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Re
onstru
tion of diele
tri
s from experimental data viaa hybrid globally 
onvergent/adaptive inverse algorithmLarisa Beilina∗ Mi
hael V. Klibanov †September 8, 2010Abstra
tThe validity of a synthesis of a globally 
onvergent numeri
al method with theadaptive FEM te
hnique for a 
oe�
ient inverse problem is veri�ed on time resolvedexperimental data. Refra
tive indi
es, lo
ations and shapes of diele
tri
 abnormalitiesare a

urately imaged.Dedi
ated to the lasting memory of A
ademi
ian Mikhail M. Lavrentiev (1932-2010), oneof founders of the �eld of Inverse Problems.1 Introdu
tionIn [9℄ a globally 
onvergent numeri
al method for a Coe�
ient Inverse Problems (CIP) fora hyperboli
 PDE was developed. Next, a two-stage numeri
al pro
edure was proposed in[10, 11, 12℄. In this pro
edure the te
hnique of [9℄ is used as the �rst stage. Next, theAdaptive Finite Element method (adaptivity below) is used as the se
ond stage for there�nement. In [24℄ the �rst stage was veri�ed on blind experimental data. The goal ofthe 
urrent publi
ation is to demonstrate that the two-stage numeri
al pro
edure appliedto the same experimental data 
an signi�
antly improve imaging results 
ompared with the�rst stage only. Spe
i�
ally, we now a

urately re
onstru
t not only lo
ations and refra
tiveindi
es of diele
tri
 abnormalities, as it was in [24℄, but their shapes as well.The analyti
al part of this paper is fo
used on two re
ommendations for the mesh re�ne-ment in a posteriori error analysis for the adaptivity te
hnique. While the �rst re
ommen-dation was derived in our previous publi
ations [11, 12℄, the se
ond one is 
ompletely new.To derive this re
ommendation, we extensively use results of [12℄, where the framework of
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al S
ien
es, Chalmers University of Te
hnology and Gothenburg University,SE-42196 Gothenburg, Sweden, ( larisa�
halmers.se)
†Department of Mathemati
s and Statisti
s University of North Carolina at Charlotte, Charlotte, NC28223, USA, (mklibanv�un

.edu) 1



Fun
tional Analysis for the adaptivity for ill-posed problems was derived for the �rst time.We demonstrate numeri
ally that this broader mesh re�nement re
ommendation works well.The main new element in our a posteriori error analysis for the adaptivity is that we esti-mate now the a

ura
y of our approximation of the regularized 
oe�
ient on a 
ertain mesh.The latter in turn leads to this new mesh re�nement re
ommendation. Unlike this, previousworks on the adaptivity for CIPs were 
on
erned only with a

ura
y estimates of either theTikhonov fun
tional [11, 12℄ or of the Lagrangian [4℄-[8℄,[20℄. As a result, in publi
ations [4℄- [12℄ the mesh was re�ned in the regions where the modulus of the gradient of the Tikhonovfun
tional has attained its maximal values. In the 
urrent paper we add a new element viare�ning the mesh in neighborhoods of those grid points where the re
onstru
ted 
oe�
ientattains its maximal values (this 
oe�
ient is always positive). The �rst attempt to obtaina posteriori error estimate for the re
onstru
ted 
oe�
ient rather than for the Lagrangian,i.e. to obtain an analog of (4.33), was undertaken in [5℄ via 
onsidering the se
ond Fré
hetderivative of the Lagrangian, whi
h is somewhat 
lose to the lo
al strong 
onvexity propertyof Theorem 4.2. However, some fa
ts were not analyti
ally established in [5℄. Our derivationis 
ompletely di�erent from one in this referen
e.The main di�
ulty in applying the te
hnique of [9℄-[12℄ to our experimental data is
aused by a huge dis
repan
y between these data and 
omputationally simulated ones. Thisdis
repan
y 
an be seen via a visual 
omparison of Figures 2-a) and 2-b) (below). Be
auseof this dis
repan
y, 
onventional data denoising te
hniques, like, e.g. Fourier transform,Hilbert transform, spline interpolation, et
. provide only an insigni�
ant help in our 
ase.Hen
e, it is ne
essary to apply a radi
ally new data pre-pro
essing pro
edure as a 
ru
ialpreliminary step. The goal of this step is to obtain a

eptable boundary 
onditions, whi
hare used in our numeri
al method. This pro
edure is based on the intuition only. The singlejusti�
ation of it is the a

ura
y of re
onstru
tion results.Our data pre-pro
essing pro
edure 
onsists of three stages. First two stages were de-s
ribed in [24℄ (they were new at that time). Hen
e, they are presented only brie�y in thispaper for the 
onvenien
e of the reader. The third stage is new, sin
e it is designed solelyfor the adaptivity te
hnique. Our two-stage algorithm does not assume neither a knowl-edge of the ba
kground medium nor a knowledge of the presen
e/absen
e of small �sharp�abnormalities of our interest in the medium. It uses only the knowledge of the target 
o-e�
ient outside of the medium of interest. Appli
ations are in the dete
tion of explosives,sin
e their refra
tive indi
es usually are mu
h higher that those of regular materials, seehttp://www.
lipper
ontrols.
om. Other pro
edures of solving CIPs, whi
h do not rely onlo
ally 
onvergent algorithms, 
an be found in [2, 14, 21, 27, 29, 30℄.An ex
ellent a

ura
y of the blind re
onstru
tion of both lo
ations and refra
tive indi
esof diele
tri
 abnormalities in [24℄ has led to the statement there that the globally 
onvergentmethod of [9, 10℄ �is 
ompletely validated now�. The same is true for a new mathemati
almodel, whi
h was proposed in [10, 24℄ due to an approximation of this numeri
al te
hnique.That approximation is 
aused by the trun
ation of the large value s of the so-
alled pseudofrequen
y s > 0, whi
h is the parameter of the Lapla
e transform of the original hyperboli
PDE. Su
h an approximation is likely inevitable due to 
hallenges of the development of2



numeri
al methods for CIPs. Indeed, CIPs are both ill-posed and nonlinear. It is shownin [10, 24℄ that, from the analyti
al standpoint, the above trun
ation is neither better norworse than the 
lassi
al trun
ation of divergent asymptoti
 series in the Real Analysis.To explain our need for the above two-stage pro
edure, we note that the number 1/s
annot be made in�nitely small in pra
ti
al 
omputations. At the same time, 
onvergen
eestimates in global 
onvergen
e theorems of [9, 10℄ depend on the small parameter 1/s.Hen
e, in pra
ti
al terms, these theorems only guarantee that the solution obtained on the�rst stage is su�
iently 
lose to the 
orre
t solution. However, they do not guarantee that thedistan
e between 
omputed and 
orre
t solutions 
an be made in�nitely small. This opensthe door for a re�nement via a lo
ally 
onvergent te
hnique. Indeed, the key ingredient forany su
h te
hnique is a good �rst approximation for the solution. So, this approximationis provided on the globally 
onvergent stage. It is shown below that, in the 
ase of ourexperimental data, it is 
ru
ial that the good �rst guess for the solution taken from theglobally 
onvergent stage should be available for the adaptivity stage. On the other hand,it was demonstrated in se
tion 8 of [24℄ that if a modi�ed gradient method does not use thesolution obtained on the �rst stage, then its performan
e is poor.We have 
hosen the adaptivity be
ause of our previous experien
e of [10℄-[12℄. It wasshown in these referen
es that the quasi-Newton method taken alone does not re�ne solutionof the globally 
onvergent stage. On the other hand, it was also demonstrated in thesereferen
es that a signi�
ant re�nement is a
hieved if adaptive meshes are used. The sameobservation is presented in this paper. The adaptivity for CIPs was �rst proposed in [4, 5℄and was developed further in [6, 7, 8, 20℄. It 
onsists in minimizing either the Tikhonovfun
tional [10℄-[12℄ or the asso
iated Lagrangian [4℄-[8℄,[20℄ on a sequen
e of lo
ally re�nedmeshes in the FEM.The new mesh is obtained from the previous one via a lo
al mesh re�nement in neighbor-hoods of those grid points, whi
h provide the maximal input in the error of the 
al
ulation ofthat fun
tional. Thus, the main question in the adaptivity is about the identi�
ation of thosesubdomains. This question is addressed via a posteriori error analysis. It is important thatthe error analysis does not use a knowledge of the exa
t solution. Instead, one should knowan upper bound of that solution, and su
h a bound should be imposed a priori, in a

ordan
ewith the Tikhonov prin
iple [34℄. It is worthy to mention that there is no rigorous guaranteethat su
h lo
al mesh re�nements indeed improve the a

ura
y of the solution. Nevertheless,su
h improvements were 
onstantly observed in 
omputations of [4℄-[8℄, [10℄-[12℄, as well asin the 
urrent paper.In se
tion 2 we formulate both forward and inverse problems of our mathemati
al model.In se
tion 3 we brie�y outline the globally 
onvergent stage of our two-stage numeri
al pro
e-dure. We refer to [9, 10℄ for details in
luding formulations and proofs of global 
onvergen
etheorems. The main new analyti
al part is in se
tion 4, where we justify the new meshre�nement rule. In se
tion 5 we des
ribe the experimental setup. In se
tion 6 the pro
edureof data simulation is des
ribed. This pro
edure is an integral part of our data pre-pro
essingte
hnique. In se
tion 7 we des
ribe how do we pre-pro
ess our experimental data. In se
tion8 we present our imaging results. Dis
ussion is presented in se
tion 9.3



2 Statements of forward and inverse problemsAs the forward problem, we 
onsider the following Cau
hy problem
εr(x)utt = ∆u, in R3 × (0,∞) , (2.1)
u (x, 0) = 0, ut (x, 0) = δ (x− x0) . (2.2)Here εr(x) is the spatially variable diele
tri
 
onstant (relative diele
tri
 permittivity),

εr(x) =
ε (x)

ε0
,

√
εr(x) = n (x) =

c0
c (x)

≥ 1, (2.3)where ε0 is the diele
tri
 permittivity of the va
uum (whi
h we assume to be the same as onein the air), ε (x) is the spatially variable diele
tri
 permittivity of the medium of interest,
n (x) is the refra
tive index of the medium of interest, c (x) is the speed of the propagationof the EM �eld in this medium, and c0 is the speed of light in the va
uum, whi
h we assumeto be the same as one in the air. We point out that it is the refra
tive index rather than thediele
tri
 
onstant, whi
h is measured in physi
s. The assumption n (x) ≥ 1 means that thespeed of the EM �eld propagation in the medium does not ex
eed the one in the air, whi
his reasonable.Let Ω ⊂ R3 be a 
onvex bounded domain with the boundary ∂Ω ∈ C3. We assume thatthe 
oe�
ient εr (x) of equation (2.1) is su
h that

εr (x) ∈ (1, d], εr (x) = 1 for x ∈ R3�Ω, (2.4)
εr (x) ∈ C2

(
R3

)
. (2.5)The inequality εr (x) ≥ 1 follows from (2.3). An upper estimate for the 
onstant d > 1 isassumed to be known, although we do not assume that the number d− 1 is small.Inverse Problem. Suppose that the 
oe�
ient εr (x) satis�es (2.4) and (2.5). Assumethat the fun
tion εr (x) is unknown in the domain Ω. Determine the fun
tion εr (x) for

x ∈ Ω, assuming that the following fun
tion g (x, t) is known for a single sour
e position
x0 /∈ Ω

u (x, t) = g (x, t) , ∀ (x, t) ∈ ∂Ω × (0,∞) . (2.6)The assumption εr (x) = 1 for x ∈ R3�Ω means that one has air outside of the medium ofinterest Ω. The question of uniqueness of this Inverse Problem is a well known long standingopen question. It is addressed positively only if the fun
tion δ(x − x0) in (2.2) is repla
edwith a fun
tion f(x) su
h that f(x) 6= 0, ∀x ∈ Ω. Corresponding uniqueness theorems wereproven via the method of Carleman estimates [22, 23℄, also see a re
ent survey in [35℄. Still,due to the applied aspe
t, it is worthy to develop numeri
al methods, assuming that theuniqueness question is addressed positively.Remark 2.1. In se
tion 9 we dis
uss some dis
repan
ies between our mathemati
almodel and the reality. 4



3 Brief outline of the globally 
onvergent stageSin
e the globally 
onvergent stage was des
ribed in [9, 10℄, we outline it only brie�y here re-ferring for details to [9, 10℄. In parti
ular, these details in
lude global 
onvergen
e theorems.Consider the Lapla
e transform of the solution of the problem (2.1), (2.2),
w (x, s) =

∞∫

0

u (x, t) e−stdt, s ≥ s = const. > 0. (3.1)Then w (x, s) > 0 for su�
iently large s. Consider the fun
tion q (x, s) = ∂s (s−2 lnw (x, s)) .Under 
ertain 
onditions
Dα

xD
k
s

(
lnw (x, s)

s2

)
= O

(
1

sk+1

)
, s→ ∞, k = 0, 1; |α| ≤ 2. (3.2)We obtain a nonlinear integral di�erential equation for the fun
tion q for x ∈ Ω, s ∈ (s,∞)with Volterra integrals, in whi
h the s-integration is 
arried out from an arbitrary s ≥ sto ∞. One of the key features of this equation is that the unknown 
oe�
ient εr (x) is notinvolved in it. The Diri
hlet boundary 
ondition for the fun
tion q(x, s) at ∂Ω is generatedby the fun
tion g in (2.6). If one would approximate the fun
tion q well, then one wouldalso approximate the fun
tion εr (x) well via ba
kwards 
omputations. The main di�
ultythen is to solve the resulting Diri
hlet boundary value problem for q. To do this, we �rsttrun
ate those Volterra integrals at a large value s := s > s. However, we 
omplementthat trun
ation by the so-
alled �tail fun
tion� V (x, s) ≈ s−2 lnw (x, s) . The tail fun
tionis unknown, although, it is small for large s be
ause of (3.2). Hen
e, the resulting equationfor q 
ontains two unknown fun
tions: q and V . The reason why we 
an approximate bothof them is that we treat them separately: while we approximate q via inner iterations, weapproximate V via outer iterations.To solve the resulting problem, we divide the interval [s, s] into N small subintervals. Weassume that the fun
tion q is 
onstant with respe
t to s on ea
h of those subintervals. As aresult, using the so-
alled Carleman Weight Fun
tion, whi
h depends only on s, we obtain

N ellipti
 Diri
hlet boundary value problems for fun
tions qn (x) , where n is the numberof the subinterval. Nonlinearities in these equations are mitigated due to the presen
e ofthe Carleman Weight Fun
tion. Hen
e, we 
an solve ea
h of these Diri
hlet boundary valueproblems iteratively via solving a linear problem on ea
h step. Be
ause originally we hadVolterra integrals with respe
t to s, we 
an solve these problems sequentially starting from q1.Let qn,k be the approximation for qn obtained on the inner iteration number k and Vn,k (x) bethe 
orresponding approximation for the tail. Then we �nd the 
orresponding approximation
ε
(n,k)
r (x) for the fun
tion εr (x) , solve the problem (2.1), (2.2) with εr := ε

(n,k)
r (x), 
al
ulatethe Lapla
e transform wn.k+1 (x, s) via (3.1) for it and �nd a new approximation Vn,k+1 (x) :=

s−2 lnwn,k+1 (x, s) for the tail. Convergen
e 
riteria for this algorithm are des
ribed in [9,10, 11, 12, 24℄. In parti
ular, in our 
omputations for experimental data we use the 
riteriondes
ribed in subse
tion 7.1 of [24℄. 5



4 The Adaptivity4.1 PreliminariesFirst, we need to make some remarks about the material of this se
tion. It is well knownthat our CIP is a very 
omplex problem with many yet unknown fa
tors. It is naturaltherefore that some simpli�ed assumptions should be made when developing the adaptivitytheory for this CIP. We now list main su
h assumptions. First, in this se
tion we make someassumptions about the smoothness of the data. They are 
ertainly not true for the problem(2.1 ), (2.2), be
ause of the δ− fun
tion in the initial 
ondition. However, if one wouldrepla
e the δ (x− x0) with its approximation δθ (x− x0) (below), then smoothness would berestored, although it is outside of the s
ope of this paper to go further in this dire
tion.Also, in our 
omputations we use the plane wave rather than the point sour
e in (2.2).This is be
ause we did not yet adapt our numeri
al 
ode for the 
ase of the point sour
e.We have used the point sour
e in (2.2) only to ensure the asymptoti
 behavior (3.2). Inour numeri
al studies we verify this behavior 
omputationally, see subse
tion 7.2 in [9℄. Wewere unable to arrange the experimental signal to be
ome a plane wave. Nevertheless, ourdata pre-pro
essing pro
edure �enfor
es� it to be
ome a plane wave, see subse
tion 7.1. Inaddition we impose an over-smoothness assumption of the fun
tion f (x, t) when we requirethree rather than two t-derivatives of this fun
tion. In addition, sin
e we extensively useresults of the book [25℄, where only the Diri
hlet boundary 
ondition is 
onsidered, we workonly with the Diri
hlet boundary 
ondition in subse
tion 4.3. It seems from �5 of Chapter 4of [25℄ that the Neumann boundary 
ondition 
an also be used, so as a lesser smoothness of
f (x, t) . However, these assumptions would require a substantial and spa
e 
onsuming e�ortfrom us to work out results for forward hyperboli
 problems, whi
h would be similar withones of Chapter 4 of [25℄. Thus, for the sake of brevity, as well as be
ause we are interestedin inverse rather than forward problems, we have de
ided to use the Diri
hlet boundary
ondition in subse
tion 4.3.Next, we assume in subse
tion 4.4 that the result of subse
tion 4.3 is also valid for theNeumann boundary 
ondition. Still, we point out that the resulting se
ond mesh re�ne-ment re
ommendation works quite well numeri
ally. Note that if we would repla
e in (4.5)
u |ST

− g(x, t) with ∂nu |ST
− p(x, t) (see (4.2) for notations), then we would work withDiri
hlet boundary 
onditions in analogs of (4.6), (4.7), and our se
ond mesh re�nement re
-ommendation would be 
ompletely rigorous then. Another dis
repan
y between our theoryand and numer
ial studies is des
ribed in subse
tion 6.2. In this se
tion we use sometimesthe same notations for solutions of di�erent PDEs. However, it is always 
lear from the
ontext what is what here.The fun
tion δθ (x− x0) is de�ned as

δθ (x− x0) =

{
Cθ exp

(
1

|x−x0|2−θ2

)
, |x− x0| < θ

0, |x− x0| ≥ θ
,

∫

R3

δθ (x− x0) dx = 1, (4.1)where θ > 0 is so small that δθ (x− x0) = 0 for x ∈ Ω (re
all that x0 6= Ω) and the 
onstant6



Cθ > 0 is 
hosen to ensure the value of the integral in (4.1).Let Ω ⊂ R3 be a bounded domain with ∂Ω ∈ C2. We assume that there exists afun
tion a (x) ∈ C∞ (
Ω

) su
h that a |∂Ω= 0, ∂na |∂Ω= 1. An example of su
h a fun
tion was
onstru
ted in [11℄. Let T > 0 be a number. Denote
QT = Ω × (0, T ) , ST = ∂Ω × (0, T ) ,Ωt = {(x, τ) : x ∈ Ω, τ = t} , ∀t ∈ [0, T ] .We 
an 
onsider (2.1), (2.2), (2.6) as an initial boundary value problem for equation (2.1)in (R3�Ω) × (0, T ) . Sin
e by (2.4) εr (x) = 1 outside of Ω, this problem 
an be uniquelysolved. Hen
e, the fun
tion u (x, t) is known in (R3�Ω) × (0, T ) . Hen
e, the following twofun
tions g, p are known at ST

u |ST
= g (x, t) , ∂nu |ST

= p (x, t) . (4.2)Following [11,12℄, we assume everywhere in this se
tion that there exist fun
tions F,W su
hthat
F,W ∈ H5 (QT ) ,

∂nF |ST
= p (x, t) , ∂nW |ST

= g (x, t) , (4.3)
∂i

tF (x, 0) = ∂i
tW (x, 0) = 0, i = 1, ..., 4.Fix a su�
iently small number ω ∈ (0, 1) . Keeping in mind that we need to work withpie
ewise linear fun
tions, introdu
e the set Y of fun
tions c (x) satisfying the following
onditions

Y =

{
c ∈ C

(
Ω

)
∩H1 (Ω) , ∂xi

c ∈ L∞ (Ω) , i = 1, 2, 3
c (x) ∈ (1 − ω, d+ ω) for x ∈ Ω.

(4.4)It is 
onvenient to introdu
e the set of fun
tions Z,
Z =

{
f : f ∈ C

(
Ω

)
∩H1 (Ω) , ∂xi

f ∈ L∞ (Ω)
}
.Hen
e, Y ⊂ Z. We turn Z into a Banah spa
e via equipping it with the following norm

‖f‖Z = ‖f‖
C(Ω) +

3∑

i=1

‖∂xi
f‖L∞(Ω) .4.2 The �rst mesh re�nement re
ommendationLet the fun
tion z̺ (t) ∈ C∞ [0, T ] , z̺(t) = 0 for t ∈ [T − ̺, T ] and z̺ (t) = 1 for t ∈

[0, T − 2̺] , where ̺ > 0 is a su�
iently small number. We have introdu
ed this fun
tionto ensure the 
ompatibility 
ondition for the solution of the adjoint problem (4.7) (below).Now we 
onstru
t the Tikhonov regularization fun
tional as
E(εr) =

1

2

∫

ST

(u |ST
−g(x, t))2z̺ (t) dSxdt+

1

2
γ

∫

Ω

(εr − εglob
r )2 dx, (4.5)7



where εglob
r is the solution obtained on the globally 
onvergent stage of our two-stage numer-i
al pro
edure and γ is the regularization parameter. We assume in (4.5) that the fun
tion

εr ∈ Y, where the set Y was de�ned in (4.4). Our goal now is to �nd a minimizer εγ
r ofthis fun
tional, whi
h is 
alled regularized solution in the theory of ill-posed problems. Ina

ordan
e with one of ba
kbone prin
iples of the regularization theory [34℄, we assume thatthere exists the unique exa
t solution ε∗r of the original inverse problem satisfying 
onditions(2.4), (2.5). In parti
ular, this means that ε∗r ∈ Y. By the global 
onvergen
e theorems of[9, 10℄, the fun
tion εglob

r provides a good approximation for ε∗r. Hen
e, below in this se
tionwe work only in a small neighborhood, in terms of the norm in the spa
e Z (subse
tion 4.1),of the exa
t solution ε∗r. Thus, we assume that there exists unique minimizer εγ
r of the fun
-tional (2.2) in this neighborhood (also, see next subse
tion about existen
e and uniqueness).Consider the solution of the following problem, whi
h we 
all state problem,

εrutt −△u = 0, (x, t) ∈ QT ,

u(x, 0) = ut(x, 0) = 0,

∂nu |ST
= p (x, t) , (x, t) ∈ ST .

(4.6)In addition, let the fun
tion λ (x, t) be the solution of the following so-
alled adjoint problemwhere the time is reversed
εrλtt −△λ = 0, (x, t) ∈ QT ,

λ(x, T ) = λt(x, T ) = 0,

∂nλ |ST
= z̺ (t) (g − u) (x, t) , (x, t) ∈ ST .

(4.7)Using results of books [19, 25℄ as well as (4.3) and above 
onditions imposed on the domain
Ω, it was established in [11℄ that ea
h of problems (4.6), (4.7) has unique weak solution andthis solution belongs to H4 (QT ) .Consider a mesh in the domain Ω on whi
h the fun
tional E(εr) is minimized. Let h bethe maximal grid step size of this mesh. Suppose that there exists a unique minimizer εr,hof the fun
tional (4.5) on this mesh in that small neighborhood of ε∗r. It was shown in [11℄that the following approximate error estimate holds for the fun
tional E(εr)

|E(εγ
r ) − E(εr,h)| ≤ |E ′ (εr,h) (εγ

r − εr,h)| , (4.8)where E ′ is the Fré
het derivative of the fun
tional E. The formula for E ′ (εr) for εr ∈ Y is[11, 12℄
E ′ (εr) (x) = γ

(
εr − εglob

r

)
−

T∫

0

utλtdt, x ∈ Ω. (4.9)Hen
e, we have to solve the following equation with respe
t to the fun
tion εr

E ′ (εr) (x) = 0, x ∈ Ω. (4.10)8



By (4.8) and (4.9) the following approximate error estimate for the fun
tional (4.5) is true
|E(εγ

r ) −E(εr,h)| ≤ C ‖E ′ (εr,h)‖L∞(Ω) ‖∇εγ
r‖L∞(Ω) h, (4.11)where

|E ′ (εr,h) (x)| =

∣∣∣∣∣∣
γ

(
εr,h − εglob

r,h

)
−

T∫

0

(utλt) (x, t, εr,h) dt

∣∣∣∣∣∣
, x ∈ Ω, (4.12)where fun
tions u (x, t, εr,h) and λ (x, t, εr,h) are weak solutions of problems (4.6) and (4.7)respe
tively for the 
ase when the 
oe�
ient εr in (4.6) and (4.7) is repla
ed with εr,h. Hereand below C = C (ω,Ω) > 0 denotes several 
onstants depending only on the number ωin (4.4) and the domain Ω. Here εglob

r,h is the linear interpolation of the fun
tion εglob
r on theabove mesh. Hen
e, we should try to redu
e the norm ‖E ′ (εr,h)‖L∞(Ω) via the next lo
almesh re�nement, in order to redu
e the error of 
omputing the minimizer of the Tikhonovfun
tional on the next re�ned mesh. To do this, we re�ne mesh in neighborhoods of thosegrid points where the fun
tion |E ′ (εr,h) (x)| attains its maximal values. As it was statedin Introdu
tion, although there is no rigorous guarantee that su
h lo
al mesh re�nementsimprove the a

ura
y of the solution, we have always observed this numeri
ally. These
onsiderations led us in [11℄ to the followingFirst Mesh Re�nement Re
ommendation. Re�ne the mesh in neighborhoods ofthose grid points x ∈ Ω where the fun
tion |E ′ (εr,h) (x)| de�ned in (4.12) attains its maximalvalues. More pre
isely, re�ne the mesh in su
h subdomains of the domain Ω where

|E ′ (εr,h) (x)| ≥ κ max
Ω

|E ′ (εr,h) (x)| , (4.13)where κ ∈ (0, 1) is the toleran
e number.If we would take in (4.13) κ ≈ 1, then we would re�ne the mesh in too narrow regions.On the other hand, if we would take κ ≈ 0, then we would re�ne the mesh in almost theentire domain Ω, whi
h is not e�
ient. Hen
e, the parameter κ should be 
hosen numeri
ally.Below we take in (4.13) κ = 0.8 for all 
omputational meshes.So, numeri
ally we pro
eed as follows for both �rst and se
ond mesh re�nement re
om-mendations. On ea
h mesh we need to approximately solve equation (4.10). We start our
omputations on the same mesh on whi
h the globally 
onvergent method has worked. In ourexperien
e, this mesh does not provide an improvement of the image. For ea
h newly re�nedmesh we �rst linearly interpolate the fun
tion εglob
r (x) on it. Sin
e this fun
tion is 
omputedon the globally 
onvergent stage as a linear 
ombination of �nite elements forming the initialmesh and sin
e these �nite elements are pie
ewise linear fun
tions, then subsequent linearinterpolations on �ner meshes do not 
hange this fun
tion. On ea
h mesh we iterativelyupdate approximations εn

r,h of the fun
tion εr,h. To do so, we use the quasi-Newton methodwith the 
lassi
 BFGS update formula with the limited storage [28℄. Denote
gn(x) = α(εn

r,h − εglob
r ) (x) −

∫ T

0

(uhtλht)
(
x, t, εn

r,h

)
dt,9



where fun
tions uh

(
x, t, εn

r,h

)
, λh

(
x, t, εn

r,h

) are FEM solutions of state and adjoint problems(4.6), (4.7) with εr := εn
r,h. We stop 
omputing εn

r,h if either ||gn||L2(Ω) ≤ 10−5 or norms
||gn||L2(Ω) are stabilized. For a given mesh, let εr,h := εn

r,h be the last 
omputed fun
tion onwhi
h we have stopped. Next, we 
ompute the fun
tion |E ′ (εr,h) (x)| in (4.12) and 
onsiderall grid points in this mesh where (4.13) is ful�lled. Next, we re�ne the mesh in neighborhoodsof all grid points satisfying (4.13). The stopping 
riterion for the mesh re�nement pro
ess isdes
ribed in sub-subse
tion 8.2.1.4.3 Some estimates for a forward problem for a hyperboli
 PDEIn this subse
tion we obtain some estimates, whi
h are used in the next subse
tion for thederivation of the se
ond mesh re�nement re
ommendation. Let the fun
tion f (x, t) be su
hthat for k = 0, 1, 2, 3

∂k
t f ∈ L2 (Ωt) , ∀t ∈ [0, T ] and ‖fk (t)‖L∞(0,T ) <∞, where fk (t) =

∥∥∂k
t f (x, t)

∥∥
L2(Ωt).(4.14)Let the fun
tion c ∈ Y, where the set Y was de�ned in (4.4). Consider the following initialboundary value problem

c (x) utt = ∆u+ f in QT ,

u(x, 0) = ut(x, 0) = 0,

u |ST
= 0.

(4.15)Although upper estimates for the solution of this and more general hyperboli
 problems arewell known of 
ourse, see Chapter 4 of [25℄, 
onstants in those estimates are not spe
i�ed inthe way we need them to be spe
i�ed. More pre
isely, in order to derive our se
ond meshre�nement re
ommendation, we need to spe
ify the dependen
e that upper estimate from thefun
tion c (x) for the 
ase of the problem (4.15). To do this, we will naturally use Theorem4.1 of Chapter 4 of [25℄. The de�nition of the weak H1 (QT )−solution of the problem (4.15)
an be found in �5 of Chapter 4 of [25℄ as well as in se
tion 7.2 of [19℄.Theorem 4.1. Let in (4.15) the 
oe�
ient c (x) ∈ Y , the fun
tion f satis�es (4.14)and ∂k
t f (x, 0) = 0 in Ω for k = 0, 1, 2. As above, assume that ∂Ω ∈ C2. Denote

m = max
Ω

c (x) ,M = ‖∇c‖L∞(Ω) .Then there exists unique weak solution u ∈ H1 (QT ) of the problem (4.15). Furthermore,
∂k

t u, ∂
j
t (∂xi

u) ∈ L2 (Ωt) , ∀t ∈ [0, T ] , k = 0, ..., 3; j = 0, 1, 2; i = 1, 2, 3, (4.16)
u, ut ∈ H2 (Ωt) . (4.17)In addition, fun
tions u, ∂tu ∈ C

(
Ωt

)
, ∀t ∈ [0, T ] . Let u (t) = ‖ut (x, t)‖C(Ωt) . Then thefun
tion u (t) ∈ L∞ (0, T ) and the following estimate holds

‖u (t)‖L∞(0,T ) ≤ Cm exp (CMT )
(
‖ftt‖L2(QT ) + ‖f1 (t)‖L∞(0,T )

)
. (4.18)10



Proof. Denote b(x) = 1/c (x) . Then equation (4.15) 
an be rewritten as
utt = ∇ · (b (x)∇u) −∇b∇u+ f̃ (x, t) , (4.19)where f̃ (x, t) = b(x)f (x, t) . Obviously,
‖∇b‖L∞(Ω) ≤

M

(1 − ω)2
,
∣∣∣f̃

∣∣∣ ≤ |f |
1 − ω

. (4.20)Applying to equation (4.19) with initial and boundary 
onditions (4.15) Theorem 4.1 andformula (4.11) of Chapter 4 of [25℄, in 
ombination with Theorems 3.1 and 3.2 from the same
hapter, we obtain that there exists unique weak solution u of this problem and 
onditions(4.16), (4.17) are satis�ed. Hen
e, transforming ba
k equation (4.19) into equation (4.15),we obtain
∆ut = c (x) (ut)tt − ft(x, t) in Ωt, (4.21)

ut |∂Ω = 0.We 
an 
onsider (4.21) as the Diri
hlet boundary value problem for the Lapla
e equation in
Ω1t. Hen
e, using Theorem 4 of �2 of Chapter 4 of [26℄, we obtain that ut ∈ H2 (Ωt) and

‖ut‖H2(Ωt)
≤ C

(
m

∥∥∂3
t u

∥∥
L2(Ωt)

+ ‖ft‖L2(Ωt)

)
. (4.22)Hen
e, we now need to estimate the norm ‖∂3

t u‖L2(Ωt)
. Consider the solution of the followinginitial boundary value problem

wtt = ∇ · (b(x)∇w) −∇b∇w + ftt (x, t) ,

w (x, 0) = wt (x, 0) = 0, (4.23)
w |ST

= 0.Then Theorem 4.1 of Chapter 4 of [25℄ in 
ombination with Theorems 3.1 and 3.2 from thesame 
hapter imply that there exists unique weak solution w ∈ H1 (QT ) of this problem andalso
∂r

tw, ∂
p
t (∂xi

w) ∈ L2 (Ωt) , ∀t ∈ [0, T ] , r = 0, 1, 2; p = 0, 1; i = 1, 2, 3. (4.24)It is easy to verify that a
tually w = utt. To do this in a simple way, one 
an �rst derivefrom (4.23) the initial boundary value problem for the fun
tion v,
v (x, t) =

t∫

0

w (x, τ) dτ.Next, using (4.24), one 
an establish that w = vt. One 
an similarly establish that v = ut.We now estimate the fun
tion w using standard energy estimates. By (4.24) we 
an
onsider fun
tions ∂t∂xi
w. Multiply both sides of equation (4.23) by 2wt and integrate the11



resulting equation over the domain Ω × (0, t) for an arbitrary t ∈ (0, T ) . Using integrationby parts, we obtain
∫

Ωt

w2
t (x, t) dx+ 2

∫

Ω

b (x) dx

t∫

0

∂τ (∇w (x, τ))2 dτ =

−2

t∫

0

∫

Ω

∇b (x)∇w (x, τ)wτ (x, τ) dxdτ + 2

t∫

0

∫

Ω

fττ (x, τ)wτ (x, τ) dxdτ.Using Cau
hy-S
hwarz inequality and (4.20), we obtain from here
∫

Ωt

[
w2

t + (∇w)2] (x, t) dx ≤ CM

t∫

0

∫

Ω

[
w2

t + (∇w)2
]
(x, τ) dxdτ + C

t∫

0

∫

Ω

f 2
ττ (x, τ) dxdτ.Therefore, Gronwall's inequality leads to

∫

Ωt

[
w2

t + (∇w)2] (x, t) dx ≤ C exp (CMt) ‖ftt‖2
L2(QT ) , ∀t ∈ (0, T ) . (4.25)Sin
e wt = ∂3

t u, then (4.22) and (4.25) imply that
‖ut‖H2(Ωt)

≤ C
(
m exp (CMt) ‖ftt‖L2(QT ) + ‖ft‖L2(Ωt)

)
. (4.26)Now, by the Sobolev embedding theoremH2 (Ωt) ⊂ C

(
Ω

) and ‖p‖
C(Ωt) ≤ C ‖p‖H2(Ωt)

, ∀p ∈
H2 (Ωt) . Hen
e, using (4.26), we obtain

‖ut‖C(Ωt) ≤ C
(
m exp (CMt) ‖ftt‖L2(QT ) + ‖ft‖L2(Ωt)

)
, ∀t ∈ (0, T ) .Using this inequality and (4.14), we obtain (4.18). �4.4 The se
ond mesh re�nement re
ommendationWhile in the subse
tion 4.3 we have estimated only the a

ura
y of the 
al
ulation of theTikhonov fun
tional on a mesh, now we want to estimate the distan
e between the minimizerof this fun
tional on that mesh and the regularized solution. It is 
lear that this estimateis more valuable than the estimate (4.11). The pri
e we pay for this is that we impose amore stringent 
ondition on the regularized solution εγ

r , see below in this subse
tion. In thissubse
tion we use results of [12℄ as well as of subse
tion 4.2.Consider a triangulation Tr of the domain Ω1 with a rather 
oarse mesh. We obtaina polygonal domain σ ⊆ Ω1. All tetrahedra forming �ner meshes will be 
ontained in σ.12



Suppose that we have 
onstru
ted an ex
eedingly �ne mesh. Sin
e 
orresponding �niteelements are pie
ewise linear fun
tions, 
onsider all possible linear 
ombinations of thesefun
tions. Then we obtain a �nite dimensional spa
e H and we equip H with the L2 (σ)norm. Indeed, all norms in �nite dimensional spa
es are equivalent and it is quite 
onvenientto work with the L2 (σ) norm. So, the above mentioned more stringent 
ondition we imposeon the regularized 
oe�
ient εγ
r is that we assume now that the fun
tion εγ

r ∈ H ratherthan being an element of an in�nitely dimensional spa
e. However, given that we work withproblems of pra
ti
al 
omputations in whi
h all fun
tions are represented via �nite elements,this 
ondition is not an over-restri
tive one.Sin
e it is not e�
ient to use an ex
eedingly large number of �nite elements in 
omputa-tions, the idea of the adaptivity is to approximate εγ
r via minimizing of the fun
tional (4.5)on a sequen
e of lo
ally re�ned meshes. We assume below that �nite elements forming ea
hsu
h mesh form a subspa
e of the spa
e H . This assumption is reasonable, see arguments inse
tion 2 of [12℄.Let δ > 0 be a small positive number 
hara
terizing the level of error in the data g̃,see details in formula (7.2) of [12℄. Sin
e global 
onvergen
e theorems of [9, 10℄ guaranteethat the fun
tion εglob

r ∈ Y provides a good approximation for the 
orre
t solution, then weassume that
∥∥εglob

r − ε∗r
∥∥

L2(σ)
≤ δµ1 , µ1 = const. ∈ (0, 1) , (4.27)

γ = δµ2 , µ2 = const. ∈ (0,min (µ1, 2 (1 − µ1))) ,where µ1 is a number of ones 
hoi
e. Re
all that the set of fun
tions Y is de�ned in (4.4).In the regularization theory one usually studies the question about behavior of regularizedsolutions when δ → 0. So, as soon as the distan
e between a regularized and exa
t solutionsis 
omparable with δ, the pro
ess is stopped [17, 34℄. On the other hand, given a number
η ∈ (0, 1) , we obviously have that δη >> δ for su�
iently small values of δ. This justi�esthe assumption (4.27).Let β ∈ (0, 1) be an arbitrary number. Denote

Vβδµ2 (εγ
r ) =

{
f ∈ H : ‖f − εγ

r‖L2(σ) < βδµ2

}
,

V(1+
√

2)δµ1
(ε∗r) =

{
f ∈ H : ‖f − ε∗r‖L2(σ) <

(
1 +

√
2
)
δµ1

}
.Let Y ′ be the set of restri
tions of all fun
tions c ∈ Y on the polygonal domain σ. CombiningLemma 2.1, Theorem 7.2 and Theorem 7.3 of [12℄, we 
ome up with the followingTheorem 4.2. Assume that the domain Ω satis�es 
onditions formulated in subse
tion4.1. In addition, assume that 
onditions (4.3) and (4.27) hold. Suppose that 
onditions(4.27) are satis�ed and the fun
tion ε∗r satis�es 
onditions (2.4), (2.5). Consider a lo
allyre�ned mesh with the maximal grid step size h and let Mh ⊂ H be the subspa
e of the spa
e

H generated by tetrahedral �nite elements 
orresponding to this mesh. Then there exists asu�
iently small δ0 ∈ (0, 1) su
h that for all δ ∈ (0, δ0] the following assertions 1-5 are true:1. The fun
tional (4.5) has unique minimizer εγ
r ∈ V(1+

√
2)δµ1

(ε∗r) .13



2. V(1+
√

2)δµ1
(ε∗r) ⊂ Vβδµ2 (εγ

r ) ⊂ Y ′.3. The fun
tional (4.5) is strongly 
onvex in Vβδµ2 (εγ
r ) .4. There exists a su�
iently small h0 = h0

(
δ0, ‖∇εγ

r‖L∞(σ)

) su
h that for all h ∈ (0, h0]the fun
tional (4.5) has unique minimizer εr,h on the set Vβδµ2 (εγ
r ) ∩Mh.5. The following a posteriori a

ura
y estimate of the re
onstru
tion of the regularized
oe�
ient holds

‖εγ
r − εr,h‖L2(σ) ≤

3

γ

∥∥∥Ẽ ′ (εr,h)
∥∥∥

L2(σ)
, (4.28)where the fun
tion Ẽ ′ (εr,h) (x) has the form

Ẽ ′ (εr,h) (x) = γ
(
εr,h − εglob

r

)
−

T∫

0

(utλt) (x, t, εr,h) dt, x ∈ σ, (4.29)where fun
tions u (x, t, εr,h) and λ (x, t, εr,h) are weak solutions of problems (4.6) and (4.7),respe
tively, for the 
ase when the 
oe�
ient εr in (4.6) and (4.7) is repla
ed with εr,h and,by the de�nition εr,h (x) = 1 for x ∈ Ω�σ.Using Theorems 4.1 and 4.2, we now derive the se
ond mesh re�nement re
ommenda-tion. As we have pointed out in subse
tion 4.1, we have 
onsidered the Diri
hlet boundary
ondition in Theorem 4.1 instead of the Neumann boundary 
ondition for 
onvenien
e andbrevity only. So, we assume now that Theorem 4.1 is true for the 
ase of the Neumann
ondition in (4.15). Then fun
tions ut (x, t, εr,h) , λt (x, t, εr,h) ∈ C
(
Ω1t

)
, ∀t ∈ [0, T ] . Denote

uh (t) = ‖ut (x, t, εr,h)‖C(Ω1t) , λh (t) = ‖λt (x, t, εr,h)‖C(Ω1t) , (4.30)
mh = max

Ω
εr,h (x) ,Mh = ‖∇εr,h‖L∞(Ω) . (4.31)Considering fun
tions [11℄

û (x, t, εr,h) = u (x, t, εr,h) − F, λ̂ = λ (x, t, εr,h) − (W − a (x) u) z̺ (t)and using Theorem 4.1, we obtain
uh (t) ≤ C1mh exp (CMhT ) , λh (t) ≤ C1mh exp (CMhT ) . (4.32)Here and below C1 = C1 (Ω, ω, F,W, z̺) > 0 denotes di�erent positive 
onstants dependingon parameters listed. Hen
e, (4.27)-(4.32) lead toTheorem 4.3. Assume that 
onditions of Theorem 4.2 are satis�ed and the maximalgrid step size h of the lo
ally re�ned mesh under 
onsideration is su
h that h ∈ (0, h0] , where

h0 was de�ned in assertion number 4 of Theorem 4.2. Then there exists unique minimizer
εr,h of the fun
tional (4.5) on the set Vβδµ2 (εγ

r ) ∩ Mh. In addition, assume that Theorem4.1 is true for the 
ase of the Neumann boundary 
ondition in (4.15). Then the following aposteriori a

ura
y estimate of the re
onstru
tion of the regularized 
oe�
ient holds
‖εr,h − εγ

r‖L2(σ) ≤
C2

1

δµ2

m2
h exp (CMhT ) , (4.33)14



where the number µ2 was de�ned in (4.27).Re
all that the idea of the adaptivity is to re�ne mesh lo
ally at those regions whi
hprovide the biggest impa
t in a posteriori error estimate. Hen
e, it follows from (4.31)and (4.33) that we should re�ne mesh in neighborhoods of those grid points where: (a)the 
oe�
ient εr,h attains its maximal its value mh and also (b) where the modulus of thegradient of this 
oe�
ient attains its maximal value Mh. Thus, we obtainThe Se
ond Mesh Re�nement Re
ommendation. Re�ne the mesh in su
h subdo-mains of the domain Ω where
εr,h (x) ≥ α1 max

Ω
εr,h (x) and |∇εr,h(x)| ≥ α2 max

Ω
|∇εr,h (x)| , (4.34)where α1, α2 ∈ (0, 1) are toleran
e numbers.Remarks 4.1.1. It is important that (4.33) estimates the a

ura
y of the re
onstru
tion of the regu-larized 
oe�
ient on that mesh via numbers mh and Mh, whi
h are dire
tly related to thefun
tion εr,h, and this fun
tion is 
al
ulated already as the minimizer of the fun
tional (4.5).In other words, numbers mh and Mh are known, so as subdomains of the domain Ω wherevalues of fun
tions εr,h (x) , |∇εr,h| are 
lose to mh,Mh.2. It is possible to obtain a sharper estimate than one in (4.33) via removing the large mul-tiplier δ−µ2 . This would require more a

urate estimates of fun
tions u (x, t, εr,h) , λ (x, t, εr,h) .However, we are not doing this here for brevity, sin
e the main goal of the estimate (4.33) isto provide the se
ond mesh re�nement re
ommendation.3. Sin
e we want to image small �sharp� in
lusions, within whi
h εr > 1, then we
an approximately assume that the maximal value of |∇εr,h (x)| (in neighborhoods of thosein
lusions) is a
hieved at about the same points where the maximal value of the fun
tion

εr,h (x) is a
hieved. For this reason we use only the �rst formula (4.34) in our 
omputations.Note that it is easier to verify this formula 
omputationally than the se
ond one.5 The Experimental SetupFor brevity below x denotes both a ve
tor x = (x, y, z) ∈ R3 and the �rst 
omponent ofthis ve
tor, where z is the verti
al 
oordinate. It is always 
lear from the 
ontext what iswhat there. Our sour
e/dete
tors 
on�guration is s
hemati
ally depi
ted on Figure 1. Thesour
e has generated an ele
tromagneti
 (EM) wave. Only one 
omponent of the ve
tor of theele
tri
 �eld was generated by our sour
e. And only one 
omponent of this �eld was measuredat the bottom side of the re
tangular prism Ω depi
ted on Figure 1. We do not know whi
h
omponent was measured: we have only worked with the measured time dependent voltagein our 
omputations. This prism is our 
omputational domain Ω. It 
onsisted of Styrofoam.Styrofoam is a material, whose relative permittivity εr ≈ 1, i.e. the same as one in the air.The sizes of Ω were 240 mm×140 mm × 240 mm. Hen
e, sizes of front and ba
k sides ofthe prism of Figure 1 are 240 mm× 240 mm and sizes of other four sides are 240 mm× 140mm. The distan
e between the wave sour
e and the top side of the domain Ω was 130 mm.15



Figure 1: S
hemati
 diagram of the sour
e/dete
tors 
on�guration. a) The re
tangular prism de-pi
ts our 
omputational domain Ω . Only a single sour
e lo
ation outside of this prism was used.Tomographi
 measurements of the s
attered time resolved EM wave were 
ondu
ted on the bottomside of this prism. b) S
hemati
 diagram of lo
ations of dete
tors on the bottom side of the prism
Ω. The distan
e between neighboring dete
tors was 10 mm.The initializing pulse was 100 ps duration. Sin
e the speed of the EM wave propagation inthe air is 0.3 mm/ps, then it requires 433 ps ≈ 130/03 ps for this wave to travel from thesour
e to the top boundary of Ω. Hen
e, it follows from (5.1) the wave did not yet rea
h thedomain Ω during the 100 ps duration of this pulse. The initializing pulse was

f(t) =

{
≈ A sin

(
π
50
τ
)
, for τ ∈ (0, 100) ps,

0, for τ > 100 ps, (5.1)where A is the amplitude. Our data pro
essing pro
edure does not rely on a knowledge of
A. The time resolved signal was measured at some lo
ations of the dete
tor on the bottomside of the prism Ω, as indi
ated on Figure 1-b). On ea
h dete
tor lo
ation this signal wasmeasured with the time interval of 20 pi
ose
onds between two 
onse
utive measurementsfor the total period of 12,300 pi
ose
onds=12.3 nanose
onds. First, we were putting thedete
tor at one lo
ation, sent the pulse and measured the time resolved s
attering wave atthis lo
ation. Next, we have moved the dete
tor me
hani
ally in a neighboring lo
ationand repeated the measurement, et
.. Hen
e, it is reasonable to assume in the mathemati
al16



model that the wave �eld was measured simultaneously at all those dete
tors. However,measurements was not 
arried out at other sides of this prism, see Figure 1. The reasonwhy we have not performed measurements on other �ve sides of the re
tangular prism Ωis that we have observed in our 
omputational simulations that these sides were mu
h lesssensitive to the presen
e of diele
tri
 abnormalities than the bottom side of Ω. Thus, wehave pres
ribed to these sides the same values of the fun
tion g (x, t) in (6) whi
h we haveobtained in our 
omputational simulation of solving the problem (47) (subse
tion 6.1) for
εr (x) ≡ 1, i.e. for the 
ase when in
lusion is not present.We had two measurements at ea
h dete
tor lo
ation. First, we have measured the ref-eren
e signal when the in
lusion was not present. Se
ond, we have measured the signalwhen the in
lusion was present. In prin
iple, our te
hnique allows the measurement of thereferen
e signal only at a few lo
ations outside of the medium of interest: for the 
alibrationpurposes. The only reason why we have measured the referen
e signal for ea
h lo
ation ofthe dete
tor was that our 
urrent numeri
al implementation works only with the 
ase whenthe initializing wave �eld is a plane wave. On the other hand, it was impossible to arrangea true plane wave in that experiment and so we had a spheri
al wave.Our dimensionless 
omputational domain Ω, the dimensionless distan
e h̃ between twoneighboring dete
tors and the dimensionless time t were [24℄

Ω = {(x, y, z) ∈ [−2.4, 2.4] × [−1.4, 1.4] × [−2.4, 2.4]} , h̃ = 0.2, t ∈ (0, 12) . (5.2)Let P be the bottom side of the domain Ω in (5.2),
P = {(x, y, z) : (x, y) ∈ [−2.4, 2.4] × [−1.4, 1.4], z = −2.4} . (5.3)6 Data Simulation6.1 Data simulationSin
e the 
omputationally simulated data play an important role in our data pre-pro
essingpro
edure, we outline here the solution of the forward problem for equation (2.1). Sin
e itis pra
ti
ally impossible to solve the PDE (1) in the entire spa
e R3, we have solved it ina larger re
tangular prism G = {(x, y, z) ∈ [−3, 3] × [−2, 2] × [−5, 5]} . So, by (5.2) Ω ⊂ G.Our initializing plane wave was v (t) ,

v (t) =

{
sin (ωt) , for t ∈ (

0, 2π
ω

)
,

0, for t > 2π
ω
, ω = 7.

(6.1)Let ∂G1 and ∂G2 be respe
tively top and bottom sides of G and ∂G3 = ∂G� (∂G1 ∪ ∂G2)be the rest of the boundary of G. We have numeri
ally solved the following initial boundary
17



value problem
εr (x) utt = △u, in G× (0, T ), T = 12,

u(x, 0) = 0, ut(x, 0) = 0, in G,
∂nu

∣∣
∂G1

= v (t) , on ∂G1 × (0, 2π/ω],

∂nu
∣∣
∂G1

= −∂tu, on ∂G1 × (t1, T ),

∂nu
∣∣
∂G2

= −∂tu, on ∂G2 × (0, T ),

∂nu
∣∣
∂G3

= 0, on ∂G3 × (0, T ),

(6.2)
In the 
ase when the data are simulated for the referen
e medium, we have in ( 6.2) εr (x) ≡ 1.We denote this solution as u1 (x, t) . Thus, in (6.2) the plane wave is initialized at the topboundary ∂G1 for times t ∈ (0, 2π/ω] and propagates intoG . First order absorbing boundary
onditions [18℄ were used on the top boundary for t ∈ (2π/ω, T ) as well as on the bottomboundary ∂G2 for t ∈ (0, T ). The zero Neumann boundary 
ondition was used on the restof the boundary of the prism G. The latter boundary 
ondition is used be
ause the �pure�plane wave with εr (x) ≡ 1 satis�es this 
ondition. The problem (6.2) was solved by thehybrid FEM/FDM method des
ribed in [13℄. In this method, FDM is used outside of thedomain Ω, i.e. in G�Ω, and FEM, is used inside of Ω. The step size in the overlappingregion was h̃ = 0.2 whi
h is the same as the distan
e between any two neighboring dete
tors.6.2 Solving problems (4.6) and (4.7) in the adaptivityAlthough the above theory says that we should solve problems (4.6) and (4.7) in the domain
Ω, we a
tually solve both of them in larger domains. Namely, in our 
omputations theproblem (4.6) is solved in the domain G with boundary 
onditions (6.2). And the problem(4.7) is solved in su
h a part of the domain G whi
h is above the bottom side P of theprism Ω, i.e. in the subdomain G′ = G ∩ {z > −2.4} . Let Pobs = {z = −2.4} ∩ G. Thenby (45) the re
tangle P ⊂ Pobs. When solving the problem (4.7), we use the boundary
ondition ∂nλ |Pobs

= (g − u) |Pobs
, where g is our pre-pro
essed experimental data. Hen
e,we a
tually need to know the fun
tion g (x, t) not only on the re
tangle P but also on awider re
tangle Pobs. In other words, we need to extend this fun
tion somehow from P to

Pobs�P. In general, this is a problem, whi
h is similar with the very 
ompli
ated problem ofanalyti
al 
ontinuation. However, using some features of our spe
i�
 arrangement, we havefound a di�erent way of this extension via the so-
alled third stage of our data immersingpro
edure, whi
h is des
ribed in subse
tion 7.4. We use the absorbing boundary 
ondition
∂nλ = −∂tλ at {z = 5} ∩ G′ and we use the zero Neumann boundary 
ondition at the restof the boundary of the domain G′. We believe that the above theory of the adaptivity 
anbe extended to this 
ase, although we have not yet done this. So, the latter is anotherdis
repan
y, in addition to those des
ribed in subse
tion 4.1, between our theory of se
tion4 and numeri
al studies. 18



7 Data Pre-Pro
essingThe main idea of this pro
edure is to immerse the experimental data in the 
omputationallysimulated ones. We have done this in three stages des
ribed in follow up sub-se
tions ofthis se
tion. The third stage is new, whereas �rst two stages were des
ribed in [24℄. Thedata pre-pro
essing pro
edure provides us with the boundary data at ∂Ω, whi
h we use inour 
omputations. Re
all that we have not 
arried out measurements at ∂Ω�P and havepres
ribed
u (x, t) |∂Ω�P := u1 (x, t) |∂Ω�P ,where u1 (x, t) is the solution of the problem (47) with εr (x) ≡ 1, see se
tion 5. So, in thisse
tion we des
ribe how we pre-pro
ess the data only at the bottom side P of the re
tangularprism Ω.
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a) b)Figure 2: This �gure explains the idea of the �rst stage of data immersing in the time domain. We haveintentionally set to zero the small amplitude �u
tuations before that �rst burst. a) Resulting superimposedexperimental 
urves. The red 
urve (thin) is for the referen
e signal and the blue 
urve (thi
k) is for thesignal with a diele
tri
 in
lusion present, both at the same lo
ation xm ∈ P of the dete
tor number m. b) Thered 
urve (thin) displays 
omputationally simulated data u1 (xm, t). The blue 
urve (thi
k) uincl (xm, t) =

u1 (xm, t − ∆tm)Km
exp/M

m
exp represents a sample of the immersed experimental data in the time domain atthe same dete
tor lo
ation xm ∈ P . It is only the blue 
urve (thi
k) with whi
h we work further. The red
urve (thin) is displayed for the illustration purpose only.7.1 First immersing in the time domain (the �rst immersing stage)Let xm ∈ P be the dete
tor number m at the bottom side P of the prism Ω, see (5.3) for P .Samples of unpro
essed experimental data 
an be found on Figure 2 of [24℄. As in [24℄, wework with the �rst burst only. Figure 2-a) displays a sample of the �rst burst after a partialdenoising via the Fourier transform, see details in [24℄. We have de
ided to �immerse� ourexperimental data in the 
omputationally simulated data using the following two peaks forea
h dete
tor xm :1. The largest peak in the red 
urve (thin line, referen
e medium) with the peak valueof Mm

exp. 19



a) ε(2,2)
r = 1.25, n(2,2) = 1.12 b) ε(4,2)

r = 2.49, n(4,2) = 1.58 
) ε(5,2)
r = 3.9, n(5,2) = 1.97Figure 3: Spatial distributions of iteratively 
omputed diele
tri
 
onstants ε

(n,k)
r and refra
-tive indexes n(n,k) =

√
ε
(n,k)
r for the Cube No. 1 (Table 1). The �nal image 
orresponds to

n(5,2) := nglob = 1.97. See Table 2 for the re
onstru
tion a

ura
y. Re
all that refra
tive indi
esrather than diele
tri
 
onstants are a
tually measured experimentally.2. The next peak after it in the blue 
urve (thi
k line, the medium with a diele
tri
in
lusion present) with the peak value of Km
exp. This next peak was 
hosen be
ause thepresen
e of a diele
tri
 in
lusion results in a time delay of the EM wave, see (2.3).Re
all that the fun
tion u1 (x, t) is the solution of the problem (6.2) with 
omputationallysimulated data for εr ≡ 1. Obviously u1

(
x(1), t

)
= u1

(
x(2), t

)
, ∀x(1), x(2) ∈ P, ∀t ∈ (0, T ) .Let t := tsimref be the time of the �rst arrival of the 
omputationally simulated plane wave

u1 (x, t) at the plane P . In other words, for all x ∈ P we have u1 (x, t) = 0 for t < tsimref and
u1 (x, t) > 0 for su
h moments of time t > tsimref that are rather 
lose to tsimref with, see thereferen
e 
urve on Fig. 2-b).We point out that amplitudes of largest peaks of experimental 
urves for the referen
emedium were di�erent for di�erent dete
tors. Be
ause it was impossible experimentallyarrange the true plane wave for the referen
e medium, we a
tually had a spheri
al wave.Nevertheless, we have �for
ed� it to be a plane wave via applying the �rst stage of our dataimmersing pro
edure.Let y = yref

m (t) be the experimentally measured 
urve at the dete
tor {xm} for thereferen
e medium, i.e. when the diele
tri
 in
lusion was not present. Let the above 
hosenlargest peak of this 
urve is a
hieved at {
t = tref

m

} and its value is yref
m

(
tref
m

)
= Mm

exp. Let
y = yincl

m (t) be the experimentally measured 
urve at the dete
tor {xm} for the 
ase whenin
lusion is present. We 
hoose su
h a lo
al maximum of the fun
tion y = yincl
m (t) whi
his a
hieved at the �rst point {

t = tincl
m

} whi
h follows after the point {
t = tref

m

}
, see Fig.2-a). Let yincl

m

(
tincl
m

)
= Km

exp. So, Km
exp is the value of the latter peak, see Figure 2-a). Onall dete
tors we have observed that Km

exp ≤Mm
exp. This is be
ause the presen
e of diele
tri
sde
reases the amplitude of the EM wave. We enfor
e

Km
exp := Mm

exp, if Km
exp

Mm
exp

≥ 2

3
. (7.1)20



a) ε(2,2)
r = 1.22, n(2,2) = 1.10 b) ε(4,2)

r = 2.04, n(4,2) = 1.43 
) εr(5, 5) = 3.19, n(5,5) = 1.79Figure 4: Spatial distributions of iteratively 
omputed diele
tri
 
onstants ε
(n,k)
r and refra
tiveindexes n(n,k) =

√
ε
(n,k)
r for the Cube No. 2 (Table 2). The �nal image 
orresponds to n(5,5) :=

nglob = 1.79, whi
h is only 4.5% error 
ompared with the experiment, see Table 2. Re
all thatrefra
tive indi
es rather than diele
tri
 
onstants are a
tually measured experimentally.Now we are ready to immerse our experimental data in the 
omputationally simulateddata. Let ∆tm = tincl
m − tref

m be the time delay between two above 
hosen peaks, see Figure2-a). Then we set
uincl (xm, t) =

Km
exp

Mm
exp

u1 (xm, t− ∆tm) . (7.2)So, (7.2) is our �rst immersed data in the time domain for the dete
tor numberm. Figure 2-b)illustrates (7.2). By (7.1) and (7.2) ifKm
exp/M

m
exp ≥ 2/3, then we set uincl (xm, t) := u1 (xm, t) .After this data immersing, we use only the 
urve uincl (xm, t) and do not use the 
urve forthe referen
e medium anymore. We 
annot rigorously justify our above de
ision to workwith those peaks only. However, sin
e our results of blind imaging in [24℄ were very a

urateones, then this justi�es our purely intuitive 
hoi
e.7.2 The se
ond stage of data immersingNext, we apply the Lapla
e transform (3.1) to ea
h fun
tion uincl (xm, t) for nine values of

s = 3.5, 4, ..., 7.5. Denote wincl (xm, s) the Lapla
e transform of the fun
tion uincl (xm, t) . Let
w̃incl (xm, s) = −s−2 lnwincl (xm, s) and wincl (x, s) be the standard linear interpolation of thevalues {w̃incl (xm, s)} over the plane P . We have observed that the fun
tion wincl (x, s) is verynoisy with respe
t to x ∈ P . Hen
e, we have applied a smoothing pro
edure to the fun
tion
wincl (xm, s) with respe
t to (x, y) ∈ P for ea
h of those nine values of s. Spe
i�
ally, wehave used the Lowess �tting pro
edure in the 2D 
ase, whi
h we took from MATLABR 2009.We have obtained the fun
tion wsmooth (x, s) . Let w1 (x, s) , x ∈ P be the Lapla
e transformof the fun
tion u1 (x, t) , i.e. for the 
ase of the plane wave propagating in the air. Then we21
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) t = 12.0 d) t = 12.0Figure 5: a),
) The fun
tion g (x, t) , x ∈ P for 
ube No.1 (Table 1). This is the fun
tion whi
h isobtained via the �rst stage of data immersing pro
edure, i.e. this is the fun
tion uincl (x, t) , x ∈ P.However, to solve the problem (15) in the adaptivity, we need to know this fun
tion at a widerre
tangle x ∈ Pobs, see subse
tion 6.2. So, sin
e P ⊂⊂ Pobs, we need to extend somehow the fun
tion
g (x, t) from P to Pobs. This extension is 
arried out via the third stage of our data immersingpro
edure des
ribed in subse
tion 7.4. b),d) present the resulting immersed data with β = 0.1.

22



�nally set for ea
h of those nine values of s
wimmers (x, s) =

{
wsmooth (x, s) , if wsmooth (x, s) ≥ 0.985 maxP wsmooth (x, s) ,

−s−2 lnw1 (x, s) , otherwise,see Figure 5 in [24℄. So, we use the fun
tion wimmers (x, s) to obtain Diri
hlet boundary
onditions for above mentioned ellipti
 equations for fun
tions qn of the globally 
onvergentmethod (se
tion 2).7.3 Re
onstru
tion by the globally 
onvergent methodIt was shown in [24℄ that �rst and se
ond immersing stages of two previous subse
tions aresu�
ient for the globally 
onvergent algorithm. Our diele
tri
 abnormalities to be imagedwere two wooden 
ubes, see Table 1. Let CL be the 
enter line, i.e. the straight line whi
his orthogonal to the plane P and whi
h passes through the sour
e of EM waves (Figure 1).Then CL = {(x, y, z) : x = y = 0} . We test our two-stage numeri
al pro
edure on two setsof experimental data. So, the 
enter of our �rst 
ube was on CL, and the 
enter of these
ond 
ube was o� CL by 0.2 in dimensionless 
oordinates, whi
h is equivalent with 10mm. Images are presented on Figures 3 and 4. One 
an see from Table 2 that the error ofthe re
onstru
tion of refra
tive indi
es is a few per
ent. The same 
on
lusion was drawn in[24℄. At the same time, it is 
lear from Figures 3 and 4 that it is desirable to improve imagesof shapes of these 
ubes. And this is why we use the adaptivity te
hnique on the se
ondstage.Cube number Original sizes, mm Dimensionless sizes Dimensionless 
oordinates of 
enters1 40 × 40 × 40 0.8 × 0.8 × 0.8 (0, 0,−1.2)2 60 × 60 × 60 1.2 × 1.2 × 1.2 (0.2, 0,−1.2)Table 1: Sizes and 
oordinates of 
enters of two wooden 
ubes used in experimentsCube number Computed n := nglob =
√
εglob

r Measured n, error Comput. error1 1.97 2.07, 11% 4.8%2 1.79 1.71, 3.5% 4.5%Table 2: Computed refra
tive indi
es n := nglob =

√
εglob
r and ones dire
tly measured by theWaveguide Method7.4 The third stage of data immersingThis stage is new, sin
e it was not a part of [24℄. The fun
tion uincl(xm, t) obtained in (7.2) isvery noisy with respe
t to xm ∈ P , see for example Figures 5-a), 
) for this fun
tion. We know23



this fun
tion only at the bottom side P of the re
tangular prism Ω. However, it was pointedout in subse
tion 6.2 that in order to solve the adjoint problem, we a
tually need to knowthis fun
tion on the bigger re
tangle Pobs = {(x, y, z) : (x, y) ∈ [−3, 3] × [−2, 2], z = −2.4} .So, sin
e our experimental data were measured on a smaller re
tangle P only, we need to
omplement them somehow on the set Pobs�P. To do so, we have de
ided to solve theproblem (6.2) with a 
ertain 
oe�
ient εr: to 
omplement the data on Pobs�P. Let u (x, t)be this solution. Then we treat values of u (x, t) |Pobs
as a 
ertain part of boundary values

g |Pobs
when solving the adjoint problem (4.7). In other words, this solution provides us witha new pie
e of data at the entire re
tangle Pobs. Hen
e, the question now is: How to 
hoosethe 
oe�
ient εr in equation (6.2) for this third immersing stage?We have de
ided to take in equation (6.2) the 
oe�
ient εglob

r (x) , whi
h was obtainedon the globally 
onvergent stage of our two-stage numeri
al pro
edure, see Figures 3 and 4as well as Table 2. Let Uref (x, t) be the solution of the problem ( 6.2) with εr (x) := εglob
r

(x) . Thus, we de�ne our se
ond immersed data in the time domain as
uimmers(x, t)|Pobs

=

{
uincl (x, t) , if uincl (x, t) ≥ βmaxP (uincl (x, t)) and x ∈ P,
Uref (x, t) , otherwise, (7.3)where the fun
tion uincl (x, t) is the standard linear interpolation of values uincl (xm, t) in(7.2) over the re
tangle P . In parti
ular, (7.3) implies that uimmers(x, t) = Uref (x, t) for x ∈

Pobs \ P. In (7.3) the parameter β ∈ (0, 1) should be 
hosen in numeri
al experiments. Thisparameter 
hara
terizes the amount of information whi
h we take from the �rst immersedexperimental data in (7.2). Comparison of Figures 5-a), 
) with Figures 5-b), d) shows thatthe third stage of data immersing helps not only to obtain the data for x ∈ Pobs \ P (ratherthan for x ∈ P only), but also to signi�
antly de
rease the noisy 
omponent of the dataresulting from the �rst immersing stage. We also show numeri
ally below (Figure 10) thatthe 
hange of the parameter β in the wide range β ∈ (0.1, 0.985) does not signi�
antly a�e
timaging results.Thus, we now got a �double use� of the solution obtained on the globally 
onvergent stage.First, for the data immersing via (7.3). Se
ond, as the starting point for the adaptivityte
hnique.8 Re
onstru
tion ResultsWhile Figures 3-
) and 4-
) display re
onstru
tion results via the globally 
onvergent stage,we present in this se
tion re�ned results whi
h were obtained on the adaptivity stage. Weuse in this se
tion both �rst and se
ond mesh re�nement re
ommendations of se
tion 4.
24



εr,h ≈ 3.9, nglob =
√
εr,h ≈ 1.97Figure 6: The re
onstru
tion result for the 1st stage of the adaptivity for the 
ube No. 1. Maximalvalues of the imaged 
oe�
ient are shown for the third re�ned mesh. The shape is not yet wellre
onstru
ted, although a 
omparison with Fig. 3-
) shows an improvement. The refra
tive index isre
onstru
ted a

urately (Table 2).8.1 Some details of the numeri
al implementation of the adaptivityRe
all that by the �rst mesh re�nement re
ommendation we re�ne mesh lo
ally in su
h asubdomain of the domain Ω where

|E ′ (εr,h) (x)| ≥ κ max
Ω

|E ′ (εr,h) (x)| , (8.1)where κ = const ∈ (0, 1) is the toleran
e number of our 
hoi
e. The 
hoi
e of κ depends on
on
rete values of |E ′ (εr,h) (x)| and this should be done in numeri
al experiments. Belowwe take in (8.1 ) κ = 0.8 for all 
omputational meshes. Just as in [10, 11, 12℄, we have useda 
ut-o� parameter Bcut on all re�ned meshes for the re
onstru
ted 
oe�
ient εr,h. Namely,we took
εr,h (x) =

{
εr,h (x) , if |εr,h (x) − εglob

r,h (x) | ≥ Bcut,

εglob
r,h (x) , elsewhere. (8.2)Our numeri
al experien
e of previous publi
ations [10, 11, 12℄ has shown that it is im-portant to use in the adaptive algorithm box 
onstrains for the re
onstru
ted 
oe�
ient viaimposing that 1 ≤ εr,h (x) ≤ d. While the inequality εr,h (x) ≥ 1 follows from physi
s, see(2.3), we �nd a good estimate for the upper bound d on the basis of 
omputed refra
tiveindi
es from globally 
onvergent part, i.e. on the basis of the se
ond 
olumn of Table 2.Con
rete values of Bcut and d 
an be found in subse
tions below.25



εr,h ≈ 3.9, nglob =
√
εr,h ≈ 1.97Figure 7: The re
onstru
tion result for the 2nd stage of the adaptivity for the 
ube No. 1. Thinlines (blue) indi
ate the 
orre
t 
ubi
al shape. Comparison with Fig. 6 shows an improvement of theimage. The refra
tive index is re
onstru
ted a

urately (Table 2).8.2 Re
onstru
tion results for the Cube No. 1The fun
tion εglob

r (x) , whi
h 
orresponds to Fig. 3-
), was taken as the starting point inadaptivity te
hnique on all meshes, as well as the one generating the fun
tion Uref in (7.3).We took in (8.2) Bcut = 2 for all re�nements of the mesh. Sin
e by Table 2 max εglob
r (x) =

(1.97)2 ≈ 3.9, we enfor
e that the 
oe�
ient εr(x) belongs to the following set of admissibleparameters εr(x) ∈ CM = {1 ≤ εr(x) ≤ 4.4}.8.2.1 The �rst stage of the mesh re�nementOn this stage we re�ne mesh lo
ally in the following two types of subdomains of the domain
Ω : 1. The one where we follow the First Mesh Re�nement Re
ommendation. That is, were�ne mesh in all regions where (51) is ful�lled.2. In addition, following the Se
ond Mesh Re�nement Re
ommendation and the thirdRemark 4.1, we re�ne the in su
h a subdomain where the 
oe�
ient imaged on the globally
onvergent stage attains values whi
h are su�
iently 
lose to its maximal value. In otherwords, we re�ne mesh in all regions where εglob

r (x) ≥ αmaxΩ ε
glob
r (x), where the parameter

α ∈ (0, 1) is 
hosen in numeri
al experiments. In all 
al
ulations below we took
α = 0.2, β = 0.985, γ = 0.001, (8.3)where γ is the regularization parameter of the Tikhonov fun
tional (13).26



First, we use the same 
oarse mesh as the one on the globally 
onvergent stage. Just asin [10℄-[12℄, we have not observed any improvement of the image. Next, we use adaptivelylo
ally re�ned meshes. Let ΓT = Pobs × (0, T ) . To �gure out the stopping 
riterion withrespe
t to the mesh re�nements, we pro
eed similarly with Table 2 of [10℄ and Table 1of [11℄. Namely, let εr,h (x) be the approximation for the true 
oe�
ient εr (x) , whi
h isobtained on a 
ertain mesh, and u be the 
orresponding solution of the forward problem(6.2). So, we analyze the behavior of 
omputed L2-norms of ‖u− uimmers‖L2(ΓT ) . We haveobserved that these norms de
rease with the number of mesh re�nements. Next, this normslightly in
reases on the 4th re�nement. This is the same behavior as one in [10, 11℄. Hen
e,we take the 
oe�
ient εr (x) obtained after three mesh re�nements as our �nal solutionon the �rst stage of the adaptive algorithm. The resulting image is shown on Figure 6.Comparison of Figures 3-
) and 6 shows that the image of Fig. 6 is better than one of Fig.3-
), whereas refra
tive indi
es are the same. However, the shape of the in
lusion is not yetimaged well, although the size of the abnormality is 
omputed rather well.8.2.2 The se
ond stage of the mesh re�nementOne 
an derive from Fig. 6 that maximal values of the re
onstru
ted 
oe�
ient are a
hievedin the subdomain Ω2,

Ω2 = {(x, y, z) : (x, y) ∈ [−0.5, 0.5] × [−0.6, 0.6] × [−1.4,−0.5]} . (8.4)Let εr,h (x) be the 
oe�
ient imaged on the �rst stage of the mesh re�nement pro
ess. On these
ond mesh re�nement stage we follow only the Se
ond Mesh Re�nement Re
ommendationand do not use the �rst one. Thus, we re�ne the mesh lo
ally only in neighborhoods of thosegrid points where
x ∈

{
εr (x) ≥ αmax

Ω
εr (x)

}
∩ Ω2, (8.5)where α is taken from (8.3). The same stopping 
riterion for the number of mesh re�nementsas one above was used. Figure 7 displays the �nal image after four mesh re�nements.Comparison of Figs. 7 and 6 shows an improvement of the image due to the se
ond stage ofthe adaptivity.8.3 Re
onstru
tion results for the Cube No. 2We now apply the above adaptive two-stage te
hnique to re
onstru
t the Cube No. 2 of Table1. In doing so, we again get the �rst guess from the globally 
onvergent method, see Fig.4-
) and Table 2. Be
ause of Table 2, we 
onsider the following set of admissible parameters

εr(x) ∈ CM = {1 ≤ εr(x) ≤ 3.3}. Let j be the number of iterations in the quasi-Newtonmethod on the 1st stage of the adaptivity. On all re�ned meshes we have 
hosen the 
ut-o�parameters in (8.2) as: Bcut = 0.91 for j = 1, 2, for j = 3, Bcut = 1.1 and Bcut = 2 for j > 3.27



εr,h ≈ 2.52, nglob =
√
εr,h ≈ 1.59Figure 8: The re
onstru
tion result for the 1st stage of the adaptivity for the 
ube No. 2. Onlymaximal values of the imaged 
oe�
ient are shown for the 3rd re�ned mesh. The shape of the �nalimaged 
oe�
ient is better than one on Fig. 4-
). However, the imaged refra
tive index is loweredby about 19% 
ompared with the imaged on the globally 
onvergent stage.

εr,h ≈ 3.0, nglob =
√
εr,h ≈ 1.73Figure 9: The �nal re
onstru
tion result for the 
ube No. 2. Only the �nal, 3rd mesh re�nement,is shown. The imaged 
oe�
ient εr (x) = 1 outside of these images. All three 
omponents: shape,lo
ation and refra
tive index are imaged with a very good a

ura
y.28



8.3.1 The �rst stage of the mesh re�nementAs in the 
ase of 
ube No. 1, the use of the same mesh as one in the globally 
onvergentmethod, did not lead to an improvement of the image. Again, just as in the 
ase of the�rst 
ube, we re�ne the mesh in all regions where both �rst and se
ond mesh re�nementre
ommendations work, i.e. in all regions where the inequality (8.1) with κ = 0.8 is valid, aswell as in all regions where εglob
r (x) ≥ αmaxΩ ε

glob
r (x) .We have used parameters (8.3) as wellas the same stopping 
riterion for the number of mesh re�nements as one in sub-subse
tion8.2.1. Be
ause of this 
riterion, we have stopped on the 3th mesh re�nement. The �nal imageof the �rst stage of the adaptivity is displayed on Fig. 8. Comparing this image with oneon Fig. 4-
) and with Table 2, we observe a slight improvement of the imaged shape whilethe value of the refra
tive index has de
reased by about 19%. In addition, we observe thatwe have a
tually obtained two dis
onne
ted imaged in
lusions.8.3.2 The se
ond stage of the mesh re�nementWe use the same pro
edure as one for the �rst 
ube. First, we have to �gure out an analogof the domain Ω2 in (8.4). To de�ne upper and lower boundaries for the verti
al 
oordinate

z of the subdomain of lo
al mesh re�nements, we have de
ided to use again the informationobtained on the globally 
onvergent stage. We see on Fig. 4-
) that, unlike Fig. 8, we haveonly a single rather than two in
lusions. Hen
e, we have de
ided to re�ne mesh, in terms ofthe verti
al 
oordinate z as follows:1. The top boundary ztop should be slightly below the low boundary of the small imagedin
lusion of Fig. 8.2. The low boundary zlow should be slightly below the bottom of the larger imagedin
lusion of Fig. 8.3. Boundaries with respe
t to horizontal 
oordinates (x, y) of the mesh re�nementsubdomain were determined from the 
riterion εr (x) ≥ αmaxΩ εr (x) for values of εr (x) ,whi
h is similar with (8.5). Consider the subdomain Ω3 ⊂ Ω, where
Ω3 = {(x, y, z) : (x, y) ∈ [−0.6, 0.6] × [−0.6, 0.6] × [−1.8,−0.8]} .So, we re�ne the mesh, using the 
riterion (8.5), in whi
h Ω2 is repla
ed with Ω3.The same stopping 
riterion for the number of mesh re�nements as one in sub-subse
tion8.2.1 was used. Thus, we have 
on
luded that the 3rd mesh re�nement should be the �nalone. The resulting image is displayed on Fig. 9. A very a

urate re
onstru
tion of all three
omponents of the Cube No. 2: shape, lo
ation and refra
tive index is evident.8.4 Sensitivity to parameters β and γTo investigate the sensitivity of our images to the 
hoi
e of the regularization parameter γin the Tikhonov fun
tional (4.5), as well as to the parameter β in (7.3), we have performedfurther testing for 
ube No. 2 with di�erent values of β and γ. Results are displayed onFigure 10. One 
an observe that the value of the regularization parameter γ does not impa
t29



re
onstru
tion results signi�
antly. One 
an also see that images for β = 0.985 and β = 0.5are almost the same, in
luding imaged values of the refra
tive index. Surprisingly, imagesfor the 
ase β = 0.1 also look almost the same as ones for β = 0.985 and β = 0.5. However,values of the refra
tive index for β = 0.1 are lowered by about 10%. Hen
e, we 
on
ludefrom Fig. 10 that our pro
edure is quite stable with respe
t to parameters β and γ.8.5 Veri�
ation for the Cube No. 1We have 
ompared our imaging result for Cube No. 1 with 
omputational simulations. Todo so, we have 
omputed the data for the forward problem for exa
tly the same 
ube as No.1 in Table 1. We took ǫr = 4 inside of this simulated 
ube. However, we have repla
ed ω = 7with ω = 14 in (6.1) and (6.2), sin
e this 
orresponds to the twi
e smaller dimensionlesswavelength 2π/ω in 
omputational simulations. So, we have 
onje
tured that having a twotimes lesser wavelength would result in a better image for the Cube No. 1. Indeed, with
ω = 7 the dimensionless wavelength in simulated data is 0.897, whi
h is bigger than thedimensionless size 0.8 of the side of the �rst 
ube (Table 1). On the other hand, ω = 14 givesus the dimensionless wavelength of 0.45 < 0.8. Note that the dimensionless wavelength sizeof the side of the Cube No. 2 is 1.2 > 0.897. We re
all here the 
lassi
al Rayleigh prin
iple.We have applied the same pro
edure as above to the 
omputationally simulated data.The resulting image is displayed on Fig. 11-a). One 
an observe a very good quality ofthis image from syntheti
 data. Next, we have applied the same pro
edure as above to theexperimental data for the Cube No. 1 with the single di�eren
e that we now have used
ω = 14 instead of the previous ω = 7. The resulting image is displayed on Fig. 11-b). One
an observe a signi�
ant improvement 
ompared with Figure 7. Hen
e, our 
onje
ture about
ω was partially materialized for the 
ase of experimental data. Still, however, the image onFig. 11-b) is not as good as the one for Cube No. 2 on Fig. 9.9 Dis
ussionIn this paper we have 
ontinued our work on experimental data of [24℄. While only lo
ationsand refra
tive indi
es of diele
tri
 abnormalities were a

urately 
omputed in [24℄, we now
omplement those by re
onstru
tions of shapes. As a result, the shape of the Cube No. 2is re
onstru
ted with an ex
ellent a

ura
y (Fig. 9). Furthermore, it was shown that ourte
hnique is quite stable with respe
t to some 
riti
al parameters whi
h we 
hoose in there
onstru
tion pro
ess (Fig. 10). The shape of the smaller Cube No. 1 was also re
onstru
tedwell (Fig. 11-b)), although the a

ura
y is not as good as the one of Cube No. 2. Just as in[24℄, refra
tive indi
es are imaged with a very good a

ura
y in both 
ases.The di�eren
e of qualities of images of our two 
ubes might likely be attributed to the
lassi
al Rayleigh prin
iple. Indeed, the original wavelength λem of the EM wave in ourexperimental data was λem = 3cm. On the other hand, sizes of sides of Cubes No. 1 andNo. 2 were respe
tively 4cm = 1.33λem and 6cm = 2λem (Table 1). Hen
e, we 
onje
turethat the shape of the Cube No. 2 was imaged better than the one of Cube No. 1 be
ause30



a) γ = 0.001, β = 0.985 b) γ = 0.01, β = 0.985 
) γ = 0.1, β = 0.985
εr,h ≈ 3.2, nglob = 1.79 εr,h ≈ 3.2, nglob = 1.79 εr,h ≈ 3.2, nglob = 1.79

d) γ = 0.001, β = 0.5 e) γ = 0.01, β = 0.5 f) γ = 0.1, β = 0.5
εr,h ≈ 3.1, nglob = 1.76 εr,h ≈ 3.1, nglob = 1.76 εr,h ≈ 3.0, nglob = 1.73

g) γ = 0.001, β = 0.1 h) γ = 0.01, β = 0.1 i) γ = 0.1, β = 0.1
εr,h ≈ 2.4, nglob = 1.55 εr,h ≈ 2.4, nglob = 1.55 εr,h ≈ 2.4, nglob = 1.55Figure 10: Final re
onstru
tion results for 
ube No. 2 with varying parameters β and γ. Lines(blue) indi
ate the 
orre
t 
ubi
al shape. Maximal values of the imaged 
oe�
ient are displayed.The 
omputed value of the 
oe�
ient outside of imaged in
lusions is 1.

31



a) εr,h ≈ 4.09, nglob =
√
εr,h ≈ 2.02

b) εr,h ≈ 4.2, nglob =
√
εr,h ≈ 2.05Figure 11: a) The image of 
omputationally simulated 
ube No. 1 from 
omputationally simulateddata with ω = 14 in (6.1) and (6.2). b) The image of 
ube No. 1 from experimental data with

ω = 14 in (6.1) and (6.2). The same imaging pro
edure as above was applied. Compared with Fig.7, a signi�
ant improvement is observed. Still, however, the image of the shape is not as good asthe one for Cube No. 2 on Fig. 9.
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our experimental data had 3cm wavelength �ins
ribed� in them. This question needs to beinvestigated further.Compared with [24℄, the main new element here is that we have 
omplemented theglobally 
onvergent method by the adaptivity te
hnique. In addition, we have 
omplementedthe previously developed �rst rule of mesh re�nements by the new se
ond rule. The latterhas required a signi�
ant analyti
al e�ort with an extensive use of results [11, 12, 25℄. Twoother important features of these studies are:1. The use of the solution obtained on the globally 
onvergent stage is 
ru
ial for ob-taining above results via the adaptivity. At least for the 
ase of our experimental data, theadaptivity does not work without the availability of this solution.2. Our studies have 
onsistently demonstrated that all analyti
al and numeri
al 
on
lu-sions derived in our previous publi
ations for 
omputationally simulated data [9℄-[12℄ were
on�rmed on experimental data.Some dis
repan
ies between our mathemati
al model and the reality are evident. It iswell known that equation (2.1) 
annot be derived from the Maxwell's system for the 3-D 
aseif εr 6= const. In addition, we are not aware whi
h of three 
omponents of the ele
tri
 �eldwas measured in experiments: we only knew that the time-resolved voltage was measured.Thus, we 
all (2.1) a simpli�ed mathemati
al model of our physi
al pro
ess. A possibleexplanation why everything still works well is that the data immersing pro
edure �enfor
es�our data to be �good� for equation (2.1). A more 
omplete investigation of this issue withthe use of the full Maxwell's system seems to be worthy to pursue.Another dis
repan
y is that in our globally 
onvergent algorithmwe need a 
ertain asymp-toti
 behavior of the Lapla
e transform of the fun
tion u, whi
h 
an be derived from resultsof [32, 33℄, see (3.2) and Lemma 2.1 in [9℄. In parti
ular, that lemma requires at least the
C2−smoothness of the 
oe�
ient εr (x). We verify that asymptoti
 behavior 
omputation-ally, see subse
tion 7.2 [9℄. However, the smoothness assumption of the fun
tion εr (x) isobviously violated at the boundaries of our two 
ubes, whi
h were used in experiments. Moredis
repan
ies 
an be derived from data immersing pro
edures des
ribed above. It might welltake years to �gure out how to handle all these dis
repan
ies. In summary, it is rathersurprising that, despite all these dis
repan
ies, results of this publi
ation as well as resultsof blind testing of [24℄ 
onsistently demonstrate a very good re
onstru
tion a

ura
y.A
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