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Abstract:

We propose three edge correction methods for (marked) spatio-temporal
point processes. They are all based on the idea of placing an approximated
expected behaviour of the process at hand (simulated realizations) outside
the study region which interacts with the data during the estimation. These
methods are applied to the Renshaw-Särkkä growth-interaction model (RS-
model) presented in [16]. The specific choices of growth function and in-
teraction function made are purely motivated by the forestry application
considered here. A new estimator has been derived for the death rate (since
the distribution of the life-time of an individual is allowed to depend on its
current size) and, furthermore, we propose a new estimator for the (Poisson
process) arrival intensity which compensates for the (unobserved) individu-
als arriving and dying between two sample time points without having been
observed. The parameters related to the development of the marks are esti-
mated using the same least-squares approach as proposed in [16]. Finally, the
edge corrected estimation methods, in the context of fitting the RS-model,
are applied to a data set of Swedish Scots pines.

Key words: Edge correction, Spatio-temporal marked point process, Least
squares estimation, Maximum likelihood estimation
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1 Introduction

Many of the spatial point structures, with appurtenant marks, which are
encountered in nature and in our surrounding environments, are in fact re-
sults of evolutionary processes which have been developing over time. One
example of such a process is a forest stand which, from once being an empty
piece of land, grows and changes over time to become the full stand observed
at a later time point. Often these marked spatial structures are measured
only at one specific time point, thus containing no information regarding the
temporal aspects of the evolutionary process responsible for the generation
of the data. Hence, in situations such as these, tree stands and other marked
patterns are treated as realizations of marked point processes (see e.g. [18]
and [6]).

However, if one wants a more thorough understanding of the develop-
ment process and its inherent interaction mechanisms one cannot ignore the
collective development of the locations and the marks (sizes) through time.
This new scenario makes us to take on a somewhat different approach where
one treats recorded time series of marked patterns as outcomes of the de-
velopment of spatio-temporal marked point processes. This second approach
has been less studied, however. As the aspect of time enters the model the
level of complexity quickly increases and formulating involved models, which
try to cover every aspect of the development, usually has the drawback of cre-
ating decrease in tractability, applicability and interpretability (see e.g. [5]).
It is therefore necessary to formulate models which are tractable and easily
interpreted but yet manage to cover the relevant aspects of spatio-temporal
modelling. One such model is what here will be referred to as the Renshaw-
Särkkä growth-interaction model (RS-model) which has been studied in a
series of papers, most recently in [15], [13], [16] and [14].

When measurements are made in some bounded study region, the struc-
ture of the spatial dependences and interactions existing between individuals
outside and inside the study region remains unobserved. This phenomenon,
which in particular concerns those individuals inside the study region who
are close to its boundary, is generally referred to as edge effects. In the con-
text of estimation, if the study region contains a large number of individuals
the edge effects may not have a large impact on the estimates. However, it
may be the case that we deal with a small study region which contains only
a small amount of data, which often is the case with tree data. In such cases
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there is a substantial risk that the edge effects generate quite severe biases
and we therefore need some type of edge correction method when estimating
the model parameters and summary statistics of interest. In the case of non-
temporal analyses a number of methods for edge correction have been devised
(see e.g. [7]) but these are not so easily generalized to the spatio-temporal
setting. Hence, our main objective here is to develop methods which correct
for these edge effects in the spatio-temporal setting.

We consider three edge correction methods which all, more or less, are
based on the same idea. Initially one makes a first estimation (without edge
correction) of the parameters of interest, Θ, thereby generating a set of bi-
ased parameter estimates, Θ̂∗. Once these estimates have been found one
re-estimates the parameters, although, this time placing the ”expected be-
haviour” of our spatio-temporal process, under the regime of Θ̂∗, in a buffer
zone which surrounds the study region. During the re-estimation the individ-
uals in this buffer zone have the purpose of interacting with the individuals
(trees) at the boundary of the observation window, hence affecting the new
estimates. These new edge corrected estimates will now replace Θ̂∗ and will
then in turn be used to generate a new expected behaviour of the process.
By letting this new expected behaviour take the place of the previous one
we re-run the whole procedure, hence producing a new set of estimates. We
iteratively continue in this fashion until we see convergence in the estimates.
Now the question still remains regarding what is meant by and how to find
this so called ”expected behaviour” of the spatio-temporal process. The three
edge corrections presented in this paper are basically three ways of estimat-
ing this expected behaviour and they are all based on successive simulations
of an interacting process living outside our study region.

All three edge corrections presented in this paper will be applied to a
slightly modified version of the RS-model (see [16]). The model considered
here differs from its predecessor in that it allows the (exponential) distribu-
tion of each individual’s life-time to vary with its size. This slight change of
the process has had the consequence that a new maximum likelihood (ML)
estimator for the death rate parameter has been derived, which takes into
account that the size of an individual influences its viability. Furthermore,
a new ML-estimator has been derived for the arrival intensity of the im-
migration process (Poisson process) governing the arrivals in time of new
individuals. This new arrival intensity estimator tries to compensate for the
unobserved births and deaths occurring between the time points at which the
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process is sampled. The parameters related to the growth of the marks and
the interaction between the marks, just as in [16], will be estimated sepa-
rately from the arrival intensity and the death rate. [16] presents an approach
where these mark related parameters are estimated using the least-squares
method and we here choose to follow the exact same approach.

The paper is set up as follows. In Section 2 we will present the slightly
modified version of the RS-model, in which the distributions of the life-times
are allowed to vary with the sizes of the individuals. The least squares ap-
proach used in the estimation will be presented in Section 3 together with the
new death rate estimator and the new arrival intensity estimator mentioned
above. Further, in Section 4, we present the data set of Swedish Scots pines
considered. In section 5 we describe in detail the three previously mentioned
edge correction methods developed for spatio-temporal point processes (with
interacting marks). In Section 5 we will also present the results obtained in
the evaluation of the methods and once these methods have been presented
and evaluated (in the context of the RS-model), they are applied to our Scots
pine data set.

2 The model

The spatio-temporal growth-interaction model has recently been studied by
Renshaw and Särkkä in [15] and [16] and by Renshaw et al. in [14]. We here
investigate the model given in [16], with the modification that the distribution
of an individual’s lifetime is allowed to depend on its size. The process is
defined as follows.

The base of the process can be described as an immigration-death pro-
cess where the immigration part governs arrivals of new individuals to a
region of interest, W ⊆ R2, and a death part handling the number of ’nat-
ural deaths’ occurring. Additionally, upon arrival, individuals are assigned
locations and appurtenant marks (sizes) which change deterministically over
time.

More precisely, individuals enter W randomly in time according to a
homogeneous Poisson process with intensity αν(W ), α > 0, where ν(W )
denotes the area of W . As individual i arrives at time t0i it is assigned a lo-
cation xi ∼ Uni(W ). Together with its location each individual is also given
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an initial mark (size) mi(t
0
i ) = m0

i which can be taken as some fixed positive
value (suitable when individuals are not observed until they have reached
a certain size). Alternatively, one could draw m0

i from some distribution,
for example the Uni(0, ε)-distribution, ε > 0, as in [16]. Note that at this
stage, at each fixed t, the point process generated by the xi’s corresponds to
a homogeneous spatial Poisson process with intensity αt, observed on W .

Once an individual arrives at W it instantly starts changing its size
deterministically according to mi(t) = m0

i +
∫ t
t0i
dmi(s), t ≥ t0i , where

dmi(t) = f (mi(t); θ) dt+
∑
j∈Ωt
j 6=i

h (mi(t),mj(t),xi,xj; θ) dt. (1)

Here Ωt is the index set comprising the individuals alive at time t, f (mi(t); θ)
is a function determining the individual growth of mark i in absence of com-
petition with other (neighbouring) individuals and h (mi(t),mj(t),xi,xj; θ)
is a function handling the individual’s spatial interaction with other individ-
uals. Note that it may happen that mi(t) ≤ 0 and once this happens we
consider an individual to have died ’competitively’, just as in [16].

As previously mentioned the so called natural deaths are governed by
the death process which is defined as a simple death process having intensity
function µρ(·), µ > 0, where ρ(·) is a function of the marks. This means that
as time passes an individual’s Exp(µρ(mi(t))) -distributed remaining lifetime
will change with its size. An alternative way of expressing the behaviour of
the death process is to say that the conditional probability that an individual
i dies naturally during (t, t+dt) givenmi(t) equals µρ(mi(t)) dt+o(dt). While
[16] uses ρ(mi(t)) ≡ 1 we here consider ρ(mi(t)) = 1/(1 + mi(t)), implying
that individuals become more viable as they grow; a choice motivated by our
forestry applications. If, on the contrary, one wishes to consider individuals
who become less viable as they grow in size then, for instance, ρ(mi(t)) =
mi(t)/(1 +mi(t)) would be a better candidate.

The Von Bertalanffy-Chapman-Richards growth function has previ-
ously been used to model the development of the radii of isolated Scots pines
[10]. This growth function has as special case the logistic growth function
[14] and its shape resembles the shape of the Von Bertalanffy-Chapman-
Richards growth function fitted in [10]. We therefore consider the logistic
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growth function, given by

f (mi(t); θ) = λmi(t)

(
1− mi(t)

K

)
, (2)

both a good and a tractable candidate for our purposes (see e.g. [14] and
[16]). Expression (2) contains the two parameters λ > 0 and K > 0 which,
respectively, denote the growth rate of a mark and its upper bound (carrying
capacity). If we consider an individual in absence of interacting neighbouring
individuals then (1) together with (2) gives rise to the ordinary differential
equation dmi(t)/dt = λmi(t) (1−mi(t)/K) for which the solution is given
by

mi(t) =
K

1 + (K/m0
i − 1) e−λt

. (3)

Note that (3) (and thereby (2)) requires that m0
i > 0.

Just as for the individual growth function the possible choices of spatial
interaction functions are many (c.f. [8], [14] and [16] for examples of interac-
tion functions and related discussions). Here, we consider the so called area
interaction function, given by

h (mi(t),mj(t),xi,xj; c, r) = −c ν (B [xi, rmi(t)] ∩B [xj, rmj(t)])

ν (B [xi, rmi(t)])
, (4)

where c ∈ R is the force of interaction and r > 0 is the scale of interaction.
Furthermore, B [xi, rmi(t)] is a closed disk centred at xi with radius rmi(t)
and it is referred to as the ’influence zone’ of the individual. Since com-
petition for resources takes place only within influence zones ([3] and [20]),
individuals i and j will compete only when their influence zones overlap, i.e.
when B [xi, rmi(t)]∩B [xj, rmj(t)] 6= ∅. This non-symmetric soft core inter-
action has the effect that large marks influence small marks more than the
other way around, yet allowing the small marks to play their part. This inter-
action model is more realistic in tree modelling applications than symmetric
interaction models ([14] and [16]). Depending on the choice of parameters,
this area interaction function has the ability to generate regular as well as
aggregated point patterns (despite the underlying uniform distribution of the
locations) [13].
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3 Estimation

An expression of the full likelihood function is not known for this model
and although likelihood methods are generally highly desirable due to their
asymptotic properties, under certain regularity conditions (see e.g. [2] and
[19]), other more tractable estimation methods often generate estimates of
similar quality. We here follow [16] by estimating θ = (λ,K, c, r) using the
least squares approach. The death rate, µ, and the arrival intensity, α, are
estimated separately by the ML-method.

Regarding the simulation of the process, [16] presents an algorithm
where W is the unit square wrapped onto a torus and ρ(mi(t)) ≡ 1, which
is easily modified to suite any choice of ρ(mi(t)) (in particular ρ(mi(t)) =
1/(1 +mi(t))) and any W ⊆ R2. When computing mi(t) it should be noted
that one does not have to include all j ∈ Ωt \ {i} in the sum in expression
(1), rather only those within the maximal interaction range, i.e. j ∈ Ωt \ {i}
such that ||xi − xj|| ≤ 2rK.

Given that Tj and NTj
, j = 1, . . . , n, respectively, denote the jth sample

time and the total number of individuals observed by time Tj, we let our data
set be represented by X = {X(Tj)}nj=1 =

{(
xij,mij, Iij

)
: i = 1, . . . , NTj

}n
j=1

,
where xij = xi(Tj), mij = mi(Tj) and Iij = Ii(Tj). The functions Ii(·),
i = 1, . . . , NTn , are indicator functions such that Ii(t) = 1 if individual i is
alive at time t and Ii(t) = 0 if the individual is dead at time t. As before
xi(·) and mi(·) denote the location and the size of individual i, respectively.
Note also that the index set comprising the individuals alive at time t can
be written as Ωt = {i ∈ {1, . . . , Nt} : Ii(t) = 1}.

3.1 Least squares estimation of λ, K, c, and r

Considering a set of parameters θ = (λ,K, c, r) and a configuration X(Tj),
let m̃i (Tj+1; θ,X(Tj)), i ∈ ΩTj+1

, denote the prediction of mi(j+1) from X(Tj),
based on calculating equation (1). If an individual has m̃i (Tj+1; θ,X(Tj)) > 0
while Ii(j+1) = 0 it will be treated as having died by natural causes during
(Tj, Tj+1). Our least squares estimates are then found by minimizing

S (θ) :=
n−1∑
j=1

∑
i∈ΩTj

Ii(j+1)

[
m̃i (Tj+1; θ,X(Tj))−mi(j+1)

]2
,
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with respect to θ = (λ,K, c, r) ∈ R+ × R+ × R× R+.

In order to minimize S (θ) some optimization procedure is required.
We here adopt an MCMC-type method (see [12]) where we start by choosing
initial parameter estimates, i.e. let λ = λ0 > 0, K = K0 > 0, c = c0 ∈ R and
r = r0 > 0, for which we calculate S (θ) = S (λ,K, c, r). We also define the
step sizes δλ > 0, δK > 0, δr > 0, and δc > 0. Now, in each round we

1. randomly choose one of the parameters λ,K, r, c;

2. for our parameter of choice, say λ, let λ′ = λ + Z, for Z drawn from
Uni(−δλ, δλ);

3. calculate S (θ′) = S (λ′, K, r, c);

4. if S (θ′) < S (θ) let λ = λ′, otherwise let λ = λ;

5. return to step 1.

We continue to run the algorithm until either S (θ) is less than some prede-
fined minimum value, say, Smin = 10−5 or until we have not seen any decrease
in S (θ) for a predefined number of consecutive runs, say, Nmax = 200. We
let our final estimates θ̂ = (λ̂, K̂, ĉ, r̂) be given by the last θ obtained in the
algorithm above. Note that we here utilize the information obtained in the
previous step in order to stepwise get closer to the final estimate.

When minimizing S (θ), in the case of a simulated data set, it can be
seen that S (θ) may not attain its minimum at the true parameter set but
instead at some biased θ. This ’incorrect’ shape of S (θ) is mainly due to
edge effects (discussed further in Section 5) and dependence between certain
parameters. For instance, two different sets of c and r may result in similar
interactions, due to the form of (4). In order to control the estimation routine,
so that this risk of bias is reduced, our approach is to find good starting
values, (λ0, K0, c0, r0), (as opposed to arbitrarily chosen ones) and to choose
sensible step sizes, δλ, δK , δc, δr. The exact forms and derivations of these
are given in Appendix A.1 and A.2.

3.2 Estimation of µ

Let fLk
(tk|µ), k = 1, . . . , nT , denote the densities of the random lifetimes

L1, . . . , LnT
(observed as t1, . . . , tnT

) of the nT individuals who have died from
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natural causes by time T (determined during the minimization of S(θ)), given
some natural death rate function µρ(mi(t)), and let t0i(L1), . . . , t

0
i(LnT

) denote
the birth times of the individuals having these life times. Also, under the
same natural death rate regime, let S1, . . . , SmT

denote the mT random life-
times of the individuals who are still alive at time T (observed as s1, . . . , smT

).
Then the likelihood of the death rate, µ, is (approximately) given by

L(µ) =

nT∏
k=1

fLk
(tk|µ)

mT∏
l=1

P(Sl > sl|µ)

=

nT∏
k=1

µρ
(
mi(Lk)

(
t0i(Lk) + tk

))
exp

{
−µρ

(
mi(Lk)

(
t0i(Lk) + tk

))
tk
}

×
mT∏
l=1

e−µρ(mi(Sl)
(T ))sl ,

wheremi(Lk)(t) denotes the observed mark, at time t, of the individual having
life time Lk. Similarly mi(Sl)(T ) denotes the observed mark size at time T ,
of the individual having lived time Sl at time T . By solving with respect to
µ in d log (L(µ)) /dµ = 0 we get the ML-estimator

µ̂ = nT

/(
nT∑
k=1

ρ
(
mi(Lk)

(
t0i(Lk) + tk

))
tk +

mT∑
l=1

ρ(mi(Sl)(T ))sl

)
. (5)

In the case of ρ(mi(t)) ≡ 1 this reduces to the estimator, µ̂0, found in [16].
Since we sample the process only at 0 = T0 < T1 < . . . < Tn = T , neither
the actual death times, t0i(Lk) + tk, k = 1, . . . , nT , nor the sizes at these death
times,mi(Lk)(t

0
i(Lk)+tk), k = 1, . . . , nT , will be known. Recall that we label an

individual as naturally dead once the predicted mark m̃i (Tj+1; θ,mi(Tj)) > 0
while Ii(j+1) = 0, during the calculation of S(θ). Let Tj,i(Lk) be the last sample
time at which individual i(Lk) was observed alive and let m̃i(Lk)(Tj,i(Lk))
denote the prediction of its mark at Tj,i(Lk). This censoring forces us to
approximate (5) by

µ̂1 = nT

/(
nT∑
k=1

ρ
(
m̃i(Lk)

(
Tj,i(Lk)

)) (
Tj,i(Lk) − t0i(Lk)

)
(6)

+

mT∑
l=1

ρ(mi(Sl)(T ))
(
T − t0i(Sl)

))
.
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As pointed out earlier, the process is observed only at the sampled time
points 0 = T0 < T1 < . . . < Tn = T so that the actual birth times (and death
times) of the individuals remain unknown. Conditioned on the number of
individuals arriving during (Tj−1, Tj] the arrival times of the individuals will
be uniformly distributed on (Tj−1, Tj) (see e.g. [9]). Thus, when estimating
µ, for each interval (Tj−1, Tj], we simulate ∆NTj−1

= NTj
−NTj−1

birth times
having a Uni(Tj−1, Tj) distribution, provided that ∆NTj−1

> 0, which in turn
are assigned to all individuals being observed for the first time at Tj. The
question regarding which arrival time to assign to which individual is solved
by giving the first arrival time to the individual who is the largest at time
Tj, the second arrival time to the individual which is the second largest at
time Tj and so forth. This will have the consequence that the life times will
be random. Hence, by repeating this procedure a suitable number of times,
each time simulating new random birth times, we generate a set of estimates
of µ which are used to estimate a standard error for µ̂.

3.3 Estimation of α

Let B(t) ≥ 0 denote the actual number of immigrants by time t and let
NTj

=
∣∣∪nj=1ΩTj

∣∣, j = 1, . . . , n, denote the number of individuals observed
at sample times up to Tj. Concerning the estimation of α, the approach
of [16] is to ignore all the unobserved individuals who arrive and die within
the same time interval (Tj, Tj+1), resulting in the immigration-increments
∆B(Tj−1) = ∆NTj−1

, j = 1, . . . , n, where ∆B(Tj−1) = B(Tj) − B(Tj−1)
and ∆NTj−1

= NTj
− NTj−1

. Since B(t) is a Poisson(αν(W ))-process, its
(independent) increments are Poisson (α(Tj+1 − Tj)ν(W ))-distributed. This
being the scenario, an ML-estimator for α (see [16]) is provided by

α̂0 =
NTn

Tnν(W )
. (7)

This estimator is unbiased under the hypothesis that N obs(t) = B(t) since
E[NTn/Tnν(W )] = E[NTn ]/Tnν(W ) = αTnν(W )/Tnν(W ) = α. This ap-
proach, however, underestimates α since we do not account for the individ-
uals who arrive and die in the same sample interval, (Tk, Tk−1), (see [16]).

One possible way of partially compensating for this bias is to add to
each increment of the observed process, ∆NTj−1

, the expected number of
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individuals suffering a natural death among the expected number of individ-
uals arriving during (Tj−1, Tj). Since the expected number of arrivals during
(Tj−1, Tj) is unknown it will be replaced by an estimate hereof, provided
by expression (7). Regarding the expected number of natural deaths, pro-
vided by µ, it will be governed by µ̂, the estimate of µ found in the previous
subsection. The estimator takes the form

α̂ =
NTn

Tnν(W )︸ ︷︷ ︸
=α̂0

+
1

Tnν(W )

n∑
j=1

⌊
NTn

∆Tj−1

Tn

(
1− e−µ̂ρ(m0

i )∆Tj−1

)⌋
,

where bxc denotes the integer part of x and ∆Tj−1 = Tj−Tj−1. The derivation
of the estimator as well as some characteristics of it and its relation to α̂0

can be found in Appendix A.3.

4 Data

Before presenting the edge correction methods we will introduce the specific
tree data set under consideration. The data set we consider consists of mea-
surements of locations and diameters at breast height (dbh) in a west Swedish
Scots pine stand1. Recordings have been made in the years T1 = 1985,
T2 = 1990, and T3 = 1996 and the approximate age of the stand in 1985
was 22 years, thereby setting T0 = 1963. Note that only the time intervals
in which births and deaths occur are known, leaving the actual birth and
death times unknown. All measurements have been made on a circular re-
gion of radius 10 meters where trees having reached 0.01 m dbh are included
in the data set. Figure 1 illustrates plots of the data set with scaled radii
(factor 10), for improved visualization, together with the appurtenant radius
histograms.

Note how the size histogram tends to change as time elapses, with an
increasing number of large trees. This is further confirmed by Table 1.

The RS-model has previously been fitted to data sets such as this [16].
However, since the number of trees present at each time point is fairly low it is
important to take the edge effects into account, i.e. we have to somehow, for
each sample time, estimate the behaviour of the unobserved trees surrounding

1Area number ("Trakt") 1562, Stand number ("Pålslag") 2060 - The "Lilla Edet" area.
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Figure 1: Swedish Scots pines recorded in 1985 (left), 1990 (middle) and 1996
(right). Upper row: Histograms of the radii. Lower row: Locations of the
pines with scaled radii (factor 10).

Tj 1984 1990 1996
NTj

13 26 43
Mean radius 0.0557 0.0619 0.0640
Radius s.d. 0.0050 0.0074 0.0096
maxi∈ΩTj

mij 0.0645 0.0775 0.0860

Table 1: Total number of trees, estimated mean, estimated standard devia-
tion (s.d.) and maximum of the Scots pine radii at each sample time.
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our region of interest. Given this estimated information one can then correct
the estimates such that the unobserved interaction between the region of
interest and its surrounding area is compensated for.

5 Spatio-temporal edge correction

When sampling real data, X, one usually considers all individuals within
some region A (here circular) which is part of some larger region W . The
individuals in A interact with each other but simultaneously also with the
individuals present outside A, i.e. the individuals in B = W \ A. So, if
one were to estimate some statistics and/or model parameters in a situation
where the interaction among (neighbouring) individuals plays a role, by only
taking into consideration the individuals in A the estimators may generate
biased estimates since the interaction between the individuals in A and those
in B would be neglected. The effects of the absence of the information
regarding this interaction are commonly referred to as edge effects. The risk
that the edge effects generate biases rapidly increases when one deals with
small quantities of data in A, as is the case with our tree data set introduced
in Section 4. Hence, some type of correction method is needed (see e.g. [4],
[7] and [21]).

A simple edge correction method would be the so called minus sampling
method (see e.g. [17]). First one finds all individuals who fall within a buffer
zone, C ⊆ A, consisting of all points x ∈ A located less than some distance
d0 > 0 from the boundary of A. Then one carries out the estimation based
only on the individuals in A \ C, yet taking into account the locations and
marks of the individuals in C. In doing this we let the individuals in C and
A \ C affect each other, yet basing the computation of the statistic or the
parameter estimate in question only on the individuals in A \ C. However,
in situations where there is a limited amount of data in region A, as in our
pine data set, removing data is not an option and this method therefore is
not applicable.

A more sensible way of doing (spatio-temporal) edge correction in sit-
uations where there is little data available is to utilize the features of the
parametric model which one attempts to fit to the data. We here give the
idea behind the edge correction methods presented in this section. One starts
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by finding initial (possibly biased) estimates of the model parameters, Θ̂∗,
based on our original data set (region A). Then, under the regime of Θ̂∗,
we wish to find the expected model behaviour when restricted to region B
(possibly conditioned on the actual data in A), EΘ̂∗

[X[0,T ]|B]. By doing so
we wish to establish the expected interaction between EΘ̂∗

[X[0,T ]|B] and the
individuals in region A. With EΘ̂∗

[X[0,T ]|B] at hand we now re-estimate the
model parameters from the actual data (region A), however, this time allow-
ing for EΘ̂∗

[X[0,T ]|B] to interact with the actual data during the estimation.
Once these new estimates have been obtained, we let them replace Θ̂∗ and
repeat the above procedure again. By continuing in this fashion we have an
iterative procedure which we stop once it has fulfilled a certain predefined
convergence criterion.

The question still remains, however, regarding how to find the expected
behaviour, EΘ̂∗

[X[0,T ]|B]. We here suggest three methods based on the idea
described above where EΘ̂∗

[X[0,T ]|B] is estimated from successive simulations
of a (possibly interacting) version of our parametric model, restricted to
region B. All three methods are similar to the ideas presented by Geyer in
[1] in the sense that they all use simulated data as interacting data in region
B. At each iteration step, at the sample times T1, . . . , Tn, all three methods
sample a series of simulated process realisations which all live in region B.
Thereafter each such sampled simulated outer realisation is combined with
the actual data, X, to form a full data set, X∗, on W = A ∪ B. From each
new data set X∗ we carry out our estimation procedure, however, as opposed
to using the full data set X∗ in the estimation we here only include X (region
A) in the calculation of the estimates/statistics while we simultaneously let
the (simulated) individuals in B interact with X (thereby influencing the
estimates generated from X). Now, in a given iteration step, by averaging
over all estimates generated from each simulated outer realisation we get
the final estimates for that specific iteration (this is how the simulated outer
regions are considered to create an estimate of EΘ̂∗

[X[0,T ]|B] and its interaction
with X). This averaged set of estimates now replaces Θ̂∗ and by repeating
the whole procedure once again we have executed the next iteration step.

A further question, yet to be explained in detail, is the stopping crite-
rion used in the algorithms. Note that the estimates may be vector-valued.
For each of the algorithms, given that we use N simulated outer realisations
in each iteration, we will keep running it until the estimates, Θ̂∗, generated in
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two consecutive iterations differ by at most a distance ε > 0. Once this has
occurred we save these estimates and run the algorithm for another M − 1
iterations and average over theM estimates hereby generated, in order to get
our final estimates. Another possible stopping criterion which may be used is
the following. We runM iterations of our edge correction, hence generating a
set of M estimates, Ξ1 = {Θ̂1

∗, . . . , Θ̂
M
∗ }, for which we estimate the variance,

σ̂2
1 = ̂V ar(Ξ1), component wise. By running one more iteration of the edge

correction, thus getting a new vector of estimates, Θ̂M+1
∗ , we create the set

Ξ2 = {Θ̂2
∗, . . . , Θ̂

M
∗ , Θ̂

M+1
∗ } for which we estimate the variance, σ̂2

2 = ̂V ar(Ξ2).
We continue in this fashion, i.e. creating Ξi+1 = (Ξi \ {Θ̂i

∗}) ∪ {Θ̂M+i
∗ },

i = 2, 3, . . ., to get σ̂2
i+1 = ̂V ar(Ξi+1), until ||σ̂2

i+1|| < ε for some ε > 0, where
||·|| is the Euclidean norm. Since the second approach considers the variation
of a large number of estimates it is generally preferable to the first method.
However, the first stopping criterion is less computationally demanding than
the second one (since we have to wait M iterations before we can judge
whether to stop or not in the second one) and it does a good enough job for
the illustrative purposes we have here. Hence, in what follows we choose to
apply the first of the two stopping criteria.

We will use the remainder of the section to present, discuss and evaluate
the different methods.

5.1 Edge correction methods

The three edge correction methods we will present are explained for the RS-
model but they may be applied to other spatial and spatio-temporal (marked)
point processes as well. In the algorithms presented here the large rectangular
window W will be wrapped onto a torus when we generate the individuals
in the outer region, B, (see e.g. [4], [15], [11] or [21]). Recall that we
sample the process as X = {X(Tj)}nj=1 =

{(
xij,mij, Iij

)
: i = 1, . . . , NTj

}n
j=1

,
where xij = xi(Tj), mij = mi(Tj) and Iij = Ii(Tj) is an indicator function
such that Ii(t) = 1 if individual i is alive at time t and Ii(t) = 0 if the
individual is dead at time t. Also recall that m̃i (Tj+1; θ,X(Tj)), i ∈ ΩTj+1

,
denotes the prediction ofmi(j+1) from X(Tj) generated by equation (1), under
θ = (λ,K, c, r) ∈ R+ × R+ × R× R+.

For a general process the three edge correction methods would have
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been presented in such a way that the whole parameter set would have been
considered in each iteration. But in the case of the RS-model we may in fact
omit the re-estimation of µ and α since their estimates tend not to change
significantly between two iterations, despite the fact that we anew label indi-
viduals as naturally dead once S(θ) is evaluated for a new set of parameters
θ, possibly leading to other life-times (of the naturally dead individuals) used
in the estimator generating the new estimate µ̂ (hence also leading to a new
estimate α̂). Note that below ||θ̂∗ − θ̂|| represents the Euclidean distance
between θ̂∗ and θ̂.

5.1.1 Simple simulation of the outer region

We here present the first of the three methods; an algorithm which illustrates
the basic idea on which all three methods are based.

1. Choose some small ε > 0 and positive integers M and N .

2. Estimate the parameters from the data set X (region A) to generate a
set of (non-edge-corrected) estimates θ̂∗ =

(
λ̂∗, K̂∗, ĉ∗, r̂∗

)
.

3. For i = 1, . . . , N :

(a) Simulate the process on W = A ∪B, based on θ̂∗ and (µ̂, α̂), and
sample it at T1, . . . , Tn (where W is wrapped onto a torus).

(b) Create the data set X∗ by removing what has been simulated in
region A (for the sample times T1, . . . , Tn) and then replacing it
with the data, X.

(c) Least squares estimation of θ = (λ,K, c, r) based on X∗:
Minimize

S (θ) =
n−1∑
j=1

∑
i∈ΩTj

∩{k∈Z+:xk∈A}

Ii(j+1)

[
m̃i (Tj+1; θ,X(Tj))−mi(j+1)

]2
w.r.t. θ to get the estimates in this iteration, θ̂i = (λi, Ki, ci, ri).
Note that we include only the individuals in X (region A) in the
sum of squares S(θ). Also note that we must generate the predic-
tions m̃i (Tj+1; θ,X(Tj)) for all the individuals in X∗ (the individ-
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uals in B in A hereby interact) each time we evaluate S(θ) for a
new θ.

4. Calculate θ̂ =

(
1

N

N∑
i=1

λi,
1

N

N∑
i=1

Ki,
1

N

N∑
i=1

ci,
1

N

N∑
i=1

ri

)
.

5. If
∣∣∣∣∣∣θ̂∗ − θ̂∣∣∣∣∣∣ < ε set θ̂(1) = θ̂ and go to step 6, otherwise go to step 3.

Also set θ̂∗ = θ̂.

6. For j = 1, . . . ,M − 1:

(a) Repeat steps 3 and 4 to generate the estimates θ̂ and set θ̂∗ = θ̂.

(b) Denote these estimates by θ̂(j) =
(
λ(j), K(j), c(j), r(j)

)
.

7. Let the final estimates be given by

θ̂ =

(
1

M

M∑
i=1

λ(j),
1

M

M∑
i=1

K(j),
1

M

M∑
i=1

c(j),
1

M

M∑
i=1

r(j)

)
.

Since the algorithm averages over all estimates θ̂1, . . . , θ̂N in a given
iteration, it reduces the risk of having surrounding areas of too artificial
nature generating the estimates. For instance, it is possible that some large
individual(s) in B, close to the boundary of A, end up within the interaction
range of some large individual(s) in A for a given simulated surrounding area.
Such a scenario would not be encountered if the two individuals had been
interacting naturally with each other throughout time. The algorithm above,
through its averaging effect, reduces the strong impact which an extreme
situation such as the aforementioned may have on some of the estimates.

5.1.2 Rotations of the outer region

We now consider a modifications of the previous algorithm which differs in the
way it generates the surrounding realisations. Instead of simulating several
outer realisations at each iteration, the idea here is that we instead use only
one simulated outer region which we rotate a number of times, relative to
the actual data, X. By combining X with each rotation of the outer region
we get a series of full data sets on W on which we base the estimation.
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More specifically we replace step 2 and step 3 in the algorithm presented
in Section 5.1.1 by

2∗. Estimate the parameters from the data set X (region A) to generate a
set of (non-edge-corrected) estimates θ̂∗ =

(
λ̂∗, K̂∗, ĉ∗, r̂∗

)
.

Choose the angles ω1 < . . . < ωN either according to ωi+1−ωi = 2π/N
or ωi ∼ Uni(0, 2π). For all i = 1, . . . , N , perform counterclockwise
rotations (around the centre of A) of all locations, xk = (xk, yk), in X:

xk(ωi) = (xk cos(ωi)− yk sin(ωi), xk sin(ωi) + yk cos(ωi)) .

We get the rotated data sets Xω1 , . . . ,XωN
.

3∗. Simulate the process onW = A∪B, based on θ̂∗ and (µ̂, α̂), and sample
it at T1, . . . , Tn (where W is wrapped onto a torus).
For i = 1, . . . , N :

1. Create the data set X∗ωi
by removing what has been simulated in

region A (for the sample times T1, . . . , Tn) and then replacing it
with the rotated data, Xωi

.
2. Least squares estimation of θ = (λ,K, c, r) based on X∗ωi

:
Minimize

S (θ) =
n−1∑
j=1

∑
i∈ΩTj

∩{k∈Z+:xk(ωi)∈A}

Ii(j+1)

[
m̃i (Tj+1; θ,X(Tj))−mi(j+1)

]2
w.r.t. θ to get the estimates in this iteration, θ̂i = (λi, Ki, ci, ri).
Note that we include only the individuals in X (region A) in the
sum of squares S(θ). Also note that we must generate the predic-
tions m̃i (Tj+1; θ,X(Tj)) for all the individuals in X∗ωi

(the individ-
uals in B in A hereby interact) each time we evaluate S(θ) for a
new θ.

As mentioned in step 2∗ one possibility is to use random angles. Al-
though this adds an extra component of randomness to the procedure it
has the drawback of allowing for situations where two or more of the angles
become nearly the same, hence increasing the risk of the type of extreme
estimates mentioned in Section 5.1.1. We therefore choose not to evaluate
the version with random angles any further.
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5.1.3 Outer region influenced by the growth of the data

Instead of rotating the surrounding area to avoid estimates based on the
artificial surroundings described in Section 5.1.1 one may choose to condition
on the development of the individuals in X (region A) when generating the
surrounding individuals in region B. Our third edge correction method tries
to overcome the problem of these artificial surroundings by letting the actual
data individuals enter region A and directly start growing, alongside the
simulation of the surrounding individuals which takes place in region B.
During this growth the individuals in region A are allowed to influence the
development of the individuals in region B but not the other way around.
By doing this we try to mimic the actual underlying growth scenario.

Since the actual arrival times and the exact growth patterns remain un-
known, an individual will enter A at an arrival time simulated uniformly over
the sample time interval in which it was first observed (jumps of a Poisson
process are uniformly distributed over time intervals) and then grow linearly
between its observed sizes at the sample times so that it (possibly) affects
the growth of the simulated surrounding individuals. The exact algorithm is
given by replacing steps 2 and 3 in the algorithm of Section 5.1.1 by

2∗∗. Estimate the parameters from the data set X (region A) to generate a
set of (non-edge-corrected) estimates θ̂∗ =

(
λ̂∗, K̂∗, ĉ∗, r̂∗

)
.

For each time interval (Tj−1, Tj], j = 1, . . . , n, we observe ∆Nj−1 new
individuals. Simulate Uni(tj−1, tj)-distributed birth times bj1 < . . . <
bj∆Nj−1

and assign these to the individuals in X (region A) who have
arrived in (Tj−1, Tj] in such an order that the largest individual gets the
smallest time, going upwards until the smallest individual has received
the largest time.

3∗∗. For i = 1, . . . , N :

(a) Simulate the process, based on θ̂∗ and (µ̂, α̂), but now only on
the region B = W \ A (where W is wrapped onto a torus) and
sample it at T1, . . . , Tn. Furthermore, during the simulation, let
each individual in X (region A) enter at its simulated birth time,
bjk, k = 1, . . . ,∆Nj−1, j = 1, . . . , n, and grow linearly between
the sample time points until the last sample time point, Tj, it has
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been observed alive. This will have the consequence that these
linearly growing individuals will have their actual (observed) sizes
at the sample times. The effect acquired here is that the data, X,
will affect the growth of the simulated individuals in B (but not
the other way around). Refer to this (partially) simulated data
set as X∗. Note that the only individuals in X∗ located in A are
the ones found in X.

(b) Least squares estimation of θ = (λ,K, c, r) based on X∗:
Minimize

S (θ) =
n−1∑
j=1

∑
i∈ΩTj

∩{k∈Z+:xk∈A}

Ii(j+1)

[
m̃i (Tj+1; θ,X(Tj))−mi(j+1)

]2
w.r.t. θ to get the estimates in this iteration, θ̂i = (λi, Ki, ci, ri).
Note that we include only the individuals in X (region A) in the
sum of squares S(θ). Also note that we must generate the predic-
tions m̃i (Tj+1; θ,X(Tj)) for all the individuals in X∗ (the individ-
uals in B in A hereby interact) each time we evaluate S(θ) for a
new θ.

5.2 Evaluation of the estimation methods

In order to be able to evaluate the estimation methods previously presented
we simulate what we here will refer to as a ’test set’, consisting of a sim-
ulated realisation of the process on W = [0, 30] × [0, 30] (wrapped onto
a torus), using step size dt = 0.01. We include those individuals alive
at the sample times T1 = 22, T2 = 27, T3 = 33 (the age of our pine
stand at its sample time points) who are located within the circular re-
gion A = {y ∈ W : ||y − (15, 15)|| ≤ 10}. The parameters used are K = 0.1,
λ = 0.08, c = 2, r = 2, α = 0.007, µ = 0.02, and m0

i = 0.05. In order to
check the accuracy of our estimation techniques we re-estimate the parame-
ters generating the test set. We do not estimate m0

i , but instead treat it as
known since in forest stands one mostly knows the minimal tree radius from
which measurements are being made (see Section A.1 for its estimation). The
specific choice of parameters used to generate the test set was made since it
generates realisations which resemble our tree data set. However, all methods
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we here apply have been evaluated for a range of different parameter values
and the results obtained have been similar to those obtained for the test set.

If one gradually decreases the size of W in a series of edge corrections
the distance on the torus between some of the individuals in B gradually
decreases. This is particularly the case for those individuals located close to
and on opposite sides of the boundary of A (the individuals interacting the
strongest with X). In this gradual decrease these individuals start interacting
more strongly with each other and thereby increasingly inhibit each other’s
growths, resulting in a gradual decrease in the edge correcting effect. Hence,
a small W results in a slow convergence to the final estimates, whereas, a
very largeW makes the edge corrections computationally demanding. When
we edge correct the re-estimation of the test set parameters we have chosen
W to be a square region with side length 25, a choice purely based on trials.

Standard error estimates are obtained by re-running the edge correction
procedure of choice a large number of times. However, in situations where
this is computationally demanding, some resampling technique may be used
to obtain the standard error estimates. For each edge correction method
we have considered 10 different estimation runs where each of these uses
the last M = 4 iterations, once ||θ̂∗ − θ̂|| < ε = 1, in order to create the
averaged final estimates and in each iteration we have considered N = 3
simulated surroundings (N = 3 angles in the case of the rotation-correction).
Furthermore, on the basis of trials we have concluded that for each simulated
surrounding it is sufficient to run the edge corrected estimation procedures
until no change in S(θ) has been observed for Nmax = 50 consecutive runs.

Table 2 presents both the initial estimates (see Appendix A.1), the final
estimates found when applying no edge correction (stopping criterion for the
minimisation of S(θ), Nmax = 3000) and the estimates found for each of the
edge corrections. The estimates of µ and α are given by µ̂ = 0.0113 and
α̂ = 0.00637 ((µ̂− µ)/µ = −43.5% and (α̂− α)/α = −9.0%).
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λ K c r
True value 0.08 0.1 2 2
Initial 0.1006 0.0933 0.007 2.75
Bias 0.0206 −0.0067 −1.9930 0.75
Bias (%) 25.8% -6.7% -99.7% 37.5%
Uncorrected 0.0822 0.0995 5.4991 1.8301
Bias 0.0022 −0.0005 3.4991 −0.1699
Bias (%) 2.80% -0.50% 174.96% -8.50%
Simple
Est. mean 0.0822 0.0996 2.7978 1.8694
Bias 0.0022 -0.0004 0.7978 -0.1306
Bias (%) 2.80% -0.43% 39.89% -6.53%
Est. s.e. 0.0001 0.0001 0.7755 0.1572
Rotations
Est. mean 0.0821 0.0995 2.8364 1.7614
Bias 0.0021 -0.0005 0.8364 -0.2386
Bias (%) 2.58% -0.46% 41.82% -11.93%
Est. s.e. 0.0004 0.0001 0.5439 0.1416
Influenced growth
Est. mean 0.0823 0.0996 2.7499 1.7926
Bias 0.0023 -0.0004 0.7499 -0.2074
Bias (%) 2.86% -0.36% 37.50% -10.37%
Est. s.e. 0.0005 0.0002 0.5422 0.1437

Table 2: Test set estimates: Initial estimates, non-edge corrected estimates
(Nmax = 3000) and estimates obtained through the different edge corrections.
We have run each edge correction 10 times in order to get the estimated
mean values and standard errors (s.e.). In each run we have used N = 3
(simulated surroundings/rotations), Nmax = 50 (stopping criterion for the
minimisation of S(θ)), ε = 1 (convergence criterion) and M = 4 (number of
final iterations).

As one can see in the uncorrected estimation, the biases for the esti-
mates of λ, K, r and α are fairly moderate. This, however, cannot be said
about c and µ and regarding the under-estimation of µ there is little to be
done. The large over-estimation obtained for c in the uncorrected estimation,
however, is mainly a result of the edge effects which we correct for. Further-
more, we also see that the small biases of the estimates of λ andK tend not to
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change significantly from the uncorrected estimates. The influenced growth
correction manages to reduce the bias of ĉ slightly more than the other two
methods but this comes with a trade off in the form of an increased under-
estimation of r, compared to both the uncorrected estimates and the simple
correction estimates (the main reason being the strong dependence between
c and r). A possible reason that the influenced growth generally performs
the best in the estimation of c is that it actually takes into consideration the
(approximate) behaviour of the actual data and it therefore restricts the pre-
viously mentioned artificial surroundings more than the other two methods.
The simple correction is the only one of the three methods which reduces the
r-bias but it is also the method giving the highest standard error estimates
for c and r. As we see the rotation correction performs slightly worse than
the other two methods but it has the advantage of reducing the computa-
tional time compared to the other two methods. By increasing the number
of rotations one may be able to decrease the bias, but this comes with an
increase in computation time. If no edge corrections are used, the points of
the (data) point patterns likely will have less close neighbours than in reality.
This will result in too large estimates of c, which in turn will result in more
regular point patterns since c to a large extent controls the regularity of the
point patterns generated by the process.

Table 3 gives us the results obtained after the first iteration. Note that
the large bias generated by the uncorrected estimate of c directly is reduced
by each of the methods.

Since our main concern is correcting the estimate of c, choosing ε = 1
more or less implies that the finalM iterations start once |ĉ∗− ĉ| < ε = 1. By
increasing ε a bit one may think that the final estimates get very different.
However, since a substantial reduction takes place already after the first
iteration and since we average over the finalM iterations, if we were to choose
ε a bit larger than 1 this in fact does not change the results drastically. Note
further that one can start with a given ε and then increase it after a couple
of iterations if the fluctuations between consecutive iterations are larger than
initially believed (i.e. if ||θ̂∗ − θ̂|| < ε does not occur). The average number
of iterations that were needed in order to reach ||θ̂∗ − θ̂|| < ε = 1 in the 10
runs are 2.6 for the simple correction, 3.2 for the rotation correction and 2.8
for the influenced growth correction.
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Iteration 1 λ K c r
True value 0.08 0.1 2 2
Uncorrected 0.0822 0.0995 5.4991 1.8301
Bias 0.0022 -0.0005 3.4991 -0.1699
Bias (%) 2.80% -0.50% 174.96% -8.50%
Simple 0.0822 0.0995 3.3362 1.7991
Bias 0.0022 -0.0005 1.3362 -0.2009
Bias (%) 2.81% -0.46% 66.81% -10.05%
Rotations 0.0822 0.0995 3.1342 1.8770
Bias 0.0022 -0.0005 1.1342 -0.1230
Bias (%) 2.72% -0.46% 56.71% -6.15%
Influenced growth 0.0821 0.0996 3.6874 1.8697
Bias 0.0021 -0.0004 1.6874 -0.1303
Bias (%) 2.64% -0.44% 84.37% -6.54%

Table 3: Results obtained for the edge corrected estimation of the test set
parameters after the first iteration. We have used N = 3 (simulated sur-
roundings/rotations) and Nmax = 50 (stopping criterion for the minimisation
of S(θ)).
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5.3 Fitting the model to the Scots pines

In Section 4 we introduced our data set, a stand of Swedish Scots pines mea-
sured at three time points. In Table 4 we give the estimates found after
having run the non-edge corrected estimation procedure, together with the
results obtained in the three edge corrected estimation procedures. Just as
for the test set, in the uncorrected estimation we have run the estimation
until no change in S(θ) has been observed for Nmax = 3000 consecutive runs
whereas in all the corrected ones we have used Nmax = 50. In the edge cor-
rections we have chosen W to be a square region with side length 25 and
for each edge correction method we have considered 10 different estimation
runs where each of these uses the last M = 4 iterations to create its final
estimates and in each iteration we have considered N = 3 simulated sur-
roundings/rotations. However, here we have chosen the less restrictive value
2 for ε. In the uncorrected estimation we found α̂ = 0.004148 and µ̂ = 0 and
these will be taken as final estimates for α and µ.

λ K c r
Initial 0.0350 0.0860 0.0195 8.0
Uncorrected 0.0790 0.0943 6.3314 3.7325
Simple
Est. mean 0.0781 0.0949 3.1626 4.0680
Est. s.e. 0.0019 0.0017 1.0327 0.6351
Rotations
Est. mean 0.0794 0.0944 3.1010 3.9396
Est. s.e. 0.0025 0.0015 0.7992 0.3802
Influenced growth
Est. mean 0.0778 0.0954 3.5054 3.6151
Est. s.e. 0.0026 0.0016 0.7911 0.7229

Table 4: Parameter estimates found for the Scots pines: Initial estimates,
non-edge corrected estimates (Nmax = 3000) and estimates obtained through
the different edge corrections. We have run each edge correction 10 times
in order to get the estimated mean values and standard errors (s.e.). In
each run we have used N = 3 (simulated surroundings/rotations), Nmax =
50 (stopping criterion for the minimisation of S(θ)), ε = 2 (convergence
criterion) and M = 4 (number of final iterations).
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Note that, as expected, for all three methods, the edge corrected esti-
mates are quite close to the uncorrected ones, except for c. The estimated
values of c show that the point patterns are less regular than the uncorrected
estimate suggests.

6 Discussion

We have recalled the Renshaw-Särkkä growth-interaction model (RS-model)
– a spatio-temporal point process with interacting marks. The death rate of
the underlying immigration-death process here depends on each individual’s
mark size, as opposed to the approach used in [16] where the death rate is
constant.

We have then discussed the estimation of the parameters of the model
when the process is sampled discretely in time. The parameters which control
the marks’ growth and interaction, λ, K, c, and r, are estimated using the
same least-squares approach as proposed in [16]. Related to the least-squares
estimation, we specify how we minimise the sum of squares numerically and
discuss some issues related to that. Parallel to this, a new estimator is derived
which takes the size changes of the individuals into consideration. Also a
new estimator is suggested for the arrival intensity, which compensates for
the unobserved arrivals and deaths of individuals arriving and dying between
two consecutive sample time points.

We finally propose three edge correction methods for (marked) spatio-
temporal point processes which all are based on the idea of placing an ap-
proximated expected behaviour of the process at hand outside the study
region. We estimate this expected behaviour by simulating realizations of
the process, under a parameter choice based on some non-edge corrected ini-
tial estimates, and for each such realisation we generate new edge corrected
estimates which we average over to get our edge corrected estimates.

We finally fit the RS-model to a data set of Swedish Scots pines. A
thorough study of the RS-model’s applicability in forestry will be made later.
Regarding further developments, note that the RS-model here is presented
for a single species. However, it can easily be extended to include the sce-
nario where interaction takes place also between different species, living and
interacting within the same study region. This extension is made by letting
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each species be governed by, on one hand, its own individual growth func-
tion and, on the other hand, its own mark interaction function. Hereby the
amount an individual is affected by its neighbours depends, not only on the
distance to the neighbours and the sizes of these neighbours, but also on the
species of the neighbours. Another interesting extension would be to add a
(Brownian) noise in the mark growth function of the RS-model, for example
by letting the marks be governed by dMi(t) = dmi(t) + dBi(t), where the
Bi(t)’s are independent Brownian motions, so that it incorporates uncertain-
ties in the mark sizes. We then hope to find a full likelihood structure for
this multivariate diffusion type RS-model.
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A Appendix

A.1 Initial estimates for λ, K, c and r

Since K represents the carrying capacity, an upper bound of the marks, it is
sensible to use the largest observed mark value as starting value K0.

Having found K0 we can find an initial estimate of λ. Since the least
interaction among individuals takes place at early time points, i.e. dmi(t) ≈
f(mi(t))dt for small t, by neglecting the interaction term in (1) one ends up
with expression (3). By solving w.r.t. λ in (3), where K0 replaces K and
the largest observed individual at the first sample time point, mmax, replaces
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mi(t), we get as initial estimate of λ

λ0 = − 1

T1

log

(
m0
i (1− mmax

K0
)

mmax(1− m0
i

K0
)

)
.

Recall that m0
i > 0 is the initial size which, if unknown, can be estimated by

the smallest size of all individuals observed throughout all time points.

In the case of r and c, however, no obvious choices of initial values are
present. What is possible, though, is to construct appropriate bounds for r,
r ∈ [rl, ru], which control the optimization and then choose the starting value
for r to be, say, r0 = (ru + rl)/2. Once this is done we choose our starting
value for c to be

c0 = arg max
c∈R

S (λ0, K0, r0, c) .

There is a natural lower bound for r, namely rl = 1, since two trees
cannot grow inside each other. To determine the upper bound, consider the
mark correlation function of a stationary marked point process in R2 (see
[7]), defined as

k(r) =
Eor[mimj]

µ2
m

for r > 0.

Here µm is the mean mark of the process and Eor[mimj] denotes the con-
ditional expectation of the mark-product of a pair of (marked) points of
the process, given the existence of two such points distance r apart. It is
a measure of dependence between the marks of two arbitrary points of the
process a distance r apart. If, for some r, k(r) = 1 then the marks having
inter-point distance r are uncorrelated whereas values of k(r) smaller than 1
indicate inhibition (competition) at distance r and k(r) > 1 is a sign of mu-
tual stimulation (points benefit from having inter-point distance r). Figure
2 illustrates idealized shapes of k(r).

Denote by r∗ the smallest value of r > 0 for which k(r) = 1. This is the
shortest inter-point distance at which there are indications of uncorrelated
marks. In the context of the RS-model, for a fixed time t, r∗ indicates where
the expected influence zone ends, i.e. E[rmi(t)] ≤ r∗. Consider now a time
point at which the marked point pattern generated by the RS-model has
stabilised, here taken as the last sample time point available, Tn. We get
that

r ≤ ru = r∗/E[mi(Tn)].
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We estimate the mean mark at time Tn, E[mi(Tn)], by m̄(Tn), the
average size of the marks present at time Tn. In the case of our test set (see
Section 5.2) the mark correlation plot at T3 = 33 is given by Figure 2. The
mean mark size for T3 = 33 is given by m̄(T3) = 0.0743 and, as can be seen
in Figure 2, r∗ ≈ 1/3, implying that ru = r∗/m̄(T3) ≈ 4.5 thus leading to
r0 = 2.75.

Figure 2: Left: Idealized shapes of different mark correlation functions. Mu-
tual stimulation (dashed), uncorrelated marks (solid) and inhibition (dotted).
Right: Mark correlation plot of our test set (see Section 5.2) at time T3 = 33
(λ = 0.08, K = 0.1, c = 2, r = 2, α = 0.007, µ = 0.02) where r∗ = 1/3.

A.2 Choosing step-lengths

Another issue of importance here are the step-lengths δλ, δK , δc, δr. The
simplest way of choosing δλ, δK , and δr is to choose δλ = λ0, δK = K0, and
δr = r0 − rl since this way we allow for the estimates of these parameters
to reach their minimum values. However, since c ∈ R, choosing δc = c0

is not in any way self-evident. Choosing a too small δc would be more or
less equivalent to keeping it fixed which certainly is not desirable. Although
letting δc be too big may result in slower convergence, trials have shown that
it does not affect the convergence of the estimation as much as keeping it too
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small. Since c and r do not have as natural choices of initial estimates as λ
and K do and because of the strong dependence between them, new starting
values for c and r can be found by starting the minimization, keeping λ = λ0

and K = K0 fixed, and then run the procedure a few times (say Nmax = 50)
with δc chosen big. This generates new estimates of c and r which in turn can
be used as new starting values, c0 and r0, and we can then choose δc to be
this new c0, which we keep throughout the remaining estimation procedure
(including the edge correction parts).

A.3 The estimator for α

When constructing our α-estimator we wish to somehow compensate for the
unobserved individuals who arrive and die during the same interval (Tj−1, Tj),
j = 1, . . . , n.

For each j = 1, . . . , n, let NTj
be the number of individuals observed

at sample times up until Tj, i.e. NTj
=
∣∣∪ji=1ΩTi

∣∣, where Ωt consists of
the indices of the individuals alive at t and |A| denotes the cardinality of
a set A. Further, let B(t) ≥ 0 denote the number of arrivals to W by
time t. Instead of considering ∆B(Tj−1) = ∆NTj−1

, where ∆B(Tj−1) =
B(Tj)−B(Tj−1) and ∆NTj−1

= NTj
−NTj−1

, and let our likelihood be based
on these independent Poi (α(Tj − Tj−1))-distributed increments, as was done
in [16], we here consider

∆B(Tj−1) = ∆NTj−1
(8)

+ E

∆B(Tj−1)∑
k=1

1 {Individual k dies in (Tj−1, Tj)}


︸ ︷︷ ︸

I

,

where 1 {·} is an indicator function. In other words, we add to the observed
increments the expected number of individuals arriving and dying during
(Tj−1, Tj).

Let η∆Tj−1

k denote the lifetime of individual k ∈ {1, . . . ,∆B(Tj−1)} in
(8) and recall that m0

k is its (deterministic) initial size and t0i ∼ Uni(Tj−1, Tj)
its arrival-time (since the jumps of a Poisson process occurring in a given
time interval are uniformly distributed on that interval [9]). By the lack of
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memory property of the exponential distribution and by Fubini’s theorem
the expectation in expression (8) can be written as

I = E

∆B(Tj−1)∑
k=1

1
{
Tj−1 < t0k + η

∆Tj−1

k < Tj

} (9)

= E

E

∆B(Tj−1)∑
k=1

1
{
Tj−1 < t0k + η

∆Tj−1

k < Tj

} ∣∣∣∣∣∆B(Tj−1)


= E

∆B(Tj−1)∑
k=1

1

∆Tj−1

∫ Tj

Tj−1

E
[
1
{
Tj−1 < xk + η

∆Tj−1

k < Tj

}]
dxk


= E

∆B(Tj−1)∑
k=1

1

∆Tj−1

∫ Tj

Tj−1

P
(
η

∆Tj−1

k < Tj − Tj−1

)
dxk


≈ E

∆B(Tj−1)∑
k=1

(
1− e−µρ(m0

i )∆Tj−1

)
= αν(W )∆Tj−1

(
1− e−µρ(m0

i )∆Tj−1

)
.

Since the actual µ is unknown we will replace it by its estimate, µ̂, found in
expression 6. Furthermore, expression (9) also contains α, the parameter we
want to estimate. We deal with this by replacing α by an initial estimate,
namely, α̂0 = NTn/(Tnν(W )), given by (7).

In order for expression (8) to be treated as an actual Poisson process
increment it needs to be integer valued, hence

∆B(Tj−1) = ∆NTj−1
+

⌊
NTn

∆Tj−1

Tn

(
1− e−µ̂ρ(m0

i )∆Tj−1

)⌋
, (10)

where bxc denotes the integer part of x. For convenience we will denote the
right hand side of (10) by H(∆Tj−1,∆NTj−1

, µ̂, NTn). We end up with the
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likelihood function

L(α) =
n∏
j=1

P
(
∆B(Tj−1) = H(∆Tj−1,∆NTj−1

, µ̂, NTn)
)

=
n∏
j=1

e−αν(W )∆Tj−1(αν(W )∆Tj−1)H(∆Tj−1,∆NTj−1
,µ̂,NTn )

H(∆Tj−1,∆NTj−1
, µ̂, NTn)!

and by evaluating d log(L(α))/dα = 0 we finally arrive at the estimator

α̂ =
NTn

Tnν(W )︸ ︷︷ ︸
=α̂0

+
1

Tnν(W )

n∑
j=1

⌊
NTn

∆Tj−1

Tn

(
1− e−µ̂ρ(m0

i )∆Tj−1

)⌋
. (11)

Since µ̂ > 0, ∆Tj−1 > 0 and ρ(x) > 0, for all x > 0, and since f(x) =
1 − e−x is strictly increasing and bounded below by 0 and above by 1, for
x > 0, it is clear that α̂ is increasing with µ̂ and

α̂0 = lim
µ̂→0

α̂|µ̂ < α̂ < lim
µ̂→∞

α̂|µ̂ = α̂0 +
1

Tnν(W )

n∑
j=1

⌊
NTn

∆Tj−1

Tn

⌋
.

For a random variable Z = X+Y it holds that Var(Z) = Var(X)+Var(Y )+
2 Cov(X, Y ). Let now X = α̂0 and let Y be the sum in expression (11). Since
X and Y are positively correlated (both contain NTn) and since Var(Y ) ≥ 0
it is clear that Var(α̂) > Var(α̂0) for all µ̂ > 0. This implies that the trade
off for using α̂ instead of α̂0 is a higher standard error. Furthermore, as α̂ is
increasing with µ̂, so is Var(α̂).

Table 5 gives us the estimated means and standard errors (s.e.) of α̂
(and α̂0) for a few values of µ̂, based on 30 simulated realisations from the
same parameters as the test set (recall that α = 0.007; see Section 5.2).

In estimations of µ based on simulated realisations it has been observed
that there seems to be no indication of over-estimation of µ. As one can see
in Table 5, on average α̂0 under-estimates α more than α̂ does when µ̂ ≤ µ,
in the above scenario indicating that α̂ is preferred to α̂0. Note also the
smaller standard error of α̂0.
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α = 0.007 Est. mean Est. s.e. Est. bias (%)
α̂0 = limµ̂→0 α̂|µ̂ 0.0060 0.0008 -0.00099 (-14%)
α̂ (µ̂ = 0.0002) 0.0060 0.0008 -0.00099 (-14%)
α̂ (µ̂ = 0.002) 0.0061 0.0009 -0.00089 (-13%)
α̂ (µ̂ = 0.02) 0.0074 0.0011 0.00044 (6%)
α̂ (µ̂ = 0.1) 0.0102 0.0014 0.00320 (46%)
α̂ (µ̂ = 0.2) 0.0111 0.0016 0.00411 (59%)
α̂ (µ̂ = 5) 0.0119 0.0017 0.00489 (70%)
limµ̂→∞ α̂|µ̂ 0.0119 0.0017 0.00489 (70%)

Table 5: Estimated means, standard errors (s.e.), and biases of α̂ (and α̂0),
based on 30 simulated realisations from the same parameters as the test set
(see Section 5.2; recall that α = 0.007, µ = 0.02, λ = 0.08, K = 0.1, c = 2,
and r = 2).
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