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Abstract

A globally convergent algorithm of the first and third authors for a 3D hyperbolic
coefficient inverse problem is verified on experimental data measured in the picosec-
ond scale regime. Quantifiable images of dielectric abnormalities are obtained. The
total measurement timing of a 100 pico-seconds pulse for one detector location was
1.2 nano-second with 20 pico-seconds (0.02 nano-second) time step between two con-
sequtive readings. Blind tests have consistently demonstrated an accurate imaging of
refractive indexes of dielectric abnormalities. At the same time, it is shown that a
modified gradient method is inapplicable to this kind of experimental data. This in-
verse algorithm is also applicable to other types of imaging modalities, e.g. acoustics.
Potential applications are in airport security, imaging of land mines, imaging of defects
in non-distractive testing, etc..

1 Introduction

In recent publications [3, 4, 5, 6] of the first and third authors a new globally convergent nu-
merical method for a Coefficient Inverse Problems (CIP) for a hyperbolic Partial Differential
Equation (PDE) was developed analytically and tested numerically on computationally sim-
ulated data. The goal of the effort described in this publication was to verify the performance
of that technique on a set of experimental data measured in the picosecond scale regime.
The tomographic time resolved data were collected for the total timing of 12.3 nano-seconds
per one detector location. Recall that 1 pico-second (ps)=10−12 second=103 nano-seconds
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(ns). We present a radically new data processing procedure. The measured data were pre-
processed by this procedure and were used then as Dirichlet boundary conditions for elliptic
PDEs derived in [3, 4]. Next, images were obtained by the algorithm of [3, 4].

Only semi-blind data were used. Namely, it happen that we knew locations of dielectric
inclusions, although this information is not used in our algorithm. However, we did not
know values of refractive indexes of those inclusions. Therefore, we use the term blind
everywhere below when talking about refractive indexes of inclusions used in experiments.
After computational results were obtained, refractive indexes of inclusions were measured a
posteriori by two well established methods. Comparison of measured and blindly computed
refractive indexes has consistently demonstrated a very good accuracy of computed ones. It
is an opinion of the authors that the latter fully verifies the technique of [3, 4, 5, 6].

We have obtained quantifiable non-destructive images of dielectric inclusions hidden in
otherwise slowly changing background. “Quantifiable” means that the values of refractive
indexes in those dielectric inclusions are accurately imaged. The accurate imaging of these
values is an important ingredient in the goal of the identification of those abnormalities.
Indeed, these values might help to differentiate between various types of dielectrics. Po-
tential applications of the quantifiable imaging of dielectrics are in checking out baggages
in airports, a stand-off detection of potential explosives hidden under clothing, imaging
of antipersonnel land mines, etc.. Indeed, it is well known from, e.g. tables presented
at http://www.clippercontrols.com/info/dielectric constants.html# 1 that explosives have
much higher dielectric constants than ones of regular materials. The framework of the tech-
nique of [3, 4] can be extended to the case when both the dielectric permittivity and the
electric conductivity coefficients are unknown, although we have not worked out specific
details yet.

In 2005 and 2009 Inverse Problems has published two special issues devoted to reconstruc-
tions of both dielectric and conductive abnormalities from experimental data [11, 18, 33, 34].
While the data of [33] of 2005 were designed for two-dimensional images, the data [34] of 2009
were collected for three-dimensional ones. These experimental data were provided by Fresnel
Institute (Marseille, France). A number of good quality imaging results was published in
these issues. We now list three main differences between our work and ones in [11, 18, 33, 34]:

1. Sources/Detectors Configurations. In our case only a single location of the source is
used, and tomographic measurements are performed only on one side of a prism, which is
opposite to the source location, see Figure 1 in section 5. Our source/detectors configuration
uses the minimal amount of information. In addition, our source/detectors configuration
can be easily transformed in the most interesting case (from the practical standpoint) of
backscattering data, i.e. to the case of stand-off detection. The technique of [3, 4, 5, 6] can
also be extended to this case [23]. In [33, 34] the source is moved all around the medium of
interest and the data are collected all around a circle.

2. Convergence Analysis. The global convergence of our algorithm is rigorously guaran-
teed [3, 4], also see Theorem 1 in section 3. We work with a fully nonlinear problem and do
not use neither a linearization, nor an assumption that the starting point is located close to
the correct solution, nor an assumption about a priori knowledge of the background medium.
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The only a priori knowledge we use is that the medium outside of our domain of interest is
air and that the relative dielectric permittivity in the domain of our interest is not less than
the one in the air, i.e. that the EM wave propagates in the domain of interest slower than
in the air. In addition, it is shown in subsection 8.4 below that a modified gradient method
cannot work for our experimental data. Works of [33, 34] use some variations of the small
perturbation approach, e.g., Newton-like techniques. Convergence of the small perturbation
approach cane be proven only under the condition that the starting point is located close to
the correct solution.

3. Data Collection. We have measured the time resolved data generated by a 100 ps
electric pulse. In [11, 18, 33, 34] the data are collected on several frequencies by the so-called
Vector Network Analyzer technique. While formally measurements on several frequencies
are equivalent with time resolved ones via the Fourier transform, it is the time resolved signal
which provides the ultimate result.

We call a numerical method for a CIP globally convergent if the following two conditions
are satisfied: (1) a theorem is proven, which ensures that this method provides a good
approximation for the exact solution regardless on the availability of a good first guess
for this solution, and (2) this analytical result is confirmed by numerical experiments. The
fundamental underlying mathematical reason of the local convergence of conventional inverse
algorithms is that CIPs are both nonlinear and ill-posed. It is because of the nonlinearity
and ill-posedness that least squares residual functionals for CIPs suffer from multiple local
minima and ravines, see, e.g. [21] for some examples. Therefore, any gradient-like method of
minimization of such a functional likely stops at such a local minimum, which is the closest
one to the starting point of iterations. Furthermore, because of the ill-posedness, there is
no guarantee that a global minimum, even a well pronounced one, is close to the correct
solution. The reason why we avoid the local minima problem is that our technique uses the
structure of the underlying PDE operator instead of the least squares minimization.

Our technique is best suited for imaging of small inclusions. Another approach to imaging
of small inclusions can be found in [2] and references cited there. Other procedures of solving
CIPs, which do not rely on locally convergent algorithms, can be found in [9, 19, 20, 27,
28, 29]. In particular, techniques of [9, 20] work with CIPs for hyperbolic PDEs. We
have cited only those techniques, which are numerically implemented: the method of [9] is
implemented in [10], the method of [19, 28, 29] is implemented in [12] and works [20, 27]
contain numerical studies. The main difference between these approaches and ours is in the
nature of the information used. While these approaches use many locations of the source,
we use a single source location.

This paper is organized as follows. In section 2 we formulate both forward and inverse
problems of our mathematical model. In section 3 we outline the globally convergent numer-
ical method of [3, 4], including both the formulation and a detailed discussion of the global
convergence theorem. In section 4 we outline a modified gradient method for our CIP. In
section 5 we describe the experimental set up. In section 6 we describe our data processing
procedure. In section 7 we present some details of the numerical implementation of our
algorithm. In section 8 results of numerical studies are presented. Discussion of results can
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be found in section 9.

2 Forward and Inverse Problems

As the forward problem, we consider the following Cauchy problem

εr(x)utt = ∆u, in R3 × (0,∞) , (1)

u (x, 0) = 0, ut (x, 0) = δ (x− x0) . (2)

Here εr(x) is the spatially variable dielectric constant (relative dielectric permittivity),

εr(x) =
ε (x)

ε0

,
√

εr(x) = n (x) =
c0

c (x)
, (3)

where ε0 is the dielectric permittivity of the vacuum (which we assume to be the same
as one in the air), ε (x) is the spatially variable dielectric permittivity of the medium of
interest, n (x) is the spatially variable refractive index of the medium of interest, c (x) is
the speed of the propagation of the EM field in this medium, and c0 is the speed of light in
the vacuum, which we assume to be the same as one in the air. Thus, the refractive index
shows how slower the EM field propagates in the medium of interest compared with the air.
We assume below that n (x) ≥ 1. We point out that equation (1) can be derived from the
Maxwell’s system only in two cases: (a) if εr ≡ const. > 0 and (b) in the 2-D case [13].
However, neither of these two is in place in our experiments. Thus, we call (1) a simplified
mathematical model of our process. Currently we cannot explain why this model works for
us and how it is compared with the performance of a model based on the full Maxwell’s
system.

Let Ω ⊂ R3 be a convex bounded domain with the boundary ∂Ω ∈ C3. We assume that
the coefficient εr (x) of equation (1) is such that

εr (x) ≥ 1, εr (x) = 1 for x ∈ R3�Ω, (4)

εr (x) ∈ C2
(
R3

)
. (5)

It is well known that the question of the existence of the fundamental solution (1), (2) is
a very challenging one. Regardless on an extensive effort in the past of such people as J.
Hadamard, S.L. Sobolev and V.G. Romanov, this question is currently positively addressed
only under the condition that the coefficient εr (x) is sufficiently smooth and geodesic lines
generated by this coefficient are regular, see works of Romanov [31, 32] and citations of
books J. Hadamard and S.L. Sobolev in them. Hence, it is inevitable that in the theoretical
derivations of [3, 4] both (5) and the regularity of geodesic lines were assumed. Note that
we need these assumptions only to make sure that the solution of the problem (1), (2) exists
and that its Laplace transform (7) has a certain asymptotic behavior, see (16). However,
we actually do not use these assumptions in our computational practice and verify (16)
computationally, see subsection 7.2 in [3]. Likewise, although in our experiments the function

4



εr (x) has a discontinuity at the boundary of a dielectric inclusion, which contradicts to (5),
our reconstruction method still works.

Inverse Problem. Suppose that the coefficient εr (x) satisfies (4) and (5) and cor-
responding geodesic lines are regular. Assume that the function εr (x) is unknown in the
domain Ω. Determine the function εr (x) for x ∈ Ω, assuming that the following function
g (x, t) is known for a single source position x0 /∈ Ω

u (x, t) = g (x, t) ,∀ (x, t) ∈ ∂Ω× (0,∞) . (6)

In our application the assumption εr (x) = 1 for x ∈ R3�Ω means that one has air outside
of the medium of interest Ω. The inequality εr (x) ≥ 1 is because is that one should bound
the coefficient εr (x) from the below by a positive number to ensure that the operator in (1)
is a hyperbolic one on all iterations of our numerical procedure. I addition this inequality
means that the EM wave propagates slower in the domain of interest, compared with the
air, see (3). The function g (x, t) models time dependent measurements of the wave field at
the boundary of the domain of interest. The question of uniqueness of this Inverse Problem
is a well known long standing open problem. It is addressed positively only if the function
δ (x− x0) above is replaced with a such a function that f(x) 6= 0,∀x ∈ Ω. Corresponding
uniqueness theorems were proven via the method of Carleman estimates [21, 22], also, see a
recent survey [36] on this method. It is an opinion of the authors that because of applications,
it makes sense to develop numerical methods, assuming that the question of uniqueness of
the above inverse problem is addressed positively.

3 Outline of the Globally Convergent Numerical Method

We outline in this section the method of [3, 4] as well as the global convergence theorem of
[4], which is more advanced than one in [3]. We refer to these publications for details.

3.1 Outline

Consider the Laplace transform of the functions u,

w(x, s) =

∞∫

0

u(x, t)e−stdt := L (u) , for s > s = const. > 0, (7)

where s is a sufficiently large number such that the integral (7) converges together with
corresponding (x, t)-derivatives. We call the parameter s pseudo frequency. Note that we do
not use the inverse Laplace transform in our method, since approximations for the unknown
coefficient are obtained in the pseudo frequency domain. We obtain from (1), (2)

∆w − s2c (x) w = −δ (x− x0) , (8)

lim
|x|→∞

w (x, s) = 0. (9)
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To prove (9), one can first consider a Laplace-like transform of the function u(x, t) [26],

ũ (x, t) =
1

2
√

πt3/2

∞∫

0

u(x, τ) exp

(
−τ 2

4t

)
dτ .

It was shown in [26] that the function ũ satisfies

εr (x) ũt = ∆ũ, ũ (x, 0) = δ (x− x0) . (10)

Next, for sufficiently large s

w (x, s) =

∞∫

0

ũ (x, t) exp
(−s2t

)
dt. (11)

It follows from the classic estimate (6.13) of Chapter 4 of [25] for the fundamental solution
of the parabolic PDE that the function |ũ| can be estimated from the above via the solution
of another parabolic equation with constant coefficients. Finally, the Laplace transform (11)
for the latter solution can be calculated via an explicit formula, and this formula implies
decay as |x| → ∞.

It follows from the classic theory of PDEs that for every s > s there exists unique solution
w ∈ C2+α (|x− x0| ≥ γ) ,∀γ > 0. Here and below Ck+γ, α ∈ (0, 1) , k ≥ 0, an integer, are
Hölder spaces [24]. Since the fundamental solution ũ of the problem (10) is positive (Theorem
11 of Chapter 2 of [16]), then by (11) w (x, s) > 0 for sufficiently large s in (7). Hence, we
can consider the function v (x, s) = s−2 ln w(x, s), which is the Liouville transform of the
function w. The function v satisfies the following conditions

∆v + s2 (∇v)2 = εr (x) , x ∈ Ω, (12)

v | ∂Ω = ψ̃ (x, s) ,

where the function ψ̃ is generated by the function g in (6). While (12) was obtained using the
Liouville transform, a new step was proposed in [3]. The idea of this step has a root in the
idea of applications of Carleman estimates to proofs of uniqueness theorems for CIPs [21, 22].
Namely, we eliminate the unknown coefficient εr (x) from equation (12) via differentiating
this equation with respect to s. Let q (x, s) = ∂sv (x, s) . Then we obtain from (12) that the
function q (x, s) satisfies the following nonlinear integral differential PDE containing Volterra
integrals with respect to s,

∆q − 2s2∇q ·
s∫

s

∇q (x, τ) dτ + 2s




s∫

s

∇q (x, τ) dτ




2

+ 2s2∇q · ∇V − 2s∇V ·
s∫

s

∇q (x, τ) dτ + 2s (∇V )2 = 0, x ∈ Ω,

q |Ω= ψ (x, s) , (x, s) ∈ ∂Ω× [s, s] ,

(13)
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where ψ (x, s) = ∂sψ̃ (x, s) . Here s is the truncation pseudo frequency of integrals, which
serves as one of regularization parameters of our method. Still, instead of just truncating the
integral via setting its complement to zero, we use the function V (x, s) , which complements
the rest of the integral, i.e.

v (x, s) = −
s∫

s

q (x, τ) dτ + V (x, s) , (14)

V (x, s) = v (x, s) =
ln w (x, s)

s2 . (15)

We call V (x, s) the “tail function”, and it is unknown. Hence, equation (13) has two unknown
functions, q and V . The reason why we can approximate well both of them is that we treat
them differently. While we approximate the function q from inner iterations, the function V
is approximated via outer iterations. In fact, numerical solution of the problem (13) is the
most challenging issue in this method. It follows from (15) and Lemma 2.1 of [3], which is
actually based on Theorem 4.1 of [31] as well as on the work [32] of the same author, that

∥∥∥∥
∂

∂sk
V (x, s)

∥∥∥∥
C2+α(Ω)

= O

(
1

sk+1

)
, s →∞, k = 0, 1, ... (16)

The problem (13) is solved via a layer stripping procedure with respect to the pseudo
frequency s. Consider partition of the interval [s, s] into N small subintervals of the width
h = sn−1 − sn, where s = sN < sN−1 < ... < s1 = s. Assume that q (x, s) is a piecewise
constant function with respect to s, q (x, s) = qn (x) for x ∈ (sn, sn−1] . Consider the Carleman
Weight Function (CWF) eµ(s−sn−1), where µ >> 1 is a large parameter which should be
chosen in computations. We multiply equation (13) by this function and integrate with
respect to s ∈ (sn, sn−1) . Hence, we obtain the Dirichlet boundary value problem for the
following coupled system of nonlinear elliptic PDEs of the second order

Ln (qn) : = ∆qn − A1,n

(
h

n−1∑
i=1

∇qi

)
∇qn + A1n∇qn∇V − κqn = Bn (∇qn)2

−A2,nh
2

(
n−1∑
i=1

∇qi (x)

)2

+ 2A2,n∇V

(
h

n−1∑
i=1

∇qi

)
− A2,n (∇V )2 , (17)

qn | ∂Ω = ψn(x) :=
1

h

sn−1∫

sn

ψ (x, s) ds, n = 1, ..., N,

where the function ψ(x, s) is taken from (13). In (17) A1,n, A2,n, Bn are certain numbers
depending on µ, h, n and κ > 0 is a small parameter of ones choice. This parameter is
introduced to obtain a better stability of the problem (17) because of the maximum principle,
see §1 in Chapter 3 of [24]. It is important that limµ→∞ Bn = 0 uniformly for all n due to the
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presence of the CWF. Hence, the presence of the CWF with µ >> 1 mitigates the influence
of the nonlinear term (∇qn)2 , which enables us to solve the boundary value problem for
each qn iteratively via solving a linear elliptic problem on each step. Still, the computational
experience shows that we cannot take µ exceedingly large, which would effectively turn
equations (17) into linear ones. Suppose that we have approximated the function qn (x) .
Then we find the approximation εn

r (x) for the function εr (x) via backwards calculation
using (12) as

ε(n)
r (x) =

{
fn (x) := ∆vn + s2

n (∇vn)2 , x ∈ Ω, if fn (x) ≥ 1,
1 if fn (x) < 1,

(18a)

vn (x) = −h

n∑
i=1

qi (x) + Vn (x) , (18b)

where Vn (x) is the corresponding approximation for the tail function. We make the cut-off
to unity in (18a) because of (4).

Since the equation for each function qn in (17) depends only on functions q1, ..., qn, then
these elliptic Dirichlet boundary value problems can be solved sequentially: first one should
approximate q1, next approximate q2, etc.. We have inner and outer iterations to solve these
problems. While functions qn are found from inner iterations, approximations for the tail
function V are found from outer iterations. First, we choose the first approximation V1,1 (x, s)
for the tail function. In [3] V1,1 ≡ 0 was chosen. While we can still do so, we have discovered
that the process converges faster if we choose the approximation, which corresponds to the
case of the known value of the function εr ≡ 1 outside of the domain Ω. So, let w̃ (x, s) be
the solution of the problem (8), (9) with εr ≡ 1. Using (15), we set [4]

V1,1 (x) :=
ln w̃ (x, s)

s2 . (19)

To approximate the function q1, we first iterate with respect to the nonlinear term (∇q1)
2

in (17) and find functions qk
1 (x) this way setting in (17) V := V1,1, where V1,1 is defined in

(19). So, we solve the Dirichlet boundary value problem (17) for functions qk
1 (x) via setting

for the nonlinear term (∇qn)2 :=
(∇qk−1

1

)2
, q0

1 = 0. We iterate with respect to the nonlinear
term until convergence occurs. The resulting function is denoted as q1,1.

For n = 1, we do not iterate with respect to the nonlinear term anymore. Instead, we
iterate with respect to the tail as follows. Suppose we have obtained the pair (q1,i, V1,i) .

Then we find the approximation ε
(1,i)
r (x) for the target coefficient εr (x) via the backwards

calculation (18a,b) with the obvious replacement of indexes. Next, we solve the problem (1),

(2) with εr := ε
(1,i)
r , calculate the Laplace transform w1,i+1 (x, s) of its solution and set the

new approximation for the tail as V1,i+1 (x) := s−2w1,i+1 (x, s) . Next, we solve the boundary
value problem (17) with V := V1,i+1, (∇qn)2 := (∇q1,i)

2 and obtain the function q1,i+1 this
way. We continue this process until convergence occurs. Suppose that convergence occurs at

i := m1. Then we set
(
q1, ε

(1)
r , V2,1

)
:=

(
q1,m1 , ε

(1,m1)
r , V1,m1

)
, for the nonlinear term in (17)
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we set (∇qn)2 := (∇q0
2)

2
:= (∇q1)

2 . To find the function q2, we repeat the above process for
n = 2, etc., until convergence occurs. So, for each n we iterate with respect to the nonlinear
term only to approximate qn,1 and then we iterate with respect to tails. We can rigorously
prove convergence of iterations with respect to the nonlinear term for each n (Theorem 1).
However, we cannot prove convergence with respect to tails. Still, we have observed the
latter numerically and our numerical convergence criteria are specified in subsection 7.1.

Since we have defined functions ε
(n,i)
r in (18a,b) only for x ∈ Ω, we explain now how we

can extend these functions in R3�Ω in such a way that the resulting function belongs to
Cα (R3) . We need this explanation only for the sake of our global convergence theorem in
the next subsection, since in the computational practice we just extend these functions as
ε
(n,i)
r (x) := 1 for x ∈ R3�Ω. Let Ω′ ⊂ Ω be a convex subdomain such that dist (∂Ω′, ∂Ω) > 0,

where dist (∂Ω′, ∂Ω) is the distance between these boundaries in the Hausdorf sense. We
assume that the number dist (∂Ω′, ∂Ω) is rather small, i.e. Ω′ ≈ Ω. It is well known from
the Real Analysis course that one can choose such a function χ (x) ∈ C∞ (R3) that

χ (x) =





1 in Ω′,
between 0 and 1 in Ω�Ω′,

0 in R3�Ω.

So, suppose that in (18a,b) the function ε
(n,i)
r (x) ∈ Cα

(
Ω

)
. We define the function ε̂(n,i)

r (x)

as ε̂(n,i)
r (x) = (1− χ (x))+χ (x) ε

(n,i)
r (x) ,∀x ∈ R3. Then ε̂(n,i)

r ∈ Cα (R3) , ε̂(n,i)
r ≥ 1, ε̂(n,i)

r (x) =

1 for x ∈ R3�Ω and ε̂(n,i)
r (x) = ε

(n,i)
r (x) in Ω′.

3.2 The global convergence theorem

To formulate this theorem, we need to introduce the definition of the exact solution first. We
assume that there exists a coefficient ε∗r (x) satisfying condition (4), (5), and this function
is an exact solution of our Inverse Problem with the “ideal” errorless data g∗(x, t) in (6).
The Laplace transform (7) of the function g∗ (x, t) leads to the exact function ϕ∗ (x, s) =
w∗ (x, s) ,∀ (x, s) ∈ ∂Ω× [s, s]. Let

q∗ (x, s) =
∂

∂s

[
ln [w∗ (x, s)]

s2

]
, V ∗ (x, s) =

ln [w∗ (x, s)]

s2 .

Hence, V ∗ (x, s) is the exact tail function. The function q∗ satisfies an obvious analogue of
equation (13) with the following boundary condition

q∗ (x, s) = ψ∗ (x, s) =
1

ϕ∗s2

∂ϕ∗

∂s
− 2 ln ϕ∗

s3
, (x, s) ∈ ∂Ω× [s, s] .

It easily follows from the above that the function q∗ (x, s) ∈ C2+α
(
Ω

)× C∞ [s, s] . First, we
approximate functions q∗ (x, s) and ψ∗ (x, s) via piecewise constant functions with respect to
s ∈ [s, s] as

q∗n (x) =
1

h

sn−1∫

sn

q∗ (x, s) ds, ψ
∗
n (x) =

1

h

sn−1∫

sn

ψ∗ (x, s) ds. (21)
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Hence, for n = 1, ..., N ; s ∈ [sn, sn−1] we have q∗ (x, s) = q∗n (x) + Qn (x, s) , ψ∗ (x, s) =
ψ
∗
n (x)+Ψn (x, s) , where functions Qn, Ψn are such that |Qn (x, s)|2+α ≤ C∗h, |Ψn (x, s)|2+α ≤

C∗h, for s ∈ [sn, sn−1] , where the constant C∗ = C∗
(
‖q∗‖C2+α(Ω)×C1[s,s]

)
> 0 depends only

on the C2+α
(
Ω

)×C1 [s, s] norm of the function q∗ (x, s). Here and below |·|k+α denotes the

norm in the space Ck+α
(
Ω

)
. We can assume that

max
1≤n≤N

|q∗n|2+α ≤ C∗ (22)

and without a loss of generality, we assume that

C∗ ≥ 1. (23)

By the Tikhonov concept [35], the constant C∗ should be known a priori. It is reasonable
to assume that C∗ is independent on s, although we do not use this assumption. By (21)
q∗n (x) = ψ

∗
n (x) , x ∈ ∂Ω. We assume that the function g(x, t) in (6) is given with an error.

This naturally produces an error in the function ψ (x, s) in (13). An additional error is
introduced due to the averaging in (21). Hence, it is reasonable to assume that

∥∥∥ψ
∗
n (x)− ψn (x)

∥∥∥
C2+α(∂Ω)

≤ C∗ (σ + h) , (24)

where σ > 0 is a small parameter characterizing the level of the error in the data ψ (x, s) .
We assume that

s > 1, λh ≥ 1, (25)

and introduce the positive constant M∗ = M∗
(
‖q∗‖C2+α(Ω)×C1[s,s] , s

)
= M∗ (C∗, s) by

M∗ = 16C∗s2. (26)

Consider the Dirichlet boundary value problem in the domain Ω

∆u +
3∑

j=1

bj(x)uxj
− d(x)u = p1 (x) , u |∂Ω= p2 (x) ∈ C2+α (∂Ω) .

Assume that functions bj, d, p1 ∈ Cα
(
Ω

)
, d (x) ≥ 0; max

(|bj|α , |d|α
) ≤ 1. By the Schauder

theorem [24], there exists unique solution u ∈ C2+α
(
Ω

)
of this boundary value problem, and

with a constant K = K (Ω) > 1, depending only on the domain Ω, the following estimate
holds

|u|2+α ≤ K
[
|p1|α + ‖p2‖C2+α(∂Ω)

]
. (27)

Theorem 1 (global convergence) [4]. Let Ω ⊂ R3 be a convex bounded domain with the
boundary ∂Ω ∈ C3. Suppose that inequalities (22)-(25) hold. Let the exact coefficient ε∗r (x)
satisfies conditions (4), (5). For any function εr (x) ∈ Cα (R3) such that εr (x) ≥ 1 in Ω
and εr (x) = 1 in R3�Ω consider the solution uεr(x, t) of the Cauchy problem (1), (2).
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Let wεr (x, s) ∈ C2+α ({|x− x0| ≥ γ}) , ∀γ > 0 be the Laplace transform (7) of uεr(x, t) and
Vεr (x) = s−2 ln wεr (x, s) ∈ C2+α

(
Ω

)
be the corresponding tail function (see (15)). Suppose

that the cut-off pseudo frequency s is so large that for any such function εr (x) the following
estimates hold ∣∣Vε∗r

∣∣
2+α

≤ ξ, |Vεr |2+α ≤ ξ, (28)

where ξ ∈ (0, 1) is a sufficiently small number. Denote

η := 2 (h + σ + κ + ξ) . (29)

Let K be the constant of the Schauder theorem in (27) and N ≤ N be the total number
of functions qn calculated by the algorithm of subsection 3.1. Suppose that the number N =
N (h) is connected with the step size h via N (h) h = β, where the constant β > 0 is
independent on h. Let β be so small that

β ≤ 1

384Ks2 =
1

24KM∗ . (30)

In addition, let the number η and the parameter µ of the CWF satisfy the following estimates

η ≤ η0 (K, C∗, s) =
1

16KM∗ =
1

256KC∗s2 , (31)

µ ≥ µ0 (C∗, K, s, η) = max

(
(C∗)2

4
, 48KC∗s2,

1

η2

)
.

Then for each n ∈ [
1, N

]
the sequence

{
qk
n,1

}∞
k=1

converges in C2+α
(
Ω

)
to the function

qn,1. Likewise, if iterations of {qn,i} with respect to the tails are stopped at i = mn with
qn,mn := qn for each n ∈ [

1, N
]
, then the following convergence estimates hold

|qn − q∗n|2+α ≤ 2KM∗
(

1√
µ

+ 3η

)
, n ∈ [

1, N
]
, (32)

|qn|2+α ≤ 2C∗, n ∈ [
1, N

]
,

∣∣ε(n)
r − ε∗r

∣∣
α
≤ η

2 · 9n−1
+

23

8
η, n ∈ [

2, N
]
. (33)

3.3 Discussion of Theorem 1

3.3.1 The parameter ξ

By (16) and (28) the parameter ξ is small as long as the truncated pseudo frequency s
is large. This implies of course that the parameter η in (29) is also small. Nevertheless,
this theorem has a discrepancy related to the parameter ξ. Indeed, by (31) we should have
η ≤ C1/s

2, C1 = (256KC∗)−1 . On the other hand, (16) implies that ξ = O (1/s) , s → ∞.
Clearly these two conditions imposed on η and ξ are incompatible with (29). In addition
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since by (26) M∗ = O (s2) as s →∞, then there is no guarantee that the right hand side of
(32) is small indeed.

We explain this discrepancy as follows. Since the problem of construction of globally
convergent numerical methods for our CIP is obviously an extremely challenging one, we
need to make certain compromises such as, e.g. ones outlined in the previous paragraph. In
simple terms, not everything can be covered by the theory. The only way to justify these
compromises is via numerical experiments. Numerical experiments of previous publications
on this method [3, 4, 5, 6] fully confirm the theory, see, e.g. subsection 9.3 in [4]. Thus, they
demonstrate that this compromise is reasonable. Note that we truncate our pseudo frequency
“gently”. In other words, instead of just setting for the tail function to be zero, we iterate
with respect to tails. In addition, we refer to the Gelfand-Krein-Levitan method for a 2-D
inverse hyperbolic problem of [20]. This method shows an excellent numerical performance.
Still, it has a similar problem with the truncation of the Fourier series with respect to one
of spatial variables. In connection with this compromise, we present a new mathematical
model in the next sub-subsection and we also demonstrate that a very similar problem takes
place in the classic Real Analysis. Finally, we believe that results of the current publication
eliminate last remaining doubts about the validity of the technique of [3, 4], see section 9.

3.3.2 A new mathematical model and a classic example from Real Analysis

We associate with Theorem 1 a new mathematical model. In this model, as soon as the
large truncation pseudo frequency s is chosen, we allow the parameter ξ, which bounds tails
in (28) and which is involved in the convergence parameter η in (29), to be infinitely small,
independently on s. Actually, we do exactly this in our numerical implementation, which
justifies this new model, see subsections 7.1 and 7.2 for details.

Finally, we provide here an example of the same nature. This example is linked with the
classic issue of Asymptotic Series. Although these series quite often formally diverge, still
their truncations provide very good approximations for corresponding functions. Consider
the classic error function Φ (x) [1],

Φ (x) =
2√
π

∞∫

x

e−t2dt, x > 0.

The asymptotic series expansion for the function ex2
Φ (x) is

ex2

Φ (x) =
1√
πx

(
1 +

∞∑
n=1

(−1)n (2n− 1)!!

(2x2)n

)
, x →∞,

where (2n− 1)!! = 1·3·5...·(2n− 1) . This asymptotic series diverges for any x. Nevertheless,
it is well known that the following is a good approximation for the function ex2

Φ (x) for large
values of x,

ex2

Φ (x) ≈ 1√
πx

N∑
n=1

(−1)n (2n− 1)!!

(2x2)n , x →∞.
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The truncation number N here has exactly the same nature as our truncation pseudo fre-
quency s. Hence, this example demonstrates that things, which are similar to ours, exist in
the classic Real Analysis, and they are related to the asymptotic series expansions.

3.3.3 The meaning of estimates (30) and (33)

The estimate (33) tells one that the accuracy of the reconstruction of the function ε∗r is
improving with iterations for the first few iterations. However, when n becomes sufficiently

large, the norm
∣∣∣ε(n)

r − ε∗r
∣∣∣
α

becomes comparable with the level of error (23/8) η. This error

includes the error ξ in our new mathematical model, the error σ in the data and some less
significant errors h and κ of our method. In other words, we cannot guarantee that our
accuracy will improve after reaching a certain n := n0 ∈

[
2, N

]
. In addition, by (30) we also

cannot guarantee anything for n > N. We indeed observe this in our computations, in which
we take either N = 6 or N = 5, and we do this for a very plausible reason, see (49) and
subsection 8.2 below. It was pointed out on pages 156 and 157 of the book [14] that one of
backbone ideas of the theory of Ill-Posed Problems is to use the number of iterations as one
of regularization parameters. This iteration number is N in our case. The true reason why
the number β is small in (30) is that equations (17) are generated by equations (13), which
contain nonlinear terms with Volterra integrals. It is well known that one can guarantee
existence of solution of a nonlinear Volterra integral equation only on a small interval. For
example, the Cauchy problem y′ = y2 + 1, y (0) = 0 has its solution y (z) = tan z with
the singularity at z = π/2. On the other hand, this Cauchy problem is equivalent with the
following nonlinear integral equation of the Volterra type

y (z) =

z∫

0

y2 (τ) dτ + z.

4 A Modified Gradient Method

We use the method of this section for comparison with the globally convergent technique.
Since the gradient method is a secondary to us and since we want to save space, we derive
a modified gradient method only briefly here. First, we need is to introduce the Tikhonov
functional for the above CIP in the pseudo frequency domain and derive its Frechét deriva-
tive. We call our technique of this section the “modified gradient method” because instead
of making usual steps in the gradient method, we find the zero of the Frechét derivative of
the Tikhonov functional via solving an equation with a contractual mapping operator. Our
derivation of the Frechét derivative of the Tikhonov functional is similar with the derivation
of [5] for the same CIP in the time domain. And so we refer to sections 6 and 7 of [5] for a
similar and rigorous framework.

Let g̃ (x, s) be the Laplace transform (7) of the function g (x, t) in (6). Then

w (x, s) |∂Ω= g̃ (x, s) . (34)

13



Since by (3) the coefficient εr (x) = 1 outside of Ω, then we can uniquely solve the boundary
value problem (8), (9), (34) in the domain R3�Ω for every value of s of our interest. Hence,
we can uniquely find the normal derivative p (x, s) = ∂nw (x, s) |∂Ω . Hence, we obtain the
so-called “state” boundary value problem for the function w inside of the domain Ω,

∆w − s2εr (x) w = 0 in Ω, (35)

∂nw (x, s) | ∂Ω = p (x, s) .

In addition, consider the so-called “adjoint” boundary value problem for the function λ,

∆λ− s2εr (x) λ = 0 in Ω, (36)

∂nλ (x, s) | ∂Ω = (w |∂Ω −g̃) (x, s) .

The idea of the gradient method is to find a zero of the Frechét derivative of the Tikhonov
functional with the regularization parameter θ,

E (εr) =
1

2

c2∫

c1

∫

∂Ω

(w |∂Ω −g̃)2 dσxds +
θ

2

∫

Ω

(
εr (x)− ε(0)

r (x)
)2

dx,

where (c1, c2) is an interval of pseudo frequencies, w = w (x, εr) is the solution of the problem

(35) and ε
(0)
r is a first approximation for the unknown coefficient εr. In order to simplify the

derivation of the Frechét derivative of this functional, consider the associated Lagrangian
L (εr) ,

L (εr) = E (εr) +

c2∫

c1

∫

∂Ω

pλdσxds−
c2∫

c1

∫

Ω

(∇w∇λ + s2εr(x)wλ
)
dxds. (37)

It follows from the definition of the weak solution of the problem (35) that the integral term in
(37) equals zero. Hence, L (εr) = E (εr) for all admissible functions εr (x). This implies that
L′ (εr) = E ′ (εr) , where L′ and E ′ are Frechét derivatives. To figure out the Frechét derivative
L′ (εr) , we need to vary in (37) the function εr via considering the function εr (x) + b (x) ,
where the functions b (x) is an appropriate small perturbation of the function εr (x) . But since
functions w = w (x, s, εr) and λ = λ (x, s, εr) depend on εr as solutions of boundary value
problems (35) and (36), then we should also consider respective variations of these functions.
In other words, we should consider Frechét derivatives of functions w (x, s, εr) , λ (x, s, εr)
with respect to εr. These Frechét derivatives are actually solutions of such boundary value
problems, which are obtained via the linearization of problems (35) and (36) with respect
to b. Finally, the linear, with respect to b (x) , part of the difference L (εr + b) − L (εr) is
L′ (εr) (b) . Again, the necessary formalism for the hyperbolic case can be found in [5], and
our elliptic case is similar. So, finally we obtain

E ′ (εr) = θ
(
εr − ε(0)

r

)
(x)−

c2∫

c1

s2 (wλ) (x, s, εr) ds.
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At a point of a minimum of the functional E (εr) one should have E ′ (εr) = 0. Therefore, we
should solve the following equation

εr (x) =
1

θ

c2∫

c1

s2 (wλ) (x, s, εr) ds + ε(0)
r (x) , x ∈ Ω. (38)

One can easily prove that one can choose the number ζ = (c2 − c1) /θ so small that the
equation (38) becomes an equation with the contraction mapping operator, which, therefore,
can be solved iteratively. Of course, the number ζ should not be too small, since otherwise
the resulting solution would be too close to the initial guess ε

(0)
r . So, one should choose

optimal parameters c1, c2, θ.

5 Experimental Setup

5.1 Data acquisition

Figure 1. Schematic diagram of the source/detectors configuration. a) The prism depicts our computational
domain Ω. This domain is a part of another prism, which was our holder made out of Styrofoam. Only
a single source location was used. Tomographic measurements of the scattered time resolved EM wave were
conducted on the bottom side of this prism. b) Schematic diagram of locations of detectors (probes) on the
bottom side of the prism Ω. The distance between neighboring probes was 10 mm.
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For brevity below x denotes both a vector x ∈ R3 and one of components of this vector
x = (x, y, z) . It is always clear from the context what is what there. Our source/detectors
configuration is schematically depicted on Figure 1. The source has generated an electro-
magnetic (EM) wave, which we wanted to be a plane wave when reaching the bottom side
of the prism of Figure 1, where measurements were conducted. But actually this was a
spherical wave, because of a rather small distance between the source and that side. We
had a holder consisting of Styrofoam. Styrofoam is a material, whose relative permittivity
εr ≈ 1, i.e. the same as one in the air. Sizes of the holder were 260 mm×135 mm×260
mm. However, because of our previous computational experience [4], we have chosen an-
other prism as our computational domain Ω, which mostly a part of this holder, except that
its size in the y-direction was 5 mm more. It should be kept in mind that the above holder
physically existed, whereas Ω was sort of “imaginary” domain which we have used for our
computations. So sizes of the prism Ω were 240 mm×140 mm×240 mm. Hence, sizes of
front and back sides of the prism of Figure 1 are 240 mm×240 mm, sizes of other four sides
are 240 mm×140 mm, and this prism is exactly our domain Ω in (4). The distance between
the wave source and the top side of the domain Ω was 130 mm. The initializing pulse was
100 ps duration. Since the speed of the EM wave propagation in the air is 0.3 mm/ps, then
it requires 433 ps≈130/03 ps for this wave to travel form the source to the top boundary of
Ω. Hence, the wave did not yet reach the prism Ω during the 100 ps duration of this pulse.
The initializing pulse was

f(t) =

{ ≈ A sin
(

π
50

τ
)
, for τ ∈ (0, 100) ps,

0, for τ > 100 ps,
(39)

where A is the amplitude. Note that it is unclear a priori on how the value of A will be
“reflected” in our mathematical model. Still, our data processing procedure does not rely
on a knowledge of A. The time resolved signal was measured at some locations of the probe
(i.e., detector) on the bottom side of the prism Ω, as indicated on Figure 1-b).

A special question to address was about the timing of measurements. The original pulse
needs a few nanoseconds to go through the device and reach the tip of the EM wave generator,
which is depicted on Figure 1 as the source location. In our mathematical model the zero
time is the moment when the pulse leaves the tip of the generator. On the other hand,
on each location of the probe measurements were conducted from the moment when the
pulse was initiated “within” the device, which is prior the moment when it leaves the tip
of the generator. Hence, actual measurements were conducted for times τ ∈ (0, 12300) ps
= (0, 12.3) ns, where τ is the real time with dimensions. We had two measurements at each
probe location: (1) First we have measured the reference signal when the inclusion was not
present, and (2) Second, we have measured the signal when the inclusion was present.

The step size in time between two consecutive measurements was ∆τ = 20 ps. Hence, we
had only five (5) measurement points per 100 ps duration of the initializing pulse. This means
that the sinusoidal behavior (39) is only an approximation of course. We have measured the
scattering EM wave sequentially. In other words, first, we were putting the probe at one loca-
tion, sent the pulse and measured the time resolved scattering wave at this location. Next, we
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moved the probe mechanically in a neighboring location and repeated the measurement, etc..
The distance between two neighboring probe locations was 10 mm, and so we have covered
the entire bottom side of the holder by this grid with 10 mm step size. Pulses were gen-
erated by the Picosecond Pulse Generator 10070A, see http://www.picosecond.com/. The
scattered EM wave was measured by Tektronix DSA70000 Series Real Time Oscilloscope,
see Tektronix, http://www.tek.com/products/oscilloscopes/.

a) b)

Figure 2. a) Picosecond Pulse Generator 10070A and b) Tektronix DSA70000 Series Real Time Oscilloscope

5.2 Dimensionless variables

To work with the data, we have re-scaled our dimensions in time and space and have made
them dimensionless. First, we have re-scaled spatial variables. While working previously
with the above CIP for computationally simulated data [4] when the domain Ω was a prism
with ratios of lengths of sides similar with ones of Figure 1, we have discovered that the step
size h̃ = 0.2 when solving both forward and inverse problems was an optimal one. On the
other hand, since we had the 10 mm distance between neighboring positions of the probe,
we have decided to re-scale spatial variables in such a way that 10 mm would turn into 0.2 in
dimensionless variables. So, let (x′, y′, z′) be spatial variables with dimensions. Then, since
10/02=50, we set for re-scaled dimensionless variables (x, y, z) = (x′, y′, z′) /50. Thus, our
dimensionless computational domain Ω for the CIP is

Ω = {(x, y, z) ∈ [−2.4, 2.4]× [−1.4,−1.4]× [−2.4, 2.4]} . (40)

Denote P the bottom side of the domain Ω in (40),

P = {(x, y, z) : (x, y) ∈ [−2.4, 2.4]× [−1.4,−1.4], z = −2.4} . (41)

We now should address the question on how long we should measure the scattered EM
wave on probes located on P . It was not easy to find out in our experimental arrangement
when exactly the pulse leaves the tip of the EM waves generator, i.e. the source depicted on
Figure 1. However, we knew that the signal arrives at the probe approximately at 11,520
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ps. Since the distance between the planar surface P and the source was 370 mm, the speed
of light in the air is 0.3 mm/ps and (370mm) / (0.3mm/ps) = 1233 ps, then the zero time
should be at 11, 520 ps−1, 233 ps ≈ 10, 300 ps:= τ 0. So, we should work with a new variable
τ ′ = τ−τ 0. The next question was on how to re-scale the time τ ′. It follows from (1), (3) and
(4) that the refractive index outside of the domain Ω is n (x) = 1. This means that the EM

wave should travel the dimensionless distance of h̃ = 0.2 in 0.2 dimensionless time units. On
the other hand, 0.2 corresponds to 10 mm. Let t denotes the dimensionless time. Then we
should choose such a multiplier γ > 0 (γ has dimension in picoseconds) that γt = τ ′. Hence,
we should have 0.2γps = 10mm/ (0.3mm/ps) , which implies that γ = 166.67 ps. Thus,

γt = τ ′, γ = 166.67 ps. (42)

Finally, we should figure out on how long we should measure the output signal. In [4] we
have worked with the time interval t ∈ (0, T ) = (0, 12) . Since by (42) 12γ ≈ 2000 ps, then
we should work with τ ′ ∈ (0, 2000) ps. So, since by the above τ 0 = 10, 300 ps and τ ′ = τ−τ 0,
then the maximal value of τ of our interest is 12, 300 ps = 10, 300 ps +2000 ps. Hence, we
should measure the output signal for τ ∈ (0, 12300) ps = (0, 12.3) ns.

Remark 5.1. When re-scaling in this sub-subsection, we have not reflected this in
the corresponding PDE. This becomes possible because of the data processing procedure
described in section 6. Below we work only with dimensionless time and spatial variables.

5.3 Why measuring the reference signal at each probe location
rather than at a single one

In principle, our technique, including the data processing described below, allows the mea-
surement of the reference signal only at one probe location outside of the medium of interest:
for calibration purposes. The only reason why we have measured the reference signal for each
location of the probe was that our current numerical implementation of the globally con-
vergent algorithm works only with the case when the initializing wave field is a plane wave.
On the other hand, a visual inspection of the output experimental data has revealed to us
that actually we had a spherical rather than a plane wave. An extension of our numerical
implementation to the case of the spherical wave is rather straightforward and we plan it
for the future. We have used the point source rather than a plane wave in (1), (2) only
to obtain the asymptotic behavior (16), which actually follows from the construction of the
fundamental solution of the hyperbolic equation in [31, 32]. As it was mentioned in section
2, in computational practice we verify this asymptotic behavior numerically when working
with plane waves, see subsection 7.2 of [3].
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6 Data Processing

6.1 Data simulation

Since the computationally simulated data play an important role in our data processing
procedure, we first describe the solution of the forward problem for equation (1). We have
computationally simulated the solution of the forward problem for the reference medium.
Since it is impossible to actually solve the PDE (1) in the entire space R3, we have solved
it in a such a domain G that Ω ⊂ G, where Ω is defined in (40). We took the domain
G = {(x, y, z) ∈ [−3, 3]× [−2, 2]× [−5, 5]} . Our initializing plane wave was v (t) ,

v (t) =





sin (ωt) , for t ∈ (
0, 2π

ω

)
,

0, for t > 2π
ω

,
ω = 7.

Let ∂G1 and ∂G2 be respectively top and bottom sides of the prism G and ∂G3 = ∂G� (∂G1 ∪ ∂G2)
be the rest of the boundary of the domain G. We have numerically solved the following initial
boundary value problem

εr (x) utt = 4u, in G× (0, T ), T = 12,

u(x, 0) = 0, ut(x, 0) = 0, in G,

∂nu
∣∣
∂G1

= v (t) , on ∂G1 × (0,
2π

7
],

∂nu
∣∣
∂G1

= −∂tu, on ∂G1 × (t1, T ),

∂nu
∣∣
∂G2

= −∂tu, on ∂G2 × (0, T ),

∂nu
∣∣
∂G3

= 0, on ∂G3 × (0, T ),

(43)

In the case of data simulation for the reference medium we have in (43) εr (x) ≡ 1. We denote
this solution as uref (x, t) . Thus, in (43) the plane wave is initialized at the top boundary
∂G1 for t ∈ (0, 2π/7] and propagates into G . First order absorbing boundary conditions
[15] were used on the top boundary for t ∈ (2π/7, T ) and on the bottom boundary ∂G2 for
t ∈ (0, T ). The zero Neumann boundary condition is used on the rest of the boundary of the
prism G. The latter boundary condition is used because the “pure” plane wave with εr (x)
≡ 1 satisfies this condition. The problem (43) was solved by the hybrid FEM/FDM method
described in [7]. In this method, FDM is used outside of the domain Ω and FEM is used

inside of this domain. The step size in the overlapping region was h̃ = 0.2, i.e. this was the
same step size as the distance between neighboring probes.

6.2 Measured time resolved data

Denote xm ∈ P the location of the probe number m at the bottom side P of the prism
Ω, see (41) for P . Figures 3-a)-d) display samples of curves and the label for Figure 3
explains details. The first arrival signal is when the burst starts. The signal before it is a
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Figure 3. a) A sample of the measured reference time resolved signal (i.e., no inclusion present) at the
location xm ∈ P of the probe number m. b) The measured signal with inclusion present at the same probe
location. The first burst starts when the EM wave arrives at the probe. The signal before this burst reflects a
process within the probe itself. c) and d) represent signals a) and b) respectively after cleaning some noise via
applying the Fast Fourier Transform procedure of MATLAB and truncating too low and too high frequencies.
We are interested in the area of the first burst only. One can observe that the amplitude of the signal with
the dielectric inclusion present (Fig. 3d) is generally less than one of the reference signal.

low frequency signal reflecting some processes in the probe itself. It is obvious that the first
thing to do is to perform the Fourier transform and truncate too low and too high frequencies.
Low frequencies should be truncated to diminish the signal resulting from the probe itself.
And high frequencies should be truncated to somehow decrease the noise further. We are
interested in the first burst only. We see on Figs. 3-c),d) that the signal before this burst
looks like a statistical noise. Even if it is not exactly a statistical noise, we have decided
to subtract it from the data in the time interval where the first burst is. Let t0 be the
approximate time when the first burst starts and t1 be the approximate time when this
burst ends. Consider an interval (a, b) with 0 < a < b < t0 such that b − a = t1 − t0. For
either of Figures 3-c) or 3-d) let fa,b (t) be the signal on this interval, and let the first burst

be described by the function f̃ (t) , t ∈ (t0, t1). We have replaced f̃ (t) with the function

f (t) = f̃ (t) − fa,b (t− t0 + a) for t ∈ (t0, t1) and have worked with this function only after
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this. Figure 4 displays of resulting superimposed curves for both reference signal and the
signal with inclusion present. These curves are generated by Figures 3-c), d). We have also
set to zero those parts of these curves which were before the first burst.

6.3 Immersing in the computationally simulated data
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Figure 4. This figure explains the idea of the immersing procedure in the time domain. a) Resulting superim-
posed experimental curves obtained from curves on Figures 3-a), b). The red curve is for the reference signal
and the blue curve is for the signal with a dielectric inclusion present, both at the same location xm ∈ P

of the probe number m. b) The red curve displays computationally simulated data uref (xm, t), also see
sub-subsection 6.3.2. The blue curve uincl (xm, t) = uref (xm, t−∆tm)Km

exp/Mm
exp represents a sample of the

immersed experimental data in the time domain at the same probe location xm ∈ P , see explanations in
sub-subsection 6.4.1. It is only the blue curve with which we work further. The red curve is displayed for the
illustration purpose only.

Consider now Figure 4-a) for a probe xm ∈ P number m. We have decided to “immerse”
our experimental data in the computationally simulated data using the largest peak in the
red curve (reference medium) with the peak value Mm

exp and the next peak after it in the blue
curve (the medium with a dielectric inclusion present) with the peak value Km

exp. This next
peak was chosen because the presence of a dielectric inclusion results in a time delay of the
EM wave. This idea led us to a radically new data processing procedure described in this
subsection. The immersing procedure in the computationally simulated data consists of two
stages: immersing in the time domain and subsequent immersing in the pseudo frequency
domain. We describe both of them sequentially. Below we talk about the computational
simulated data in several places. In all cases these simulated data were computed before the
experimental data were measured.

6.3.1 Stage 1. Immersing in time domain

Recall that the function uref (x, t) is the solution of the problem (43) with computationally
simulated data for εr ≡ 1. Obviously uref

(
x(1), t

)
= uref

(
x(2), t

)
,∀x(1), x(2) ∈ P, ∀t ∈ (0, T ) .

Let t := tsimref be such a moment of time that for all x ∈ P we have uref (x, t) = 0 for t < tsimref

and uref (x, t) > 0 for such moments of time t that are rather close to tsimref with t > tsimref , see
the reference curve (red) on Figure 4-b). Naturally, we call tsimref the time of the first arrival
of the computationally simulated EM wave field u (x, t) = uref (x, t) in (43) at the plane P .
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Important Observation and Conclusion. We have observed in our computational
simulations that for those values of t > tsimref , which are rather close to tsimref , the only side of
Ω which is sensitive to the presence of a dielectric inclusion, is the bottom side P of the
domain Ω. Other five sides of the prism Ω are not sensitive to the presence of inclusions for
those values of t. In other words, the values of the function u at those sides are approximately
the same ones as those for the reference medium. This important observation led us to the
conclusion that we should work only with the information contained in the first burst, see
Figure 4-a). Actually, this idea corresponds well with the common knowledge of physics that
the most informative signal is the one which is collected at those times t, which are close to
the moment of the first arrival of the signal.

The next important question was: How to work with this first burst? Indeed, we have
observed on experimental curves that the amplitude of the signal near the time of the first
arrival at a probe is so weak that it this signal cannot be differentiated from the noise, see
Figure 4-a). Consider the reference experimental signal at the probe xm ∈ P , see Figure 4-a).
We have decided that we should work with the largest upwards looking peak. If, however we
have several peak values with no more than 10% difference between them, then we choose
the earliest among those, i.e. we choose such a peak which corresponds to the minimal
value of t. We have done this as follows. Let ym = ym (t) be the experimentally measured
function at the point xm (after the above noise reduction). Suppose that on the first burst
we have local maxima at points {t1, ..., tn} and their values are ỹ1 = ym (t1) , .., ỹn = ym (tn) .
Let Y = ym (tk) = maxi=1,...,n ym (ti) . Consider numbers ỹ1 = y (t1) , ..., ỹr = ỹ (tr) , where
points {t1, ..., tr} ⊂ {t1, ..., tn} are such that ỹj/Y ∈ [0.9, 1] . And let tm = min {t1, ..., tr} .
We choose the pair (tm, ỹm) and denote (tm, ỹm) :=

(
texp
ref (m) ,Mm

exp

)
.

Next, we choose a local maximum for the experimental curve at {xm} for the medium
with a dielectric inclusion present. Let zm = zm (t) be that curve (after the above noise
reduction). Consider local maxima of this function for t ≥ texp

ref (m) . Let texp
incl (m) ≥ texp

ref (m)

be the minimal value of the time t on the interval
{
t ≥ texp

ref (m)
}

at which a local maximum
of the function zm (t) is achieved. In other words, we choose the first upwards looking peak
of the function zm (t) occurring after the prior chosen reference peak at the reference curve.
Denote zm

(
texp
ref (m)

)
:= Km

exp. So, Km
exp is the value of that peak, see Figure 4-a). However, if

Km
exp/M

m
exp ≥ 2/3, then we set for the point {xm} that

(
texp
incl (m) , Km

exp

)
:=

(
texp
ref (m) ,Mm

exp

)
.

We have observed that on all probes Km
exp ≤ Mm

exp.
Now we are ready to immerse our data in the computationally simulated data. Let u (x, t)

be the solution of the problem (43) with εr (x) ≡ 1, i.e. the function u (x, t) describes the
plane wave propagation in the uniform medium. Let xm ∈ P be the location of the probe
number m. Let ∆tm = texp

incl (m)− texp
ref (m) be the time shift between two above chosen peaks

for this probe, see Figure 4-a). Then we set

uincl (xm, t) =
Km

exp

Mm
exp

uref (xm, t−∆tm) . (44)

So, (44) is our immersed data in the time domain for the probe number m. Figure 4-b)
illustrates (44). It is clear from the above that if Km

exp/M
m
exp ≥ 2/3, then uincl (xm, t) =
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uref (xm, t) . Below we work only with so immersed data for each probe location on the
surface P . We work further with these immersed data to ultimately use them as an input for
the Dirichlet boundary conditions ψn (x) , x ∈ P in equations (17). Thus, since we actually
use ratios Km

exp/M
m
exp, we do not need to know the value A of the signal’s amplitude in (39).

6.3.2 Stage 2. Immersing in the pseudo frequency domain

We should apply the Laplace transform (7) to each curve uincl (xm, t) in (44) to obtain the
function wincl (xm, s) = L (uincl (xm, t)). The next question is: For what values of the pseudo
frequency s should we actually calculate the integral (7)? To address this question, we have
solved the above CIP for the domain Ω in (40) for a computationally simulated data with
an inclusion present, using the above globally convergent numerical method. This was done
prior obtaining the experimental data. We have established that the following numbers are
optimal ones

s ∈ [3.5, 7.5] , h = 0.5. (45)

So, we have calculated the numbers wincl (xm, s) for nine values of s in (45) for each probe
location xm ∈ P. Below in this sub-subsection we work only with values of s from (45). We
have observed computationally that, because of the rapid decay of the function exp (−st)
with respect to t for values of s from (45), the major impact in the integral (7) comes from
the first splash of the curve uref (xm, t) . So, only this splash is depicted on Figure 4-b).

Let w̃incl (xm, s) = − (ln wincl (xm, s)) /s2 and for each value s from (45) let w̃incl (x, s)
be the linear interpolation of discrete values {w̃incl (xm, s)} over P . The function w̃incl (x, s)
is very noisy with respect to x ∈ P , e.g. see Figure 5-a). On the other hand, Figure 5-b)
displays a typical x− dependence of the function w̃sim (x, s) := − (ln wsim (x, s)) /s2, x ∈ P ,
where the function wsim (x, s) is corresponds to a sample of computationally simulated data
for an inclusion present. Again, this data simulation took place prior the experimental data
were obtained. Hence, to make our resulting function look like the one on Figure 5-b), we
have smoothed the function w̃incl (x, s) over x ∈ P via the so-called Lowess Fitting in the 2-D
case, which we took from MATLABR 2009a. A sample of the resulting function w̃smooth (x, s)
for s := s is displayed on Figure 5-c). Still, however, this function does not yet look similar
to the function depicted on Figure 5-c). Define the number Wref (s) as follows (see (7))
Wref (s) = −s−2 lnL (uref ) , for x ∈ P. We took

w̃immers (x, s) =

{
w̃smooth (x, s) , if w̃smooth (x, s) ≥ 0.985 maxP (w̃smooth (x, s)) ,

Wref , otherwise,

see Figure 5-d), which depicts the function w̃immers (x, s) . We call the function w̃immers (x, s)
the immersed data in the pseudo frequency domain. Thus, we work with the function
w̃immers (x, s) to obtain functions ψn (x) , x ∈ P in (17). Namely, we use finite differences
to approximately compute the s-derivative. Recalling that w̃ (x, s) := − (ln w (x, s)) /s2, we
obtain for the finite difference

ψn (x) =
w̃immers (x, sn − 0.5)− w̃immers (x, sn)

0.5
, x ∈ P. (46)
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a) b)

c) d)

Figure 5. a) The function w̃incl (x, s), s = 7.5. b) The function − (lnwsim (x, s)) /s2 is depicted, where
wsim (x, s) is the Laplace transform (7) of the function usim (x, t) for a computationally simulated data.
Figure 5-b) is given only for the sake of comparison with Figure 5-a). c) The function w̃smooth (x, s) resulting
from fitting of a) by the Lowess Fitting procedure in the 2-D case, see MATLABR 2009a. d) The final function
w̃immers (x, s). Values of w̃immers (x, s) are used to produce the Dirichlet boundary conditions ψn (x) for
PDEs (17) of the globally convergent algorithm, see (47).

As to the values of the function ψn (x) on other five sides of the prism Ω, they were computed
by the same finite difference formula using the function resulting from the function L (uref ) .

6.3.3 Physics considerations for data immersing

The above immersing procedure in the time domain makes sense from the physics standpoint.
Since our assumption is that the relative permittivity in the domain of interest Ω is εr ≥ 1,
then by (3) the EM wave should propagate through Ω slower than through the air. In other
words, the so-called time delay should take place, and this is why (44) makes sense. Still, it
is unclear how to actually quantify the previous statement. Furthermore, we doubt that it is
known what exactly that statement means in terms of the experimental data. Does it relate
to the truly first arrival signal, which is too weak to be trusted? Or perhaps it is related to
the largest peak values as we have chosen? Or maybe this is related to the first burst “as a
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whole”?
However, if we assume that the first largest peak value (although within 90% tolerance

level) for the reference medium arrives earlier for the air than the one for the case of a
heterogeneous medium, then the above choice of peak values makes sense. It seems to be
that our results (subsection 8.4) justify the latter assumption. Also, using only one point
(tm, ỹm) for the reference signal and only one point (tmincl, zm (tmincl)) of the signal with an
inclusion present does not mean of course that we have actually used only this single point.
Indeed, to figure out which exactly point should be chosen, we have counted all local maxima
in the first burst and thus, have examined the entire curve.

7 Some Details of the Numerical Implementation of

the Globally Convergent Algorithm

We point out that all details of the numerical implementation of the globally convergent
algorithm, which are described in this section, were implemented prior obtaining the exper-
imental data. The same is related to all results for computationally simulated data mentioned
in the above sections. When working with the experimental data, we have not changed our
original numerical code for the inverse problem solution and thus have not changed features
listed in the next subsection. In other words, our computations of images from experimental
data were unbiased. We have implemented all these details listed in subsection 7.1 when
working with those computationally simulated data. When implementing these details, our
goal was twofold: (1) to obtain the best performance of the globally convergent algorithm,
and (2) at the same time, still to remain “within” conditions of Theorem 1.

7.1 Details

All details listed in this subsection were implemented when we were working with compu-
tationally simulated data, which was prior obtaining experimental data. We have observed
in our computational simulations that values of |Vn,k (x, s)| of approximations for the tail
function dominate values of all other terms in equations (17) for functions qn,k. Hence, when
solving equations (17) for functions qn,i (subsection 3.1) in our computations, we have used in
(17) s-derivatives of tails ∂sVn,i (x, s) instead of tails Vn,i (x, s) themselves. These derivatives
were taken via finite differences, similarly with (47). However, when computing functions

ε
(n,i)
r (x) via (18a,b), we have still used in (18b) the function Vn,i (x, s) itself. The parameter

in the Carleman Weight Function was µ = 50. Likewise, we have made cut-offs of computed
functions ε

(n,i)
r (x) as follows. For each n we have chosen a cut-off value Ccut (n) such that we

have assigned a new value ε̃(n,i)
r (x) for the function ε

(n,i)
r (x) as

ε̃(n,i)
r (x) =

{
ε
(n,i)
r (x) , if ε

(n,i)
r (x) > 1 + Ccut (n) ,

1, if ε
(n,i)
r (x) ∈ [1, 1 + Ccut (n)] .

(47)
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Note that by (18a) ε
(n,i)
r (x) ≥ 1, ∀x ∈ Ω. The numbers Ccut were chosen as follows

Ccut (1) = 0, Ccut (2) = 0.2, Ccut (3) = Ccut (4) = 0.8, Ccut (5) = 0.6,

Ccut (6) = Ccut (7) = 0.4, Ccut (8) = 0.8.

We now define stopping rules of iterations for functions qk
n,1 with respect to the nonlinear

term as well as for functions {qn,k} with respect to the tails. These rules are almost the same
as ones in [4]. Consider the planar surface Ph̃ which is parallel to the surface P in (41). The

surface Ph̃ is obtained from the surface P via shifting upwards by h̃ = 0.2,

Ph̃ =
{

(x, y, z) : (x, y) ∈ [−2.4, 2.4]× [−1.4,−1.4], z = −2.4 + h̃ = −2.2
}

.

And let Ω′ = {(x, y) ∈ [−2.4, 2.4]× [−1.4,−1.4]} be the orthogonal projection of both sur-
faces P and Ph̃ on the (x, y) plane. Consider norms F k

n = ||qk
n,1|Ph̃

− ψn||L2(Ω′). We stop

iterations of functions qk
n,1 when either F k+1

n ≥ F k
n , or norms F k

n stabilize, or F k
n ≤ ε, where

ε = 0.001 is a small tolerance number of our choice. Next, we iterate with respect to the
tails. We similarly introduce norms Fn,i = ||qn,i|P

h̃
− ψn||L2(Ω′) and use the same stopping

rule as one for F k
n .

While stopping rules for iterations of functions qk
n,1 and qn,i was the same as one in [4],

the stopping rule for computing functions ε
(n)
r (x) is now different from [4]. Namely, let

an =

∥∥∥ε
(n)
r − ε

(n−1)
r

∥∥∥
L2(Ω)∥∥∥ε

(n−1)
r

∥∥∥
L2(Ω)

, bn =
an

an−1

.

Stopping rule for ε
(n)
r :

If





bn ∈ [1.9, 4] and n > 3, then take the final solution εf
r = ε

(n)
r ,

bn > 4 and n > 3, then take the final solution εf
r = ε

(n−1)
r ,

alternatively compute ε
(n+1)
r .

(48)

We have chosen n > 3 in (48) because we have observed in our work with computationally
simulated data that images are becoming more or less close to the correct ones only starting
from n = 4. And this is in a conjunction with the convergence estimate (33).

7.2 Analytical aspects of details of the numerical implementation

Consider the analytical aspect of details listed in subsection 7.1. Note that the exact mean-
ing of words “large” and “small” (in terms of used numbers) depends on a specific numerical
implementation, and so, from this standpoint, we can assume that the s-interval (45) corre-
sponds to large values of s and the interval (45) is small. It follows from (16) that one should
expect that

|∂sV (x, s)|2+α << |V (x, s)|2+α . (49)
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Denote Ṽn,i (x, s) = ∂sVn,i (x, s) . It follows from (49) that for large s we have an analog

of the right inequality (28),
∣∣∣Ṽn,i (x, s)

∣∣∣
2+α

≤ ξ for a small parameter ξ, whereas the left

inequality (28) is still valid. It easily follows from the proof of the global convergence

theorem in [4] that Theorem 1 is still valid when tails Vn,i (x, s) are replaced with Ṽn,i (x, s) .
Therefore, the replacement of Vn,i (x, s) with ∂sVn,i (x, s) corresponds well with the above new
mathematical model (sub-subsection 3.3.2). This is because by this model one considers the
number ξ, which bounds norms of tails from the above, as a parameter, which can be made
infinitely small independently on the value of s. So, we conclude that in our computations we
have indeed used the above new mathematical model. As to the cut-offs (47), such cut-offs
are routinely used in imaging as post processing procedures.

8 Imaging Results

8.1 Abnormalities and their positions

Our abnormalities to be imaged were two wooden cubes, see Table 1.

Table 1. Sizes of two wooden cubes

Cube number Original sizes, mm Dimensionless sizes
1 40× 40× 40 0.8× 0.8× 0.8
2 60× 60× 60 1.2× 1.2× 1.2

Let CL be the center line, i.e. the straight line which is orthogonal to the plane P and
which passes through the source of EM waves (Figure 1). Then CL = {(x, y, z) : x = y = 0} .
We have placed both those cubes in two positions. In the first position the center of the
cube was on CL. In the second position the center of the cube was shifted off CL by 10 mm
in the positive direction of x-axis (0.2 in dimensionless units). In addition, we have used the
third position for the cube number 1. This position was quite off CL. Namely, in the third
position the center of this cube was shifted off CL by 60 mm in the positive direction of
the x-axis (1.2 in dimensionless variables). We have observed on the experimental data that
since we had a spherical rather than a plane wave, the magnitude of the EM field has decayed
quite significantly when the point has moved rather far off CL. So, the goal of placing the
cube number 1 in the third position was to see how this decay of the magnitude of the EM
field would affect the image quality. Because of some logistical reasons, we did not put cube
number 2 in this third position. Likewise, because of logistical reasons, we have measured
the scattering field from cube number 1 in the first position twice: in two consecutive days.
Therefore, we have obtained total six (6) pieces of data for the case of an inclusion present.
In addition, the data for the reference medium, was measured only once. Table 2 lists all six
cases.
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Table 2. Positions of centers of two wooden cubes to be imaged in six cases. The difference between cases
1.1(1) and 1.1(2) is that they were measured on two different days for the same position of cube 1

Cube Number Case Number Center
1 1.1(1) (0, 0,−1.2)
1 1.1(2) (0, 0,−1.2)
1 1.2 (0.2, 0,−1.2)
1 1.3 (1.2, 0,−1.2)
2 2.1 (0, 0,−1.2)
2 2.2 (0.2, 0,−1.2)

8.2 Tables and images

We have made computations using the above described globally convergent algorithm and
functions ψn (x) in (46). We have used the stopping rules described in subsection 7.1. We
point out again that we did not know in advance values refractive indexes of our wooden
cubes. Therefore, when applying stopping rules, we were unbiased. Table 3 presents numbers
an and bn = an/an−1 for the case 1.1(1) (see Table 2 for labeling of our cases). Behavior
of these numbers for other cases was similar. Therefore, Table 4 presents only numbers bf

n

for the final iteration. Figures 6 and 7 display computed images. Our goal was twofold: (1)
to obtain accurate locations of inclusions and (2) to accurately image refractive indexes in
them. However, we did not have a goal to accurately image shapes of inclusions.

Table 3. Computational results for the case 1.1(1), see Table 2 for labeling of cases and (49) for the stopping
rule

Iter., n ε
(n)
r an bn εf

r nf =
√

εf
r

2 1.28 0.027 0.21
3 2.53 0.209 7.74
4 2.9 0.160 0.76
5 3.76 0.266 1.66

6 4.66 0.580 2.18 εf
r = ε

(6)
r = 4.66 2.16

7 5.6 0.683 1.18
8 8.1 0.809 1.18

8.3 Accuracy of the blind quantifiable imaging

We have independently measured refractive indexes after the above images were obtained.
Those measurements were performed by two well established methods: the Waveguide
Method [30] and the Oscilloscope Method, see [17] and http://www.tek.com/learning/oscilloscopes
for the latter method. Tables 5 and 6 display comparisons of our computational results with
measured ones, along with both measurement and imaging errors. One can see the error in
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Table 4. Computational results for five cases, see (48) for the stopping rule and Table 2 for labeling of cases.
The rest of iterations for all these five cases was similar with Table 3. Comparison of Table 4 with (48)
makes it clear why either of function ε

(n)
r or ε

(n−1)
r was chosen as the final imaging result εf

r

Case Iter., n bn εf
r nf =

√
εf

r

1.1(2) 5 2.07 εf
r := ε

(5)
r = 4 2

1.2 6 2.40 εf
r := ε

(6)
r = 4.65 2.16

1.3 6 3.57 εf
r := ε

(6)
r = 4.82 2.19

2.1 6 5.74 εf
r := ε

(5)
r = 2.98 1.73

2.2 6 5.36 εf
r := ε

(5)
r = 3.19 1.79

our computations did not exceed the measurement error in all cases except of the case 1.1(2)
in Table 6, in which our error was 1.8% more than the measurement error.

Table 5. Comparison of imaging results of values of refractive indexes for six cases of Table 2 with measure-
ments by the Waveguide Method

Case Blindly imaged n := nf Measured n, error Imaging error
1.1(1) 2.16 2.07, 11% 4.3%
1.1(2) 2 2.07, 11% 3.4%
1.2 2.16 2.07, 11% 4.3%
1.3 2.19 2.07, 11% 5.8%
2.1 1.73 1.71, 3.5% 1.2%
2.2 1.79 1.71, 3.5% 4.7%

Table 6. Comparison of imaging results of values of refractive indexes for six cases of Table 2 with measure-
ments by the Oscilloscope Method

Case Blindly imaged n := nf Measured n, error Imaging error
1.1(1) 2.16 2.17, 6% 0.5%
1.1(2) 2 2.17, 6% 7.8%
1.2 2.16 2.17, 6% 0.5%
1.3 2.19 2.17, 6% 1%
2.1 1.73 1.78, 6% 2.8%
2.2 1.79 1.78, 6% 0.56%

8.4 Performance of the modified gradient method (38)

Temporary denote x = (x, y, z) . We have also applied the modified gradient method (38) to

the experimental data. Our starting point was ε
(0)
r ≡ 1. In other words, since any gradient-

like method is a locally convergent one, we have assumed that we know the background
medium in the domain Ω, unlike the globally convergent method. We have observed that
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a) max n(1) = 1.02 b) max n(2) = 1.13 c) max n(3) = 1.59 d) max n(4) = 1.70

e) max n(5) = 1.94 f) max n(6) = max nf = 2.16 g) max n(7) = 2.37 h) max n(8) = 2.85

Figures 6-a)-h) show the dynamics of the sequence of images for the case number 1.1(1). Maximal val-

ues of refractive indexes maxP n(k) =
√

maxP ε
(k)
r are displayed. Each image represents the level surface

{x:n(k)(x) = maxP n(k)(x)}. The final image is presented on f). h) shows that the image “ex-
plodes” on the second iteration after the stop, see the Stopping rule (48) and Table 3.

the function λ
(
x, s, ε

(0)
r

)
= λ (x, s, 1) < 0. At the same time, we saw that the function

w (x, s, 1) > 0. Hence, it follows from (38) that ε
(1)
r < 1, where ε

(1)
r is the result of the first

iteration of the solution of the problem (38) with the contraction mapping operator. We
have tried a variety of numbers c1, c2, θ in (38), some of which have ensured the contraction
mapping property. Still, in all iterations and with all these parameters we have obtained
functions ε

(n)
r < 1 for all iteration numbers n, which contradicts with (4).

We have an almost rigorous explanation for the negative values of the function λ (x, s, 1) .
It is clear from Figure 5-d) that we can approximately assume that the domain Ω is the
half space{z > −2.4} (see (40)). Changing variables z′ := z + 2.4 and leaving the same
notation for the new variable as one for the old one (for brevity), we obtain Ω = {z > 0}.
In addition, assume that the condition lim|x|→∞ λ (x, s, 1) = 0 is imposed and also that
lim|x|→∞ (w |z=0 −g̃) = 0. Consider the function Q (x, ξ) ,

Q (x, ξ) =
exp (−s |x− ξ|)

4π |x− ξ| +
exp (−s |x− ξ′|)

4π |x− ξ′| , ξ′ = (ξ1, ξ2,−ξ3) .

It can be easily verified that Q (x, ξ) is the Green’s function with the Neumann boundary
condition in the half space {z > 0} for the operator ∆− s2. Hence, by (35)

λ (x, s, 1) =

∫

R2

Q (x,ξ1, ξ2, 0) [w ((ξ1, ξ2, 0) , s, 1)− g̃ (ξ1, ξ2, s)] dξ1dξ2.
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a) Case 1.1(1), max nf = 2.16 b) Case 1.1(2), max nf = 2 c) Case 1.2, max nf = 2.16

d) Case 1.3, max nf = 2.19 e) Case 2.1, max nf = 1.73 f) Case 2.2, max nf = 1.79

Figures 7-a)-f) display resulting images. It should be kept in mind that we did not have a goal to image shapes
of inclusions accurately. Rather, our goal was only to image their locations and maximal values of refractive
indexes nf (x) =

√
εf
r . On each figure nf (x) = max nf for all points of the image of the corresponding

cube. In addition to the cut-offs (47), we have made the last post processing cut-off of the imaged function
εf
r on each figure just to make it look better. That cut-off was made around the center of the image. For all

cases the dynamics of the change of images of functions ε
(n)
r with iterations was similar with one on Figures

6-a)-h).

The function w ((ξ1, ξ2, 0) , s, 1) is obtained via solving the boundary value problem (35)
at εr := 1. We have observed computationally that w ((ξ1, ξ2, 0) , s, 1) − g̃ (ξ1, ξ2, s) ≤
0,∀ (ξ1, ξ2) ∈ R2 and meas {w (ξ1, ξ2, 0) , s, 1− g̃ (ξ1, ξ2, s)} < 0) > 0 for all reasonable
values of s. Hence, λ (x, s, 1) ≤ 0.

In addition, we have observed computationally that for all reasonable values of the
pseudo frequency s maximal absolute values of functions w and λ were too small. So that
maxΩ s2 |wλ| ≤ 3 · 10−4. By (38) this means, however, that in order for the function εr to be

rather significantly different from ε
(0)
r ≡ 1, i.e. in order to obtain above inclusion/background

contrasts, one should choose a very small regularization parameter θ. For example, to get
εf

r = 4.66 within the imaged inclusion (Table 3), one should have θ ≈ 8 · 10−5. It is well
known, however, that exceedingly small values of regularization parameters affect results
quite negatively: those parameters should be actually larger than the level of error both in
the mathematical model and in the data.

We, therefore conclude that the modified gradient method (38) is inapplicable here.
However, since any version of the gradient method should still use the gradient E ′ (εr) ,
which is derived in section 4, then it is unlikely that other versions of the gradient method are
applicable here. This likely means that locally convergent numerical methods are inapplicable
in the pseudo frequency domain. Thus, it seems to be at this moment that our globally
convergent technique is the single choice for this kind of experimental data.
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9 Discussion

The goal of this research effort was to verify the globally convergent numerical method of
[3, 4, 5, 6] experimentally. We have arranged picosecond scale time resolved measurements
to acquire the data scattered by small dielectric abnormalities (1ps = 10−12 sec = 10−3ns).
The time resolved data were measured in the tomographic manner on a planar surface, which
was opposite to the single source location used. This constitutes to a minimal amount of
information gathered, which is important for such applications as, e.g. imaging of land mines,
imaging of baggages in airports, more generally, imaging of explosives and also imaging of
defects in non-distractive testing. Furthermore, the technique of [3, 4, 5, 6] can be extended
to the most practically interesting case of stand off detection using the back reflected data
only [23].

At each location of the detector the data were collected for total of 12,300 picoseconds,
i.e. 12.3 nanoseconds. A radically new data processing procedure was developed. The goal
of this procedure was to adapt the data to the mathematical model, which is based on the
hyperbolic equation (1). Results of the data processing were used as in input for the globally
convergent numerical method of [3, 4, 5, 6] for the CIP (1), (2), (6). While processing
the data, we have used the fact that on five out of six sides of the prism Ω the data were
not sensitive to the presence of inclusions and thus we have assigned values taken from
the reference medium for them. The only sensitive side was the planar surface P of our
measurements. However, as soon as the data are pre-processed, our algorithm does not use
any a priori knowledge neither about the background values of the unknown coefficient, nor
about locations of inclusions. The only information it uses is that the value of the refractive
index outside of the computational domain of interest is the same as one in the air and that
the refractive index in the computational domain is not less than the one in the air. Our
algorithm solves a fully nonlinear problem. No linearization is used. Our computations were
quite fast and took only a few minutes on a regular PC to get the above images. This points
towards a possibility to obtain real time imaging after a certain programming effort.

We have formulated the global convergence theorem of [4] for our method and have
discussed its features in detail. This theorem has a problem with the truncation of the pseudo
frequency s, since we cannot prove convergence as s →∞. Furthermore, if we would somehow
prove this convergence, then we would address a long standing and well known question
about uniqueness theorem for the Coefficient Inverse Problem (1), (2), (6). In addition, we
have pointed out that a similar issue exists in the classic Real Analysis in connection with
asymptotic series expansions of some functions, although still those expansions are known
to provide good approximations. We have also pointed out to a similar problem with the
truncation of the Fourier series in the Gelfand-Krein-Levitan reconstruction method for a
2-D hyperbolic CIP, although numerical results demonstrate an excellent performance of this
method [20].

Thus, we have concluded that the only way to justify such truncations is via numerical
studies. This was done successfully in [3, 4, 5, 6] for computationally simulated data and also
for the experimental data in the current paper. We believe that the success in these numerical
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studies has the same nature as routine truncations of high frequencies in engineering. Indeed,
it is well known that in engineering high frequencies are often truncated without any proofs
of convergence and things still work well.

Since the question about convergence at s → ∞ is very challenging to address, we have
proposed a new mathematical model for our numerical method. We believe that this model
intrinsically has the same nature as the above mentioned truncation of asymptotic series.
By our model, a certain small positive parameter ξ is allowed to be infinitely small inde-
pendently on the truncation pseudo frequency s, although formally it does depend on s.
Furthermore, it turns out that we have benefited from this model via applying it in compu-
tations (subsection 7.1). It is also important to point out that all features of our numerical
implementation mentioned in subsection 7.1 were pre-arranged prior getting experimental
data. Therefore, we were not biased when computing above results. Our stopping criterion,
which truncates iterations, is in a full agreement with one of backbone ideas of the theory
of Ill-Posed Problems, see pages 156 and 157 in [14]. By this idea, the iteration number can
be used as a regularization parameter.

In fact, we had semi blind testing. In other words, we knew locations of inclusions,
although this information is not used in our algorithm. However, we were unaware about
values of refractive indexes in them. So, with respect to the values of the refractive indexes we
were blind. We have verified a posteriori results of our computations via direct measurements
using two well established methods of Physics. These measurements have revealed that our
computational results for experimental data have consistently demonstrated an excellent
accuracy in six (6) out of six (6) cases, i.e. in 100% available cases. In all cases, our
computational error was either less or no more than 1.8% that the measurement error. An
accurate image was obtained even in the most difficult case 1.3 in which the inclusion was
located in an area where the amplitude of the EM wave was much less compared with the
one on the center line.

Actually, we had quite a large noise in our input data for the globally convergent method.
This noise was generated by the following four factors: (1) Our governing PDE (1) cannot
be derived from the Maxwell system. (2) Our theory does not work for our case when
the coefficient εr has a discontinuity at the inclusion/background interface. Items 1 and 2
indicate that we have worked with a simplified mathematical model. (3) The experimental
data itself naturally have a large noise. (4) We had an implicit noise in our follow up
mathematical model occurred in the data pre-processing.

Thus, we believe that the accuracy of our results indicates robustness of the technique
of [3, 4]. In summary, based on results of this publication, we conclude that the globally
convergent numerical method of [3, 4] is now validated.
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