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MULTIVARIATE GENERALIZED LAPLACE DISTRIBUTION

AND RELATED RANDOM FIELDS

TOMASZ J. KOZUBOWSKI, KRZYSZTOF PODGÓRSKI, AND IGOR RYCHLIK

Abstract. Multivariate Laplace distribution is an important stochastic model

that accounts for asymmetry and heavier than Gaussian tails often observed

in practical data, while still ensuring the existence of the second moments. A

Lévy process based on this multivariate infinitely divisible distribution is known

as Laplace motion, and its marginal distributions are multivariate generalized

Laplace laws. We review basic properties of the latter distributions and discuss

a construction of a class of moving average vector processes driven by multi-

variate Laplace motion. These stochastic models extend to vector fields, which

are multivariate both in the argument and the value and provide an attractive

alternative to those based on Gaussianity, in presence of asymmetry and heavy

tails in empirical data. An example from engineering shows modelling potential

of this construction.

In memory of Professor Samuel Kotz

1. Introduction

The classical univariate Laplace distribution with mean zero and variance σ2,

introduced in [17], is a symmetric distribution given by the characteristic function

(ChF)

φ(t) =
1

1 + σ2t2

2

or, equivalently, by the probability density function (PDF)

f(x) =

√
2

2σ
e−

√
2|x|/σ, x ∈ R.
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While being neglected for many years, this distribution has been recently revived

and extended to skew as well as multivariate settings, and is gaining popularity

as an attractive alternative to Gaussianity (see [15] and references therein). While

the term multivariate Laplace law is still a bit ambiguous, it applies most often to

the class of symmetric, elliptically contoured distributions, given by the ChF

(1) φ(t) =
1

1 + 1
2
t′Σt

, t ∈ R
d,

where Σ is a d× d non-negative definite matrix (which is the covariance matrix).

An asymmetric generalization of this model, known as multivariate asymmetric

Laplace (AL) distribution and denoted by ALd(Σ,µ), has the ChF of the form

(see [15])

(2) φ(t) =
1

1 + 1
2
t′Σt − iµ′t

, t ∈ R
d,

where µ ∈ Rd is the mean of the distribution and Σ is as before (although this time

the covariance is Σ + µµ′). The significance of AL distributions is partially due

to fact that these arise rather naturally as the only distributional limits for (ap-

propriately normalized) random sums of independent and identically distributed

(IID) random vectors with finite second moments,

(3) X(1) + · · ·+ X(Np),

where Np has a geometric distribution with the mean 1/p (independent of the

X(i)):

P (νp = k) = p(1 − p)k−1, k = 1, 2, . . . ,

and p converges to zero. Since the sums such as (3) frequently appear in many

applied problems in biology, economics, insurance mathematics, reliability, and

other fields (see examples in [13] and references therein), AL distributions have a

wide variety of applications (see [15]). The AL distributions play an analogous role

among the heavy tailed geometric stable laws (which approximate the sums (3)

without the restriction of finite second moment, see [14]) as Gaussian distributions



MULTIVARIATE LAPLACE FIELDS 3

do among the stable laws. Like Gaussian distributions, they have finite moments

of all orders, and their theory is equally elegant and straightforward (see [15]).

However, in spite of finiteness of moments, their tails are substantially longer

than those of the Gaussian laws. This, coupled with the fact that they allow for

asymmetry, renders them more flexible and attractive for modeling heavy tailed

asymmetric data.

It should be noted that the AL distributions are infinitely divisible. This prop-

erty allows for natural extension to more general random processes and fields. In

this paper we discuss properties of one such construction in the multivariate set-

ting, which was introduced in [22] (and, in one-dimensional case, was discussed in

[1]). Namely, we consider random moving average fields driven by Laplace mo-

tion, which are multivariate in both the argument (n-dimensional) and the value

(d-dimensional). The Laplace motion on the positive half-line is a Lévy process

{Λ(s), s ≥ 0} built upon the AL distribution (2). The increments of the process

are independent and homogeneous, and the ChF of Λ(s) is the sth power of the

AL ChF (2) so that the marginal distributions belong to multivariate generalized

asymmetric Laplace (GAL) laws, or Bessel function distributions (the latter name

relates to the fact that their PDFs involve Bessel special functions). Since these

distributions play a crucial role in our construction of multivariate random fields,

we shall first review their properties in Section 2. Beyond being a review this sec-

tion contains also several new results. The main construction of random fields and

their basic properties are presented in Section 3, which also includes some remarks

on model fitting and estimation. Finally, an example of application for modelling

two-dimensional process in time variable is presented in Section 4.

2. Generalized Laplace distributions

Here we review basic properties of the generalized asymmetric Laplace distri-

butions, which play crucial role in constructing Laplace random fields. Although

some of these results are known (and taken from [15]), others are new and presented

here for the first time. We start with a formal definition of these laws.
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Definition 1 (Multivariate Generalized Laplace Law). A random vec-

tor in Rd is said to have a multivariate generalized asymmetric Laplace distribution

(GAL) if its ChF is given by

(4) φ(t) =

(
1

1 + 1
2
t′Σt − iµ′t

)s
, t ∈ R

d,

where s > 0, µ ∈ Rd, and Σ is a d × d non-negative definite symmetric matrix.

This distribution is denoted by GALd(Σ,µ, s).

Remark 1. If the distribution is one-dimensional (d = 1) with Σ = σ11 and µ = µ1,

we obtain a univariate GAL(σ, µ, s) distribution studied in [15], given by the ChF

(5) φ(t) =
1

1 + σ2t2

2
− iµt

, t ∈ R,

where σ =
√
σii and µ = µ1.

If the matrix Σ is positive-definite, the distribution is truly d-dimensional and

has a PDF of the form (see [15])

p(x) =
2 exp(µ′Σ−1x)

(2π)d/2Γ(s)|Σ|1/2
(

Q(x)

C(Σ,µ)

)s−d/2
Ks−d/2(Q(x)C(Σ,µ)),

where Kλ(·) is the modified Bessel function of the third kind with index λ,

(6) Kλ(u) =
1

2

(u
2

)λ ∫ ∞

0

t−λ−1 exp

(
−t− u2

4t

)
dt, u > 0,

and

(7) Q(x) =
√

x′Σ−1x, C(Σ,µ) =

√
2 + µ′Σ−1µ.

This follows from the interpretation of a GAL random vector Y ∼ GALd(Σ,µ, s)

as a subordinated Gaussian process,

(8) Y
d
= X(Z),
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where Z has a standard gamma distribution with shape parameter s and the PDF

(9) g(x) =
xs−1

Γ(s)
e−x, x > 0,

while X is a d-dimensional Gaussian process with independent increments, X(0) =

0, and X(1) ∼ Nd(µ,Σ) (d-dimensional normal distribution with mean vector µ

and covariance matrix Σ). The above representation, which follows by evaluating

the ChF on the right hand side by conditioning on the gamma random variable Z,

can also be expressed as

(10) Y
d
= µZ + Z1/2X,

where Z is as above and X ∼ Nd(0,Σ), showing that GAL distributions are

location-scale mixtures of normal distributions. The stochastic representation (10)

leads to many further properties of GAL random vectors, including moments,

marginal and conditional distributions, and linear transformations.

Remark 2. More general normal mixtures, where Z has a generalized inverse Gauss-

ian distribution, were considered by Barndorff-Nielsen [2]. A generalized inverse

Gaussian distribution with parameters (λ, χ, ψ) and denoted by GIG(λ, χ, ψ), has

the PDF

(11) p(x) =
(ψ/χ)λ/2

2Kλ(
√
χψ)

xλ−1e−
1

2
(χ/x+ψx), x > 0,

where Kλ is the modified Bessel function (6). The range of the parameters is

as follows: χ ≥ 0, ψ > 0, λ > 0; χ > 0, ψ > 0, λ = 0; χ > 0, ψ ≥ 0, λ < 0.

Barndorff-Nielsen [2] considered mixtures of the form

(12) Y
d
= m + µZ + Z1/2X,

where X is as before, µ = Σβ with some d-dimensional vector β, and Z ∼
GIG(λ, χ, ψ). With the notation χ = δ2, ψ = ξ2, and α2 = ξ2 + β′Σβ, Y

has a d-dimensional generalized hyperbolic distribution with index λ, denoted by

Hd(λ, α,β, δ,m,Σ) (a hyperbolic distribution is obtained for λ = 1, see, e.g., [4]).
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By taking the limiting case GIG(s, 0, 2) as the mixing distribution (which is a

standard gamma distribution with shape parameter s) and setting Σβ = µ and

m = 0, so that δ2 = 0, ξ2 = 2, and α =
√

2 + µ′Σ−1µ, we then obtain the mixture

µZ + Z1/2X, where X is Nd(0,Σ), independent of Z, which is multivariate GAL.

This shows that the multivariate GAL laws can be obtained as a limiting case of

the generalized hyperbolic distributions.

2.1. Infinite divisibility. As mentioned earlier, all AL distributions are infinitely

divisible, and so are GAL distributions. Their Lévy measure presented below can

be obtained either from that of AL laws given in [15] or from the representation

(8) as a subordinated Brownian motion and Lemma 7, VI.2 of Bertoin [3].

Proposition 1. Let Y have a truly d-dimensional GALd(Σ,µ, s) law. Then, the

ChF of Y is of the form

Ψ(t) = exp

(∫

Rn

(
eit·x − 1

)
Λ(dx)

)

with
dΛ

dx
(x) =

2s exp(µ′Σ−1x)

(2π)d/2|Σ|1/2
(

Q(x)

C(Σ,µ)

)−d/2
Kd/2(Q(x)C(Σ,µ)),

where Q(x) and C(Σ,µ) are given by (7).

2.2. Mean vector and covariance matrix. The relation between the mean

vector EY, the covariance matrix E[(Y − EY)′(Y − EY)] and the parameters

µ = (µ1, . . . , µd) and Σ = [σij ]
d
i,j=1 of Y = (Y1, . . . , Yd) ∼ GALd(Σ,µ, s) can be

obtained from the representation (10). Indeed, we have EYi = µiEZ = µis, so that

E(Y) = ms.

Furthermore, since E(XiXj) = σij and EZ2 = s+ s2, we have

E(YiYj) = µiµjEZ
2 + E(Z)E(XiXj) = (s+ s2)µiµj + sσij ,

so that

Cov(Yi, Yj) = E(YiYj)−E(Yi)E(Yj) = (s+ s2)µiµj + sσij − µiµjs
2 = s(µiµj + σij).
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Thus, the covariance matrix of Y is

Cov(Y) = s(Σ + µµ′).

More general cross-moments E[Y n1

1 · · ·Y nd
d ] can similarly be obtained from the

representation (10) as well.

2.3. Linear combinations and marginal distributions. Here we discuss the

properties of GAL vectors under linear transformations. The results presented

below parallel those connected with AL distributions discussed in [15]. Our first

result shows that all linear combinations of the components of Y ∼ GALd(Σ,µ, s)

are jointly GAL.

Proposition 2. Let Y = (Y1, . . . , Yd) ∼ GALd(Σ,µ, s) and let A be an l× d real

matrix. Then, the random vector AY is GALl(ΣA,µA, s), where µA = Aµ and

ΣA = AΣA′.

Proof. The assertion follows from the general relation

φAY(t) = Eei(AY)′t = EeiY
′A′t = φY(A′t)

and the fact that the matrix AΣA′ is non-negative definite whenever Σ is. �

In particular, it follows that all univariate and multivariate marginals as well as

linear combinations of the components of a multivariate GAL vector are GAL.

Corollary 1. Let Y = (Y1, . . . , Yd) ∼ GALd(Σ,µ, s), where Σ = [σij ]
d
i,j=1. Then,

(i) For all n ≤ d, (Y1, . . . , Yn) ∼ GALn(Σ̃, µ̃, s), where µ̃ = (µ1, . . . , µn) and

Σ̃ is a n× n matrix with σ̃ij = σij for i, j = 1, . . . , n;

(ii) For any b = (b1, . . . bd) ∈ Rd, the random variable Yb =
∑d

k=1 bkYk, is

univariate GAL(σ, µ, s) with σ =
√

b′Σb and µ = µ′b. Furthermore, if Y

is symmetric (elliptically contoured) GAL, then Yb is symmetric;

(iii) For all i ≤ d, Yi ∼ GAL(σ, µ, s) with σ =
√
σii and µ = µi.

Proof. For part (i), apply Proposition 2 with n × d matrix A = (aij) such that

aii = 1 and aij = 0 for i 6= j. For part (ii), apply Proposition 2 with l = 1 and
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compare the resulting ChF with (5). For part (iii) apply part (ii) with standard

base vectors in Rd. �

Remark 3. Corollary 1 part (ii) implies that the sum
∑d

k=1 Yk has a GAL distri-

bution if all the {Yk} are components of a multivariate GAL random vector (and

thus each Yk is a univariate GAL). This is in contrast with a sum of IID GAL

random variables, that generally does not have a GAL distribution.

Remark 4. If Y has a nonsingular GAL law (that is Σ is positive definite) and

the matrix A is such that AA′ is positive-definite, then the vector AY has a non-

singular GAL law as well. In particular, this holds if A is a nonsingular square

matrix.

Remark 5. We have shown in Corollary 1, part (ii), that if Y is multivariate GAL

then all linear combinations of its components are univariate GAL. An interesting

open question is whether the converse is true. Namely, if all linear combinations

of a random vector Y in R
d are univariate GAL with the same shape parameter

s, is Y multivariate GAL?

2.4. Conditional distributions. Below we present conditional distributions of

GAL random vectors with a non-singular Σ, taken from [15].

Theorem 1. Let Y ∼ GALd(Σ,µ, s) have the ChF (4) with a non-singular Σ.

Let Y′ = (Y′
1,Y2

′) be a partition of Y into r×1 and k×1 dimensional sub-vectors,

respectively. Let (µ′
1,µ

′
2) and

Σ =


 Σ11 Σ12

Σ21 Σ22




be the corresponding partitions of µ and Σ, where Σ11 is an r × r matrix. Then,

(i) If s = 1 (so that Y is AL), then the conditional distribution of Y2 given Y1 = y1

is the generalized k-dimensional hyperbolic distribution Hk(λ, α,β, δ,m,∆) having
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the density

(13) p(y2|y1) =
ξλ exp(β′(y2 − m))Kk/2−λ(α

√
δ2 + (y2 − m)′∆−1(y2 − m))

(2π)k/2|∆|1/2δλKλ(δξ)[
√
δ2 + (y2 − m)′∆−1(y2 − m)/α]k/2−λ

,

where λ = 1−r/2, α =
√
ξ2 + β′∆β, β = ∆−1(µ2−Σ21Σ

−1
11 µ1), δ =

√
y′

1Σ
−1
11 y1,

m = Σ21Σ
−1
11 y1, ∆ = Σ22 −Σ21Σ

−1
11 Σ12, and ξ =

√
2 + µ′

1Σ
−1
11 µ1;

(ii) If µ1 = 0, then the conditional distribution of Y2 given Y1 = 0 is generalized

Laplace GALk(Σ2·1,µ2·1, s2·1), where

s2·1 = s− r/2, Σ2·1 = Σ22 − Σ21Σ
−1
11 Σ12, µ2·1 = µ2.

Our next result, taken from [15], provides expressions for the conditional mean

vector and covariance matrix.

Proposition 3. Let Y have a GAL law (4) with a non-singular Σ. Let Y, µ, and

Σ be partitioned as in Theorem 1. Then,

E(Y2|Y1 = y1) = Σ21Σ
−1
11 y1 + (µ2 − Σ21Σ

−1
11 µ1)

Q(y1)

C
R1−r/2(CQ(y1))

and

Var(Y2|Y1 = y1) =
Q(y1)

C
(Σ22 − Σ21Σ

−1
11 Σ12)R1−r/2(CQ(y1))

+(µ2 − Σ21Σ
−1
11 µ1)(µ2 − Σ21Σ

−1
11 µ1)

′
(
Q(y1)

C

)2

G(y1),

where C =
√

2 + µ′
1Σ

−1
11 µ1, Q(y1) =

√
y′

1Σ
−1
11 y1, Rs(x) = Ks+1(x)/Ks(x), and

G(y1) = (R1−r/2(CQ(y1))R2−r/2(CQ(y1)) − R2
1−r/2(CQ(y1))).

Remark 6. If r = d−1 and µ′
1Σ

−1
11 Σ12 = µd, then we have linearity of the regression

of Yd on Y1, . . . , Yd−1,

(14) E(Yd|Y1, . . . , Yd−1) = a1Y1 + · · · + ad−1Yd−1 (a.s.)

where (a1, . . . , ad−1)
′ = Σ−1

11 Σ12
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2.5. Polar representation. All GAL distributions with mean zero (µ = 0) are

elliptically contoured, as their ChF depends on t only through the quadratic form

t′Σt. With a non-singular Σ, they are also elliptically symmetric, and admit

a polar representation given below, which generalizes similar representation of

asymmetric Laplace distributions discussed in [15].

Proposition 4. Let Y ∼ GALd(Σ, 0, s), where |Σ| > 0. Then, Y admits the

representation

(15) Y
d
= RHU(d),

where H is a d× d matrix such that HH′ = Σ, U(d) is a random vector uniformly

distributed on the unit sphere Sd of R
d, and R is a positive random variable, inde-

pendent of U(d), with the density

(16) fR(x) =
2xd/2+s−1Kd/2−s(

√
2x)

(
√

2)d/2−2+sΓ(s)Γ(d/2)
, x > 0,

where Kv is the modified Bessel function of the third kind.

Proof. Write Σ = HH′, where H is a d × d non-singular lower triangular ma-

trix (see, e.g., [10], pp. 566, for a recipe of obtaining such matrix from a given

non-singular Σ). Then, the random vector X ∼ Nd(0,Σ) from (10) has the rep-

resentation X = HN, where N ∼ Nd(0, I). Further, N, which is elliptically

contoured, has the well known representation N
d
= RNU(d). Here, RN and U(d)

are independent, U(d) is uniformly distributed on Sd, and RN is positive with the

PDF

(17) fRN
(x) =

d · xd−1 exp(−x2/2)

2d/2Γ(d/2 + 1)
, x > 0.

Therefore, in view of the representation (10) with µ = 0, it is sufficient to show

that Z1/2RN has density (16). To see this, apply standard conditioning argument

and write the PDF of Z1/2RN as

(18) fZ1/2RN
(y) = dy

∫ ∞

0

xd/2−2 exp(−1
2
(x+ 2y2/x))

2d/2Γ(s)Γ(d/2 + 1)

(
y2

x

)s−1

dx.
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Let fλ,χ,ψ be the GIG density (11) with ψ = 1, χ = 2y2, and λ = d/2 − s. Then,

the above relation becomes

(19) fZ1/2RN
(y) =

2d · y2s−1Kλ(
√

2y)

2d/2Γ(s)Γ(d/2 + 1)(χ)−λ/2

∫ ∞

0

fλ,χ,ψ(x)dx,

which, after some algebra, yields (16) since the function fλ,χ,ψ integrates to one. �

2.6. Limits of random sums. Recall that multivariate asymmetric Laplace dis-

tributions are the only possible (weak) limiting distributions of (normalized) geo-

metric random sums (3) as p → 0 (and Np
p→ ∞), see [15]. Similar result holds

true for the GAL distributions under negative binomial (NB) random summation.

Let Np,s be a NB random variable with parameters p ∈ (0, 1) and s > 0, so that

(20) P (Np,s = k) =
Γ(s+ k)

Γ(s)k!
ps(1 − p)k, k = 0, 1, 2, . . . .

The following new result is an extension of Theorem 6.10.1 concerning AL distri-

butions from [15] to the GAL case.

Theorem 2. Let X(j) be IID random vectors in Rd with mean vector µ and covari-

ance matrix Σ. For p ∈ (0, 1), let Np,s be a NB random variable (20), independent

of the sequence (X(j)). Then, as p→ 0,

(21) ap

Np,s∑

j=1

(X(j) + bp)
d→ Y ∼ GALd(Σ,µ, s),

where ap = p1/2 and bp = µ(p1/2 − 1).

Proof. By the Cramér-Wald device, the convergence (21) is equivalent to

c′ap

Np,s∑

j=1

(X(j) + bp)
d→ c′Y, as p→ 0,

for all vectors c in Rd. Denoting Wj = c′(X(j) − µ), µ = c′µ, bp = p1/2µ, and

Y = c′Y, we have

(22) ap

Np,s∑

j=1

(Wj + bp)
d→ Y ∼ GAL(σ, µ, s), as p→ 0.
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Here, (Wj) are IID with mean zero and variance σ2 = c′Σc, and Y is a univariate

GAL random variable with the ChF φ given in (5). Writing (22) in terms of the

ChFs we obtain

(23)

(
p

1 − (1 − p)eipµtψ(p1/2t)

)s
→ φ(t),

where ψ is the ChF of the (Wj). Note that (23) is equivalent to the convergence

e−ipµt − 1

p
+

1 − (1 − p)ψ(p1/2t)

p
= I + II → 1 + σ2t2/2 − iµt.

It is easy to see that I → −iµt as p→ 0. To show the convergence

(24) II =
1 − (1 − p)ψ(p1/2t)

p
=→ 1 + σ2t2/2

we use Theorem 8.44 from [9]: since Wj has the first two moments, its ChF can be

written as ψ(u) = 1 + iuEWj + (iu)2(EX2
j + δ(u))/2, where δ denotes a bounded

function of u such that limu→0 δ(u) = 0. Since EWj = 0 and EW 2
j = σ2, we apply

the above with u = p1/2t to the lhs of (24) to obtain

t2

2
(σ2 + δ(p1/2t)) + 1 − pt2

2
(σ2 + δ(p1/2t)),

which converges to 1 + t2σ2/2 as p→ 0. �

3. Moving average fields build upon generalized Laplace

distributions

In this section we present several constructions of random moving average

fields driven by Laplace motion. All these models are referred to as Laplace moving

averages (LMA). This development is continuation of the ideas from [22] and of

those that in one-dimensional case were introduced in [1]. Then we discuss prop-

erties of such fields and comment on available tools for model fitting statistical

inference. The main component of the construction is a random independently
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scattered measure that has a generalized asymmetric multivariate Laplace dis-

tribution as marginals. These measures and their direct relation to multivariate

Laplace motion are discussed first.

3.1. Multivariate Laplace motion and independent scattered measures.

For the generalized Laplace distribution it is convenient to build stochastic models

using its infinite divisibility property. This property stands behind two important

and related general concepts: an independently scattered random measure and

Lévy motion. Let us recall the latter one.

Definition 2 (Laplace motion). A vector valued Laplace motion Λ(t) in R
d

with parameters (Σ,µ, ν) defined on positive real line is a process with independent

and homogeneous increments such that the increment over t and t + s has the

multivariate GALd(Σ,µ, s/ν) distribution.

Such a process can be conveniently represented as a multivariate Brownian mo-

tion subordinated to a Gamma process. Namely, if A =
√

Σ (here a d× d matrix

Σ is assumed to be positive definite), µ ∈ Rd, B(t) = (B1(t), . . . , Bd(t)), where the

(Bi) are independent standard Brownian motions, and Γ(t) is a standard gamma

process (so that Γ(1) has the standard exponential distribution), then the process

Λ(t) = AB(Γ(t/ν)) + Γ(t/ν)µ

satisfies the properties defining the Laplace motion. The verification of this follows

directly from (8) and (10).

The extension of Lévy motion to the case of multidimensional argument is

through the concept of stochastic measure. In what follows, for a Borel measurable

subset A of an Euclidean space, m(A) stands for its Lebesgue measure.

Definition 3 (Stochastic Laplace Measure). A stochastic Laplace measure

Λ, with parameters ν > 0, µ ∈ Rd, a positive definite d×d matrix Σ and controlled

by a measure m, is a function that maps A ⊆ Rn, m(A) <∞, to a random variable
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Λ(A) ∼ GALd(Σ,µ, m(A)/ν), so that the ChF of Λ(A) is

φΛ(A)(u) =

(
1 − iµ′u +

1

2
u′Σu

)−m(A)/ν

.

For disjoint sets Ai, the variables Λ(Ai) are independent, and with probability one

Λ

( ∞⋃

i=1

Ai

)
=

∞∑

i=1

Λ(Ai).

The Laplace motion Λ, which is defined on positive line, can be identified with a

stochastic measure on the Borel sets of the half-line through the following definition

of such a measure on a closed-open interval:

Λ([a, b)) = Λ(b) − Λ(a).

The standard measure theoretical argument allows to extend such a measure to an

arbitrary Borel set. The extension to the entire line can be obtained by considering

an independent Laplace motion on the negative half-line.

3.2. Multivariate Laplace moving averages. Consider a square integrable

real function f on (−∞, 0]. The classical model that comes as a generalization

to continuous time of the concept of time series is given by the following moving

averages

X(t) =

∫ t

−∞
f(s− t) dB(s),

where B represents Brownian motion extended over the entire real line. A natu-

ral generalization of this model is obtained by replacing B by an arbitrary Lévy

motion. In particular, one can define

X(t) =

∫ t

−∞
f(s− t) dΛ(s),

where Λ is Laplace motion with parameters σ, µ, ν and defined over the real line.

As a result we obtain a strictly stationary process of the second order, which has

been discussed in [1].
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By using various kernel functions into a vector function f = (f1, . . . , fd), one can

consider vector valued processes

X(t) =

∫ t

−∞
f(s− t) Λ(ds) =

(∫ t

−∞
f1(s− t) dΛ(s), . . . ,

∫ t

−∞
fd(s− t) Λ(ds)

)
.

This model easily extends to the fields if we take Λ to be a Laplace measure on Rn

controlled by the Lebesgue measure and consider

(25)

X(p) =

∫

Rn

f(s − p) Λ(ds) =

(∫

Rn

f1(s− p) dΛ(s), . . . ,

∫

Rd

fd(s − p) Λ(ds)

)
.

From the distributional point of view such a random vector field is best described

through ChFs. Consider the d × r matrix F(s) = (fij) = (fi(s − pj)) and an

r × d matrix u. We denote 〈F,u〉 =
∑d

i=1〈Fi·,u·i〉, i.e. the sum of inner products

between the rows of F and the columns of u. If the parameters of Λ are σ, µ and

ν, then we can write the ChF of (X(p1), . . . ,X(pr)) as follows

(26) φ(u) = exp

(
−1

ν

∫

Rn

log

(
1 − iµ〈F(s),u〉 +

σ2

2
〈F(s),u〉2

)
ds

)
.

The moments and cross-correlations for this stochastic vector field are readily

available as discussed in [1]. In particular, for X(p) = (X1(p), . . . , Xd(p)) =

(X1, . . . , Xd) we have the moments

EXi = µ ·
∫
fi,

E (Xi − EXi)
2 =

(
µ2 + σ2

)
·
∫
f 2
i ,

E (Xi − EXi)
3 = µ

(
2µ2 + 3σ2

)
·
∫
f 3
i ,

E (Xi − EXi)
4 = 3

(
µ2 + σ2

)2 ·
(∫

f 2
i

)2

+

+ 3
(
2µ4 + 4µ2σ2 + σ4

)
·
∫
f 4
i ,
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for i = 1, . . . , d and the cross-corelations

Corr(Xi(t), Xj(0)) =

∫
Rn fi(s − t)fj(s) ds√∫

f 2
i

∫
f 2
j

, i, j = 1, . . . , d, .(27)

where the integration, if not shown otherwise in the notation, is always understood

over Rn and with respect the Lebesgue measure.

In the above, the univariate Laplace motion has been used to introduce vector

valued field. The vector of kernels f is almost entirely responsible for the multivari-

ate distributional structure in the model. However, the modeling kernels can be a

difficult task for non-Gaussian processes, as will be seen in Section 4. Therefore,

next we shall discuss vector valued fields with a single kernel function, where the

multivariate structure is introduced by a multivariate Laplace measure.

For a Laplace measure Λ in Rd and f : Rn 7→ R, the following process will be

called a moving average:

(28) X(p) =

∫

Rn

f(p − s) dΛ(s).

Here, integration is defined through the extension from simple functions.

Theorem 3. The moving average process X(p), p ∈ Rn, defined by (28), is

a stationary vector valued stochastic field with the following mean and covariance

function:

EX(p) =

∫

Rn

f(s) ds · µ

ν
,

Cov (X(p),X(0)′) = f ∗ f̃(p) · Σ + µµ′

ν
,

(29)

where f̃(s) = f(−s).

Moreover, the marginal distributions of X(p) are given through the ChFs of

Y =
∑r

i=1 aiX(pi) for each m ∈ N, ai ∈ R, and pi ∈ Rn,

(30) φY(u) = exp

(
−1

ν

∫

Rn

log

(
1 − ig(p) · µ′u + g2(p) · u

′Σu

2

)
dp

)
,

where g(p) =
∑r

i=1 aif(p− pi).
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Any vector process X̃(p) obtained by subsetting from coordinates of X(p) is

again a moving average process with the same kernel and with respect to a Laplace

measure with parameters ν, µ̃, and Σ̃, where the latter two are made of these

entries in µ and Σ, indices of which were taken in X̃(p).

Proof. By the standard extension argument it is enough to show the result for f

being a simple function, f(p) =
∑m

j=1 cjIAj
(p), where the (Ai) are disjoint subsets

of Rn and IAi
stands for the indicator function of the set Ai. By the definition of

the stochastic integral, Z =
∫

Rn f(p − s) dΛ(s) =
∑m

j=1 cjΛ(p −Aj), which, for a

fixed p, is a linear combination of independent generalized Laplace vectors. The

characteristic function of such a vector is given by

φZ(u) =
m∏

j=1

(
1 − icj · µ′u + c2j ·

u′Σu

2

)−m(Aj)/ν

= exp

(
−1

ν

m∑

j=1

log

(
1 − icj · µ′u + c2j ·

u′Σu

2

)
m(Aj)

)
,

which renders the characteristic function formula and in a consequence yields

(strict) stationarity.

The mean and covariance of a multivariate GAL distribution as given in Defi-

nition 1 are µ/ν and (Σ + µµ′)/ν, respectively, see Subsection 2.2. The formula

for the mean of a simple function f is an easy consequence of linearity of the ex-

pectation. The formula for the covariance follows easily from the independence of

the increments for Λ. The extensions to an arbitrary f are standard. The fact

that Ỹp is again a Laplace moving average process with the indicated parameters

is owed to the fact that a vector made of some coordinates of a multivariate GAL

distribution is again GAL (see Subsection 2.3). �

We conclude our discussion by remarking on further generalization of Laplace

driven models. Namely, the two presented models can be viewed as special cases

of the following model

(31) X(p) =

(∫

Rn

f1(s− p)Λ1(ds), . . . ,

∫

Rn

fd(s − p)Λd(ds)

)
,
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where Λi are coordinates of some multivariate Laplace motion Λ in Rd′ , where d′ ≤
d so it is not excluded that Λi = Λj for some i, j = 1, . . . d. The obvious extension

of the previous results on the form of ChFs and moments are not discussed here.

3.3. Model fitting and statistical inference. The foundations for estimation

of the Laplace motion driven moving averages have been laid down in [1] and [19],

where one dimensional Laplace distributions have been considered. The fitting of

the models is based on the moments and these methods seem to work quite well

even if compared to the likelihood based methods (only available for very special

cases due to the lack of explicit formula for the densities in the general case), see

[19]. In the previous section two vector fields models have been discussed. The

coordinates of each of these models are one dimensional LMAs and the univariate

estimation methods can be applied. There are two important aspects of statistical

inference.

Firstly, the parameters σ (or the diagonal terms in Σ in the multivariate Laplace

case), µ (µ) and ν of the Laplace motion can be obtained from the marginal

distribution by the method of moments. Secondly, the estimation of the kernel

function, that maybe parametric or not, has to be resolved. In contrast with the

Gaussian case, here, the form of the kernel affects the properties of the model even

if the resulting covariance is the same. In general, for models (25) and (31) the

choice of the kernels must account for the cross-corelations in the data and for this

crossco-relation formulas (27) would have to be used.

The model (28) is in this respect different. Since it uses a single kernel, the

cross-corelations are essentially controlled by off-diagonal terms in Σ, making this

model a simpler one for fitting. For example, assume that some estimates f̂ , ν̂,

µ̂i and σii, i = 1, . . . , d, of the corresponding parameters are obtained based on

univariate methods applied to the coordinates of multivariate data (f̂ and ν̂ can

be obtained by averaging the estimates obtained for each coordinate). Then using
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(29) we can estimate σij , for i 6= j through

(32) σ̂ij = ν̂

∫

Rn

Ĉov(Xi(p), Xj(0))

f̂ ∗ ˜̂f(p)
w(p) dp− µ̂iµ̂j ,

where Ĉov(Xi(p), Xj(0)) is the standard non-parametric estimate of the cross-

covariance, w is a density function over Rn representing here an appropriate weight

to account for different accuracy of this non-parametric estimate for various values

of p. For example, one choice of w(p) is where the latter is inverse proportional to

the standard deviation of Ĉov(Xi(p), Xj(0)). While we do not discuss here kernel

fitting in general situation, an example of fitting parameters to parametric kernels

is given in Section 4, where an example of model given by (28) is presented.

4. An illustration: parallel road tracks roughness

Responses of a vehicle traveling on road profiles modeled as stationary Gauss-

ian processes have been extensively studied (see for example [21] and [18] for some

recent studies). It is well-known in the vehicle engineering that a road surface can

not be accurately represented by a Gaussian process, see [6]. The reason is that

the actual roads contain short sections with above-average irregularity. As shown

in [5], such irregularities cause most of the vehicle fatigue damage. A homogenous

LMA model for a single track was proposed in [7], and appeared to represent the

road roughness observed in real data quite well. Modeling only a single path along

the road is a simplification, as a four-wheeled vehicle is subjected to excitations

due to road roughness in the left and right wheel paths. Accounting for both paths

is an important aspect of heavy vehicle fatigue assessment. Hence, it is natural to

propose a bivariate stochastic model corresponding to parallel road tracks. Here,

a bivariate version of the LMA is employed to parallel tracks modeling to provide

a fairly accurate statistical description of road surface irregularities.

Let ZR(x) and ZL(x) denote the right and the left track elevations, respectively.

We assume a homogenous road section and suppose that the right and the left

tracks have the same stochastic distribution. The industry’s standard is the so
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called MIRA spectrum (see [16]),

S0(f) =





10a0
(
f
f0

)−w1

, f ∈ [0.01, 0.20],

10a0
(
f
f0

)−w2

, f ∈ [0.20, 10],

0, otherwise,

,(33)

where f0 = 0.2. Here, as suggested in [11], 10a0 is the basic roughness coefficient.

The exponent w1 describes energy distribution between components of wavelengths

between 100 and 5 meters, while w2, with wavelengths between 5 and 0.1 meters,

describes the state of road deterioration.

In our example we shall slightly modify the spectrum as follows:

(34) S0(f) =
10a0c−w1

(1 + (f/cf0)2)w1/2
+

10a0c−w2

(1 + (f/cf0)2)w2/2
, f ≥ 0.01,

and zero otherwise. The road surface roughness will be modeled by means of LMA

processes ZR(x) and ZL(x) having zero mean and skewness, the same kurtosis, and

spectrum S0(f) defined in (34). For simplicity, only the spectrum is normalized so

that the variances of ZR(x) and ZL(x) are one. The processes are correlated, with

cross-covariance rLR(τ) = E[ZL(x + τ) · ZR(x)]. In the following it will be more

convenient to use the cross spectrum

SLR(ω) =
1

2π

∫ +∞

−∞
rLR(τ)e−iωτ dτ.

The cross spectrum is real, and, as shown in [6], the correlation between the tracks

in many measured signals is rather well described by the coherence function

(35) SLR(ω) = exp(−ρ|ω|).

Moreover, the values of ρ are often in the interval [1, 7].

Knowledge of the spectrum is sufficient to define Gaussian road tracks. This can

be done in several ways. Following [8], let us define three kernel functions fR, fL
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and fLR by the relations

FfR(ω) =
√

2π S(ω) = FR(ω),(36)

FfL(ω) = FR(ω)
√

1 − |SLR(ω)|2,(37)

FfLR(ω) = FR(ω)SLR(ω),(38)

where F stands for the Fourier transform. Next, let BR(x) and BL(x) be indepen-

dent Brownian motions. Then, the Gaussian moving average (GMA) model for

the two tracks roughness is

(39)

ZR(x) =

∫
fR(x−u) dBR(u), ZL(x) =

∫
fLR(x−u) dBR(u)+

∫
fL(x−u) dBL(u).

The fact that the sum of Laplace distributed variables is no longer Laplace dis-

tributed makes the extension from vector valued GMA to vector valued LMA less

obvious. Here, we shall employ uncorrelated but dependent Laplace motions ΛR(x)

and ΛL(x). We are interested in symmetrical LMA processes and hence assume

that Λ(x) is a stochastic process with independent and stationary increments hav-

ing distribution given by the ChF

(40) φΛ(x)(v) =
1

(1 + σ2v2

2
)

x
ν

.

Given the kernel f and the excess kurtosis κ of LMA, the parameter ν is computed

using the relation

κ = 3ν

∫
f 4(x) dx.

The Λ(x) process is sometimes represented as Λ(x) = B(Γ(x)) where Γ(x) is the

gamma motion. Now, introducing ΛL(u) = BL(Γ(u)) and ΛR(u) = BR(Γ(u)) we

have

ZR(x) =

∫ +∞

−∞
fR(x− u) dΛR(u),

ZL(x) =

∫ +∞

−∞
fLR(x− u) dΛR(u) +

∫ +∞

−∞
fL(x− u) dΛL(u).(41)
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The two spectral components in (34) have different physical origin. Hence, two

LMA processes will be used here. First, the two kernels f1, f2 are defined by their

Fourier transforms. In the example we shall use one asymmetrical kernel, and one

symmetrical kernel having the following Fourier transforms:

Ff1(ω) =
σ−1

1

(1 + i ω/ω0)(2p−1)·w1/2(1 + (ω/ω0)2)(1−p)·w1/2
, p ≥ 1/2,(42)

Ff2(ω) =
σ−1

2

(1 + (ω/ω0)2)w2/4
,(43)

where σi and wi are defined by the parameters in the MIRA spectrum. The

asymmetry parameter p has to be estimated from the data. Finally, the kernels fL

and fLR are defined by (42), (43), and equation (36-38).

We turn now to a numerical example. In Figure 1, left plot, one kilometer

of measured (scaled to have variance one) parallel tracks are presented. Next,

we present values of estimated parameters from the 5 km long measured signals.

Estimates of skewness and kurtosis are 0.15, 5.02, respectively. The spectrum

(34), with parameters w1 = 3.6, w2 = 1.6, is fitted to the data. In the figure, right

plot, (34) spectrum (dashed line) is compared with nonparametric estimate (solid

irregular line). The agreement between the two estimates is quite satisfactory.

The parameter ρ in (35) is ρ = 1.6, while the asymmetry parameter p = 0.6 so the

kernels appear to be close to the symmetric case (p = 0.5). The Laplace motion

has parameter ν = 13.7.

[Figure 1 about here.]

In Figure 2 (left plot) one km of simulated LMA tracks are presented. (In this

type of applications synthetic and measured roads are equivalent if they induce

the same amount of vehicle fatigue damage.) In Figure 2 (right plot) the accu-

mulated damages in 20 simulated LMA and Gaussian road tracks are presented.

The damages are normalized so that the value one assigned in the case when the

simulated damage is equal to the observed in the measured signals. We can see

that the Gaussian model is severely underestimating the damage, while the LMA

model gives accurate predictions of the damage.
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Let us comment on the issue why we do not use the LMA processes with sym-

metrical kernel to model the tracks. We have noted before that our choice p = 0.6

appears to be close to the symmetric case. However, looking only at the value of

p is misleading. We repeated our numerical analysis with the symmetric kernel,

and the results are presented in Figure 3. Note that the estimated damage for

LMA with symmetric kernels is also closed to the observed one. However, high

irregularity of the signals makes the symmetrical LMA unphysical as models of

road surfaces, see Figure 2 (left plot).

[Figure 2 about here.]

Finally, for convenience of the reader, we give a definition of the damage. For a

symmetrical zero mean response Y (t), say, a simple damage accumulation model

proposed in [12] (see also [20]) is that during a period of time length T the damage

increment is

∆DT = κβ2β
∫ T

0

(Y (t)+)β−1Y ′(t)+ dt, x+ = max(0, x).

The failure is predicted when the damage exceeds threshold one. Here, κ and β are

treated as deterministic material dependent constants. For vehicle components, β

is usually in the range 3–8, making it most important to describe load cycles with

large amplitude accurately.

[Figure 3 about here.]
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Figure 1. (Left) One kilometer measured parallel tracks. (Right)
Estimated spectrum (34) – dashed line, nonparametric estimate –
solid irregular line.
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Figure 2. (Left) One kilometer simulated parallel tracks LMA
with asymmetrical kernel. (Right) Scaled damages (value one corre-
sponds to the observed damage) in 20 simulated LMA parallel tracks
dots to the right and in the Gaussian tracks left dots.
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