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Abstract

We introduce a goal-oriented adaptive finite element method, which
combines the Kirchhoff and Mindlin-Reissner plate models. The lateral
displacements are approximated by quadratic continuous polynomials,
and the rotations of the midsurface are approximated by linear discon-
tinuous polynomials. A duality-based a posteriori error representation
separates the discretization and modeling errors, and in this sense lo-
cal mesh and model refinement are independent. The target quantity
of interest is an arbitrary linear functional of the displacement and/or
rotation errors.

Keywords Kirchhoff plate, Mindlin-Reissner plate, model adaptivity

1 Introduction

Two commonly used mathematical models for plate bending problems are
the Kirchhoff plate model, applicable to thin plates whose deflections are
small, and the Mindlin-Reissner (MR) plate model for thin and moderately
thick plates. The Kirchhoff plate model is markedly less expensive to solve
numerically, since it only involves the lateral displacements (although it re-
quires C1-continuity, which can be computationally cumbersome), whereas
the MR plate model also includes the rotations of the midsurface as un-
knowns. Hence it becomes interesting to adaptively decide which model to
use—besides resolving the computational domain—in order to achieve a pre-
scribed accuracy of the discrete solution. Recently it has been suggested in
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Heintz [10] to employ the same finite element method for solving a problem
in which different models are used in different parts of the physical plate.
This idea builds on the continuous/discontinuous Galerkin (c/dG) methods
developed by Engel et al. [5], and by Hansbo and Larson [8], where continu-
ous Pd elements (with approximating polynomials of degree d) are used for
the lateral displacements. The continuity of the displacement gradient, how-
ever, is only weakly imposed in the Kirchhoff plate model [5], corresponding
to using discontinuous Pd−1 rotations with weakly enforced continuity for
the MR plate model [8].

We develop a c/dG finite element method which extends previous work
by including goal-oriented adaptivity. The choices of local mesh size and
local model are done in an automated way to control arbitrary linear func-
tionals of the displacement and/or rotation errors. The total error is sepa-
rated into a sum of the discretization and modeling errors, and represents
the discrepancy between the discrete solution and the exact solution to a
master model (which we define to be the MR plate model).

2 The continuous problems

We introduce the continuous problems for the plate models—the strong and
the corresponding variational formulations—under the following assump-
tions: the domain Ω is a convex polygon, clamped at its boundary ∂Ω, i.e.,
the lateral displacements u and the normal derivative ∂nu vanish here, and
the constitutive parameters λ and µ and the plate thickness t are constants.

The Kirchhoff plate model is described mathematically by a fourth-order
partial differential equation,∑

ij

∂2σij(∇u)

∂xi∂xj
= f, in Ω ⊂ R2, (1)

which expresses equilibrium between internal and external forces. Here t3f is
recognized as the transverse surface load, whereas σ represents the moment
tensor,

σ(∇u) := λ∇ · ∇u1+ 2µε(∇u),

for a linearly elastic material. 1 is the identity tensor, and ε is the curvature
tensor, whose components are

εij(v) :=
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, for i, j = 1, 2.
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Moreover,

λ =
Eν

12(1− ν)2
, µ =

E

24(1 + ν)
,

where E and ν are Young’s modulus and Poisson’s ratio, respectively. Should
shear effects be non-negligible the MR plate model typically replaces (1) to
improve the accuaracy of the solution. Then we consider instead the system
of equations

−∇ · σ(θ)− κ(∇u− θ) = 0,

−κ∇ · (∇u− θ) = f,
(2)

where θ denotes the rotations of the midsurface of the plate, and the material
parameter

κ =
Ek

2t2(1 + v)
,

where k = 5/6, is a shear correction factor.
The virtual work equation pertaining to (2) can be derived by minimizing

the sum of the bending energy, the potential of the surface load, and the
shear energy:

(u,θ) = min
v,ϑ

F(v,ϑ) = 1
2a(ϑ,ϑ) +

1
2b(v,ϑ; v,ϑ)− (f, v)Ω. (3)

v and ϑ belong to admissible function spaces (to be specified), whereas (·, ·)Ω
represents the L2 inner product with respect to the indicated domain. The
bending energy is defined in terms of the tensor contraction

a(θ,ϑ) :=

∫
Ω
σ(θ) : ε(ϑ) dΩ, (4)

and the shear energy is defined by

b(u,θ; v,ϑ) := κ(∇u− θ,∇v − ϑ)Ω. (5)

If (3) is modified by omitting the shear energy functional, and substituting
ϑ = ∇v, we get the corresponding minimization problem for the Kirchhoff
plate model,

u = min
v

F(v) = 1
2a(∇v,∇v)− (f, v)Ω. (6)

Here the rotation vector is approximated by the displacement gradient, and
thus the discrete Kirchhoff solution has less degrees of freedom, but it also
requires higher regularity owing to the second-order derivatives present in
the bilinear form (4).
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Solving (6) and (3) yields the following variational formulations. Firstly,
for the Kirchhoff plate model: find u ∈ V =

{
v ∈ H2

0 (Ω) : ∂nv|∂Ω= 0
}
such

that
a(∇u,∇v) = (f, v)Ω,

for all v ∈ V . Secondly, for the MR plate model, using the function spaces
W = H1

0 (Ω) and Θ = W 2: find (u,θ) ∈ W ×Θ such that

a(θ,ϑ) + b(u,θ; v,ϑ) = (f, v)Ω, (7)

for all (v,ϑ) ∈ W ×Θ.

3 The discrete problems

3.1 The mesh

The computational domain is constructed by partitioning of Ω into a geomet-
rically conforming and quasi-uniform finite element triangulation, Th = {T},
whose local mesh size is given by

hT := diam(T ) = max
y1,y2∈T

∥y1 − y2∥, for all T ∈ Th,

and let
h := max

T∈Th

hT

denote the global mesh size parameter. We also define the set of edges in the
mesh, E = {E}, which can be divided into two disjoint subsets, E = EI∪EB,
where EI = E \ ∂Ω and EB are the sets of interior edges and boundary
edges, respectively. Each edge is associated with a fixed unit normal n with
direction chosen so that n is the exterior normal on the boundary.

3.2 Function spaces

We introduce the function space

Vh := {v ∈ C0(Ω) : v|∂Ω= 0, v|T∈ Pd(T ) for all T ∈ Th}

of continuous piecewise polynomials of degree d for the approximation of the
lateral displacements. For the rotation vector

Θh := {ϑ ∈ [L2(Ω)]
2 : ϑ|T∈ [Pd−1(T )]2 for all T ∈ Th}

4



is the function space of discontinuous piecewise polynomials of degree d− 1.
Note how the choice of approximating spaces is compatible in the sense that

∇v ⊂ Θh, for all v ∈ Vh.

This is an important property, since in the limit t → 0, it allows for functions
in Θh to belong to ∇Vh. Hence there may exist non-trivial discrete solutions
such that the difference ∇u− θ in the shear energy functional (5) vanishes,
and so shear locking is alleviated.

3.3 Jumps and averages

We introduce two quantities for functions on edges: the jump J·K and the
average ⟨·⟩. For this purpose, let T1 and T2 be two neighboring elements,
sharing the interior edge E. Now, for a scalar function v ∈ Vh, we define

JvK := v− − v+, for E ∈ EI , JvK := v−, for E ∈ EB,

⟨v⟩ := 1
2(v

− + v+), for E ∈ EI , ⟨v⟩ := v−, for E ∈ EB,

where

v− = lim
ϵ→0+

v(x− ϵn), v+ = lim
ϵ→0+

v(x+ ϵn), for x = (x, y) ∈ E.

The definitions for a vector-valued function ϑ ∈ Θh are analogous.

3.4 The finite element methods

We are ready to formulate the symmetric c/dG finite element methods as
follows. Firstly, for the Kirchhoff plate model: find uh ∈ Vh such that

ah(∇uh,∇v) = (f, v)Ω, (8)

for all v ∈ Vh. Secondly, for the MR plate model: find (uh,θh) ∈ Vh ×Θh

such that
ah(θ

h,ϑ) + b(uh,θh; v,ϑ) = (f, v)Ω,
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for all (v,ϑ) ∈ Vh ×Θh, where the discrete bilinear form is defined by

ah(θ
h,ϑ) :=

∑
T∈Th

∫
T
σ(θh) : ε(ϑ) dxdy

−
∑
E∈E

(⟨n · σ(θh)⟩, JϑK)E
−

∑
E∈E

(⟨n · σ(ϑ)⟩, JθhK)E
+ (2µ+ 2λ)γ

∑
E∈E

(h−1
E JθhK, JϑK)E .

(9)

We remark how the last term in (9) penalizes jumps in the rotation vector (or
in the displacement gradient) across element edges, and that the stabilization
parameter γ must be chosen large enough to enforce coercivity on the bilinear
form, cf. Hansbo and Larson [9]. hE is given by

hE :=

{ |T1|+|T2|
2|E| , for E ∈ EI ,

|T |/|E|, for E ∈ EB,

where |·| denotes either the area of T or the length of E.
Thus far the presentation has treated the Kirchhoff and MR plate models

separately. We seek, however, a formulation which combines them, meaning
that different elements could be of different types. In order to conveniently
characterize such a simplified model the model parameter κ∗ is introduced,
which takes the value

κ∗ := κ∗(T ) =

{
κ, if T is of MR type,

ακ, if T is of Kirchhoff type,

where α > 0 is a large number (in the limit κ∗ → ∞ the Kirchhoff plate
model is regained, owing to the compatibility of the approximating spaces).
Hence the simplified model associates the partition Th with a model distri-
bution Km = {κ∗}. The simplified formulation may now be stated as: find
(uh,θh) ∈ Vh ×Θh such that

ah(θ
h,ϑ) + κ∗(∇uh − θh,∇v − ϑ)Ω = (f, v)Ω, (10)

for all (v,ϑ) ∈ Vh×Θh. The difference between (7), the exact solution of the
MR plate model, and the discrete solution (10), satisfies the orthogonality
relation

ah(eθ,ϑ) +
(
κ(∇u− θ)− κ∗(∇uh − θh),∇v − ϑ

)
Ω
= 0, (11)
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for all (v,ϑ) ∈ Vh ×Θh, with the rotation error eθ = θ − θh.
We stress that solving (10) is costly, since all elements have an indepen-

dent approximation of the rotations of the midsurface. In this respect a sim-
plified formulation is better treated as in [10], where Kirchhoff elements only
carry degrees of freedom related to lateral displacements. For the practical
implementation, we thus introduce a split of Th into one set TK

h containing
the Kirchhoff elements, and another set TM

h containing the Mindlin-Reissner
elements. The approximation space Θh must then be modified to

ΘM
h := {ϑ ∈ [L2(Ω)]

2 : ϑ|T∈ [Pd−1(T )]2 for all T ∈ TM
h },

and the formulation of the discrete problem becomes: find (uh,θh) ∈ Vh ×
ΘM

h such that

ah
(
FT (θ

h,∇uh),FT (ϑ,∇v)
)
+

∑
T∈TM

h

κ(∇uh − θh,∇v − ϑ) = (f, v)Ω, (12)

for all (v,ϑ) ∈ Vh ×ΘM
h . Here FT is defined elementwise as

FT (ϑ,∇v) :=

{
ϑ, if T ∈ TM

h ,

∇v, if T ∈ TK
h .

We propose to solve (12) in practice. The more expensive method defined by
(10) will be used mainly for the purpose of error analysis (see Section 4.3).

4 A posteriori error representations

Following Becker and Rannacher [2], we present two related error representa-
tion formulas for control of linear functionals Lu(eu), where eu = u−uh, and
Lθ(eθ) of the displacement and rotation errors. In particular, the total error
is expressed as a sum of two contributions, identified as the discretization
and modeling errors,

L(eu, eθ) := Lu(eu) + Lθ(eθ) = eh + em.

The error separation provides a means for determining whether an element
set for refinement should be divided or, if it is of Kirchhoff type, replaced
by a Mindlin element.
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4.1 Formula using primal exact and dual simplified solutions

We introduce the dual simplified problem

−∇ · σ(ϕ∗)− κ∗(∇z∗ − ϕ∗)Ω = Ju,

−κ∗∇ · (∇z∗ − ϕ∗)Ω = Jθ,

where Ju and Jθ are the Riesz representers of Lu and Lθ, respectively. The
corresponding weak formulation is to find (z∗,ϕ∗) ∈ W ×Θ such that

a(ϑ,ϕ∗) + κ∗(∇v − ϑ,∇z∗ − ϕ∗)Ω = Lu(v) + Lθ(ϑ), (13)

for all (v,ϑ) ∈ W ×Θ. Then, since Jn · ϕ∗K = 0 on the edges, substituting
v = eu and ϑ = eθ in (13) gives

L(eu, eθ) = ah(eθ,ϕ
∗) + κ∗(∇eu − eθ,∇z∗ − ϕ∗)Ω

+ κ(∇u− θ,∇z∗ − ϕ∗)Ω − κ(∇u− θ,∇z∗ − ϕ∗)Ω,
(14)

where the term κ(∇u− θ,∇z∗ −ϕ∗)Ω also has been added and subtracted.
Now, let πz : V → Vh and πϕ : Θ → Θh be standard interpolation operators,
use the orthogonality relation (11) with v = −πzz

∗ and ϑ = −πϕϕ
∗, and

add

0 = ah(eθ,−πϕϕ
∗)+

(
κ(∇u−θ)−κ∗(∇uh−θh),−(∇πzz

∗−πϕϕ
∗)
)
Ω

(15)

to (14). Then

L(eu,eθ) = ah(eθ,ϕ
∗ − πϕϕ

∗) + κ
(
∇u− θ,∇(z∗ − πzz

∗)− (ϕ∗ − πϕϕ
∗)
)
Ω

− κ∗
(
∇uh − θh,∇(z∗ − πzz

∗)− (ϕ∗ − πϕϕ
∗)
)
Ω

+ (κ∗ − κ)(∇u− θ,∇z∗ − ϕ∗)Ω,

where the first two right-hand side terms

T = ah(eθ,ϕ
∗ − πϕϕ

∗) + κ
(
∇u− θ,∇(z∗ − πzz

∗)− (ϕ∗ − πϕϕ
∗)
)
Ω

= (f, z∗ − πzz
∗)Ω − ah(θ

h,ϕ∗ − πϕϕ
∗),

(16)

by (7), i.e.,

L(eu, eθ) = (f, z∗ − πzz
∗)Ω − ah(θ

h,ϕ∗ − πϕϕ
∗)

− κ∗
(
∇uh − θh,∇(z∗ − πzz

∗)− (ϕ∗ − πϕϕ
∗)
)
Ω

+ (κ∗ − κ)(∇u− θ,∇z∗ − ϕ∗)Ω.

(17)
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In (17) we can identify two error contributions. Firstly, how well the com-
puted solution of the simplified formulation satisfies the exact solution of
the simplified formulation, i.e., the discretization error

eh = (f, z∗ − πzz
∗)Ω − ah(θ

h,ϕ∗ − πϕϕ
∗)

− κ∗
(
∇uh − θh,∇(z∗ − πzz

∗)− (ϕ∗ − πϕϕ
∗)
)
Ω
.

Secondly, we have

em = (κ∗ − κ)(∇u− θ,∇z∗ − ϕ∗)Ω,

which corresponds to the modeling error, measuring how well the simplified
model approximates the exact model. By introducing the primal exact and
dual simplified shear forces,

ζu := κ(∇u− θ) and ζz∗ := κ∗(∇z∗ − ϕ∗),

respectively, we can rewrite

em = (ζz∗ ,∇u− θ)Ω − (ζu,∇z∗ − ϕ∗)Ω. (18)

Thus the modeling error, with respect to L(eu,eθ), is measured by the differ-
ence between the work done by the dual simplified shear force on the primal
exact shear angle ∇u−θ, and the work done by the primal exact shear force
on the dual simplified shear angle ∇z∗ − ϕ∗.

4.2 Formula using dual exact solution

Alternatively an error representation can be derived by using a dual Mindlin-
Reissner problem. To this end, consider the problem

−∇ · σ(ϕ)− κ(∇z − ϕ)Ω = Ju,

−κ∇ · (∇z − ϕ)Ω = Jθ,

the weak formulation of which is to find (z,ϕ) ∈ W ×Θ such that

a(ϑ,ϕ) + κ(∇v − ϑ,∇z − ϕ)Ω = Lu(v) + Lθ(ϑ), (19)

for all (v,ϑ) ∈ W ×Θ. Using the displacement and rotation errors as test
functions in (19) leads to

L(eu, eθ) = ah(eθ,ϕ) + κ(∇eu − eθ,∇z − ϕ)Ω

+ κ∗(∇uh − θh,∇z − ϕ)Ω − κ∗(∇uh − θh,∇z − ϕ)Ω,
(20)
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by adding and subtracting the term κ∗(∇uh − θh,∇z − ϕ)Ω. Next add the
zero-contribution (15)—with (z,ϕ) replacing (z∗,ϕ∗) (here and in the sequel
where appropriate)—to (20), which yields

L(eu, eθ) = ah(eθ,ϕ− πϕϕ) + κ
(
∇u− θ,∇(z − πzz)− (ϕ− πϕϕ)

)
Ω

− κ∗
(
∇uh − θh,∇(z − πzz)− (ϕ− πϕϕ)

)
Ω

+ (κ∗ − κ)(∇uh − θh,∇z − ϕ)Ω,

and by (16)

L(eu, eθ) = (f, z − πzz)Ω − ah(θ
h,ϕ− πϕϕ)

− κ∗
(
∇uh − θh,∇(z − πzz)− (ϕ− πϕϕ)

)
Ω

+ (κ∗ − κ)(∇uh − θh,∇z − ϕ)Ω.

(21)

In (21) we readily identify the discretization error

eh = (f, z − πzz)Ω − ah(θ
h,ϕ− πϕϕ)

− κ∗
(
∇uh − θh,∇(z − πzz)− (ϕ− πϕϕ)

)
Ω
,

and as for the modeling error,

em = (κ∗ − κ)(∇uh − θh,∇z − ϕ)Ω.

Defining the primal simplified and dual exact shear forces,

ζuh := κ∗(∇uh − θh) and ζz := κ(∇z − ϕ),

respectively, allows us to rewrite

em = (ζuh ,∇z − ϕ)Ω − (ζz,∇uh − θh)Ω, (22)

i.e., the modeling error with respect to L(eu,eθ) is measured by the difference
between the work done by the primal simplified shear force on the dual exact
shear angle ∇z−ϕ, and the work done by the dual exact shear force on the
primal simplified shear angle ∇uh − θh (whereas (18) involves the primal
exact shear angle).

4.3 Remarks

The exact solutions in (17) and (21) are all a priori, and thus in general need
to be approximated by enhanced discrete solutions, followed by element- and
edgewise evaluation to estimate the error and obtain local error indicators.
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Note that the evaluation of (17), besides the primal simplified solution,
requires both the primal exact and the dual simplified solutions, whereas the
evaluation of (21) only requires the dual exact solution. Hence an adaptive
method based on (21) would appear to be the less expensive strategy. There
is, however, a practical difficulty, namely how to compute the simplified shear
forces: Kirchhoff elements approximated using the finite element method (8)
lose the modeling error information (since then ζz∗ = 0 in (18) or ζuh = 0 in
(22)). We address the problem by solving the simplified formulation (10) for
the enhanced discrete solutions (ua,θa) and (z∗a,ϕ

∗
a). Then every element

carries degrees of freedom related to the rotations of the midsurface, which
is expensive, but more importantly it retrieves the non-zero simplified shear
forces on Kirchhoff elements. To reduce the computational cost, though, we
propose to solve local Dirichlet problems on refined element patches for the
enhanced discrete solutions, being a standard approach to error estimation,
cf. Verfürth [13].

We opt for (17) in favor of (21), since our strategy would require comput-
ing the shear forces ζuh by solving (10) globally (without Kirchhoff elements)
to obtain (uh,θh), which is not feasible.

5 Implementation

We establish an adaptive method based on (17), which requires approxima-
tions of the unknown primal exact and dual simplified solutions.

Firstly, the primal and dual simplified formulations (12) are solved—with
different load vectors—using the same initial mesh and model distribution
(Ti

h,K
i
m). The Cholesky factorizations of the stiffness matrices will be the

same, and thus the additional cost of solving for (zh,ϕh) is negligible. The
solutions (uh,θh) and (zh,ϕh) are used for applying fixed boundary condi-
tions in the local Dirichlet problems. Next each element (parent) Tj ∈ Ti

h,
j = 1, 2, . . . , Nele, is split by regular refinement into four elements (children),
and then element patchesPj are constructed. These patches must not be too
small—if so the enhanced simplified solutions get to few additional degrees
of freedom, and the local error indicators become less accurate. In general
it does not suffice for patches to consist of a single parent element, as shown
in Figure 1. Here it is due to the jump in the linear rotation components,
between the children and their parent, being penalized along the boundary.
Consequently, for large stabilization parameters, (θa,ϕ

∗
a) → (θh,ϕh), i.e.,

all degrees of freedom are (weakly) prescribed. To circumvent this problem
we also include every parent that connects to any vertex of Tj in the patch,
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as exemplified in Figure 2. On each patch (10) is solved for enhanced primal
exact and dual simplified solutions, whose restrictions to Tj , (ua,θa)|Tj and
(z∗a,ϕ

∗
a)|Tj , will be used to estimate the total error (leading to globally dis-

continuous lateral displacements). We emphasize that solving local Dirichlet
problems is suitable for parallelization.

When evaluating the error representation (17), we let πzz
∗ and πϕϕ

∗

be the nodal interpolation of z∗a and the L2 projection of ϕ∗
a, respectively.

The discretization errors emanating from internal edges are split between
neighbors. Each element Tj contributes ηj = ηj,h + ηj,m to the total error,

L(eu, eθ) ≈
Nele∑
j=1

ηj = L(ua − uh,θa − θh),

and the stopping criterion of the adaptive algorithm, summarized in Algo-
rithm 1, is imposed on the relative total error,

TOL ≤ erel :=

∣∣∣∣L(ua − uh,θa − θh)

L(ua,θa)

∣∣∣∣ , (23)

where TOL is a presribed tolerance. Should (23) not be satisfied at the i:th
refinement level, the elements corresponding to a (approximatively) fixed-
ratio r = 20 % of the largest absolute local error indicators,

{|η1,h|, . . . , |ηNele,h|, |η1,m|, . . . , |ηNele,m|},

are locally refined by longest-edge bisection and/or model refinement.
To measure the accuracy of the resulting local error indicators we use an

effecticity index,

Ieff :=
L(ua − uh,θa − θh)

L(eu, eθ)
,

which desirably is close to unity (depending on how well (ua,θa) and (z∗a,ϕ
∗
a)

approximate the a priori terms). Should an analytical solution not be avail-
able, the exact error in the target quantity is approximated using a com-
puted solution, L(ũ, θ̃), with respect to a densely adapted mesh and model
distribution. Then L(eu, eθ) ≈ L(ũ− uh, θ̃ − θh) and Ieff ≈ Ĩeff.

For more sophisticated refinement strategies, which, e.g., include coars-
ening and try to balance the total error, we refer to Bangerth and Rannacher
[1] for an overview. In particular, we would consider coarsening of the model
(so that in each refinement level, r ≥ X ≥ Y ≥ 0, where X and Y are the
fractions of Kirchhoff and Mindlin elements set to be refined and coarsened,
respectively), due to the limited size of the model hierarchy.
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prescribed displacement DOFs
free displacement DOFs
penalized rotation DOFs

Figure 1: Solving local Dirichlet problems on single parent elements means
that all rotation degrees of freedom (DOFs) will be (weakly) prescribed.

Figure 2: Element patch consisting of every parent connecting to any vertex
of the grey marked parent.
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Algorithm 1: Adaptive scheme

Data: (T0
h,K

0
m), TOL

Result: (uh,θh), L(uh,θh), L(ua − uh,θa − θh)

for i = 0, 1, . . . do
solve (12) for (uh,θh) and (zh,ϕh) on (Ti

h,K
i
m);

construct element patches Pj ;
forall the element patches do

solve (10) for (ua,θa)|Tj and (z∗a,ϕ
∗
a)|Tj on Pj ;

end
compute {ηj,h}, {ηj,m} and erel by evaluating (17);
if stopping criterion (23) is not satisfied then

refine mesh and/or model locally: (Ti
h,K

i
m) → (Ti+1

h ,Ki+1
m );

else
break (target quantity is within the prescribed tolerance);

end

end

6 Numerical examples

Algorithm 1 is applied to two prototypical model problems to exemplify the
behavior of the adaptive procedure.

In all problems the material parameters E = 1, ν = 1/3 and k = 5/6,
the stability parameter γ = 10(2λ + 2µ)d2, the model parameter α = 106,
and the plate thickness t = 10−2.

The plate will be clamped, and thus large shear forces can be expected
along the boundary of the domain. The initial model distribution therefore
comprises a boundary layer of Mindlin elements, as shown in Figures 5 and
10.

The target quantity is chosen to be a linear functional of the lateral
displacements, i.e., Jθ = 0.

6.1 An L-shaped membrane

The polygonal domain Ω has vertices at

(0, 0), (1/2, 0), (1/2, 1/2), (1, 1/2), (1, 1) and (0, 1).
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The plate is subjected to the uniform transverse load f = 1, likewise for the
dual problem with right-hand side Ju = 1, which means

L(eu, eθ) =

∫
Ω
(u− uh) dΩ,

so we are controlling the error in the mean lateral displacement. A computed
solution to this problem can be found in Hansbo et al. [7].

The initial and the adapted meshes at the fifth refinement level are shown
in Figures 3 and 4, respectively. Local refinement is prominent at the interior
corner, in the presence of a stress singularity, and along the boundary of the
domain. The initial model and the distribution at the fifth refinement level
are shown in Figures 5 and 6. In beginning of the adaptive procedure the
total error is underestimated, but the effectivity index stabilizes at Ĩeff ≈ 1.1,
as tabulated in Table 1.

We try to estimate how solving local Dirichlet problems affects performance
in terms of execution time. This is done in a straightforward way by mea-
suring the time it takes to solve the linear system, or systems, of equations
for an enhanced primal exact solution (ua,θa).

The total execution times, either by solving the systems on each element
patch, or by solving the global system, are listed and compared in Table 2.
The benchmark indicates that solving local Dirichlet problems in parallel
becomes faster as the size of the global problem increases (the execution time
grows linearly with the number of patches). On the test system with 4 Intel
Xeon X5650@2.67GHz CPUs, 48 GB RAM, running RHEL 5.5, solving local
Dirichlet problems on 8 cores would be faster starting at the fifth refinement
level, assuming perfect scaling.

We stress that the time required to construct element patches, and the
time needed to perform the assembly processes, are not taken into account
(the solution step, however, is the most expensive). Neither is the approx-
imation of the enhanced dual simplified solution (z∗a,ϕ

∗
a). (Notice that the

sparsity patterns of the dual stiffness matrices are the same as their primal
counterparts, and thus the same reordering can be applied before factoriza-
tion to reduce fill-in.)

We have used CHOLMOD, see Chen et al. [3], for factorizing the sparse
symmetric positive definite matrices (a direct solver which is not parallel).
For larger problems, especially in 3D, solving the global system using sparse
iterative solvers could be beneficial.
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6.2 The unit square

Let Ω = [0, 1]× [0, 1]. The plate is subjected to the transverse surface load

f =
E

12(1− ν2)

(
12y(y − 1)(5x2 − 5x+ 1)×(
2y2(y − 1)2 + x(x− 1)(5y2 − 5y + 1)

)
+

12x(x− 1)(5y2 − 5y + 1)×(
2x2(x− 1)2 + y(y − 1)(5x2 − 5x+ 1)

))
.

The primal exact solutions were stated by Chinosi et. al. [4]: For the lateral
displacements,

u(x, y) = u0(x, y) + ur(x, y),

where the first term corresponds to the Kirchhoff solution,

u0(x, y) =
1
3x

3(x− 1)3y3(y − 1)3,

and the remainder term

ur(x, y) = − 2t2

5(1− ν)

(
y3(y − 1)3x(x− 1)(5x2 − 5x+ 1)+

x3(x− 1)3y(y − 1)(5y2 − 5y + 1)
)
;

and for the rotations of the midsurface

θ(x, y) =

[
y3(y − 1)3x2(x− 1)2(2x− 1)
x3(x− 1)3y2(y − 1)2(2y − 1)

]
.

The datum of the dual plate problem is chosen to be a Dirac delta function,
Ju = δ(x− x̄, y − ȳ), where (x̄, ȳ) is the point of maximum lateral displace-
ment, and the target quantity simplifies to L(eu, eθ) = u(x̄, ȳ)− uh(x̄, ȳ).

The model problem is solved adaptively by approximating the a priori
terms, for the sake of comparison, both on element patches and globally. The
final meshes, which are shown in Figures 8 and 9, are densely refined around
(x̄, ȳ). In the final model distributions, seen in Figures 11 and 12, Mindlin
elements have been introduced in regions with large transverse forces, in ac-
cordance with [10]. The effectivity indices, listed in Tables 3 and 4, are close
to unity—when evaluating (17) using enhanced discrete solutions obtained
by solving local Dirichlet problems, however, the total error is estimated to
be slightly smaller.
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7 Conclusions

The proposed adaptive finite element method shows promise, as the evalua-
tion of the underlying a posteriori error representation can produce accurate
local error indicators. The strategy requires the solution of a costly simpli-
fied plate formulation to recover the simplified shear forces, however, but the
performance in terms of speed can be enhanced by, e.g., solving parallelized
local Dirichlet problems. Thereby the proposed method becomes more of an
option for practical computations.
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Table 1: Data during adaptive procedure when solving the model problem
in Section 6.1. The error representation (17) was evaluated using enhanced
discrete solutions, which were obtained by solving local Dirichlet problems.
(i is the refinement level; Nele is the number of elements; L is the target
quantity, the mean lateral displacement; erel is its relative error; and Ĩeff is
the effectivity index.)

i Nele # nodes # DOFs L(uh,θh) erel Ĩeff

1 768 1 601 1 985 5.38 · 10−4 3.13 · 10−2 0.29

2 866 1 827 3 003 5.62 · 10−4 3.95 · 10−2 0.57

3 1 080 2 265 4 401 5.73 · 10−4 3.13 · 10−2 0.61

4 1 376 2 873 6 161 5.81 · 10−4 2.50 · 10−2 0.64

5 1 768 3 689 8 789 5.86 · 10−4 2.11 · 10−2 0.68

6 2 256 4 703 12 179 5.89 · 10−4 1.74 · 10−2 0.70

7 2 818 5 853 16 125 5.93 · 10−4 1.47 · 10−2 0.75

8 3 554 7 347 21 603 5.95 · 10−4 1.28 · 10−2 0.80

9 4 576 9 431 29 003 5.97 · 10−4 1.04 · 10−2 0.87

10 5 920 12 185 39 245 5.99 · 10−4 7.97 · 10−3 0.92

11 7 628 15 659 52 295 6.01 · 10−4 6.07 · 10−3 0.96

12 9 672 19 787 68 633 6.02 · 10−4 4.61 · 10−3 0.98

13 12 616 25 713 91 875 6.02 · 10−4 3.59 · 10−3 1.04

14 16 758 34 129 124 867 6.03 · 10−4 2.68 · 10−3 1.08

15 22 314 45 387 168 333 6.03 · 10−4 1.95 · 10−3 1.11

16 29 176 59 215 221 785 6.04 · 10−4 1.36 · 10−3 1.09

17 39 132 79 173 299 511 6.04 · 10−4 9.96 · 10−4 1.08
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Figure 3: The initial mesh T0
h when solving the model problem in Section 6.1.

Figure 4: The adapted mesh T5
h at the fifth refinement level when solving the

model problem in Section 6.1.
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Figure 5: The initial model distribution K0
m when solving the model problem

in Section 6.1.

Figure 6: The adapted model distribution K5
m at the fifth refinement level

when solving the model problem in Section 6.1.
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Table 2: A benchmark of solving the linear systems for enhanced primal exact
solutions. The execution times, with respect to systems assembled either on
element patches or globally, are compared. (i is the refinement level; Nmin

and Nmax are the minimum and maximum sizes, respectively, of the stiffness
matrices on the element patches; tp is the total execution time for solving
all local Dirichlet problems; ⟨tp⟩ is the mean execution time per element
patch; N is the size of the global stiffness matrix; tg is the execution time
for solving the global system; and the speed-up, tg/(tp/n), from solving the
local Dirichlet problems in parallel assumes perfect scaling on the test system
with n = 8 CPUs.)

element patches global problem

i Nmin Nmax tp ⟨tp⟩ speed-up N tg

1 181 459 2.4 3.17 · 10−3 0.36 7 553 0.1

2 181 549 2.7 3.11 · 10−3 0.42 11 445 0.1

3 181 549 3.3 3.02 · 10−3 0.72 16 977 0.3

4 181 549 4.1 3.01 · 10−3 0.73 23 921 0.4

5 211 549 5.2 2.95 · 10−3 1.02 34 241 0.7

6 211 549 6.6 2.95 · 10−3 1.16 47 573 1.0

7 211 549 8.3 2.95 · 10−3 1.34 63 201 1.4

8 211 549 10.7 3.01 · 10−3 1.39 84 981 1.9

9 211 549 13.9 3.04 · 10−3 1.81 114 341 3.1

10 181 549 17.9 3.03 · 10−3 2.63 154 913 5.9

11 181 549 23.7 3.11 · 10−3 2.32 206 765 6.9

12 211 549 29.9 3.09 · 10−3 3.79 271 877 14.1

13 211 549 39.5 3.13 · 10−3 4.47 364 617 22.1

14 211 549 52.9 3.16 · 10−3 4.66 495 793 30.8

15 211 549 71.5 3.20 · 10−3 5.70 668 781 50.9

16 211 549 93.8 3.22 · 10−3 6.25 881 965 73.4

17 211 549 126.1 3.22 · 10−3 7.47 1 192 593 117.8
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Table 3: Data during adaptive procedure when solving the model problem
in Section 6.2. The error representation (17) was evaluated using enhanced
discrete solutions, which were obtained by solving local Dirichlet problems.
(i is the refinement level; Nele is the number of elements; L is the target
quantity, the maximum lateral displacement; erel is its relative error; and
Ieff is the effectivity index.)

i Nele # nodes # DOFs L(uh,θh) erel Ieff

1 1 024 2 113 2 497 8.06 · 10−5 7.12 · 10−3 0.68

2 1 197 2 464 3 598 8.06 · 10−5 7.62 · 10−3 0.68

3 1 467 3 026 5 462 8.06 · 10−5 7.32 · 10−3 0.68

4 1 759 3 610 7 468 8.07 · 10−5 6.89 · 10−3 0.72

5 2 188 4 481 10 199 8.08 · 10−5 6.23 · 10−3 0.75

6 2 742 5 589 13 269 8.10 · 10−5 5.31 · 10−3 0.82

7 3 522 7 149 18 771 8.11 · 10−5 4.60 · 10−3 0.93

8 4 442 8 989 24 973 8.12 · 10−5 3.92 · 10−3 1.06

9 5 608 11 329 32 641 8.13 · 10−5 2.68 · 10−3 0.99

10 7 227 14 596 43 492 8.13 · 10−5 2.15 · 10−3 1.03

11 9 388 18 945 58 425 8.14 · 10−5 1.70 · 10−3 0.97

12 12 230 24 637 78 655 8.14 · 10−5 1.23 · 10−3 0.94

Figure 7: The initial mesh T0
h when solving the model problem in Section 6.2.
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Table 4: Data during adaptive procedure when solving the model problem
in Section 6.2. The error representation (17) was evaluated using enhanced
discrete solutions, which were obtained by solving global problems. (i is the
refinement level; Nele is the number of elements; L is the target quantity,
the maximum lateral displacement; erel is its relative error; and Ieff is the
effectivity index.)

i Nele # nodes # DOFs L(uh,θh) erel Ieff

1 1 024 2 113 2 497 8.06 · 10−5 8.25 · 10−3 0.78

2 1 200 2 465 3 713 8.05 · 10−5 9.51 · 10−3 0.77

3 1 504 3 097 5 641 8.06 · 10−5 9.27 · 10−3 0.81

4 1 778 3 645 7 485 8.07 · 10−5 8.45 · 10−3 0.84

5 2 124 4 337 9 905 8.08 · 10−5 7.55 · 10−3 0.91

6 2 698 5 493 13 701 8.10 · 10−5 5.31 · 10−3 0.83

7 3 496 7 089 18 309 8.11 · 10−5 5.05 · 10−3 0.99

8 4 402 8 909 24 845 8.12 · 10−5 3.96 · 10−3 1.06

9 5 478 11 061 32 295 8.13 · 10−5 3.19 · 10−3 1.13

10 7 054 14 221 42 979 8.13 · 10−5 2.26 · 10−3 1.11

11 9 200 18 553 57 673 8.14 · 10−5 1.86 · 10−3 1.12

12 12 184 24 545 77 693 8.14 · 10−5 1.43 · 10−3 1.07
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Figure 8: The final mesh T12
h when solving the model problem in Section 6.2.

Constructed during adaptive procedure, where the error representation (17)
was evaluated using enhanced discrete solutions, which were obtained by solv-
ing local Dirichlet problems.

 

 

Figure 9: The final mesh T12
h when solving the model problem in Section 6.2.

Constructed during adaptive procedure, where the error representation (17)
was evaluated using enhanced discrete solutions, which were obtained by solv-
ing global problems.
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Figure 10: The initial model distribution K0
m when solving the model problem

in Section 6.2.

Figure 11: The final model distribution K12
m when solving the model prob-

lem in Section 6.2. Constructed during adaptive procedure, where the error
representation (17) was evaluated using enhanced discrete solutions, which
were obtained by solving local Dirichlet problems.
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Figure 12: Final model distribution K12
m when solving the model problem in

Section 6.2. Constructed during adaptive procedure, where the error repre-
sentation (17) was evaluated using enhanced discrete solutions, which were
obtained by solving global problems.
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