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TWO-SCALE CONVERGENCE OF STEKLOFF
EIGENVALUE PROBLEMS IN PERFORATED

DOMAINS

HERMANN DOUANLA∗
Department of Mathematical Sciences
Chalmers University of Technology

Gothenburg, SE-41296, Sweden

Abstract

By means of the two-scale convergence method we investigate the asymptotic behavior
of eigenvalues and eigenfunctions of Stekloff eigenvalue problems in perforated do-
mains. We prove a concise and precise homogenization result including convergence
of gradients of eigenfunctions which improves the understanding of the asymptotic
behavior of eigenfunctions. It is also justified that the natural local problem is not an
eigenvalue problem.

AMS Subject Classification:35B27, 35B40, 45C05.
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1 Introduction

We are interested in the spectral asymptotics (as ε → 0) of the linear elliptic eigenvalue
problem 




−
N

∑
i, j=1

∂
∂xi

(
ai j(x,

x
ε
)
∂uε

∂x j

)
= 0 in Ωε

N

∑
i, j=1

ai j(x,
x
ε
)
∂uε

∂x j
νi = λεuε on ∂T ε

uε = 0 on ∂Ω

ε
∫

Sε
|uε|2dσε(x) = 1,

(1.1)

where Ω is a bounded open set in RN
x (the numerical space of variables x = (x1, ...,xN), with

integer N ≥ 2) with Lipschitz boundary ∂Ω, ai j ∈ C (Ω;L∞(RN
y )) (1 ≤ i, j ≤ N), with the

symmetry condition a ji = ai j, the periodicity hypothesis: for each x ∈Ω and for every k ∈
∗E-mail address: douanla@chalmers.se



18 Hermann Douanla

ZN one has ai j(x,y + k) = ai j(x,y) almost everywhere in y ∈ RN
y , and finally the ellipticity

condition: there exists α > 0 such that for any x ∈Ω

Re
N

∑
i, j=1

ai j(x,y)ξ jξi ≥ α|ξ|2 (1.2)

for all ξ ∈ CN and for almost all y ∈ RN
y , where |ξ|2 = |ξ1|2 + · · ·+ |ξN |2.

The set Ωε (ε > 0) is a domain perforated as follows. Let T ⊂Y = (0,1)N be a compact
subset in RN

y with smooth boundary ∂T (≡ S) and nonempty interior. For ε > 0, we define

tε = {k ∈ ZN : ε(k +T )⊂Ω}
T ε =

⋃

k∈tε

ε(k +T )

and
Ωε = Ω\T ε.

In this setup, T is the reference hole whereas ε(k + T ) is a hole of size ε and T ε is the
collection of the holes of the perforated domain Ωε. The family T ε is made up with a finite
number of holes since Ω is bounded. Finally, ν = (νi) denotes the outer unit normal vector
to ∂T ε (≡ Sε) with respect to Ωε.

The asymptotics of eigenvalue problems has been widely explored. Homogenization
of eigenvalue problems in a fixed domain goes back to Kesavan [8, 9]. In perforated do-
mains it was first considered by Rauch[17] and Rauch and taylor[18] but the first homog-
enization results on this topic pertains to Vanninathan[20] where he considered eigenvalue
problems for the laplace operator (ai j = δi j (Kronecker symbol)) in perforated domains,
and combined asymptotic expansion with Tartar’s energy method to prove homogenization
results. Concerning homogenization of eigenvalue problems in perforated domains, we
also mention the work of Conca et al.[5], Douanla and Svanstedt[6], Kaizu[7], Ozawa and
Roppongi[14], Ropongi[19] and Pastukhova[15] and the references therein. In this paper
we deal with the spectral asymptotics of Stekloff eigenvalue problems for an elliptic linear
differential operator of order two in divergence form with variable coefficients depending
on the macroscopic variable and one microscopic variable. We obtain a very accurate, pre-
cise and concise homogenization result (Theorem 3.7) by using the two-scale convergence
method[1, 2, 11, 12, 21] introduced by Nguetseng[12] and further developed by Allaire[1].
A convergence result for gradients of eigenfunctions is provided, which improves the un-
derstanding of the asymptotic behavior of eigenfunctions. We also justify that the natural
local problem is not an eigenvalue problem.

Unless otherwise specified, vector spaces throughout are considered over the complex
field, C, and scalar functions are assumed to take complex values. Let us recall some
basic notations. Let Y = (0,1)N and let F(RN) be a given function space. We denote by
Fper(Y ) the space of functions in Floc(RN) that are Y -periodic, and by F#(Y ) the space of
those functions u ∈ Fper(Y ) with

∫
Y u(y)dy = 0. Finally, the letter E denotes throughout a

family of strictly positive real numbers (0 < ε≤ 1) admitting 0 as accumulation point. The
numerical space RN and its open sets are provided with the Lebesgue measure denoted by
dx = dx1...dxN .
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The rest of the paper is organized as follows. In Section 2 we recall some results about
the two-scale convergence method and the homogenization process is consider in Section
3.

2 Two-scale convergence on periodic surfaces

We first recall the definition and the main compactness theorems of the two-scale conver-
gence method. Let Ω be an open bounded set in RN

x (integer N ≥ 2) and Y = (0,1)N , the
unit cube.

Definition 2.1. A sequence (uε)ε∈E ⊂ L2(Ω) is said to two-scale converge in L2(Ω) to some
u0 ∈ L2(Ω×Y ) if as E 3 ε→ 0,

∫

Ω
uε(x)φ(x,

x
ε
)dx→

∫∫

Ω×Y
u0(x,y)φ(x,y)dxdy (2.1)

for all φ ∈ L2(Ω;Cper(Y )).

Notation. We express this by writing uε
2s−→ u0 in L2(Ω).

The following theorem is the backbone of the two-scale convergence method.

Theorem 2.2. Let (uε)ε∈E be a bounded sequence in L2(Ω). Then a subsequence E ′ can
be extracted from E such that as E ′ 3 ε→ 0, the sequence (uε)ε∈E ′ two-scale converges in
L2(Ω) to some u0 ∈ L2(Ω×Y ).

Here follows the cornerstone of two scale convergence.

Theorem 2.3. Let (uε)ε∈E be a bounded sequence in H1(Ω). Then a subsequence E ′ can
be extracted from E such that as E ′ 3 ε→ 0

uε → u0 in H1(Ω)-weak

uε → u0 in L2(Ω)
∂uε

∂x j

2s−→ ∂u0

∂x j
+

∂u1

∂y j
in L2(Ω) (1≤ j ≤ N)

where u0 ∈ H1(Ω) and u1 ∈ L2(Ω;H1
# (Y )).

In the sequel, we denote by dσ(y) (y ∈ Y ), dσε(x) (x ∈Ω,ε ∈ E), the surface measures
on S and Sε, respectively. The surface measure of S is denoted by |S|. The space of squared
integrable functions, with respect to the previous measures on S and Sε are denoted by
L2(S) and L2(Sε) respectively. Since the volume of Sε grows proportionally to 1

ε as ε→ 0,
we endow L2(Sε) with the scaled scalar product[16]

(u,v)L2(Sε) = ε
∫

Sε
u(x)v(x)dσε(x)

(
u,v ∈ L2(Sε)

)
.

Definition 2.1 then generalizes as
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Definition 2.4. A sequence (uε)ε∈E ⊂ L2(Sε) is said to two-scale converge to some u0 ∈
L2(Ω×S) if as E 3 ε→ 0,

ε
∫

Sε
uε(x)φ(x,

x
ε
)dσε(x)→

∫∫

Ω×S
u0(x,y)φ(x,y)dxdσ(y)

for all φ ∈ C (Ω;Cper(Y )).

The following result paves the way of the general version of Theorem 2.2.

Lemma 2.5. Let φ ∈ C (Ω;Cper(Y )). Then we have

ε
∫

Sε

∣∣∣φ(x,
x
ε
)
∣∣∣
2

dσε(x)≤C‖φ‖2
∞

for some constant C independent of ε, and, as E 3 ε→ 0

ε
∫

Sε

∣∣∣φ(x,
x
ε
)
∣∣∣
2

dσε(x)→
∫∫

Ω×S
|φ(x,y)|2dxdσ(y).

Proof. The first part is left to the reader. Let ϕ ∈ C (Ω) and ψ ∈ Cper(Y ). We have

ε
∫

Sε

∣∣∣ϕ(x)ψ(
x
ε
)
∣∣∣
2

dσε(x) = ε ∑
k∈tε

∫

ε(k+S)

∣∣∣ϕ(x)ψ(
x
ε
)
∣∣∣
2

dσε(x).

Using the second mean-value theorem, for any k ∈ tε we have
∫

ε(k+S)

∣∣∣ϕ(x)ψ(
x
ε
)
∣∣∣
2

dσε(x) = |ϕ(xk)|2
∫

ε(k+S)

∣∣∣ψ(
x
ε
)
∣∣∣
2

dσε(x)

for some xk ∈ ε(k +S)⊂ ε(k +Y ). Hence

ε
∫

Sε

∣∣∣ϕ(x)ψ(
x
ε
)
∣∣∣
2

dσε(x) = ε ∑
k∈tε

∫

ε(k+S)

∣∣∣ϕ(x)ψ(
x
ε
)
∣∣∣
2

dσε(x)

= ε ∑
k∈tε

|ϕ(xk)|2
∫

ε(k+S)

∣∣∣ψ(
x
ε
)
∣∣∣
2

dσε(x)

= ε ∑
k∈tε

|ϕ(xk)|2εN−1
∫

(k+S)
|ψ(y)|2 dσ(y)

=
(∫

S
|ψ(y)|2 dσ(y)

)
∑
k∈tε

εN |ϕ(xk)|2.

But as E 3 ε→ 0

∑
k∈tε

εN |ϕ(xk)|2 →
∫

Ω
|ϕ(x)|2dx

and the proof is completed due to the density of C (Ω)⊗Cper(Y ) in C (Ω;Cper(Y )).

Remark 2.6. Even if often used (see e.g., [2, 16]), this is the first time Lemma 2.5 is rigor-
ously proved. It is worth noticing that because of a trace issue one cannot replace therein
the space C (Ω;Cper(Y )) by L2(Ω;Cper(Y )).
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Theorem 2.2 generalizes as

Theorem 2.7. Let (uε)ε∈E be a sequence in L2(Sε) such that

ε
∫

Sε
|uε(x)|2dσε(x)≤C

where C is a positive constant independent of ε. There exists a subsequence E ′ of E such
that (uε)ε∈E ′ two-scale converges to some u0 ∈ L2(Ω;L2(S)) in the sense of definition 2.4.

Proof. Put Fε(φ) = ε
∫

Sε uε(x)φ(x, x
ε)dσε(x) for φ ∈ C (Ω;Cper(Y )). We have

|Fε(φ)| ≤C
(

ε
∫

Sε

∣∣∣φ(x,
x
ε
)
∣∣∣
2

dσε(x)
) 1

2

≤C‖φ‖∞, (2.2)

which allows us to view Fε as a continuous linear form on C (Ω;Cper(Y )). Hence there exists
a bounded sequence of measures (µε)ε∈E such that Fε(φ) = 〈µε,φ〉. Due to the separability
of C (Ω;Cper(Y )) there exists a subsequence E ′ of E such that in the weak * topology of de
dual of C (Ω;Cper(Y )) we have µε → µ0 as E ′ 3 ε→ 0. A limit passage (E ′ 3 ε→ 0) in (2.2)
yields

|〈µ0,φ〉| ≤C
(∫∫

Ω×S
|φ(x,y)|2dxdσ(y)

) 1
2

.

But µ0 is a continuous form on L2(Ω;L2(S)) by density of C (Ω;Cper(Y )) in the later space,
and there exists u0 ∈ L2(Ω;L2(S)) such that

〈µ0,φ〉=
∫∫

Ω×S
u0(x,y)φ(x,y)dxdσ(y)

for all φ ∈ C (Ω;Cper(Y )), which completes the proof.

In the case when (uε)ε∈E is the sequence of traces on Sε of functions in H1(Ω), a link
can be established between its usual and surface two-scale limits. The following proposition
whose proof’s outlines can be found in [2] clarifies this.

Proposition 2.8. Let (uε)ε∈E ⊂ H1(Ω) be such that

‖uε‖L2(Ω) + ε‖Duε‖L2(Ω)N ≤C,

where C is a positive constant independent of ε and D denotes the usual gradient. The
sequence of traces of (uε)ε∈E on Sε satisfies

ε
∫

Sε
|uε(x)|2dσε(x)≤C (ε ∈ E)

and up to a subsequence E ′ of E, it two-scale converges in the sense of Definition 2.4 to
some u0 ∈ L2(Ω;L2(S)) which is nothing but the trace on S of the usual two-scale limit, a
function in L2(Ω;H1

# (Y )). More precisely, as E ′ 3 ε→ 0

ε
∫

Sε
uε(x)φ(x,

x
ε
)dσε(x) →

∫∫

Ω×S
u0(x,y)φ(x,y)dxdσ(y),

∫

Ω
uε(x)φ(x,

x
ε
)dxdy →

∫∫

Ω×Y
u0(x,y)φ(x,y)dxdy,

for all φ ∈ C (Ω;Cper(Y )).
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3 Homogenization procedure.

We make use of the notations introduced earlier in Section 1. Before we proceed we need a
few details.

3.1 Preliminaries

We introduce the characteristic function χG of

G = RN
y \Θ

with
Θ =

⋃

k∈ZN

(k +T ).

It follows from the closeness of T that Θ is closed in RN
y so that G is an open subset of RN

y .
Next, let ε ∈ E be arbitrarily fixed and define

Vε = {u ∈ H1(Ωε) : u = 0 on ∂Ω}.

We equip Vε with the H1(Ωε)-norm which makes it a Hilbert space. We recall the following
classical result [4].

Proposition 3.1. For each ε ∈ E there exists an operator Pε of Vε into H1
0 (Ω) with the

following properties:

• Pε sends continuously and linearly Vε into H1
0 (Ω).

• (Pεv)|Ωε = v for all v ∈Vε.

• ‖D(Pεv)‖L2(Ω)N ≤ c‖Dv‖L2(Ωε)N for all v ∈Vε, where c is a constant independent of ε
and D denotes the usual gradient operator.

It is also a well known fact that under the hypotheses mentioned earlier in the introduc-
tion, the spectral problem (1.1) has an increasing sequence of eigenvalues {λk

ε}∞
k=1

0 < λ1
ε ≤ λ2

ε ≤ λ3
ε ≤ ·· · ≤ λn

ε ,

λn
ε →+∞ as n→+∞.

It is to be noted that if the coefficients aε
i j are real-valued then the first eigenvalue λε

1 is
isolated. Moreover, to each eigenvalue λk

ε is attached an eigenvector uk
ε ∈ Vε and {uk

ε}∞
k=1

is an orthonormal basis in L2(Sε). In the sequel, the couple (λk
ε,u

k
ε) will be referred to as

eigencouple without further ado.
We finally recall the Courant-Fisher minimax principle which gives a useful (as will be

seen later) characterization of the eigenvalues to problem (1.1). To this end, we introduce
the Rayleigh quotient defined, for each v ∈Vε \{0}, by

Rε(v) =
∫

Ωε(AεDv,Dv)dx∫
Sε |v|2dσε(x)

,
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where Aε is the N2-square matrix (aε
i j)1≤i, j≤N and D denotes the usual gradient. Denoting

by Ek (k ≥ 0) the collection of all subspaces of dimension k of Vε, the minimax principle
states as follows: For any k ≥ 1, the k’th eigenvalue to (1.1) is given by

λk
ε = min

W∈Ek

(
max

v∈W\{0}
Rε(v)

)
= max

W∈Ek−1

(
min

v∈W⊥\{0}
Rε(v)

)
. (3.1)

In particular, the first eigenvalue satisfies

λ1
ε = min

v∈Vε\{0}
Rε(v),

and every minimum in (3.1) is an eigenvector associated with λ1
ε .

Now, let Qε = Ω \ (εΘ). This is an open set in RN and Ωε \Qε is the intersection of
Ω with the collection of the holes crossing the boundary ∂Ω. We have the following result
which implies, as will be seen later, that the holes crossing the boundary ∂Ω are of no effects
as regards the homogenization process since they are in arbitrary narrow stripe along the
boundary.

Lemma 3.2. [13] Let K ⊂Ω be a compact set independent of ε. There is some ε0 > 0 such
that Ωε \Qε ⊂Ω\K for any 0 < ε≤ ε0.

Next, we introduce the space

F1
0 = H1

0 (Ω)×L2 (
Ω;H1

# (Y )
)
.

Endowed with the following norm

‖v‖F1
0
= ‖Dxv0 +Dyv1‖L2(Ω×Y ) (v = (v0,v1) ∈ F1

0),

F1
0 is an Hilbert space admitting F∞

0 = D(Ω)× [D(Ω)⊗C ∞
# (Y )] as a dense subspace. This

being so, for u,v ∈ F1
0×F1

0, let

aΩ(u,v) =
N

∑
i, j=1

∫∫

Ω×Y ∗
ai j(x,y)

(
∂u0

∂x j
+

∂u1

∂y j

)(
∂v0

∂xi
+

∂v1

∂yi

)
dxdy

This define a hermitian, continuous sesquilinear form on F1
0×F1

0. We will need the follow-
ing results.

Lemma 3.3. Fix Φ = (ψ0,ψ1) ∈ F∞
0 and define Φε : Ω→ C (ε > 0) by

Φε(x) = ψ0(x)+ εψ1(x,
x
ε
) (x ∈Ω).

If (uε)ε∈E ⊂ H1
0 (Ω) is such that

∂uε

∂xi

2s−→ ∂u0

∂xi
+

∂u1

∂yi
in L2(Ω) (1≤ i≤ N)

as E 3 ε→ 0, where u = (u0,u1) ∈ F1
0, then

aε(uε,Φε)→ aΩ(u,Φ)
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as E 3 ε→ 0, where

aε(uε,Φε) =
N

∑
i, j=1

∫

Ωε
aε

i j
∂uε

∂x j

∂Φε

∂xi
dx.

Proof. For ε > 0, Φε ∈D(Ω) and all the functions Φε (ε > 0) have their supports contained
in a fixed compact set K ⊂Ω. Thanks to Lemma 3.3, there is some ε0 > 0 such that

Φε = 0 in Ωε \Qε (E 3 ε≤ ε0).

Using the decomposition Ωε = Qε ∪ (Ωε \Qε) and the equality Qε = Ω∩ εG, we get for
E 3 ε≤ ε0

aε(uε,Φε) =
N

∑
i, j=1

∫

Ωε
ai j(x,

x
ε
)
∂uε

∂x j

∂Φε

∂xi
dx

=
N

∑
i, j=1

∫

Qε
ai j(x,

x
ε
)
∂uε

∂x j

∂Φε

∂xi
dx

=
N

∑
i, j=1

∫

Ω∩εG
ai j(x,

x
ε
)
∂uε

∂x j

∂Φε

∂xi
dx

=
N

∑
i, j=1

∫

Ω
ai j(x,

x
ε
)χεG(x)

∂uε

∂x j

∂Φε

∂xi
dx

=
N

∑
i, j=1

∫

Ω
ai j(x,

x
ε
)χG(

x
ε
)
∂uε

∂x j

∂Φε

∂xi
dx.

Bear in mind that as E 3 ε→ 0, we have (see e.g., [13, Lemma 2.4])

N

∑
i, j=1

∂uε

∂x j

∂Φε

∂xi

2s−→
N

∑
i, j=1

(
∂u0

∂x j
+

∂u1

∂y j

)(
∂ψ0

∂xi
+

∂ψ1

∂yi

)
in L2(Ω).

We also recall that ai j(x,y)χG(y) ∈ C (Ω;L2
per(Y )) (1 ≤ i, j ≤ N) and that Property (2.1)

in Definition 2.1 still holds for f in C (Ω;L2
per(Y )) instead of L2(Ω;Cper(Y )) whenever the

two-scale convergence therein is ensured (see e.g., [11, Theorem 15]). Thus as E 3 ε→ 0

aε(uε,Φε) =
N

∑
i, j=1

∫

Ω
ai j(x,

x
ε
)χG(

x
ε
)
∂uε

∂x j

∂Φε

∂xi
dx

→
N

∑
i, j=1

∫∫

Ω×Y
ai j(x,y)χG(y)

(
∂u0

∂x j
+

∂u1

∂y j

)(
∂ψ0

∂xi
+

∂ψ1

∂yi

)
dxdy

=
N

∑
i, j=1

∫∫

Ω×Y ∗
ai j(x,y)

(
∂u0

∂x j
+

∂u1

∂y j

)(
∂ψ0

∂xi
+

∂ψ1

∂yi

)
dxdy

= aΩ(u,Φ).

Which completes the proof.
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We now construct and point out the main properties of the so-called homogenized co-
efficients. Let 1≤ j ≤ N and fix x ∈Ω. Put

a(x;u,v) =
N

∑
i, j=1

∫

Y ∗
ai j(x,y)

∂u
∂y j

∂v
∂yi

dy

and

l j(x,v) =
N

∑
k=1

∫

Y ∗
ak j(x,y)

∂v
∂yk

dy

for u,v ∈ H1
# (Y ). Equipped with the seminorm

N(u) = ‖Dyu‖L2(Y ∗)N (u ∈ H1
# (Y )), (3.2)

H1
# (Y ) is a pre-Hilbert space that is nonseparate and noncomplete. Let H1

# (Y ∗) be its sepa-
rated completion with respect to the seminorm N(·) and i the canonical mapping of H1

# (Y )
into H1

# (Y ∗). we recall that

(i) H1
# (Y ∗) is a Hilbert space,

(ii) i is linear,

(iii) i(H1
# (Y )) is dense in H1

# (Y ∗),

(iv) ‖i(u)‖H1
# (Y ∗) = N(u) for every u in H1

# (Y ),

(v) If F is a Banach space and l a continuous linear mapping of H1
# (Y ) into F , then there

exists a unique continuous linear mapping L : H1
# (Y ∗)→ F such that l = L◦ i.

Proposition 3.4. Let j = 1, ...,N and fix x in Ω. The noncoercive local variational problem

u ∈ H1
# (Y ) and a(x;u,v) = l j(x,v) for all v ∈ H1

# (Y ) (3.3)

admits at least one solution. Moreover, if χ j(x) and θ j(x) are two solutions,

Dyχ j(x) = Dyθ j(x) a.e., in Y ∗. (3.4)

Proof. Proceeding as in the proof of [13, Lemma 2.5] we can prove that there exists a
unique hermitian, coercive, continuous sesquilinear form A(x; ·, ·) on H1

# (Y ∗)×H1
# (Y ∗) such

that A(x; i(u), i(v)) = a(x;u,v) for all u,v ∈ H1
# (Y ). Based on (v) above, we consider the

antilinear form l j(x, ·) on H1
# (Y ∗) such that l j(x, i(u)) = l j(x,u) for any u ∈ H1

# (Y ). Then
χ j(x) ∈ H1

# (Y ) satisfies (3.3) if and only if i(χ j(x)) satisfies

i(χ j(x)) ∈ H1
# (Y ∗) and A(x; i(χ j(x)),V ) = l j(x,V ) for all V ∈ H1

# (Y ∗). (3.5)

But i(χ j(x)) is uniquely determine by (3.5) (see e.g., [10, p. 216]). We deduce that (3.3)
admits at least one solution and if χ j(x) and θ j(x) are two solutions, then i(χ j(x)) =
i(θ j(x)), which means χ j(x) and θ j(x) have the same neighborhoods in H1

# (Y ) or equiv-
alently N(χ j(x)−θ j(x)) = 0. Hence (3.4).
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Corollary 3.5. Let 1≤ i, j ≤ N and x fixed in Ω. Let χ j(x) ∈ H1
# (Y ) be a solution to (3.3).

The following homogenized coefficients

qi j(x) =
∫

Y ∗
ai j(x,y)dy−

N

∑
l=1

∫

Y ∗
ail(x,y)

∂χ j

∂yl
(x,y)dy (3.6)

are well defined in the sense that they do not depend on the solution to (3.3).

Lemma 3.6. The following assertions are true:
(i) qi j ∈ C (Ω).
(ii) q ji = qi j.
(iii) There exists a constant α0 > 0 such that

Re
N

∑
i, j=1

qi j(x)ξ jξi ≥ α0|ξ|2

for all x ∈Ω and all ξ ∈ CN .

Proof. See e.g., [3].

We are now in a position to state the main result of this paper.

3.2 Homogenization result

Theorem 3.7. For each k ≥ 1 and each ε ∈ E, let (λk
ε,u

k
ε) be the k’th eigencouple to (1.1).

Then, there exists a subsequence E ′ of E such that

1
ε

λk
ε → λk

0 in C as E 3 ε→ 0 (3.7)

Pεuk
ε → uk

0 in H1
0 (Ω)-weak as E ′ 3 ε→ 0 (3.8)

Pεuk
ε → uk

0 in L2(Ω) as E ′ 3 ε→ 0 (3.9)

∂Pεuk
ε

∂x j

2s−→ ∂uk
0

∂x j
+

∂uk
1

∂y j
in L2(Ω) as E ′ 3 ε→ 0 (1≤ j ≤ N) (3.10)

where (λk
0,u

k
0) ∈ C×H1

0 (Ω) is the k’th eigencouple to the spectral problem




−
N

∑
i, j=1

∂
∂xi

(
1
|S|qi j(x)

∂u0

∂x j

)
= λ0u0 in Ω

u0 = 0 on ∂Ω,
∫

Ω
|u0|2dx =

1
|S| ,

(3.11)

and where uk
1 ∈ L2(Ω;H1

# (Y )). Moreover, for almost every x ∈Ω the following hold true:
(i) uk

1(x) is a solution to the noncoercive variational problem




uk
1(x) ∈ H1

# (Y )

a(x;uk
1(x),v) =−

N

∑
i, j=1

∂uk
0

∂x j

∫

Y ∗
ai j(x,y)

∂v
∂yi

dy

∀v ∈ H1
# (Y );

(3.12)
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(ii) We have

i(uk
1(x)) =−

N

∑
j=1

∂uk
0

∂x j
(x)i(χ j(x)) (3.13)

where χ j is any function in H1
# (Y ) defined by the cell problem (3.3).

Proof. Let us first recall that according to the properties of the coefficients qi j (Lemma
3.6), the spectral problem (3.11) admits a sequence of eigencouples with similar properties
to those of problem (1.1). However, this is also proved by our homogenization process.

Now, fix k ≥ 1. There exists a constant 0 < c1 < ∞ independent of ε such that

0 < λk
ε ≤ c1µk

ε

where

µk
ε = min

W∈Ek

(
max

v∈W\{0}

∫
Ωε |Dv|2dx∫

Sε |uε|2dσε(x)

)
,

Ek still being the collection of subspaces of dimension k of Vε. But it is prove in [20,
Poposition 12.1] that 0 < µk

ε < c2ε, c2 being a constant independent of ε. Hence the sequence
(1

ε λk
ε)ε∈E is bounded in C.
Clearly, for fixed E 3 ε > 0, uk

ε lies in Vε, and

N

∑
i, j=1

∫

Ωε
aε

i j
∂uk

ε
∂x j

∂v
∂xi

dx =
(

1
ε

λk
ε

)
ε
∫

Sε
uk

εvdσε(x) (3.14)

for any v ∈ Vε. Bear in mind that ε
∫

Sε |uk
ε|2dσε(x) = 1 and chose v = uk

ε in (3.14). The
boundedness of the sequence (1

ε λk
ε)ε∈E and the ellipticity assumption (1.2) implies at once

by means of Proposition 3.1 that the sequence (Pεuk
ε)ε∈E is bounded in H1

0 (Ω). Theorem
2.3 and Proposition 2.8 apply simultaneously and gives us uk = (uk

0,u
k
1) ∈ F1

0 such that for
some λk

0 ∈ C and some subsequence E ′ ⊂ E we have (3.7)-(3.10), where (3.9) is a direct
consequence of (3.8) by the Rellich-Kondrachov theorem. For fixed ε ∈ E ′, let Φε be as in
Lemma 3.3. Multiplying both sides of the first equality in (1.1) by Φε and integrating over
Ω leads us to the variational ε-problem

N

∑
i, j=1

∫

Ωε
aε

i j
∂Pεuk

ε
∂x j

∂Φε

∂xi
dx =

(
1
ε

λk
ε

)
ε
∫

Sε
(Pεuk

ε)Φεdσε(x). (3.15)

Sending ε ∈ E ′ to 0, keeping (3.7)-(3.10) and Lemma 3.3 in mind, we obtain

N

∑
i, j=1

∫∫

Ω×Y ∗
ai j

(
∂uk

0
∂x j

+
∂uk

1
∂y j

)(
∂ψ0

∂xi
+

∂ψ1

∂yi

)
dxdy = λk

0

∫∫

Ω×S
uk

0ψ0dxdσ(y).

The right hand side follows by means of Proposition 2.8 as explained below:

ε
∫

Sε
(Pεuk

ε)Φεdσε(x) = ε
∫

Sε
(Pεuk

ε)ψ0dσε(x)+ ε
(

ε
∫

Sε
(Pεuk

ε)ψ1(x,
x
ε
)dσε(x)

)

→
∫∫

Ω×S
uk

0ψ0dxdσ(y)+0 as E ′ 3 ε→ 0.
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Therefore, (λk
0,u

k) ∈ C×F1
0 solves the following global homogenized spectral problem:





Find (λ,u) ∈ C×F1
0 such that

N

∑
i, j=1

∫∫

Ω×Y ∗
ai j

(
∂u0

∂x j
+

∂u1

∂y j

)(
∂ψ0

∂xi
+

∂ψ1

∂yi

)
dxdy = λ|S|

∫

Ω
u0ψ0 dx

for all Φ ∈ F1
0.

(3.16)

To prove (i), choose Φ = (ψ0,ψ1) in (3.16) such that ψ0 = 0 and ψ1 = ϕ⊗ v1, where
ϕ ∈D(Ω) and v1 ∈ H1

# (Y ) to get

∫

Ω
ϕ(x)

[
N

∑
i, j=1

∫

Y ∗
ai j

(
∂uk

0
∂x j

+
∂uk

1
∂y j

)
∂v1

∂yi
dy

]
dx = 0

Hence by the arbitrariness of ϕ, we have a.e. in Ω

N

∑
i, j=1

∫

Y ∗
ai j

(
∂uk

0
∂x j

+
∂uk

1
∂y j

)
∂v1

∂yi
dy = 0

for any v1 in H1
# (Y ), which is nothing but (3.12).

Regarding (ii), pick any χ j(x) solution to the cell problem (3.3) an put

z(x) =−
N

∑
j=1

∂uk
0

∂x j
(x)χ j(x).

By multiplying both sides of (3.3) by− ∂uk
0

∂x j
(x) and then summing over 1≤ j≤N, we see that

z(x) satisfies (3.12). Hence i(z(x)) = i(uk(x)) by uniqueness of the solution to the coercive
variational problem in H1

# (Y ∗) corresponding to the non-coercive variational problem (3.12)
(see the proof of Proposition 3.4). Thus (3.13) since i is linear.

Now, by considering Φ = (ψ0,ψ1) in (3.16) such that ψ1 = 0 and ψ0 ∈D(Ω), we get

N

∑
i, j=1

∫∫

Ω×Y ∗
ai j

(
∂uk

0
∂x j

+
∂uk

1
∂y j

)
∂ψ0

∂xi
dxdy = |S|λk

0

∫

Ω
uk

0ψ0 dx.

As (3.13) is equivalent (see the proof of Proposition 3.4) to

Dyuk
1(x) =−

N

∑
j=1

∂uk
0

∂x j
(x)Dyχ j(x) a.e. in Y ∗,

we arrive at

N

∑
i, j=1

∫

Ω

[∫

Y ∗
ai j dy−

N

∑
l=1

∫

Y ∗
ail

∂χ j

∂yl
dy

]
∂uk

0
∂x j

∂ψ0

∂xi
dx = |S|λk

0

∫

Ω
uk

0ψ0 dx,

i.e. (see (3.6))
N

∑
i, j=1

∫

Ω

1
|S|qi j(x)

∂uk
0

∂x j

∂ψ0
∂xi

dx = λk
0

∫

Ω
uk

0ψ0 dx.
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Thanks to the arbitrariness of ψ0 and the weak derivative formula, we conclude that (λk
0,u

k
0)

is the k’th eigencouple to (3.11) and the whole sequence (1
ε λk

ε)ε∈E converges.
Finally, by using (3.9) and a similar line of reasoning as in the proof of Lemma 2.5 we

arrive at

lim
E ′3ε→0

ε
∫

Sε
|Pεuk

ε||Pεul
ε|dσε(x) = |S|

∫

Ω
|uk

0||ul
0|dx, k, l = 1,2, · · ·

The normalization condition in (3.11) follows thereby and moreover {uk
0}∞

k=1 is an orthog-
onal basis in L2(Ω).
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