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Reonstrution of dieletris from experimental data viaa hybrid globally onvergent/adaptive inverse algorithmLarisa Beilina∗ Mihael V. Klibanov †September 8, 2010AbstratThe validity of a synthesis of a globally onvergent numerial method with theadaptive FEM tehnique for a oe�ient inverse problem is veri�ed on time resolvedexperimental data. Refrative indies, loations and shapes of dieletri abnormalitiesare aurately imaged.Dediated to the lasting memory of Aademiian Mikhail M. Lavrentiev (1932-2010), oneof founders of the �eld of Inverse Problems.1 IntrodutionIn [9℄ a globally onvergent numerial method for a Coe�ient Inverse Problems (CIP) fora hyperboli PDE was developed. Next, a two-stage numerial proedure was proposed in[10, 11, 12℄. In this proedure the tehnique of [9℄ is used as the �rst stage. Next, theAdaptive Finite Element method (adaptivity below) is used as the seond stage for there�nement. In [24℄ the �rst stage was veri�ed on blind experimental data. The goal ofthe urrent publiation is to demonstrate that the two-stage numerial proedure appliedto the same experimental data an signi�antly improve imaging results ompared with the�rst stage only. Spei�ally, we now aurately reonstrut not only loations and refrativeindies of dieletri abnormalities, as it was in [24℄, but their shapes as well.The analytial part of this paper is foused on two reommendations for the mesh re�ne-ment in a posteriori error analysis for the adaptivity tehnique. While the �rst reommen-dation was derived in our previous publiations [11, 12℄, the seond one is ompletely new.To derive this reommendation, we extensively use results of [12℄, where the framework of
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Funtional Analysis for the adaptivity for ill-posed problems was derived for the �rst time.We demonstrate numerially that this broader mesh re�nement reommendation works well.The main new element in our a posteriori error analysis for the adaptivity is that we esti-mate now the auray of our approximation of the regularized oe�ient on a ertain mesh.The latter in turn leads to this new mesh re�nement reommendation. Unlike this, previousworks on the adaptivity for CIPs were onerned only with auray estimates of either theTikhonov funtional [11, 12℄ or of the Lagrangian [4℄-[8℄,[20℄. As a result, in publiations [4℄- [12℄ the mesh was re�ned in the regions where the modulus of the gradient of the Tikhonovfuntional has attained its maximal values. In the urrent paper we add a new element viare�ning the mesh in neighborhoods of those grid points where the reonstruted oe�ientattains its maximal values (this oe�ient is always positive). The �rst attempt to obtaina posteriori error estimate for the reonstruted oe�ient rather than for the Lagrangian,i.e. to obtain an analog of (4.33), was undertaken in [5℄ via onsidering the seond Fréhetderivative of the Lagrangian, whih is somewhat lose to the loal strong onvexity propertyof Theorem 4.2. However, some fats were not analytially established in [5℄. Our derivationis ompletely di�erent from one in this referene.The main di�ulty in applying the tehnique of [9℄-[12℄ to our experimental data isaused by a huge disrepany between these data and omputationally simulated ones. Thisdisrepany an be seen via a visual omparison of Figures 2-a) and 2-b) (below). Beauseof this disrepany, onventional data denoising tehniques, like, e.g. Fourier transform,Hilbert transform, spline interpolation, et. provide only an insigni�ant help in our ase.Hene, it is neessary to apply a radially new data pre-proessing proedure as a ruialpreliminary step. The goal of this step is to obtain aeptable boundary onditions, whihare used in our numerial method. This proedure is based on the intuition only. The singlejusti�ation of it is the auray of reonstrution results.Our data pre-proessing proedure onsists of three stages. First two stages were de-sribed in [24℄ (they were new at that time). Hene, they are presented only brie�y in thispaper for the onveniene of the reader. The third stage is new, sine it is designed solelyfor the adaptivity tehnique. Our two-stage algorithm does not assume neither a knowl-edge of the bakground medium nor a knowledge of the presene/absene of small �sharp�abnormalities of our interest in the medium. It uses only the knowledge of the target o-e�ient outside of the medium of interest. Appliations are in the detetion of explosives,sine their refrative indies usually are muh higher that those of regular materials, seehttp://www.lipperontrols.om. Other proedures of solving CIPs, whih do not rely onloally onvergent algorithms, an be found in [2, 14, 21, 27, 29, 30℄.An exellent auray of the blind reonstrution of both loations and refrative indiesof dieletri abnormalities in [24℄ has led to the statement there that the globally onvergentmethod of [9, 10℄ �is ompletely validated now�. The same is true for a new mathematialmodel, whih was proposed in [10, 24℄ due to an approximation of this numerial tehnique.That approximation is aused by the trunation of the large value s of the so-alled pseudofrequeny s > 0, whih is the parameter of the Laplae transform of the original hyperboliPDE. Suh an approximation is likely inevitable due to hallenges of the development of2



numerial methods for CIPs. Indeed, CIPs are both ill-posed and nonlinear. It is shownin [10, 24℄ that, from the analytial standpoint, the above trunation is neither better norworse than the lassial trunation of divergent asymptoti series in the Real Analysis.To explain our need for the above two-stage proedure, we note that the number 1/sannot be made in�nitely small in pratial omputations. At the same time, onvergeneestimates in global onvergene theorems of [9, 10℄ depend on the small parameter 1/s.Hene, in pratial terms, these theorems only guarantee that the solution obtained on the�rst stage is su�iently lose to the orret solution. However, they do not guarantee that thedistane between omputed and orret solutions an be made in�nitely small. This opensthe door for a re�nement via a loally onvergent tehnique. Indeed, the key ingredient forany suh tehnique is a good �rst approximation for the solution. So, this approximationis provided on the globally onvergent stage. It is shown below that, in the ase of ourexperimental data, it is ruial that the good �rst guess for the solution taken from theglobally onvergent stage should be available for the adaptivity stage. On the other hand,it was demonstrated in setion 8 of [24℄ that if a modi�ed gradient method does not use thesolution obtained on the �rst stage, then its performane is poor.We have hosen the adaptivity beause of our previous experiene of [10℄-[12℄. It wasshown in these referenes that the quasi-Newton method taken alone does not re�ne solutionof the globally onvergent stage. On the other hand, it was also demonstrated in thesereferenes that a signi�ant re�nement is ahieved if adaptive meshes are used. The sameobservation is presented in this paper. The adaptivity for CIPs was �rst proposed in [4, 5℄and was developed further in [6, 7, 8, 20℄. It onsists in minimizing either the Tikhonovfuntional [10℄-[12℄ or the assoiated Lagrangian [4℄-[8℄,[20℄ on a sequene of loally re�nedmeshes in the FEM.The new mesh is obtained from the previous one via a loal mesh re�nement in neighbor-hoods of those grid points, whih provide the maximal input in the error of the alulation ofthat funtional. Thus, the main question in the adaptivity is about the identi�ation of thosesubdomains. This question is addressed via a posteriori error analysis. It is important thatthe error analysis does not use a knowledge of the exat solution. Instead, one should knowan upper bound of that solution, and suh a bound should be imposed a priori, in aordanewith the Tikhonov priniple [34℄. It is worthy to mention that there is no rigorous guaranteethat suh loal mesh re�nements indeed improve the auray of the solution. Nevertheless,suh improvements were onstantly observed in omputations of [4℄-[8℄, [10℄-[12℄, as well asin the urrent paper.In setion 2 we formulate both forward and inverse problems of our mathematial model.In setion 3 we brie�y outline the globally onvergent stage of our two-stage numerial proe-dure. We refer to [9, 10℄ for details inluding formulations and proofs of global onvergenetheorems. The main new analytial part is in setion 4, where we justify the new meshre�nement rule. In setion 5 we desribe the experimental setup. In setion 6 the proedureof data simulation is desribed. This proedure is an integral part of our data pre-proessingtehnique. In setion 7 we desribe how do we pre-proess our experimental data. In setion8 we present our imaging results. Disussion is presented in setion 9.3



2 Statements of forward and inverse problemsAs the forward problem, we onsider the following Cauhy problem
εr(x)utt = ∆u, in R3 × (0,∞) , (2.1)
u (x, 0) = 0, ut (x, 0) = δ (x− x0) . (2.2)Here εr(x) is the spatially variable dieletri onstant (relative dieletri permittivity),

εr(x) =
ε (x)

ε0
,

√
εr(x) = n (x) =

c0
c (x)

≥ 1, (2.3)where ε0 is the dieletri permittivity of the vauum (whih we assume to be the same as onein the air), ε (x) is the spatially variable dieletri permittivity of the medium of interest,
n (x) is the refrative index of the medium of interest, c (x) is the speed of the propagationof the EM �eld in this medium, and c0 is the speed of light in the vauum, whih we assumeto be the same as one in the air. We point out that it is the refrative index rather than thedieletri onstant, whih is measured in physis. The assumption n (x) ≥ 1 means that thespeed of the EM �eld propagation in the medium does not exeed the one in the air, whihis reasonable.Let Ω ⊂ R3 be a onvex bounded domain with the boundary ∂Ω ∈ C3. We assume thatthe oe�ient εr (x) of equation (2.1) is suh that

εr (x) ∈ (1, d], εr (x) = 1 for x ∈ R3�Ω, (2.4)
εr (x) ∈ C2

(
R3

)
. (2.5)The inequality εr (x) ≥ 1 follows from (2.3). An upper estimate for the onstant d > 1 isassumed to be known, although we do not assume that the number d− 1 is small.Inverse Problem. Suppose that the oe�ient εr (x) satis�es (2.4) and (2.5). Assumethat the funtion εr (x) is unknown in the domain Ω. Determine the funtion εr (x) for

x ∈ Ω, assuming that the following funtion g (x, t) is known for a single soure position
x0 /∈ Ω

u (x, t) = g (x, t) , ∀ (x, t) ∈ ∂Ω × (0,∞) . (2.6)The assumption εr (x) = 1 for x ∈ R3�Ω means that one has air outside of the medium ofinterest Ω. The question of uniqueness of this Inverse Problem is a well known long standingopen question. It is addressed positively only if the funtion δ(x − x0) in (2.2) is replaedwith a funtion f(x) suh that f(x) 6= 0, ∀x ∈ Ω. Corresponding uniqueness theorems wereproven via the method of Carleman estimates [22, 23℄, also see a reent survey in [35℄. Still,due to the applied aspet, it is worthy to develop numerial methods, assuming that theuniqueness question is addressed positively.Remark 2.1. In setion 9 we disuss some disrepanies between our mathematialmodel and the reality. 4



3 Brief outline of the globally onvergent stageSine the globally onvergent stage was desribed in [9, 10℄, we outline it only brie�y here re-ferring for details to [9, 10℄. In partiular, these details inlude global onvergene theorems.Consider the Laplae transform of the solution of the problem (2.1), (2.2),
w (x, s) =

∞∫

0

u (x, t) e−stdt, s ≥ s = const. > 0. (3.1)Then w (x, s) > 0 for su�iently large s. Consider the funtion q (x, s) = ∂s (s−2 lnw (x, s)) .Under ertain onditions
Dα

xD
k
s

(
lnw (x, s)

s2

)
= O

(
1

sk+1

)
, s→ ∞, k = 0, 1; |α| ≤ 2. (3.2)We obtain a nonlinear integral di�erential equation for the funtion q for x ∈ Ω, s ∈ (s,∞)with Volterra integrals, in whih the s-integration is arried out from an arbitrary s ≥ sto ∞. One of the key features of this equation is that the unknown oe�ient εr (x) is notinvolved in it. The Dirihlet boundary ondition for the funtion q(x, s) at ∂Ω is generatedby the funtion g in (2.6). If one would approximate the funtion q well, then one wouldalso approximate the funtion εr (x) well via bakwards omputations. The main di�ultythen is to solve the resulting Dirihlet boundary value problem for q. To do this, we �rsttrunate those Volterra integrals at a large value s := s > s. However, we omplementthat trunation by the so-alled �tail funtion� V (x, s) ≈ s−2 lnw (x, s) . The tail funtionis unknown, although, it is small for large s beause of (3.2). Hene, the resulting equationfor q ontains two unknown funtions: q and V . The reason why we an approximate bothof them is that we treat them separately: while we approximate q via inner iterations, weapproximate V via outer iterations.To solve the resulting problem, we divide the interval [s, s] into N small subintervals. Weassume that the funtion q is onstant with respet to s on eah of those subintervals. As aresult, using the so-alled Carleman Weight Funtion, whih depends only on s, we obtain

N ellipti Dirihlet boundary value problems for funtions qn (x) , where n is the numberof the subinterval. Nonlinearities in these equations are mitigated due to the presene ofthe Carleman Weight Funtion. Hene, we an solve eah of these Dirihlet boundary valueproblems iteratively via solving a linear problem on eah step. Beause originally we hadVolterra integrals with respet to s, we an solve these problems sequentially starting from q1.Let qn,k be the approximation for qn obtained on the inner iteration number k and Vn,k (x) bethe orresponding approximation for the tail. Then we �nd the orresponding approximation
ε
(n,k)
r (x) for the funtion εr (x) , solve the problem (2.1), (2.2) with εr := ε

(n,k)
r (x), alulatethe Laplae transform wn.k+1 (x, s) via (3.1) for it and �nd a new approximation Vn,k+1 (x) :=

s−2 lnwn,k+1 (x, s) for the tail. Convergene riteria for this algorithm are desribed in [9,10, 11, 12, 24℄. In partiular, in our omputations for experimental data we use the riteriondesribed in subsetion 7.1 of [24℄. 5



4 The Adaptivity4.1 PreliminariesFirst, we need to make some remarks about the material of this setion. It is well knownthat our CIP is a very omplex problem with many yet unknown fators. It is naturaltherefore that some simpli�ed assumptions should be made when developing the adaptivitytheory for this CIP. We now list main suh assumptions. First, in this setion we make someassumptions about the smoothness of the data. They are ertainly not true for the problem(2.1 ), (2.2), beause of the δ− funtion in the initial ondition. However, if one wouldreplae the δ (x− x0) with its approximation δθ (x− x0) (below), then smoothness would berestored, although it is outside of the sope of this paper to go further in this diretion.Also, in our omputations we use the plane wave rather than the point soure in (2.2).This is beause we did not yet adapt our numerial ode for the ase of the point soure.We have used the point soure in (2.2) only to ensure the asymptoti behavior (3.2). Inour numerial studies we verify this behavior omputationally, see subsetion 7.2 in [9℄. Wewere unable to arrange the experimental signal to beome a plane wave. Nevertheless, ourdata pre-proessing proedure �enfores� it to beome a plane wave, see subsetion 7.1. Inaddition we impose an over-smoothness assumption of the funtion f (x, t) when we requirethree rather than two t-derivatives of this funtion. In addition, sine we extensively useresults of the book [25℄, where only the Dirihlet boundary ondition is onsidered, we workonly with the Dirihlet boundary ondition in subsetion 4.3. It seems from �5 of Chapter 4of [25℄ that the Neumann boundary ondition an also be used, so as a lesser smoothness of
f (x, t) . However, these assumptions would require a substantial and spae onsuming e�ortfrom us to work out results for forward hyperboli problems, whih would be similar withones of Chapter 4 of [25℄. Thus, for the sake of brevity, as well as beause we are interestedin inverse rather than forward problems, we have deided to use the Dirihlet boundaryondition in subsetion 4.3.Next, we assume in subsetion 4.4 that the result of subsetion 4.3 is also valid for theNeumann boundary ondition. Still, we point out that the resulting seond mesh re�ne-ment reommendation works quite well numerially. Note that if we would replae in (4.5)
u |ST

− g(x, t) with ∂nu |ST
− p(x, t) (see (4.2) for notations), then we would work withDirihlet boundary onditions in analogs of (4.6), (4.7), and our seond mesh re�nement re-ommendation would be ompletely rigorous then. Another disrepany between our theoryand and numerial studies is desribed in subsetion 6.2. In this setion we use sometimesthe same notations for solutions of di�erent PDEs. However, it is always lear from theontext what is what here.The funtion δθ (x− x0) is de�ned as

δθ (x− x0) =

{
Cθ exp

(
1

|x−x0|2−θ2

)
, |x− x0| < θ

0, |x− x0| ≥ θ
,

∫

R3

δθ (x− x0) dx = 1, (4.1)where θ > 0 is so small that δθ (x− x0) = 0 for x ∈ Ω (reall that x0 6= Ω) and the onstant6



Cθ > 0 is hosen to ensure the value of the integral in (4.1).Let Ω ⊂ R3 be a bounded domain with ∂Ω ∈ C2. We assume that there exists afuntion a (x) ∈ C∞ (
Ω

) suh that a |∂Ω= 0, ∂na |∂Ω= 1. An example of suh a funtion wasonstruted in [11℄. Let T > 0 be a number. Denote
QT = Ω × (0, T ) , ST = ∂Ω × (0, T ) ,Ωt = {(x, τ) : x ∈ Ω, τ = t} , ∀t ∈ [0, T ] .We an onsider (2.1), (2.2), (2.6) as an initial boundary value problem for equation (2.1)in (R3�Ω) × (0, T ) . Sine by (2.4) εr (x) = 1 outside of Ω, this problem an be uniquelysolved. Hene, the funtion u (x, t) is known in (R3�Ω) × (0, T ) . Hene, the following twofuntions g, p are known at ST

u |ST
= g (x, t) , ∂nu |ST

= p (x, t) . (4.2)Following [11,12℄, we assume everywhere in this setion that there exist funtions F,W suhthat
F,W ∈ H5 (QT ) ,

∂nF |ST
= p (x, t) , ∂nW |ST

= g (x, t) , (4.3)
∂i

tF (x, 0) = ∂i
tW (x, 0) = 0, i = 1, ..., 4.Fix a su�iently small number ω ∈ (0, 1) . Keeping in mind that we need to work withpieewise linear funtions, introdue the set Y of funtions c (x) satisfying the followingonditions

Y =

{
c ∈ C

(
Ω

)
∩H1 (Ω) , ∂xi

c ∈ L∞ (Ω) , i = 1, 2, 3
c (x) ∈ (1 − ω, d+ ω) for x ∈ Ω.

(4.4)It is onvenient to introdue the set of funtions Z,
Z =

{
f : f ∈ C

(
Ω

)
∩H1 (Ω) , ∂xi

f ∈ L∞ (Ω)
}
.Hene, Y ⊂ Z. We turn Z into a Banah spae via equipping it with the following norm

‖f‖Z = ‖f‖
C(Ω) +

3∑

i=1

‖∂xi
f‖L∞(Ω) .4.2 The �rst mesh re�nement reommendationLet the funtion z̺ (t) ∈ C∞ [0, T ] , z̺(t) = 0 for t ∈ [T − ̺, T ] and z̺ (t) = 1 for t ∈

[0, T − 2̺] , where ̺ > 0 is a su�iently small number. We have introdued this funtionto ensure the ompatibility ondition for the solution of the adjoint problem (4.7) (below).Now we onstrut the Tikhonov regularization funtional as
E(εr) =

1

2

∫

ST

(u |ST
−g(x, t))2z̺ (t) dSxdt+

1

2
γ

∫

Ω

(εr − εglob
r )2 dx, (4.5)7



where εglob
r is the solution obtained on the globally onvergent stage of our two-stage numer-ial proedure and γ is the regularization parameter. We assume in (4.5) that the funtion

εr ∈ Y, where the set Y was de�ned in (4.4). Our goal now is to �nd a minimizer εγ
r ofthis funtional, whih is alled regularized solution in the theory of ill-posed problems. Inaordane with one of bakbone priniples of the regularization theory [34℄, we assume thatthere exists the unique exat solution ε∗r of the original inverse problem satisfying onditions(2.4), (2.5). In partiular, this means that ε∗r ∈ Y. By the global onvergene theorems of[9, 10℄, the funtion εglob

r provides a good approximation for ε∗r. Hene, below in this setionwe work only in a small neighborhood, in terms of the norm in the spae Z (subsetion 4.1),of the exat solution ε∗r. Thus, we assume that there exists unique minimizer εγ
r of the fun-tional (2.2) in this neighborhood (also, see next subsetion about existene and uniqueness).Consider the solution of the following problem, whih we all state problem,

εrutt −△u = 0, (x, t) ∈ QT ,

u(x, 0) = ut(x, 0) = 0,

∂nu |ST
= p (x, t) , (x, t) ∈ ST .

(4.6)In addition, let the funtion λ (x, t) be the solution of the following so-alled adjoint problemwhere the time is reversed
εrλtt −△λ = 0, (x, t) ∈ QT ,

λ(x, T ) = λt(x, T ) = 0,

∂nλ |ST
= z̺ (t) (g − u) (x, t) , (x, t) ∈ ST .

(4.7)Using results of books [19, 25℄ as well as (4.3) and above onditions imposed on the domain
Ω, it was established in [11℄ that eah of problems (4.6), (4.7) has unique weak solution andthis solution belongs to H4 (QT ) .Consider a mesh in the domain Ω on whih the funtional E(εr) is minimized. Let h bethe maximal grid step size of this mesh. Suppose that there exists a unique minimizer εr,hof the funtional (4.5) on this mesh in that small neighborhood of ε∗r. It was shown in [11℄that the following approximate error estimate holds for the funtional E(εr)

|E(εγ
r ) − E(εr,h)| ≤ |E ′ (εr,h) (εγ

r − εr,h)| , (4.8)where E ′ is the Fréhet derivative of the funtional E. The formula for E ′ (εr) for εr ∈ Y is[11, 12℄
E ′ (εr) (x) = γ

(
εr − εglob

r

)
−

T∫

0

utλtdt, x ∈ Ω. (4.9)Hene, we have to solve the following equation with respet to the funtion εr

E ′ (εr) (x) = 0, x ∈ Ω. (4.10)8



By (4.8) and (4.9) the following approximate error estimate for the funtional (4.5) is true
|E(εγ

r ) −E(εr,h)| ≤ C ‖E ′ (εr,h)‖L∞(Ω) ‖∇εγ
r‖L∞(Ω) h, (4.11)where

|E ′ (εr,h) (x)| =

∣∣∣∣∣∣
γ

(
εr,h − εglob

r,h

)
−

T∫

0

(utλt) (x, t, εr,h) dt

∣∣∣∣∣∣
, x ∈ Ω, (4.12)where funtions u (x, t, εr,h) and λ (x, t, εr,h) are weak solutions of problems (4.6) and (4.7)respetively for the ase when the oe�ient εr in (4.6) and (4.7) is replaed with εr,h. Hereand below C = C (ω,Ω) > 0 denotes several onstants depending only on the number ωin (4.4) and the domain Ω. Here εglob

r,h is the linear interpolation of the funtion εglob
r on theabove mesh. Hene, we should try to redue the norm ‖E ′ (εr,h)‖L∞(Ω) via the next loalmesh re�nement, in order to redue the error of omputing the minimizer of the Tikhonovfuntional on the next re�ned mesh. To do this, we re�ne mesh in neighborhoods of thosegrid points where the funtion |E ′ (εr,h) (x)| attains its maximal values. As it was statedin Introdution, although there is no rigorous guarantee that suh loal mesh re�nementsimprove the auray of the solution, we have always observed this numerially. Theseonsiderations led us in [11℄ to the followingFirst Mesh Re�nement Reommendation. Re�ne the mesh in neighborhoods ofthose grid points x ∈ Ω where the funtion |E ′ (εr,h) (x)| de�ned in (4.12) attains its maximalvalues. More preisely, re�ne the mesh in suh subdomains of the domain Ω where

|E ′ (εr,h) (x)| ≥ κ max
Ω

|E ′ (εr,h) (x)| , (4.13)where κ ∈ (0, 1) is the tolerane number.If we would take in (4.13) κ ≈ 1, then we would re�ne the mesh in too narrow regions.On the other hand, if we would take κ ≈ 0, then we would re�ne the mesh in almost theentire domain Ω, whih is not e�ient. Hene, the parameter κ should be hosen numerially.Below we take in (4.13) κ = 0.8 for all omputational meshes.So, numerially we proeed as follows for both �rst and seond mesh re�nement reom-mendations. On eah mesh we need to approximately solve equation (4.10). We start ouromputations on the same mesh on whih the globally onvergent method has worked. In ourexperiene, this mesh does not provide an improvement of the image. For eah newly re�nedmesh we �rst linearly interpolate the funtion εglob
r (x) on it. Sine this funtion is omputedon the globally onvergent stage as a linear ombination of �nite elements forming the initialmesh and sine these �nite elements are pieewise linear funtions, then subsequent linearinterpolations on �ner meshes do not hange this funtion. On eah mesh we iterativelyupdate approximations εn

r,h of the funtion εr,h. To do so, we use the quasi-Newton methodwith the lassi BFGS update formula with the limited storage [28℄. Denote
gn(x) = α(εn

r,h − εglob
r ) (x) −

∫ T

0

(uhtλht)
(
x, t, εn

r,h

)
dt,9



where funtions uh

(
x, t, εn

r,h

)
, λh

(
x, t, εn

r,h

) are FEM solutions of state and adjoint problems(4.6), (4.7) with εr := εn
r,h. We stop omputing εn

r,h if either ||gn||L2(Ω) ≤ 10−5 or norms
||gn||L2(Ω) are stabilized. For a given mesh, let εr,h := εn

r,h be the last omputed funtion onwhih we have stopped. Next, we ompute the funtion |E ′ (εr,h) (x)| in (4.12) and onsiderall grid points in this mesh where (4.13) is ful�lled. Next, we re�ne the mesh in neighborhoodsof all grid points satisfying (4.13). The stopping riterion for the mesh re�nement proess isdesribed in sub-subsetion 8.2.1.4.3 Some estimates for a forward problem for a hyperboli PDEIn this subsetion we obtain some estimates, whih are used in the next subsetion for thederivation of the seond mesh re�nement reommendation. Let the funtion f (x, t) be suhthat for k = 0, 1, 2, 3

∂k
t f ∈ L2 (Ωt) , ∀t ∈ [0, T ] and ‖fk (t)‖L∞(0,T ) <∞, where fk (t) =

∥∥∂k
t f (x, t)

∥∥
L2(Ωt).(4.14)Let the funtion c ∈ Y, where the set Y was de�ned in (4.4). Consider the following initialboundary value problem

c (x) utt = ∆u+ f in QT ,

u(x, 0) = ut(x, 0) = 0,

u |ST
= 0.

(4.15)Although upper estimates for the solution of this and more general hyperboli problems arewell known of ourse, see Chapter 4 of [25℄, onstants in those estimates are not spei�ed inthe way we need them to be spei�ed. More preisely, in order to derive our seond meshre�nement reommendation, we need to speify the dependene that upper estimate from thefuntion c (x) for the ase of the problem (4.15). To do this, we will naturally use Theorem4.1 of Chapter 4 of [25℄. The de�nition of the weak H1 (QT )−solution of the problem (4.15)an be found in �5 of Chapter 4 of [25℄ as well as in setion 7.2 of [19℄.Theorem 4.1. Let in (4.15) the oe�ient c (x) ∈ Y , the funtion f satis�es (4.14)and ∂k
t f (x, 0) = 0 in Ω for k = 0, 1, 2. As above, assume that ∂Ω ∈ C2. Denote

m = max
Ω

c (x) ,M = ‖∇c‖L∞(Ω) .Then there exists unique weak solution u ∈ H1 (QT ) of the problem (4.15). Furthermore,
∂k

t u, ∂
j
t (∂xi

u) ∈ L2 (Ωt) , ∀t ∈ [0, T ] , k = 0, ..., 3; j = 0, 1, 2; i = 1, 2, 3, (4.16)
u, ut ∈ H2 (Ωt) . (4.17)In addition, funtions u, ∂tu ∈ C

(
Ωt

)
, ∀t ∈ [0, T ] . Let u (t) = ‖ut (x, t)‖C(Ωt) . Then thefuntion u (t) ∈ L∞ (0, T ) and the following estimate holds

‖u (t)‖L∞(0,T ) ≤ Cm exp (CMT )
(
‖ftt‖L2(QT ) + ‖f1 (t)‖L∞(0,T )

)
. (4.18)10



Proof. Denote b(x) = 1/c (x) . Then equation (4.15) an be rewritten as
utt = ∇ · (b (x)∇u) −∇b∇u+ f̃ (x, t) , (4.19)where f̃ (x, t) = b(x)f (x, t) . Obviously,
‖∇b‖L∞(Ω) ≤

M

(1 − ω)2
,
∣∣∣f̃

∣∣∣ ≤ |f |
1 − ω

. (4.20)Applying to equation (4.19) with initial and boundary onditions (4.15) Theorem 4.1 andformula (4.11) of Chapter 4 of [25℄, in ombination with Theorems 3.1 and 3.2 from the samehapter, we obtain that there exists unique weak solution u of this problem and onditions(4.16), (4.17) are satis�ed. Hene, transforming bak equation (4.19) into equation (4.15),we obtain
∆ut = c (x) (ut)tt − ft(x, t) in Ωt, (4.21)

ut |∂Ω = 0.We an onsider (4.21) as the Dirihlet boundary value problem for the Laplae equation in
Ω1t. Hene, using Theorem 4 of �2 of Chapter 4 of [26℄, we obtain that ut ∈ H2 (Ωt) and

‖ut‖H2(Ωt)
≤ C

(
m

∥∥∂3
t u

∥∥
L2(Ωt)

+ ‖ft‖L2(Ωt)

)
. (4.22)Hene, we now need to estimate the norm ‖∂3

t u‖L2(Ωt)
. Consider the solution of the followinginitial boundary value problem

wtt = ∇ · (b(x)∇w) −∇b∇w + ftt (x, t) ,

w (x, 0) = wt (x, 0) = 0, (4.23)
w |ST

= 0.Then Theorem 4.1 of Chapter 4 of [25℄ in ombination with Theorems 3.1 and 3.2 from thesame hapter imply that there exists unique weak solution w ∈ H1 (QT ) of this problem andalso
∂r

tw, ∂
p
t (∂xi

w) ∈ L2 (Ωt) , ∀t ∈ [0, T ] , r = 0, 1, 2; p = 0, 1; i = 1, 2, 3. (4.24)It is easy to verify that atually w = utt. To do this in a simple way, one an �rst derivefrom (4.23) the initial boundary value problem for the funtion v,
v (x, t) =

t∫

0

w (x, τ) dτ.Next, using (4.24), one an establish that w = vt. One an similarly establish that v = ut.We now estimate the funtion w using standard energy estimates. By (4.24) we anonsider funtions ∂t∂xi
w. Multiply both sides of equation (4.23) by 2wt and integrate the11



resulting equation over the domain Ω × (0, t) for an arbitrary t ∈ (0, T ) . Using integrationby parts, we obtain
∫

Ωt

w2
t (x, t) dx+ 2

∫

Ω

b (x) dx

t∫

0

∂τ (∇w (x, τ))2 dτ =

−2

t∫

0

∫

Ω

∇b (x)∇w (x, τ)wτ (x, τ) dxdτ + 2

t∫

0

∫

Ω

fττ (x, τ)wτ (x, τ) dxdτ.Using Cauhy-Shwarz inequality and (4.20), we obtain from here
∫

Ωt

[
w2

t + (∇w)2] (x, t) dx ≤ CM

t∫

0

∫

Ω

[
w2

t + (∇w)2
]
(x, τ) dxdτ + C

t∫

0

∫

Ω

f 2
ττ (x, τ) dxdτ.Therefore, Gronwall's inequality leads to

∫

Ωt

[
w2

t + (∇w)2] (x, t) dx ≤ C exp (CMt) ‖ftt‖2
L2(QT ) , ∀t ∈ (0, T ) . (4.25)Sine wt = ∂3

t u, then (4.22) and (4.25) imply that
‖ut‖H2(Ωt)

≤ C
(
m exp (CMt) ‖ftt‖L2(QT ) + ‖ft‖L2(Ωt)

)
. (4.26)Now, by the Sobolev embedding theoremH2 (Ωt) ⊂ C

(
Ω

) and ‖p‖
C(Ωt) ≤ C ‖p‖H2(Ωt)

, ∀p ∈
H2 (Ωt) . Hene, using (4.26), we obtain

‖ut‖C(Ωt) ≤ C
(
m exp (CMt) ‖ftt‖L2(QT ) + ‖ft‖L2(Ωt)

)
, ∀t ∈ (0, T ) .Using this inequality and (4.14), we obtain (4.18). �4.4 The seond mesh re�nement reommendationWhile in the subsetion 4.3 we have estimated only the auray of the alulation of theTikhonov funtional on a mesh, now we want to estimate the distane between the minimizerof this funtional on that mesh and the regularized solution. It is lear that this estimateis more valuable than the estimate (4.11). The prie we pay for this is that we impose amore stringent ondition on the regularized solution εγ

r , see below in this subsetion. In thissubsetion we use results of [12℄ as well as of subsetion 4.2.Consider a triangulation Tr of the domain Ω1 with a rather oarse mesh. We obtaina polygonal domain σ ⊆ Ω1. All tetrahedra forming �ner meshes will be ontained in σ.12



Suppose that we have onstruted an exeedingly �ne mesh. Sine orresponding �niteelements are pieewise linear funtions, onsider all possible linear ombinations of thesefuntions. Then we obtain a �nite dimensional spae H and we equip H with the L2 (σ)norm. Indeed, all norms in �nite dimensional spaes are equivalent and it is quite onvenientto work with the L2 (σ) norm. So, the above mentioned more stringent ondition we imposeon the regularized oe�ient εγ
r is that we assume now that the funtion εγ

r ∈ H ratherthan being an element of an in�nitely dimensional spae. However, given that we work withproblems of pratial omputations in whih all funtions are represented via �nite elements,this ondition is not an over-restritive one.Sine it is not e�ient to use an exeedingly large number of �nite elements in omputa-tions, the idea of the adaptivity is to approximate εγ
r via minimizing of the funtional (4.5)on a sequene of loally re�ned meshes. We assume below that �nite elements forming eahsuh mesh form a subspae of the spae H . This assumption is reasonable, see arguments insetion 2 of [12℄.Let δ > 0 be a small positive number haraterizing the level of error in the data g̃,see details in formula (7.2) of [12℄. Sine global onvergene theorems of [9, 10℄ guaranteethat the funtion εglob

r ∈ Y provides a good approximation for the orret solution, then weassume that
∥∥εglob

r − ε∗r
∥∥

L2(σ)
≤ δµ1 , µ1 = const. ∈ (0, 1) , (4.27)

γ = δµ2 , µ2 = const. ∈ (0,min (µ1, 2 (1 − µ1))) ,where µ1 is a number of ones hoie. Reall that the set of funtions Y is de�ned in (4.4).In the regularization theory one usually studies the question about behavior of regularizedsolutions when δ → 0. So, as soon as the distane between a regularized and exat solutionsis omparable with δ, the proess is stopped [17, 34℄. On the other hand, given a number
η ∈ (0, 1) , we obviously have that δη >> δ for su�iently small values of δ. This justi�esthe assumption (4.27).Let β ∈ (0, 1) be an arbitrary number. Denote

Vβδµ2 (εγ
r ) =

{
f ∈ H : ‖f − εγ

r‖L2(σ) < βδµ2

}
,

V(1+
√

2)δµ1
(ε∗r) =

{
f ∈ H : ‖f − ε∗r‖L2(σ) <

(
1 +

√
2
)
δµ1

}
.Let Y ′ be the set of restritions of all funtions c ∈ Y on the polygonal domain σ. CombiningLemma 2.1, Theorem 7.2 and Theorem 7.3 of [12℄, we ome up with the followingTheorem 4.2. Assume that the domain Ω satis�es onditions formulated in subsetion4.1. In addition, assume that onditions (4.3) and (4.27) hold. Suppose that onditions(4.27) are satis�ed and the funtion ε∗r satis�es onditions (2.4), (2.5). Consider a loallyre�ned mesh with the maximal grid step size h and let Mh ⊂ H be the subspae of the spae

H generated by tetrahedral �nite elements orresponding to this mesh. Then there exists asu�iently small δ0 ∈ (0, 1) suh that for all δ ∈ (0, δ0] the following assertions 1-5 are true:1. The funtional (4.5) has unique minimizer εγ
r ∈ V(1+

√
2)δµ1

(ε∗r) .13



2. V(1+
√

2)δµ1
(ε∗r) ⊂ Vβδµ2 (εγ

r ) ⊂ Y ′.3. The funtional (4.5) is strongly onvex in Vβδµ2 (εγ
r ) .4. There exists a su�iently small h0 = h0

(
δ0, ‖∇εγ

r‖L∞(σ)

) suh that for all h ∈ (0, h0]the funtional (4.5) has unique minimizer εr,h on the set Vβδµ2 (εγ
r ) ∩Mh.5. The following a posteriori auray estimate of the reonstrution of the regularizedoe�ient holds

‖εγ
r − εr,h‖L2(σ) ≤

3

γ

∥∥∥Ẽ ′ (εr,h)
∥∥∥

L2(σ)
, (4.28)where the funtion Ẽ ′ (εr,h) (x) has the form

Ẽ ′ (εr,h) (x) = γ
(
εr,h − εglob

r

)
−

T∫

0

(utλt) (x, t, εr,h) dt, x ∈ σ, (4.29)where funtions u (x, t, εr,h) and λ (x, t, εr,h) are weak solutions of problems (4.6) and (4.7),respetively, for the ase when the oe�ient εr in (4.6) and (4.7) is replaed with εr,h and,by the de�nition εr,h (x) = 1 for x ∈ Ω�σ.Using Theorems 4.1 and 4.2, we now derive the seond mesh re�nement reommenda-tion. As we have pointed out in subsetion 4.1, we have onsidered the Dirihlet boundaryondition in Theorem 4.1 instead of the Neumann boundary ondition for onveniene andbrevity only. So, we assume now that Theorem 4.1 is true for the ase of the Neumannondition in (4.15). Then funtions ut (x, t, εr,h) , λt (x, t, εr,h) ∈ C
(
Ω1t

)
, ∀t ∈ [0, T ] . Denote

uh (t) = ‖ut (x, t, εr,h)‖C(Ω1t) , λh (t) = ‖λt (x, t, εr,h)‖C(Ω1t) , (4.30)
mh = max

Ω
εr,h (x) ,Mh = ‖∇εr,h‖L∞(Ω) . (4.31)Considering funtions [11℄

û (x, t, εr,h) = u (x, t, εr,h) − F, λ̂ = λ (x, t, εr,h) − (W − a (x) u) z̺ (t)and using Theorem 4.1, we obtain
uh (t) ≤ C1mh exp (CMhT ) , λh (t) ≤ C1mh exp (CMhT ) . (4.32)Here and below C1 = C1 (Ω, ω, F,W, z̺) > 0 denotes di�erent positive onstants dependingon parameters listed. Hene, (4.27)-(4.32) lead toTheorem 4.3. Assume that onditions of Theorem 4.2 are satis�ed and the maximalgrid step size h of the loally re�ned mesh under onsideration is suh that h ∈ (0, h0] , where

h0 was de�ned in assertion number 4 of Theorem 4.2. Then there exists unique minimizer
εr,h of the funtional (4.5) on the set Vβδµ2 (εγ

r ) ∩ Mh. In addition, assume that Theorem4.1 is true for the ase of the Neumann boundary ondition in (4.15). Then the following aposteriori auray estimate of the reonstrution of the regularized oe�ient holds
‖εr,h − εγ

r‖L2(σ) ≤
C2

1

δµ2

m2
h exp (CMhT ) , (4.33)14



where the number µ2 was de�ned in (4.27).Reall that the idea of the adaptivity is to re�ne mesh loally at those regions whihprovide the biggest impat in a posteriori error estimate. Hene, it follows from (4.31)and (4.33) that we should re�ne mesh in neighborhoods of those grid points where: (a)the oe�ient εr,h attains its maximal its value mh and also (b) where the modulus of thegradient of this oe�ient attains its maximal value Mh. Thus, we obtainThe Seond Mesh Re�nement Reommendation. Re�ne the mesh in suh subdo-mains of the domain Ω where
εr,h (x) ≥ α1 max

Ω
εr,h (x) and |∇εr,h(x)| ≥ α2 max

Ω
|∇εr,h (x)| , (4.34)where α1, α2 ∈ (0, 1) are tolerane numbers.Remarks 4.1.1. It is important that (4.33) estimates the auray of the reonstrution of the regu-larized oe�ient on that mesh via numbers mh and Mh, whih are diretly related to thefuntion εr,h, and this funtion is alulated already as the minimizer of the funtional (4.5).In other words, numbers mh and Mh are known, so as subdomains of the domain Ω wherevalues of funtions εr,h (x) , |∇εr,h| are lose to mh,Mh.2. It is possible to obtain a sharper estimate than one in (4.33) via removing the large mul-tiplier δ−µ2 . This would require more aurate estimates of funtions u (x, t, εr,h) , λ (x, t, εr,h) .However, we are not doing this here for brevity, sine the main goal of the estimate (4.33) isto provide the seond mesh re�nement reommendation.3. Sine we want to image small �sharp� inlusions, within whih εr > 1, then wean approximately assume that the maximal value of |∇εr,h (x)| (in neighborhoods of thoseinlusions) is ahieved at about the same points where the maximal value of the funtion

εr,h (x) is ahieved. For this reason we use only the �rst formula (4.34) in our omputations.Note that it is easier to verify this formula omputationally than the seond one.5 The Experimental SetupFor brevity below x denotes both a vetor x = (x, y, z) ∈ R3 and the �rst omponent ofthis vetor, where z is the vertial oordinate. It is always lear from the ontext what iswhat there. Our soure/detetors on�guration is shematially depited on Figure 1. Thesoure has generated an eletromagneti (EM) wave. Only one omponent of the vetor of theeletri �eld was generated by our soure. And only one omponent of this �eld was measuredat the bottom side of the retangular prism Ω depited on Figure 1. We do not know whihomponent was measured: we have only worked with the measured time dependent voltagein our omputations. This prism is our omputational domain Ω. It onsisted of Styrofoam.Styrofoam is a material, whose relative permittivity εr ≈ 1, i.e. the same as one in the air.The sizes of Ω were 240 mm×140 mm × 240 mm. Hene, sizes of front and bak sides ofthe prism of Figure 1 are 240 mm× 240 mm and sizes of other four sides are 240 mm× 140mm. The distane between the wave soure and the top side of the domain Ω was 130 mm.15



Figure 1: Shemati diagram of the soure/detetors on�guration. a) The retangular prism de-pits our omputational domain Ω . Only a single soure loation outside of this prism was used.Tomographi measurements of the sattered time resolved EM wave were onduted on the bottomside of this prism. b) Shemati diagram of loations of detetors on the bottom side of the prism
Ω. The distane between neighboring detetors was 10 mm.The initializing pulse was 100 ps duration. Sine the speed of the EM wave propagation inthe air is 0.3 mm/ps, then it requires 433 ps ≈ 130/03 ps for this wave to travel from thesoure to the top boundary of Ω. Hene, it follows from (5.1) the wave did not yet reah thedomain Ω during the 100 ps duration of this pulse. The initializing pulse was

f(t) =

{
≈ A sin

(
π
50
τ
)
, for τ ∈ (0, 100) ps,

0, for τ > 100 ps, (5.1)where A is the amplitude. Our data proessing proedure does not rely on a knowledge of
A. The time resolved signal was measured at some loations of the detetor on the bottomside of the prism Ω, as indiated on Figure 1-b). On eah detetor loation this signal wasmeasured with the time interval of 20 pioseonds between two onseutive measurementsfor the total period of 12,300 pioseonds=12.3 nanoseonds. First, we were putting thedetetor at one loation, sent the pulse and measured the time resolved sattering wave atthis loation. Next, we have moved the detetor mehanially in a neighboring loationand repeated the measurement, et.. Hene, it is reasonable to assume in the mathematial16



model that the wave �eld was measured simultaneously at all those detetors. However,measurements was not arried out at other sides of this prism, see Figure 1. The reasonwhy we have not performed measurements on other �ve sides of the retangular prism Ωis that we have observed in our omputational simulations that these sides were muh lesssensitive to the presene of dieletri abnormalities than the bottom side of Ω. Thus, wehave presribed to these sides the same values of the funtion g (x, t) in (6) whih we haveobtained in our omputational simulation of solving the problem (47) (subsetion 6.1) for
εr (x) ≡ 1, i.e. for the ase when inlusion is not present.We had two measurements at eah detetor loation. First, we have measured the ref-erene signal when the inlusion was not present. Seond, we have measured the signalwhen the inlusion was present. In priniple, our tehnique allows the measurement of thereferene signal only at a few loations outside of the medium of interest: for the alibrationpurposes. The only reason why we have measured the referene signal for eah loation ofthe detetor was that our urrent numerial implementation works only with the ase whenthe initializing wave �eld is a plane wave. On the other hand, it was impossible to arrangea true plane wave in that experiment and so we had a spherial wave.Our dimensionless omputational domain Ω, the dimensionless distane h̃ between twoneighboring detetors and the dimensionless time t were [24℄

Ω = {(x, y, z) ∈ [−2.4, 2.4] × [−1.4, 1.4] × [−2.4, 2.4]} , h̃ = 0.2, t ∈ (0, 12) . (5.2)Let P be the bottom side of the domain Ω in (5.2),
P = {(x, y, z) : (x, y) ∈ [−2.4, 2.4] × [−1.4, 1.4], z = −2.4} . (5.3)6 Data Simulation6.1 Data simulationSine the omputationally simulated data play an important role in our data pre-proessingproedure, we outline here the solution of the forward problem for equation (2.1). Sine itis pratially impossible to solve the PDE (1) in the entire spae R3, we have solved it ina larger retangular prism G = {(x, y, z) ∈ [−3, 3] × [−2, 2] × [−5, 5]} . So, by (5.2) Ω ⊂ G.Our initializing plane wave was v (t) ,

v (t) =

{
sin (ωt) , for t ∈ (

0, 2π
ω

)
,

0, for t > 2π
ω
, ω = 7.

(6.1)Let ∂G1 and ∂G2 be respetively top and bottom sides of G and ∂G3 = ∂G� (∂G1 ∪ ∂G2)be the rest of the boundary of G. We have numerially solved the following initial boundary
17



value problem
εr (x) utt = △u, in G× (0, T ), T = 12,

u(x, 0) = 0, ut(x, 0) = 0, in G,
∂nu

∣∣
∂G1

= v (t) , on ∂G1 × (0, 2π/ω],

∂nu
∣∣
∂G1

= −∂tu, on ∂G1 × (t1, T ),

∂nu
∣∣
∂G2

= −∂tu, on ∂G2 × (0, T ),

∂nu
∣∣
∂G3

= 0, on ∂G3 × (0, T ),

(6.2)
In the ase when the data are simulated for the referene medium, we have in ( 6.2) εr (x) ≡ 1.We denote this solution as u1 (x, t) . Thus, in (6.2) the plane wave is initialized at the topboundary ∂G1 for times t ∈ (0, 2π/ω] and propagates intoG . First order absorbing boundaryonditions [18℄ were used on the top boundary for t ∈ (2π/ω, T ) as well as on the bottomboundary ∂G2 for t ∈ (0, T ). The zero Neumann boundary ondition was used on the restof the boundary of the prism G. The latter boundary ondition is used beause the �pure�plane wave with εr (x) ≡ 1 satis�es this ondition. The problem (6.2) was solved by thehybrid FEM/FDM method desribed in [13℄. In this method, FDM is used outside of thedomain Ω, i.e. in G�Ω, and FEM, is used inside of Ω. The step size in the overlappingregion was h̃ = 0.2 whih is the same as the distane between any two neighboring detetors.6.2 Solving problems (4.6) and (4.7) in the adaptivityAlthough the above theory says that we should solve problems (4.6) and (4.7) in the domain
Ω, we atually solve both of them in larger domains. Namely, in our omputations theproblem (4.6) is solved in the domain G with boundary onditions (6.2). And the problem(4.7) is solved in suh a part of the domain G whih is above the bottom side P of theprism Ω, i.e. in the subdomain G′ = G ∩ {z > −2.4} . Let Pobs = {z = −2.4} ∩ G. Thenby (45) the retangle P ⊂ Pobs. When solving the problem (4.7), we use the boundaryondition ∂nλ |Pobs

= (g − u) |Pobs
, where g is our pre-proessed experimental data. Hene,we atually need to know the funtion g (x, t) not only on the retangle P but also on awider retangle Pobs. In other words, we need to extend this funtion somehow from P to

Pobs�P. In general, this is a problem, whih is similar with the very ompliated problem ofanalytial ontinuation. However, using some features of our spei� arrangement, we havefound a di�erent way of this extension via the so-alled third stage of our data immersingproedure, whih is desribed in subsetion 7.4. We use the absorbing boundary ondition
∂nλ = −∂tλ at {z = 5} ∩ G′ and we use the zero Neumann boundary ondition at the restof the boundary of the domain G′. We believe that the above theory of the adaptivity anbe extended to this ase, although we have not yet done this. So, the latter is anotherdisrepany, in addition to those desribed in subsetion 4.1, between our theory of setion4 and numerial studies. 18



7 Data Pre-ProessingThe main idea of this proedure is to immerse the experimental data in the omputationallysimulated ones. We have done this in three stages desribed in follow up sub-setions ofthis setion. The third stage is new, whereas �rst two stages were desribed in [24℄. Thedata pre-proessing proedure provides us with the boundary data at ∂Ω, whih we use inour omputations. Reall that we have not arried out measurements at ∂Ω�P and havepresribed
u (x, t) |∂Ω�P := u1 (x, t) |∂Ω�P ,where u1 (x, t) is the solution of the problem (47) with εr (x) ≡ 1, see setion 5. So, in thissetion we desribe how we pre-proess the data only at the bottom side P of the retangularprism Ω.
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a) b)Figure 2: This �gure explains the idea of the �rst stage of data immersing in the time domain. We haveintentionally set to zero the small amplitude �utuations before that �rst burst. a) Resulting superimposedexperimental urves. The red urve (thin) is for the referene signal and the blue urve (thik) is for thesignal with a dieletri inlusion present, both at the same loation xm ∈ P of the detetor number m. b) Thered urve (thin) displays omputationally simulated data u1 (xm, t). The blue urve (thik) uincl (xm, t) =

u1 (xm, t − ∆tm)Km
exp/M

m
exp represents a sample of the immersed experimental data in the time domain atthe same detetor loation xm ∈ P . It is only the blue urve (thik) with whih we work further. The redurve (thin) is displayed for the illustration purpose only.7.1 First immersing in the time domain (the �rst immersing stage)Let xm ∈ P be the detetor number m at the bottom side P of the prism Ω, see (5.3) for P .Samples of unproessed experimental data an be found on Figure 2 of [24℄. As in [24℄, wework with the �rst burst only. Figure 2-a) displays a sample of the �rst burst after a partialdenoising via the Fourier transform, see details in [24℄. We have deided to �immerse� ourexperimental data in the omputationally simulated data using the following two peaks foreah detetor xm :1. The largest peak in the red urve (thin line, referene medium) with the peak valueof Mm

exp. 19



a) ε(2,2)
r = 1.25, n(2,2) = 1.12 b) ε(4,2)

r = 2.49, n(4,2) = 1.58 ) ε(5,2)
r = 3.9, n(5,2) = 1.97Figure 3: Spatial distributions of iteratively omputed dieletri onstants ε

(n,k)
r and refra-tive indexes n(n,k) =

√
ε
(n,k)
r for the Cube No. 1 (Table 1). The �nal image orresponds to

n(5,2) := nglob = 1.97. See Table 2 for the reonstrution auray. Reall that refrative indiesrather than dieletri onstants are atually measured experimentally.2. The next peak after it in the blue urve (thik line, the medium with a dieletriinlusion present) with the peak value of Km
exp. This next peak was hosen beause thepresene of a dieletri inlusion results in a time delay of the EM wave, see (2.3).Reall that the funtion u1 (x, t) is the solution of the problem (6.2) with omputationallysimulated data for εr ≡ 1. Obviously u1

(
x(1), t

)
= u1

(
x(2), t

)
, ∀x(1), x(2) ∈ P, ∀t ∈ (0, T ) .Let t := tsimref be the time of the �rst arrival of the omputationally simulated plane wave

u1 (x, t) at the plane P . In other words, for all x ∈ P we have u1 (x, t) = 0 for t < tsimref and
u1 (x, t) > 0 for suh moments of time t > tsimref that are rather lose to tsimref with, see thereferene urve on Fig. 2-b).We point out that amplitudes of largest peaks of experimental urves for the referenemedium were di�erent for di�erent detetors. Beause it was impossible experimentallyarrange the true plane wave for the referene medium, we atually had a spherial wave.Nevertheless, we have �fored� it to be a plane wave via applying the �rst stage of our dataimmersing proedure.Let y = yref

m (t) be the experimentally measured urve at the detetor {xm} for thereferene medium, i.e. when the dieletri inlusion was not present. Let the above hosenlargest peak of this urve is ahieved at {
t = tref

m

} and its value is yref
m

(
tref
m

)
= Mm

exp. Let
y = yincl

m (t) be the experimentally measured urve at the detetor {xm} for the ase wheninlusion is present. We hoose suh a loal maximum of the funtion y = yincl
m (t) whihis ahieved at the �rst point {

t = tincl
m

} whih follows after the point {
t = tref

m

}
, see Fig.2-a). Let yincl

m

(
tincl
m

)
= Km

exp. So, Km
exp is the value of the latter peak, see Figure 2-a). Onall detetors we have observed that Km

exp ≤Mm
exp. This is beause the presene of dieletrisdereases the amplitude of the EM wave. We enfore

Km
exp := Mm

exp, if Km
exp

Mm
exp

≥ 2

3
. (7.1)20



a) ε(2,2)
r = 1.22, n(2,2) = 1.10 b) ε(4,2)

r = 2.04, n(4,2) = 1.43 ) εr(5, 5) = 3.19, n(5,5) = 1.79Figure 4: Spatial distributions of iteratively omputed dieletri onstants ε
(n,k)
r and refrativeindexes n(n,k) =

√
ε
(n,k)
r for the Cube No. 2 (Table 2). The �nal image orresponds to n(5,5) :=

nglob = 1.79, whih is only 4.5% error ompared with the experiment, see Table 2. Reall thatrefrative indies rather than dieletri onstants are atually measured experimentally.Now we are ready to immerse our experimental data in the omputationally simulateddata. Let ∆tm = tincl
m − tref

m be the time delay between two above hosen peaks, see Figure2-a). Then we set
uincl (xm, t) =

Km
exp

Mm
exp

u1 (xm, t− ∆tm) . (7.2)So, (7.2) is our �rst immersed data in the time domain for the detetor numberm. Figure 2-b)illustrates (7.2). By (7.1) and (7.2) ifKm
exp/M

m
exp ≥ 2/3, then we set uincl (xm, t) := u1 (xm, t) .After this data immersing, we use only the urve uincl (xm, t) and do not use the urve forthe referene medium anymore. We annot rigorously justify our above deision to workwith those peaks only. However, sine our results of blind imaging in [24℄ were very aurateones, then this justi�es our purely intuitive hoie.7.2 The seond stage of data immersingNext, we apply the Laplae transform (3.1) to eah funtion uincl (xm, t) for nine values of

s = 3.5, 4, ..., 7.5. Denote wincl (xm, s) the Laplae transform of the funtion uincl (xm, t) . Let
w̃incl (xm, s) = −s−2 lnwincl (xm, s) and wincl (x, s) be the standard linear interpolation of thevalues {w̃incl (xm, s)} over the plane P . We have observed that the funtion wincl (x, s) is verynoisy with respet to x ∈ P . Hene, we have applied a smoothing proedure to the funtion
wincl (xm, s) with respet to (x, y) ∈ P for eah of those nine values of s. Spei�ally, wehave used the Lowess �tting proedure in the 2D ase, whih we took from MATLABR 2009.We have obtained the funtion wsmooth (x, s) . Let w1 (x, s) , x ∈ P be the Laplae transformof the funtion u1 (x, t) , i.e. for the ase of the plane wave propagating in the air. Then we21
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�nally set for eah of those nine values of s
wimmers (x, s) =

{
wsmooth (x, s) , if wsmooth (x, s) ≥ 0.985 maxP wsmooth (x, s) ,

−s−2 lnw1 (x, s) , otherwise,see Figure 5 in [24℄. So, we use the funtion wimmers (x, s) to obtain Dirihlet boundaryonditions for above mentioned ellipti equations for funtions qn of the globally onvergentmethod (setion 2).7.3 Reonstrution by the globally onvergent methodIt was shown in [24℄ that �rst and seond immersing stages of two previous subsetions aresu�ient for the globally onvergent algorithm. Our dieletri abnormalities to be imagedwere two wooden ubes, see Table 1. Let CL be the enter line, i.e. the straight line whihis orthogonal to the plane P and whih passes through the soure of EM waves (Figure 1).Then CL = {(x, y, z) : x = y = 0} . We test our two-stage numerial proedure on two setsof experimental data. So, the enter of our �rst ube was on CL, and the enter of theseond ube was o� CL by 0.2 in dimensionless oordinates, whih is equivalent with 10mm. Images are presented on Figures 3 and 4. One an see from Table 2 that the error ofthe reonstrution of refrative indies is a few perent. The same onlusion was drawn in[24℄. At the same time, it is lear from Figures 3 and 4 that it is desirable to improve imagesof shapes of these ubes. And this is why we use the adaptivity tehnique on the seondstage.Cube number Original sizes, mm Dimensionless sizes Dimensionless oordinates of enters1 40 × 40 × 40 0.8 × 0.8 × 0.8 (0, 0,−1.2)2 60 × 60 × 60 1.2 × 1.2 × 1.2 (0.2, 0,−1.2)Table 1: Sizes and oordinates of enters of two wooden ubes used in experimentsCube number Computed n := nglob =
√
εglob

r Measured n, error Comput. error1 1.97 2.07, 11% 4.8%2 1.79 1.71, 3.5% 4.5%Table 2: Computed refrative indies n := nglob =

√
εglob
r and ones diretly measured by theWaveguide Method7.4 The third stage of data immersingThis stage is new, sine it was not a part of [24℄. The funtion uincl(xm, t) obtained in (7.2) isvery noisy with respet to xm ∈ P , see for example Figures 5-a), ) for this funtion. We know23



this funtion only at the bottom side P of the retangular prism Ω. However, it was pointedout in subsetion 6.2 that in order to solve the adjoint problem, we atually need to knowthis funtion on the bigger retangle Pobs = {(x, y, z) : (x, y) ∈ [−3, 3] × [−2, 2], z = −2.4} .So, sine our experimental data were measured on a smaller retangle P only, we need toomplement them somehow on the set Pobs�P. To do so, we have deided to solve theproblem (6.2) with a ertain oe�ient εr: to omplement the data on Pobs�P. Let u (x, t)be this solution. Then we treat values of u (x, t) |Pobs
as a ertain part of boundary values

g |Pobs
when solving the adjoint problem (4.7). In other words, this solution provides us witha new piee of data at the entire retangle Pobs. Hene, the question now is: How to hoosethe oe�ient εr in equation (6.2) for this third immersing stage?We have deided to take in equation (6.2) the oe�ient εglob

r (x) , whih was obtainedon the globally onvergent stage of our two-stage numerial proedure, see Figures 3 and 4as well as Table 2. Let Uref (x, t) be the solution of the problem ( 6.2) with εr (x) := εglob
r

(x) . Thus, we de�ne our seond immersed data in the time domain as
uimmers(x, t)|Pobs

=

{
uincl (x, t) , if uincl (x, t) ≥ βmaxP (uincl (x, t)) and x ∈ P,
Uref (x, t) , otherwise, (7.3)where the funtion uincl (x, t) is the standard linear interpolation of values uincl (xm, t) in(7.2) over the retangle P . In partiular, (7.3) implies that uimmers(x, t) = Uref (x, t) for x ∈

Pobs \ P. In (7.3) the parameter β ∈ (0, 1) should be hosen in numerial experiments. Thisparameter haraterizes the amount of information whih we take from the �rst immersedexperimental data in (7.2). Comparison of Figures 5-a), ) with Figures 5-b), d) shows thatthe third stage of data immersing helps not only to obtain the data for x ∈ Pobs \ P (ratherthan for x ∈ P only), but also to signi�antly derease the noisy omponent of the dataresulting from the �rst immersing stage. We also show numerially below (Figure 10) thatthe hange of the parameter β in the wide range β ∈ (0.1, 0.985) does not signi�antly a�etimaging results.Thus, we now got a �double use� of the solution obtained on the globally onvergent stage.First, for the data immersing via (7.3). Seond, as the starting point for the adaptivitytehnique.8 Reonstrution ResultsWhile Figures 3-) and 4-) display reonstrution results via the globally onvergent stage,we present in this setion re�ned results whih were obtained on the adaptivity stage. Weuse in this setion both �rst and seond mesh re�nement reommendations of setion 4.
24



εr,h ≈ 3.9, nglob =
√
εr,h ≈ 1.97Figure 6: The reonstrution result for the 1st stage of the adaptivity for the ube No. 1. Maximalvalues of the imaged oe�ient are shown for the third re�ned mesh. The shape is not yet wellreonstruted, although a omparison with Fig. 3-) shows an improvement. The refrative index isreonstruted aurately (Table 2).8.1 Some details of the numerial implementation of the adaptivityReall that by the �rst mesh re�nement reommendation we re�ne mesh loally in suh asubdomain of the domain Ω where

|E ′ (εr,h) (x)| ≥ κ max
Ω

|E ′ (εr,h) (x)| , (8.1)where κ = const ∈ (0, 1) is the tolerane number of our hoie. The hoie of κ depends ononrete values of |E ′ (εr,h) (x)| and this should be done in numerial experiments. Belowwe take in (8.1 ) κ = 0.8 for all omputational meshes. Just as in [10, 11, 12℄, we have useda ut-o� parameter Bcut on all re�ned meshes for the reonstruted oe�ient εr,h. Namely,we took
εr,h (x) =

{
εr,h (x) , if |εr,h (x) − εglob

r,h (x) | ≥ Bcut,

εglob
r,h (x) , elsewhere. (8.2)Our numerial experiene of previous publiations [10, 11, 12℄ has shown that it is im-portant to use in the adaptive algorithm box onstrains for the reonstruted oe�ient viaimposing that 1 ≤ εr,h (x) ≤ d. While the inequality εr,h (x) ≥ 1 follows from physis, see(2.3), we �nd a good estimate for the upper bound d on the basis of omputed refrativeindies from globally onvergent part, i.e. on the basis of the seond olumn of Table 2.Conrete values of Bcut and d an be found in subsetions below.25



εr,h ≈ 3.9, nglob =
√
εr,h ≈ 1.97Figure 7: The reonstrution result for the 2nd stage of the adaptivity for the ube No. 1. Thinlines (blue) indiate the orret ubial shape. Comparison with Fig. 6 shows an improvement of theimage. The refrative index is reonstruted aurately (Table 2).8.2 Reonstrution results for the Cube No. 1The funtion εglob

r (x) , whih orresponds to Fig. 3-), was taken as the starting point inadaptivity tehnique on all meshes, as well as the one generating the funtion Uref in (7.3).We took in (8.2) Bcut = 2 for all re�nements of the mesh. Sine by Table 2 max εglob
r (x) =

(1.97)2 ≈ 3.9, we enfore that the oe�ient εr(x) belongs to the following set of admissibleparameters εr(x) ∈ CM = {1 ≤ εr(x) ≤ 4.4}.8.2.1 The �rst stage of the mesh re�nementOn this stage we re�ne mesh loally in the following two types of subdomains of the domain
Ω : 1. The one where we follow the First Mesh Re�nement Reommendation. That is, were�ne mesh in all regions where (51) is ful�lled.2. In addition, following the Seond Mesh Re�nement Reommendation and the thirdRemark 4.1, we re�ne the in suh a subdomain where the oe�ient imaged on the globallyonvergent stage attains values whih are su�iently lose to its maximal value. In otherwords, we re�ne mesh in all regions where εglob

r (x) ≥ αmaxΩ ε
glob
r (x), where the parameter

α ∈ (0, 1) is hosen in numerial experiments. In all alulations below we took
α = 0.2, β = 0.985, γ = 0.001, (8.3)where γ is the regularization parameter of the Tikhonov funtional (13).26



First, we use the same oarse mesh as the one on the globally onvergent stage. Just asin [10℄-[12℄, we have not observed any improvement of the image. Next, we use adaptivelyloally re�ned meshes. Let ΓT = Pobs × (0, T ) . To �gure out the stopping riterion withrespet to the mesh re�nements, we proeed similarly with Table 2 of [10℄ and Table 1of [11℄. Namely, let εr,h (x) be the approximation for the true oe�ient εr (x) , whih isobtained on a ertain mesh, and u be the orresponding solution of the forward problem(6.2). So, we analyze the behavior of omputed L2-norms of ‖u− uimmers‖L2(ΓT ) . We haveobserved that these norms derease with the number of mesh re�nements. Next, this normslightly inreases on the 4th re�nement. This is the same behavior as one in [10, 11℄. Hene,we take the oe�ient εr (x) obtained after three mesh re�nements as our �nal solutionon the �rst stage of the adaptive algorithm. The resulting image is shown on Figure 6.Comparison of Figures 3-) and 6 shows that the image of Fig. 6 is better than one of Fig.3-), whereas refrative indies are the same. However, the shape of the inlusion is not yetimaged well, although the size of the abnormality is omputed rather well.8.2.2 The seond stage of the mesh re�nementOne an derive from Fig. 6 that maximal values of the reonstruted oe�ient are ahievedin the subdomain Ω2,

Ω2 = {(x, y, z) : (x, y) ∈ [−0.5, 0.5] × [−0.6, 0.6] × [−1.4,−0.5]} . (8.4)Let εr,h (x) be the oe�ient imaged on the �rst stage of the mesh re�nement proess. On theseond mesh re�nement stage we follow only the Seond Mesh Re�nement Reommendationand do not use the �rst one. Thus, we re�ne the mesh loally only in neighborhoods of thosegrid points where
x ∈

{
εr (x) ≥ αmax

Ω
εr (x)

}
∩ Ω2, (8.5)where α is taken from (8.3). The same stopping riterion for the number of mesh re�nementsas one above was used. Figure 7 displays the �nal image after four mesh re�nements.Comparison of Figs. 7 and 6 shows an improvement of the image due to the seond stage ofthe adaptivity.8.3 Reonstrution results for the Cube No. 2We now apply the above adaptive two-stage tehnique to reonstrut the Cube No. 2 of Table1. In doing so, we again get the �rst guess from the globally onvergent method, see Fig.4-) and Table 2. Beause of Table 2, we onsider the following set of admissible parameters

εr(x) ∈ CM = {1 ≤ εr(x) ≤ 3.3}. Let j be the number of iterations in the quasi-Newtonmethod on the 1st stage of the adaptivity. On all re�ned meshes we have hosen the ut-o�parameters in (8.2) as: Bcut = 0.91 for j = 1, 2, for j = 3, Bcut = 1.1 and Bcut = 2 for j > 3.27



εr,h ≈ 2.52, nglob =
√
εr,h ≈ 1.59Figure 8: The reonstrution result for the 1st stage of the adaptivity for the ube No. 2. Onlymaximal values of the imaged oe�ient are shown for the 3rd re�ned mesh. The shape of the �nalimaged oe�ient is better than one on Fig. 4-). However, the imaged refrative index is loweredby about 19% ompared with the imaged on the globally onvergent stage.

εr,h ≈ 3.0, nglob =
√
εr,h ≈ 1.73Figure 9: The �nal reonstrution result for the ube No. 2. Only the �nal, 3rd mesh re�nement,is shown. The imaged oe�ient εr (x) = 1 outside of these images. All three omponents: shape,loation and refrative index are imaged with a very good auray.28



8.3.1 The �rst stage of the mesh re�nementAs in the ase of ube No. 1, the use of the same mesh as one in the globally onvergentmethod, did not lead to an improvement of the image. Again, just as in the ase of the�rst ube, we re�ne the mesh in all regions where both �rst and seond mesh re�nementreommendations work, i.e. in all regions where the inequality (8.1) with κ = 0.8 is valid, aswell as in all regions where εglob
r (x) ≥ αmaxΩ ε

glob
r (x) .We have used parameters (8.3) as wellas the same stopping riterion for the number of mesh re�nements as one in sub-subsetion8.2.1. Beause of this riterion, we have stopped on the 3th mesh re�nement. The �nal imageof the �rst stage of the adaptivity is displayed on Fig. 8. Comparing this image with oneon Fig. 4-) and with Table 2, we observe a slight improvement of the imaged shape whilethe value of the refrative index has dereased by about 19%. In addition, we observe thatwe have atually obtained two disonneted imaged inlusions.8.3.2 The seond stage of the mesh re�nementWe use the same proedure as one for the �rst ube. First, we have to �gure out an analogof the domain Ω2 in (8.4). To de�ne upper and lower boundaries for the vertial oordinate

z of the subdomain of loal mesh re�nements, we have deided to use again the informationobtained on the globally onvergent stage. We see on Fig. 4-) that, unlike Fig. 8, we haveonly a single rather than two inlusions. Hene, we have deided to re�ne mesh, in terms ofthe vertial oordinate z as follows:1. The top boundary ztop should be slightly below the low boundary of the small imagedinlusion of Fig. 8.2. The low boundary zlow should be slightly below the bottom of the larger imagedinlusion of Fig. 8.3. Boundaries with respet to horizontal oordinates (x, y) of the mesh re�nementsubdomain were determined from the riterion εr (x) ≥ αmaxΩ εr (x) for values of εr (x) ,whih is similar with (8.5). Consider the subdomain Ω3 ⊂ Ω, where
Ω3 = {(x, y, z) : (x, y) ∈ [−0.6, 0.6] × [−0.6, 0.6] × [−1.8,−0.8]} .So, we re�ne the mesh, using the riterion (8.5), in whih Ω2 is replaed with Ω3.The same stopping riterion for the number of mesh re�nements as one in sub-subsetion8.2.1 was used. Thus, we have onluded that the 3rd mesh re�nement should be the �nalone. The resulting image is displayed on Fig. 9. A very aurate reonstrution of all threeomponents of the Cube No. 2: shape, loation and refrative index is evident.8.4 Sensitivity to parameters β and γTo investigate the sensitivity of our images to the hoie of the regularization parameter γin the Tikhonov funtional (4.5), as well as to the parameter β in (7.3), we have performedfurther testing for ube No. 2 with di�erent values of β and γ. Results are displayed onFigure 10. One an observe that the value of the regularization parameter γ does not impat29



reonstrution results signi�antly. One an also see that images for β = 0.985 and β = 0.5are almost the same, inluding imaged values of the refrative index. Surprisingly, imagesfor the ase β = 0.1 also look almost the same as ones for β = 0.985 and β = 0.5. However,values of the refrative index for β = 0.1 are lowered by about 10%. Hene, we onludefrom Fig. 10 that our proedure is quite stable with respet to parameters β and γ.8.5 Veri�ation for the Cube No. 1We have ompared our imaging result for Cube No. 1 with omputational simulations. Todo so, we have omputed the data for the forward problem for exatly the same ube as No.1 in Table 1. We took ǫr = 4 inside of this simulated ube. However, we have replaed ω = 7with ω = 14 in (6.1) and (6.2), sine this orresponds to the twie smaller dimensionlesswavelength 2π/ω in omputational simulations. So, we have onjetured that having a twotimes lesser wavelength would result in a better image for the Cube No. 1. Indeed, with
ω = 7 the dimensionless wavelength in simulated data is 0.897, whih is bigger than thedimensionless size 0.8 of the side of the �rst ube (Table 1). On the other hand, ω = 14 givesus the dimensionless wavelength of 0.45 < 0.8. Note that the dimensionless wavelength sizeof the side of the Cube No. 2 is 1.2 > 0.897. We reall here the lassial Rayleigh priniple.We have applied the same proedure as above to the omputationally simulated data.The resulting image is displayed on Fig. 11-a). One an observe a very good quality ofthis image from syntheti data. Next, we have applied the same proedure as above to theexperimental data for the Cube No. 1 with the single di�erene that we now have used
ω = 14 instead of the previous ω = 7. The resulting image is displayed on Fig. 11-b). Onean observe a signi�ant improvement ompared with Figure 7. Hene, our onjeture about
ω was partially materialized for the ase of experimental data. Still, however, the image onFig. 11-b) is not as good as the one for Cube No. 2 on Fig. 9.9 DisussionIn this paper we have ontinued our work on experimental data of [24℄. While only loationsand refrative indies of dieletri abnormalities were aurately omputed in [24℄, we nowomplement those by reonstrutions of shapes. As a result, the shape of the Cube No. 2is reonstruted with an exellent auray (Fig. 9). Furthermore, it was shown that ourtehnique is quite stable with respet to some ritial parameters whih we hoose in thereonstrution proess (Fig. 10). The shape of the smaller Cube No. 1 was also reonstrutedwell (Fig. 11-b)), although the auray is not as good as the one of Cube No. 2. Just as in[24℄, refrative indies are imaged with a very good auray in both ases.The di�erene of qualities of images of our two ubes might likely be attributed to thelassial Rayleigh priniple. Indeed, the original wavelength λem of the EM wave in ourexperimental data was λem = 3cm. On the other hand, sizes of sides of Cubes No. 1 andNo. 2 were respetively 4cm = 1.33λem and 6cm = 2λem (Table 1). Hene, we onjeturethat the shape of the Cube No. 2 was imaged better than the one of Cube No. 1 beause30



a) γ = 0.001, β = 0.985 b) γ = 0.01, β = 0.985 ) γ = 0.1, β = 0.985
εr,h ≈ 3.2, nglob = 1.79 εr,h ≈ 3.2, nglob = 1.79 εr,h ≈ 3.2, nglob = 1.79

d) γ = 0.001, β = 0.5 e) γ = 0.01, β = 0.5 f) γ = 0.1, β = 0.5
εr,h ≈ 3.1, nglob = 1.76 εr,h ≈ 3.1, nglob = 1.76 εr,h ≈ 3.0, nglob = 1.73

g) γ = 0.001, β = 0.1 h) γ = 0.01, β = 0.1 i) γ = 0.1, β = 0.1
εr,h ≈ 2.4, nglob = 1.55 εr,h ≈ 2.4, nglob = 1.55 εr,h ≈ 2.4, nglob = 1.55Figure 10: Final reonstrution results for ube No. 2 with varying parameters β and γ. Lines(blue) indiate the orret ubial shape. Maximal values of the imaged oe�ient are displayed.The omputed value of the oe�ient outside of imaged inlusions is 1.
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a) εr,h ≈ 4.09, nglob =
√
εr,h ≈ 2.02

b) εr,h ≈ 4.2, nglob =
√
εr,h ≈ 2.05Figure 11: a) The image of omputationally simulated ube No. 1 from omputationally simulateddata with ω = 14 in (6.1) and (6.2). b) The image of ube No. 1 from experimental data with

ω = 14 in (6.1) and (6.2). The same imaging proedure as above was applied. Compared with Fig.7, a signi�ant improvement is observed. Still, however, the image of the shape is not as good asthe one for Cube No. 2 on Fig. 9.
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our experimental data had 3cm wavelength �insribed� in them. This question needs to beinvestigated further.Compared with [24℄, the main new element here is that we have omplemented theglobally onvergent method by the adaptivity tehnique. In addition, we have omplementedthe previously developed �rst rule of mesh re�nements by the new seond rule. The latterhas required a signi�ant analytial e�ort with an extensive use of results [11, 12, 25℄. Twoother important features of these studies are:1. The use of the solution obtained on the globally onvergent stage is ruial for ob-taining above results via the adaptivity. At least for the ase of our experimental data, theadaptivity does not work without the availability of this solution.2. Our studies have onsistently demonstrated that all analytial and numerial onlu-sions derived in our previous publiations for omputationally simulated data [9℄-[12℄ wereon�rmed on experimental data.Some disrepanies between our mathematial model and the reality are evident. It iswell known that equation (2.1) annot be derived from the Maxwell's system for the 3-D aseif εr 6= const. In addition, we are not aware whih of three omponents of the eletri �eldwas measured in experiments: we only knew that the time-resolved voltage was measured.Thus, we all (2.1) a simpli�ed mathematial model of our physial proess. A possibleexplanation why everything still works well is that the data immersing proedure �enfores�our data to be �good� for equation (2.1). A more omplete investigation of this issue withthe use of the full Maxwell's system seems to be worthy to pursue.Another disrepany is that in our globally onvergent algorithmwe need a ertain asymp-toti behavior of the Laplae transform of the funtion u, whih an be derived from resultsof [32, 33℄, see (3.2) and Lemma 2.1 in [9℄. In partiular, that lemma requires at least the
C2−smoothness of the oe�ient εr (x). We verify that asymptoti behavior omputation-ally, see subsetion 7.2 [9℄. However, the smoothness assumption of the funtion εr (x) isobviously violated at the boundaries of our two ubes, whih were used in experiments. Moredisrepanies an be derived from data immersing proedures desribed above. It might welltake years to �gure out how to handle all these disrepanies. In summary, it is rathersurprising that, despite all these disrepanies, results of this publiation as well as resultsof blind testing of [24℄ onsistently demonstrate a very good reonstrution auray.AknowledgmentsThis work was supported by the US Army Researh Laboratory and US Army ResearhO�e grants W911NF-08-1-0470 and W911NF-09-1-0409. The �rst author also aknowledgesa partial support by the Swedish Foundation for Strategi Researh (SSF) at GothenburgMathematial Modeling Center (GMMC) and by the Swedish Institute, Visby Program.Referenes[1℄ Ainsworth M and Oden J T 2000 A Posteriori Error Estimation in Finite ElementAnalysis (New York: Wiley) 33
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