
p
B , are readily identified by

Ŝp
⋆ = (2µ+ 2λ)γ

∫
E
h−1
E GT

⋆G⋆ ds, for all E ∈ E. (14)
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4.2 Mindlin-Reissner plate model

4.2.1 Domain integrals

The integrand emanating from ah(·, ·) has the same form as (9), with the displacement gradient being
replaced by the discrete rotation vector θh = [θx, θy]T (here x = x1 and y = x2 are used as indices
to distinguish coordinate axes from local node numbers). Hence consider

εv(θ
h) =


∂θx

∂x1

∂θy

∂x2

∂θx

∂x2
+ ∂θy

∂x1

 =


∂ϑ1
∂x1

0 ∂ϑ2
∂x1

0 ∂ϑ3
∂x1

0

0 ∂ϑ1
∂x2

0 ∂ϑ2
∂x2

0 ∂ϑ3
∂x2

∂ϑ1
∂x2

∂ϑ1
∂x1

∂ϑ2
∂x2

∂ϑ2
∂x1

∂ϑ3
∂x2

∂ϑ3
∂x1

 [
θx1 θy1 θx2 θy2 θx3 θy3

]T

= B̃T θT ,

where {ϑi} are the linear Lagrange finite element shape functions2. θT represents the nodal rotation
components on element T . Consequently,∫

T
σ(θh) : ε(ϑ) dx =

∫
T
εT

v (θ
h)Dε(ϑ) dx = |T |B̃T

TDB̃T θT ,

following substitution of ϑ for the local shape functions, i.e., each column vector in

R =

[
ϑ1 0 ϑ2 0 ϑ3 0

0 ϑ1 0 ϑ2 0 ϑ3

]
. (15)

Furthermore, from the shear energy functional (5),

(∇uhM − θh,∇v − ϑ)Ω = (∇v,∇uhM )Ω − (ϑ,∇uhM )Ω − (∇v,θh)Ω + (ϑ,θh)Ω, (16)

and by introducing the matrices

V =
[
G −R

]
, ωT =

[
uT θT

]T
,

the expansion (16), by substituting the test functions appropriately, can be rewritten as

(GTG−RTG)uT + (RTR−GTR)θT = V TV ωT .

Hence it is that
κt−2(∇uhM − θh,∇v − ϑ)Ω = κt−2

∫
T
V TV dxωT ,

and the element contribution to the stiffness matrix becomes

S̃T = S̃a
T + S̃b

T = |T |B̃TDB̃ + κt−2

∫
T
V TV dx, for all T ∈ Th, (17)

where S̃b
T , as opposed to the constant S̃a

T , is computed using numerical quadrature.

2A simple alternative would be to use the set of monomials for local shape functions, so long as no direct physical
interpretation is of convenience, say for purposes of visualization and/or interpolation.
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4.2.2 Symmetry terms

In the same manner as for the Kirchhoff plate model the averages are derived to be

⟨n · σ(θh)⟩ =

{
1
2NDB̃totθtot, for E ∈ EI ,

NDB̃T θT , for E ∈ EB,
(18)

where B̃tot = [B̃T1 , B̃T2 ] and θtot = [θT
T1
, θT

T2
]T. The corresponding jumps in the rotation compo-

nents are JθhK = {
Rdiffθtot, for E ∈ EI ,

RT θT , for E ∈ EB,
(19)

for Rdiff = [RT1 −RT2 ] with RTi defined as in (15) on element Ti. Now if combing (18) and (19),
with Σ̃⋆ = RT

⋆NDB̃⋆, it follows that

⟨n · σ(θh)⟩ · JϑK = α⋆Σ̃⋆θ⋆, ⟨n · σ(ϑ)⟩ · JθhK = α⋆Σ̃
T
⋆ θ⋆,

when testing against the local shape functions. The edge contributions to the stiffness matrix, S̃sym
I

and S̃
sym
B , become

S̃sym
⋆ =

∫
E
α⋆

(
Σ̃⋆ + Σ̃T

⋆

)
ds, for all E ∈ E. (20)

4.2.3 Penalty term

Using (19) the product between the jumps

JθhK · JϑK = {
RT

diffRdiffθtot, for E ∈ EI ,

RT
TRT θT , for E ∈ EB,

when testing against the local basis functions, and so the edge contributions to the stiffness matrix, S̃p
I

and S̃
p
B , are

S̃p
⋆ = (2µ+ 2λ)γ

∫
E
h−1
E RT

⋆R⋆ ds, for all E ∈ E. (21)

4.3 Combined plate models

Note that the plate models are combined only on interior edges—the domain and boundary integrals of
the bilinear form are evaluated using either the Kirchhoff or the MR plate model. Let θh and ϑ denote
the discrete solution vector and the combined basis functions (even though half of the associated
degrees of freedom relate to displacements).

4.3.1 Symmetry terms

It is important to keep in mind which plate model is used locally: the average will be

⟨n · σ(θh)⟩ =

{
1
2NDB1ω1, if T1 is a Kirchhoff element,
1
2NDB2ω2, if T1 is a MR element,

(22)
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where B1 = [B̂T1 , B̃T2 ], B2 = [B̃T1 , B̂T2 ], ω1 = [uT
T1
, θT

T2
]T, and ω2 = [θT

T1
, uT

T2
]T. The jump is

given by

JθhK = {
J1ω1, if T1 is a Kirchhoff element,
J2ω2, if T1 is a MR element,

(23)

for J1 = [GT1 , −RT2 ] and J2 = [RT1 , −GT2 ]. Let Σ⋆ = 1
2J

T
⋆NDB⋆ and combine (22) and (23)

to get
⟨n · σ(θh)⟩ · JϑK = Σ⋆ω⋆, ⟨n · σ(ϑ)⟩ · JθhK = ΣT

⋆ω⋆,

when testing against the (combined) local basis functions. Thus the interior edge contributions to the
stiffness matrix, Ssym

1 and S
sym
2 , will be

Ssym
⋆ =

∫
E

(
Σ⋆ +ΣT

⋆

)
ds, for all E ∈ EI . (24)

4.3.2 Penalty term

Following (19) it is that

JθhK · JϑK = {
JT
1 J1ω1, if T1 is a Kirchhoff element,

JT
2 J2ω2, if T1 is a MR element,

when testing against the (combined) local basis functions, and the edge contributions to the stiffness
matrix, Sp

1 and S
p
2, are

Sp
⋆ = (2µ+ 2λ)γ

∫
E
h−1
E JT

⋆ J⋆ ds, for all E ∈ EI . (25)

4.4 Load vector

The right-hand side load of the matrix problem is obtained as

f =
∑
T

(f, v)T ,

and the element contribution is

fT = (f, v)T = |T |
∑
i

wif(xi)φ(xi), for all T ∈ Th, (26)

where {wi} and {xi} are the corresponding sets of quadrature weights and abscissas, respectively,
and φ = [φ1, . . . , φ6]

T is the local basis function vector.

4.5 Model refinement

Now assume that an initial solution uhK has been computed. To improve its accuracy MR elements are
introduced locally where the transversal force at the edges,

Ts =
(
∇ · σ(uhK)

)
· n+ ∂tMnt, (27)

where ∂t denotes the tangential derivative operator and Mnt = t ·
(
σ(uhK)·n

)
is the twisting moment,

is large in magnitude. However, in this case Mnt is edgewise constant (when using the lowest-order
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scheme with d = 2), and in order to approximate its tangential derivative patches of elements must be
considered. Thus, for simplicity, take

ηE := ∥Jσ(uhK) · nK∥2/h, for all E ∈ E, (28)

to substitute (27) as the edge refinement indicator. The normal derivative is approximated by the jump
in the bending moment divided by either: 1) the centroid-to-centroid distance between the neighbors
T1 and T2 when E ∈ EI ; or 2) the centroid-to-boundary distance on T should E ∈ EB .

A fixed-ratio 0 ≤ r ≤ 1 of the Kirchhoff elements carrying the largest refinement indicators ηT
will be replaced by MR elements. ηT is obtained by the weighted sum

ηT =

3∑
i=1

αiηE,i, with ηE,i as in (28) for E ⊂ ∂T, (29)

where αi = 1/2 if E ∈ EI (the edge refinement indicator is split equally between neighbors) and
αi = 1 otherwise. The accuracy of the improved displacement approximation uhC is compared to that
of uhK in terms of the global L2 norm of the relative error,

e =
(
u− uh⋆ , u− uh⋆

)1/2
Ω

/(u, u)
1/2
Ω ,

with u as the exact solution of (2).
It is stressed that (28) is nothing but a heuristic measure; an actual error indicator should be based

on duality techniques, in which both discretization and modeling errors are estimated, with respect to
a user-specified goal quantity (a functional of the numerical solution). (28) provides no error control,
and its sole purpose is to hint where the numerical solution may benefit from local model refinement.

4.6 Adaptive algorithm

A way to organize the computations is presented in Algorithm 1. The implementation may be aided
by the following practical advices:

• Let the solution vector store degrees of freedom associated with transverse displacements first,
and then for each introduced MR element, add its rotational degrees of freedom in consecutive
order (no renumbering of the degrees of freedom is required).

• The computational cost for solving the additional matrix problem, when combing plate models,
can be reduced by using a sparse storage format during the assembly processes. If relying
on a COO format, i.e., storing non-zero elements Sij in a list of (row, column, value)
tuples, only entries associated with refined elements and edges need to be reassembled. For
h-adaptivity this is possible albeit less straightforward. Note also that the load vector f need not
be recomputed; it can simply be padded with as many zeros as the number of added rotational
degrees of freedom. The largest cost, however, ought to come from solving the larger linear
system and not from its construction.

5 NUMERICAL EXAMPLES

Consider an isotropic and homogeneous material, represented by the unit square Ω = [0, 1]× [0, 1].
The plate is clamped at the boundary ∂Ω = {(x1, x2) : x1 = 0, x1 = 1, x2 = 0, x2 = 1}, and is

10



Algorithm 1: Model adaptive scheme

Data: triangulation {T} = Th and associated edges {E} = E
Result: FE solutions uhK and ω = (uhC , θ

h
C)

Kirchhoff plate model
forall T ∈ Th do

assemble element stiffness matrix ŜT according to (10)
assemble element load vector fT using (26)

end
forall E ∈ E do

assemble symmetry edge matrices Ŝsym
I and Ŝ

sym
B via (13)

assemble penalty edge matrices Ŝp
I and Ŝ

p
B according to (14)

end
construct sparse stiffness matrix SK

solve linear system uh
K = S−1

K fK (use that SK is symmetric positive definite)

Model refinement
forall E ∈ E do

compute edge refinement indicators ηE using (28)
end
select Kirchhoff elements to be substituted for MR elements based on (29)
introduce new rotational degrees of freedom on selected elements

Combined plate models
forall MR elements T ∈ Th do

assemble element stiffness matrices S̃T according to (17)
end
forall E ∈ EI where neighbors T1 and T2 are MR elements do

assemble symmetry edge matrices S̃sym
I via (20)

assemble penalty edge matrix S̃
p
I according to (21)

end
forall E ∈ EI where either T1 or T2 is a MR element do

assemble symmetry edge matrices Ssym
I by (24)

assemble penalty edge matrix S
p
I using (25)

end
forall E ∈ EB where T is a MR element do

assemble symmetry edge matrices S̃sym
B via (20)

assemble penalty edge matrix S̃
p
B according to (21)

end
construct sparse stiffness matrix SC (reuse previous assembly data) and pad fC with zeros
solve linear system ω = S−1

C fC (use that SC is symmetric positive definite)

11



subjected to the transverse surface load

f =
E

12(1− ν2)

(
12x2(x2 − 1)(5x21 − 5x1 + 1)(2x22(x2 − 1)2 + x1(x1 − 1)(5x22 − 5x2 + 1)+

12x1(x1 − 1)(5x22 − 5x2 + 1)(2x21(x1 − 1)2 + x2(x2 − 1)(5x21 − 5x1 + 1)
)
.

The exact solution of the MR formulation (2) for this plate problem was stated by Chinosi et. al. [7],

u(x1, x2) =
1
3x

3
1(x1 − 1)3x32(x2 − 1)3 − 2t2

5(1− ν)

(
x32(x2 − 1)3x1(x1 − 1)(5x21 − 5x1 + 1)+

x31(x1 − 1)3x2(x2 − 1)(5x22 − 5x2 + 1)
)
,

and

θ(x1, x2) =
[
x32(x2 − 1)3x21(x1 − 1)2(2x1 − 1) x31(x1 − 1)3x22(x2 − 1)2(2x2 − 1)

]T
.

Let E = 1, ν = 1/3, and set γ = 10k2 = 40 (sufficiently large by a margin). The computational
mesh, as shown in Figure 1, is dense in order to emphasize the modeling error. Th is of criss-cross
type, which is a mesh less sensitive to locking for low-order approximations due to large stabilization
parameters, see [4, Section 4.2] and [3, Section 7.2]. The homogeneous Dirichlet boundary condition
on the displacements is set strongly, whereas the condition is enforced weakly on the rotation vector
(but this is rather a matter of choice).

The problem was solved numerically for different plate thicknesses, ranging from t = 10−1 to
t = 10−4. The results are presented in Table 1, and indicate the relative importance of model re-
finement for thicker plates. The underlying combined models, which are independent of the plate
thickness, are shown in Figure 3. The distributions of MR elements were symmetric, as is the analyt-
ical displacement solution, visualized by isolines in Figure 2.

6 CONCLUSIONS

The introduced method for combing the Kirchhoff and MR plate models has a drawback: the number
of degrees of freedom becomes larger, as compared to a purely continuous method. Hence the sug-
gested approach may not be computationally competitive (at least not if the number of MR elements
is large). However, its real strength is another—the c/dG FEM is simple and straightforward to im-
plement: it is relatively easy to change the order d of the polynomial approximation (especially if the
approximating space for the rotation vector is spanned by the corresponding set of monomials). In
particular, there is no need for projections of the rotation vector in the shear energy functional.

The suggested c/dG FEM appears to be a viable choice in the context of model adaptivity for plate
theory. As for the (small) hierarchy comprising the Kirchhoff and Mindlin-Reissner plate models,
it still remains to develop reliable a posteriori error estimates, which separate the discretization and
modeling errors.
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Table 1: The relative displacement error in global L2 norm for various plate thicknesses

ref. ratio r t = 10−1 t = 10−2 t = 10−3 t = 10−4

0.00 1.182 · 10−1 1.664 · 10−3 4.008 · 10−4 3.887 · 10−4

0.20 1.084 · 10−1 1.486 · 10−3 3.900 · 10−4 3.880 · 10−4

0.40 9.366 · 10−2 1.259 · 10−3 3.811 · 10−4 3.874 · 10−4

0.60 7.611 · 10−2 9.529 · 10−4 3.697 · 10−4 3.868 · 10−4

0.80 3.592 · 10−2 4.983 · 10−4 3.582 · 10−4 3.860 · 10−4

0.90 1.262 · 10−2 2.994 · 10−4

0.95 3.214 · 10−3 2.278 · 10−4

1.00 1.836 · 10−4 2.113 · 10−4 3.489 · 10−4 3.851 · 10−4

Figure 1: The triangulation Th of Ω comprised 32 768 elements and 66 049 nodes
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Figure 2: Transverse displacements (isolines) for the MR plate model with t = 10−1
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(a) Refinement ratio r = 0.2 (b) Refinement ratio r = 0.4

(c) Refinement ratio r = 0.6 (d) Refinement ratio r = 0.8

Figure 3: The underlying combined plate models: distribution of Kirchhoff (light gray) and MR (dark
gray) elements
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