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Printed in Göteborg, Sweden 2010



Inference in a Partially Observed Percolation Process

Oscar Hammar

Abstract

In this licentiate thesis, inference in a partially oberved percolation pro-
cess living on a graph, is considered. Each edge of the graph is declared
open with probability θ and closed with probability 1−θ independently of
the states of all other edges. The inference problem is to draw inference
about θ based on the information on whether or not particular pairs of
vertices are connected by open paths.

Consistency results under certain conditions on the graph are given
for both a Bayesian and a frequentist approach to the inference problem.
Moreover, a simulation study is presented which in addition to illustrating
the consistency results, also indicates that the consistency results might
hold for percolation processes on more general graphs.

Keywords: Percolation, Bayesian inference, frequentistic inference, con-
sistency, Markov chain Monte Carlo, Monte Carlo Expectation Maximiza-
tion.
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Göteborg, September 24, 2010

v



vi



1 Introduction

Percolation theory, introduced in 1957 by Broadbent and Hammersley
[2], is a branch of probability theory that describes the behaviour of
connected clusters in a random graph. We consider a particular class
of percolation processes called bond percolation. Staring with a fixed
graph (finite or infinite) each edge is declared open with probability θ
and closed with probability 1− θ independently of the states of all other
edges. The random graph containing only open edges is a realisation of
a percolation process.

The majority of research on percolation theory has centred around the
so called critical phenomena of percolation processes, the main example
being the sudden change of the probability of existence of an infinite open
cluster from 0 to 1 as a function of θ.

From an applied point of view, a percolation process can model disor-
dered media of various kinds. Applications of percolation theory can be
found in a variety of fields, mainly in the area of statistical mechanics but
also in as diverse applications as animal movement [12] and groundwater
hydrology [1].

Despite the wide range of applications of percolation theory, there is
little published on statistical inference in percolation processes. Anyhow,
there are some results. For example, Meester and Steif [17] presented
consistent estimators for quantities of fully observed percolation processes
on a particular kind of graph. Also, Larson [15] considered an estimation
problem on a model related to the one we study.

The statistical inference problem considered in the present paper is
the following. Given a realisation of the bond percolation process we
observe for any of a number of pairs of vertices whether or not the pair
is connected by an open path. Based on these observations we want to
draw inference about θ.

As an illustration of the statistical inference problem, we may think of
a fractured rock mass. The percolation process models a system of cracks
in the rock mass. Each edge in the graph corresponds to a crack and water
can penetrate a particular crack if and only if the corresponding edge is
open. Several boreholes are drilled into the fractured rock mass and
water is pumped into one borehole at a time. For each of the boreholes
we observe whether or not water can penetrate to the others. Based
on these observations we want to estimate the proportion of penetrable
cracks.

We consider both a Bayesian and a frequentist approach to the infer-
ence about θ and prove a consistency result in each setting under certain
conditions on the graph. In the Bayesian setting the result states that
asymptotically the posterior accumulates almost surely around the ’true’
value of θ as the number of observations increase. In the frequentist
setting, the consistency result states that the maximum likelihood esti-
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mate of θ converges almost surely to the true value as the number of
observations increase.

We also present algorithms to compute the relevant quantities in the
Bayesian and frequentist approach. In the Bayesian approach we use a
Markov chain Monte Carlo method and in the frequentist approach we
use a stochastic version of the EM-algorithm. We evaluate the accuracy
of the Bayesian and the frequentist approaches to the inference problem
in a simulation study.

The paper is organized as follows. In Section 2 we introduce the per-
colation process an the data from the process. We also introduce the
particular class of graphs for which we develop the theory in the follow-
ing sections. In Section 3 we present consistency results for percolation
processes on the particular class of graphs. The proofs of these results
are given in Section 4.

In Sections 5 and 6 we give background on some relevant simulation
methods. We also introduce the Block Updating MCMC which is an
MCMC algorithm suitable for the problem we consider. In Section 7 we
prove that the Block Updating MCMC has the necessary properties to
converge in an appropriate way.

In Section 8 we introduce the simulation study. In Section 9 and 10
we specify starting values, stopping rules and choices of parameters of
the algorithms we use in the simulation study. The simulation results are
given in Section 11. Section 12 is a conclusion of the paper.

2 The percolation process and the data

We begin with some definitions. A graph G = (V,E) is an ordered pair of
sets where the first set, V , is a finite or countably infinite set of vertices
and the second set, E, is a set of edges.

An edge is defined to be an unordered pair of vertices. We represent
an edge between vertices v and w by 〈v, w〉. A path between vertices v0
and vn is defined to be an alternating sequence v0, e0, v1, e1, . . . , en−1, vn

of distinct vertices vl and edges el = 〈vl, vl+1〉, l = 0, 1, . . . , n− 1.

Two vertices are connected if there is a path between the vertices. A
cluster is a set of connected vertices. A graph is connected if any two of
its edges are connected. A graph is said to be finite if its set of edges has
finitely many elements.

We use V (G) and E(G) to denote the vertex set and the edge set of
the graph G. Two graphs, G and H , are said to be isomorphic if there
is a bijection b : V (G) → V (H) such that any two vertices v and w in G
are connected by an edge in G if and only if b(v) and b(w) are connected
by an edge in H .
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Figure 1: Left: A graph G on which a percolation process
lives. Middle: A realisation u of the percolation process U on
G generated by Pθ with θ = 0.3. Right: A realisation u of the
percolation process U on G generated by Pθ with θ = 0.7.

2.1 The percolation process on a general finite graph

We now define a bond percolation process on a graphG = (V,E). If |E| =
m, then we define U = {0, 1}m. An element u = (u1, . . . , um) of U is thus
an m-tuple of 0’s and 1’s. Each coordinate of u is associated with an edge
e ∈ E and a given edge e ∈ E is said to be open if the corresponding
coordinate of u is 1, and closed if the corresponding coordinate of u is
0. Consequently, each u ∈ U corresponds to a graph obtained from G
by removing all closed edges, i.e. removing those edges corresponding
to a coordinate of u which is 0. We refer to an element u of U as a
configuration and will not distinguish between a configuration u and the
associated graph.

We now introduce a random variable U which we identify with the
percolation process on G. Let U be defined on a sufficiently large sample
space (Ω,F) and taking values in the set U of configurations. We let
o(u) =

∑m
i=1 ui denote the number of open edges in the configuration

u and for each θ in the parameter space Θ = [0, 1] ⊂ R, we define the
measure Pθ on (Ω,F) by

Pθ(U = u) = θo(u)(1 − θ)m−o(u), (2.1)

with m, as before denoting the total number of edges in the graph G.
We also introduce the density (w.r.t counting measure) pθ of the random
variable U:

pθ(u) = Pθ(U = u). (2.2)

The right hand side of Equation (2.1) is a product of m terms; the
number of terms equal to θ being o(u) and the number of terms equal to
1−θ being m−o(u). Thus from Equation (2.1) it follows that for a large
value of θ, pθ(u) is large if o(u) - the number of open edges in u - is large,
and if instead θ is small, pθ(u) is large if o(u) is small. Consequently,
for a large value of θ, a typical realisation u of U has many 1’s which

4



corresponds to a graph with many open edges and a typical realisation
u of U has few 1’s which corresponds to a graph with few open edges.
Figure 1 gives an example of this for a percolation process on a tiny
graph.

2.2 The data from a percolation process on a general
finite graph G = (V,E)

In our set-up one does not observe the full realisation u of the percolation
process U. We consider the case when the data one observes is whether
or not particular pairs of vertices are connected by an open path. We
denote the event that there exists an open path between vertices v and
w by {v ↔ w}.

Let O be any subset of the vertex set V with at least two elements
and D be the set of unordered pairs of elements of O. An element of O
is referred to as an observation point and consequently an element of D
is referred to as a pair of observation points.

We collect all indicator variables of connectedness of pair of observa-
tion points in a vector X. Assume there are d pairs of observation points
in D and fix an ordering of these pairs of observation points. For each
l ∈ {1, . . . , d}, we define the random variable Xl to be the indicator vari-
able of connectedness of the lth pair of observation points in D. Thus, if
(o1, o2) denotes the lth pair of observation points of D, then

Xl(U) = I{o1↔o2}(U).

The definition of Xl states that given a realisation u of U, Xl(u) = 1 if
the lth pair of vertices in D is connected by an open path in the graph
corresponding to u, and 0 otherwise.

We refer to the vector X(u) = (X1(u), . . . , Xd(u)) as the data from
the percolation process on G and define the density

pX|θ(x) = Pθ{u : X(u) = x}.

Assume a realisation u of the percolation process U has been gen-
erated according to Pθ, for some θ ∈ Θ. The observed values of the
coordinates of X(u) carry some information about θ. We now explain
this.

From the definition of Pθ, Equation (2.1), it follows that if the reali-
sation u was generated by Pθ for a θ close to zero, then it is likely that
the number of open edges, o(u), is relatively small and the probability of
these open edges creating an open path between two observation points
o1 and o2 is small. In contrast, if the realisation u was generated by Pθ

for a θ close to one, then it is likely the number of open edges, o(u), is
relatively large and the probability that there is an open path between
the observation points o1 and o2 is close to 1. Consequently, observing
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Figure 2: Left: A graph G on which a percolation process
lives. Middle: An example of a of a set of observation points
O = {u, v, w} ⊂ V is marked. Right: A realisation u of the
percolation process U on G generated by Pθ with θ = 0.47.
This particular realisation gives I{u↔v}(u) = 1, I{u↔w}(u) =
0, I{v↔w}(u) = 0.

I{o1↔o2}(u) = 1 makes large values of θ more plausible than small values
of θ. This paper concerns the inference of θ ∈ Θ based on the data X

containing the indicator variables of connectedness of particular pairs of
vertices.

The random variable X is well-defined as long as an ordering ≺D of
the elements of D is fixed. We now give an example of an ordering ≺D

in a special case and at the same time illustrate how the data X depends
on the realisation u of U. Keep in mind that the actual ordering is not
of importance. What is important is the existence of an ordering.

Example 2.1. In this example we consider the percolation process on the
graph G to the left in Figure 2. Each vertex of this graph is a vector with
two coordinates, one for the x-direction and one for the y-direction.

Since an element of D is an unordered pair of elements of O, it is
natural to base an ordering ≺D of the elements in D on an ordering ≺O

of the elements in O. A natural ordering of the elements of O in this case
is the lexicographic ordering: if (x1, y1) and (x2, y2) are two elements
of O, then (x1, y1) ≺O (x2, y2) if and only if x1 < x2 or (x1 = x2 and
y1 < y2).

Similarly, the ordering ≺D defined from ≺O can be given as follows.
If (o1, o2) and (o′1, o

′
2) are two elements in D, with o1 ≺O o2 and o′1 ≺O o′2

then (o1, o2) ≺D (o′1, o
′
2) if and only if o1 ≺O o′1 or (o1 = o′1 and o2 ≺O o′2).

For the set of observation points O = {u, v, w} with u = (2, 9), v =
(3, 2) and w = (8, 6) indicated in the middle picture of Figure 2, we have
u ≺O v ≺O w which implies the following ordering of the elements of D:
(u, v) ≺D (u,w) ≺D (v, w).

Enumerating the elements of D in ascending order according to ≺D

gives for the particular realisation u of U in the graph to the right in
Figure 2, X(u) = (Iu↔v(u), Iu↔w(u), Iv↔w(u)) = (1, 0, 0).
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Figure 3: Left: A graph G. Right: The graph G4, the union
of four graphs isomorphic to G.

2.3 The graph Gn and the data Xn

In Section 3 we present consistency results for the inference problem intro-
duced in this section. The consistency results are shown for percolation
processes on a particular class of graphs.

Let G = (V,E) be a finite connected graph with vertex set V =
{v1, . . . , vN}. For each k ∈ N, we define a graph Gk = (Vk, Ek) with
vertex set Vk = {vk,1, . . . , vk,N} isomorphic to G by means of the bijection
bk(vl) = vk,l.

The special class of graphs we consider in the next sections is, for
n ∈ N, Gn = (V n, En) with V n = ∪n

k=1Vk and En = ∪n
k=1Ek. Thus, Gn

is the union of n copies of the graph G. We refer to G as the base graph
of Gn and to Gk as the kth primary subgraph of Gn. Figure 3 gives an
example of the type of graph considered here.

For each k ∈ N we define Ok, Dk, Xk, dk and pXk|θ analogously
to the definitions of O, D, X, d and pX|θ in Section 2.2. In partic-

ular, Ok is a subset of the vertices of the kth primary subgraph and
Xk = (Xk,1, . . . , Xk,dk

) contains all indicator variables on connectedness
of pairs of elements in Ok and

pXk|θ(xk) = Pθ{u : Xk(u) = xk}.

Moreover, we define Xn = (X1, . . . ,Xn) and the density

pXn|θ(x
n) = Pθ{u : Xn(u) = xn}.

3 Two approaches to the inference problem

Given data from the percolation process we want to draw inference about
θ. We consider both a Bayesian and a frequentist approach. In this
section we introduce the two approaches and state a consistency result
for a percolation process on the graph Gn for each approach.
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3.1 The Bayesian approach

In the Bayesian approach, θ is viewed as a random variable. As before
Θ = [0, 1] denotes the parameter space of the percolation process and
we let B(Θ) denote the Borel σ-algebra on Θ. A probability distribution
(the prior), here denoted by Π, reflecting the investigator’s belief, is put
on (Θ,B(Θ)).

When data X are observed from the percolation process, the prior is
updated to a posterior distribution, Π(·|X), given by, for A ∈ B(Θ):

Π(A|X) =

∫

A
pX|θ(X)Π(dθ)

∫

Θ
pX|θ(X)Π(dθ)

.

A desirable property of a sequence of posterior distributions is that
of consistency.

Definition 3.1. A sequence {Πn}∞n=1 of posterior distributions is said
to be strongly consistent at θ if for each neighbourhood U of θ,

lim
n→∞

Πn(U) = 1 Pθ-a.s.

Note that Definition 3.1 defines consistency at a particular θ. There
are two types of consistency in the Bayesian setting. The weaker form is
consistency for all parameter values θ in a set of prior measure 1. Thus,
this form of Bayesian consistency does not guarantee consistency at a
particular parameter value θ̄ of interest since this θ̄ may belong to a null
set for which one does not have consistency.

The stronger form of Bayesian consistency is based on the frequen-
tistic idea of a ’true’ value of θ. This ’frequentistic’ consistency of a
Bayesian inference procedure means that if observations from the pro-
cess would be generated under θ̄, then the posterior would accumulate in
suitably defined neighbourhoods of θ̄. For a discussion of the two forms
of Bayesian consistency see e.g. Ghosal [8].

We prove the stronger form, i.e. the ’frequentistic’ consistency, of the
Bayesian inference procedure. The proof of the following theorem is given
in the next section.

Theorem 3.2. Consider data Xn from a percolation process on the graph
Gn. If the prior Π has support Θ, then the sequence of posterior distri-
butions {Π(·|Xn)}∞n=0 is consistent at all θ ∈ Θ.

3.2 The frequentist approach

In the frequentist approach, when data X is observed from a percolation
process, one wants to compute the maximum likelihood estimate (MLE),

θ̂(X), the maximizer of the likelihood function:

θ̂(X) = argmaxθ∈ΘL(θ,X),
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with L(θ,X) = pX|θ(X) viewed as a function of θ. As in the Bayesian
approach, consistency is a desirable property.

Definition 3.3. A sequence of estimators hn is strongly consistent for θ
if it converges almost surely to θ, i.e. if

lim
n→∞

hn = θ a.s.

The proof of the following theorem is also given in the next section.

Theorem 3.4. Consider data Xn from a percolation process on the
graph Gn. The sequence of maximum likelihood estimators {θ̂(Xn)}∞n=1

is strongly consistent for θ.

3.3 Consistency for percolation processes on more
general graphs

The results in this section states consistency for sequences of posteriors
and MLE’s from percolation processes on a particular type of graph, Gn,
with a special structure.

The structure of Gn implies that all information on connectedness of
pairs of observation points in the first n primary subgraphs is contained
in Xn = (X1, . . . ,Xn) and that Xi and Xj are independent for i 6= j.
This independence is important for the proofs of the consistency results
given in Section 3.

It would be preferable to prove consistency also for percolation pro-
cesses on more general graphs. Although we have not been able to prove
such more general results, we present in the simulation study some nu-
merical results, which indicate that the consistency theorems presented
here may hold for more general graphs.

That one can not expect the consistency results to hold for inference
from a percolation process on any graph is demonstrated in the following
example.

Example 3.5. Consider a percolation process on the graph G = (V,E)
with V = N and E = {〈k, k + 1〉 : k ∈ N} and with observation points
O = {2k : k ∈ N}. The special structure of G in this case implies that
all information from the connectedness of the pairs of observation points
in D = {(o1, o2) ∈ O2 : o1 < o2} is contained in the information of the
connectedness of the observation points in the subset D′ = {(2k, 2(k+1)) :
k ∈ N}. Define for each pair of observation points in D′ a random variable
X ′

k by X ′
k = I{2k↔2k+1} and let X′

n = (X ′
1, . . . , X

′
n).

A necessary condition for infinitely many pairs of observation points
in D′ to be connected is that Pθ(lim supk→∞ 2k ↔ 2k+1) 6= 0. But for any
θ ∈ Θ \ {1} we have

∑

k∈N
Pθ(2

k ↔ 2k+1) <∞, which by the first Borel-

Cantelli Lemma [6] implies that Pθ(lim supk→∞ 2k ↔ 2k+1) = 0. We
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conclude that, almost surely, the number of connected pairs of observation
points in D′ is finite. From this we conclude that there is a positive
probability that no pair of D′ is connected, i.e. X′

n = 0 ∀n.
Assume the event occurs that no pair of observation points in D′

is connected. Then for any θ ∈ Θ \ {1}, the sequence of likelihoods
{Pθ(X

′
n = 0)}∞n=1 converges to a positive value. This means that the

MLE is not consistent for any θ ∈ Θ \ {1}.
Likewise, for the Bayesian inference, since the posterior distribution

is proportional to the likelihood function, the sequence of posterior dis-
tributions Π(·|Xn) is not consistent for any θ ∈ Θ \ {1}.

4 Proofs of Theorem 3.2 and Theorem 3.4

We commence the proofs of Theorems 3.2 and 3.4 with some definitions
and preliminary results that are used in both proofs. The percolation
process in Theorems 3.2 and 3.4 lives on the graph Gn, i.e. the union
of n graphs, G1, . . . , Gn, that are isomorphic to a base graph G. The
special structure of Gn implies that the elements Xi and Xj of the data
Xn = (X1 . . . ,Xn) from the percolation process on Gn are independent
for i 6= j. The main idea of the proofs of Theorems 3.2 and 3.4 is to
consider subsequences of (X1 . . . ,Xn) with independent and identically
distributed elements.

Recall that V denotes the vertex set of the base graph G and let O

denote the set of all subsets of V with at least two elements. Assume the
cardinality of O is s and let O(1), . . . ,O(s) represent the elements of O.
Recall also the definition of the bijections bk given in Section 2.3.

For Γ ∈ {1, . . . , s}, we let IΓ = {k ∈ N : b−1
k (Ok) = O(Γ)} denote

the index set of primary subgraphs with observation points isomorphic

to O(Γ). We also define I
(n)
γ = Iγ ∩ {1, . . . , n}. Now, for each Γ ∈

{1, . . . , s}, (Xγ)
γ∈I

(n)
Γ

is a subsequence of Xn = (Xi)
n
i=1 with independent

and identically distributed elements. If γ ∈ IΓ, then we say that the
primary subgraph Gγ generates a data vector of the Γth type.

We can now write the pmf pXn|θ of the data Xn = (Xi)
n
i=1 as product

of the pmf’s of the iid subsequences,

pXn|θ(x
n) =

s
∏

Γ=1

∏

γ∈I
(n)
Γ

pXγ |θ(xγ).

Next, we give monotonicity results for two quantities, each used in the
proof of one of Theorems 3.2 and 3.4. Recall that Xγ = (Xγ,1, . . . , Xγ,dγ

)
is the data from the γth primary subgraph of Gn. In accordance with
earlier notation, we let pXγ,1|θ denote the marginal pmf of the element
Xγ,1 of Xγ .

10



Lemma 4.1. For γ in IΓ for any Γ ∈ {1, . . . , s}, the following holds.

(a) The marginal pmf pXγ,1|θ(·) of the first element of Xγ evaluated in
1 is strictly increasing in θ.

(b) The full pmf pXγ |θ(·) evaluated in 1 = (1, . . . , 1) is strictly increas-
ing in θ.

Proof. The assertions follow from a standard coupling argument. See e.g.
Lindvall, page. 144 [16].

We let B(θ, η) = {θ′ ∈ Θ : |θ − θ′| < η} denote the open ball in Θ
with centre in θ and radius η and let Bc(θ, η) = Θ \ B(θ, η) denote its
complement.

4.1 Definitions and preliminary results for the proof
of Theorem 3.2

Our proof of Theorem 3.2 is modelled after Choi and Ramamoorthi [4].
Before we proceed to the proof we need to fix some notation and some
definitions.

Definition 4.2. Let f and g be two pmf’s and X be the intersection of
the support of f and g. The affinity between f and g is denoted Aff(f, g)
and is given by

Aff(f, g) =
∑

x∈X

√

f(x)g(x).

Note that Aff(f, g) for any two pmf’s f and g satisfies 0 ≤ Aff(f, g) ≤ 1
and that Aff(f, g) = 1 if and only if f(x) ≡ g(x).

Definition 4.3. If fθ is a pmf parametrized by θ ∈ Θ and ν is a measure
on Θ, then qν(fθ) is the pmf

qν(fθ)(·) =

∫

Θ

fθ(·)ν(dθ).

We state a property of the affinity between two marginal pmf’s in
relation to the affinity between the full pmf’s which will be used several
times in the proofs in the next section.

Lemma 4.4. Let X1 and X2 be two discrete random vectors taking val-
ues in X1 and X2 respectively. If f(X1,X2) and g(X1,X2) are two joint
pmf’s of (X1, X2) and fX1(·) =

∑

x2∈X2
f(X1,X2)(·, x2) and gX1(·) =

∑

x2∈X2
g(X1,X2)(·, x2) are the corresponding marginal pmf’s, then

Aff(f(X1,X2), g(X1,X2)) ≤ Aff(fX1 , gX1).

11



Proof. Let fX2|X1
(·|x1) = fX2(·)/f(X1,X2)(x1, ·) be the conditional pmf

of f(X1,X2) and let gX1|X2
(·|x2) be defined analogously. Then

Aff(f(X1,X2), g(X1,X2))

=
∑

x1∈X1

∑

x2∈X2

√

fX2|X1
(x2|x1)fX1(x1)gX2|X1

(x2|x1)gX1(x1)

=
∑

x1∈X1

√

fX1(x1)gX1(x1)
∑

x2∈X2

√

fX2|X1
(x2|x1)gX2|X1

(x2|x1)

=
∑

x1∈X1

√

fX1(x1)gX1(x1)Aff(fX2|X1
(·|x1)gX2|X1

(·|x1))

≤
∑

x1∈X1

√

fX1(x1)gX1(x1)

= Aff(fX1 , gX1).

where the inequality follows from the fact that 0 ≤ Aff(f, g) ≤ 1 for any
pmf’s f and g.

4.2 Proof of Theorem 3.2

To prove Theorem 3.2 we need to show that for any θ̄ ∈ Θ and any η > 0,

Π(B(θ̄, η)|Xn) → 1 Pθ̄-a.s.

or equivalently that for any θ̄ ∈ Θ and any η > 0,

Π(Bc(θ̄, η)|Xn) → 0 Pθ̄-a.s.

We write Π(Bc(θ̄, η)|Xn) as

Π(Bc(θ̄, η)|Xn) =
JBc(θ̄,η)(X

n)

J(Xn)
,

where

JBc(θ̄,η)(X
n) =

∫

Bc(θ̄,η)

pXn|θ(X
n)

pXn|θ̄(X
n)

Π(dθ)

and

J(Xn) =

∫

Θ

pXn|θ(X
n)

pXn|θ̄(X
n)

Π(dθ).

We deal with the numerator and the denominator of Π(Bc(θ̄, η)|Xn) sepa-
rately. Lemma 4.5 below takes care of the denominator of Π(Bc(θ̄, η)|Xn).
It is a standard ingredient in proofs of consistency results in the Bayesian
setting. For a proof see Ghosh and Ramamoorhi [9].
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Lemma 4.5. If the support of Π is Θ, then for all β > 0,

lim
n→∞

enβJ(Xn) = ∞ Pθ̄-a.s.

Now fix θ̄ ∈ Θ and note that Theorem 3.2 will follow from Lemma
4.5 if we also prove that for any η > 0 and some β0 > 0

lim
n→∞

enβ0JBc(θ̄,η)(X
n) = 0 Pθ̄-a.s. (4.1)

To prove the assertion in Equation (4.1) we use the affinity introduced
above. We establish in Lemma 4.8 below that for any η > 0 and for any
probability measure ν on Bc(θ̄, η) and for all sufficiently large n,

Aff(pXn|θ̄, qν(pXn|θ)) < e−αn for some α > 0. (4.2)

Then, by relating the affinity, Aff(pXn|θ̄, qν(pXn|θ)), for a particular choice

of measure ν, to the expectation Eθ̄[JBc(θ̄,η)(X
n)

1
2 ] we can in Lemma 4.9

below prove the convergence in Equation (4.1).
We now discuss how we prove Equation (4.2), which is done in a few

steps. We first fix Γ ∈ {1, . . . , s} and consider the subsequence (Xγ)
γ∈I

(n)
Γ

of Xn = (Xi)
n
i=1 of identically distributed elements and show in Lemma

4.6 below that for any η > 0 and any probability measure ν on Bc(θ̄, η)

Aff(p
(2)

Xγ |θ̄
, qν(p

(2)
Xγ |θ

)) < δ for some δ > 0. (4.3)

The next step is to show that for any η > 0 and any probability measure
ν on Bc(θ̄, η) and for all m ∈ N

Aff(p
(m)

Xγ |θ̄
, qν(p

(m)
Xγ |θ

)) < ke−mβ for some β > 0, k > 0.

This is done in Lemma 4.7.
Then, since (Xγ)

γ∈I
(n)
Γ

with pmf p
(m)

Xγ |θ̄
, where m = |I

(n)
Γ |, is a subse-

quence of Xn = (Xi)
n
i=1 with pmf pXn|θ̄, the assertion in Equation (4.2)

can be proven from the assertion in Equation (4.2) by using the relation
between the affinity of the pmf’s of a subsequence and the pmf’s of the
full sequence stated in Lemma 4.4.

The reason that we use the second power of pXγ |θ̄ instead of the first
power in Equation (4.3) is that the corresponding statement for the first
power of pXγ |θ̄ does not hold in general.

Lemma 4.6. Fix Γ in {1, . . . , s} and let γ ∈ IΓ. For any η > 0 there is
a δ > 0 such that for any probability measure ν on Bc(θ̄, η) we have

Aff(p
(2)

Xγ |θ̄
, qν(p

(2)
Xγ |θ

)) < δ. (4.4)

13



Proof. Fix η > 0. Recall that pXγ,1|θ denotes the marginal pmf of the first
element of Xγ = (Xγ,1, . . . , Xγ,dγ

). To prove Equation (4.4) it suffice, by
Lemma 4.4, to show that there is a δ > 0 such that for any probability
measure ν on Bc(θ̄, η) we have

Aff(p
(2)

Xγ,1|θ̄
, qν(p

(2)
Xγ,1|θ

)) < δ. (4.5)

For notational simplicity we let in this proof fθ = pXγ,1|θ and rewrite
Equation (4.5) as

Aff(f
(2)
θ , qν(f

(2)
θ )) < δ.

We apply a proof of contradiction. Assume there is a probability mea-

sure µ on Bc(θ̄, η) such that Aff(f
(2)
θ , qµ(f

(2)
θ )) = 0, or equivalently that

f
(2)
θ and qµ(f

(2)
θ ) are identical. In particular the probability measure µ

satisfies
{

qµ(f
(2)
θ )(1, 1) = f

(2)

θ̄
(1, 1)

qµ(f
(2)
θ )(1, 0) = f

(2)

θ̄
(1, 0).

(4.6)

Partition Bc(θ̄, η) into Θ− = [0, θ̄ − η] and Θ+ = [θ̄ + η, 1]. For any

probability measure ν on Bc(θ̄, η) the corresponding pmf qν(f
(2)
θ ) can

be written as a weighted average of two pmf’s f
(2)
θ− and f

(2)
θ+ for some

θ− ∈ Θ− and θ+ ∈ Θ+:

qν(f
(2)
θ )(x1, x2) = f

(2)
θ− (x1, x2)ν(Θ

−) + f
(2)
θ+ (x1, x2)ν(Θ

+), (4.7)

where θ− =
∫

Θ− θν(dθ) and θ+ =
∫

Θ+ θν(dθ). In particular, the pmf

qµ(f
(2)
θ ) has the representation

qµ(f
(2)
θ )(x1, x2) = f

(2)
θ− (x1, x2)µ(Θ−) + f

(2)
θ+ (x1, x2)µ(Θ+) (4.8)

for some θ− ∈ Θ− and θ+ ∈ Θ+. Recall that f
(2)
θ (x1, x2) represents

fθ(x1)fθ(x2) and define µ− = µ(Θ−). Now Equation (4.8) can be rewrit-
ten as

qµ(f
(2)
θ )(x1, x2) = fθ−(x1)fθ−(x2)µ

− + fθ+(x1)fθ+(x2)(1 − µ−).
(4.9)

Now, let for θ ∈ Θ, p(θ) represent the success probability p(θ) = fθ(1)
and define p0 = p(θ̄), p− = p(θ−) and p+ = p(θ+). If we let g(p) = p2

and h(p) = p(1− p), then the system of equations (4.6) can by Equation
(4.9) be expressed as

{

g(p−)µ− + g(p+)(1 − µ−) = g(p0)
h(p−)µ− + h(p+)(1 − µ−) = h(p0).

(4.10)

Solving these equations for µ− gives
{

µ− = (g(p0) − g(p+))/(g(p−) − g(p+))
µ− = (h(p0) − h(p+))/(h(p−) − h(p+)).

(4.11)
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Recall that fθ(1) = pXγ,1|θ(1), which by Lemma 4.1(a) is monotonically
increasing in θ. Therefore, we have p− < p0 < p+ and we can thus write
p0 = tp− + (1 − t)p+ for some t ∈ (0, 1). Noticing that g(p) = p2 is a
convex function, we have that the first equation of (4.11) gives

µ− =
g(tp− + (1 − t)p+) − g(p+)

g(p−) − g(p+)

<
tg(p−) + (1 − t)g(p+) − g(p+)

g(p−) − g(p+)

= t.

Noticing that h(p) = p(1 − p) is a concave function, a similar computa-
tion shows that the second equation of (4.11) gives µ− > t. This is a
contradiction and the proof is completed.

Lemma 4.7. Fix Γ in {1, . . . , s} and let γ ∈ IΓ. For any η > 0 and any
probability measure ν on Bc(θ̄, η) and for all m ∈ N

Aff(p
(m)

Xγ |θ̄
, qν(p

(m)
Xγ |θ

)) < ke−mβ for some β > 0, k > 0.

Proof. Fix η > 0. The first step of the proof is to show that for some
β > 0

Aff(p
(m)

Xγ |θ̄
, qν(p

(m)
Xγ |θ

)) < e−mβ for all even m and

for all prob. measures ν on Bc(θ̄, η).

(4.12)

We show this by induction on even m. The base case, when m = 2,

Aff(p
(2)

Xγ |θ̄
, qν(p

(2)
Xγ |θ

)) < e−2m for all probability measures ν on Bc(θ̄, η),

(4.13)
follows from Lemma 4.6 with β = − 1

2 log(δ). The induction hypothesis
is

Aff(p
(m)
Xγ |θ

, qν(p
(m)
Xγ |θ

)) < e−mβ for all probability measures ν on Bc(θ̄, η).

(4.14)
Assuming the induction hypothesis is true we show that

Aff(p
(m+2)
Xγ |θ

, qν(p
(m+2)
Xγ |θ

)) < e−(m+2)β for all prob. measures ν on Bc(θ̄, η).

(4.15)
For this, we write the affinity of the (m + 2)th power of pXγ |θ in terms

of the affinity of the second and mth powers of pXγ |θ. Let X denote the

range of the random variable Xγ and write the affinity of the (m+ 2)th

15



power of pXγ |θ as

Aff(p
(m+2)

Xγ |θ̄
, qν(p

(m+2)
Xγ |θ

))

=
∑

xm∈Xm

p
(m)

Xγ |θ̄
(xm)

1
2

×
∑

x2∈X 2

p
(2)

Xγ |θ̄
(x2)

1
2

∫

Bc(θ̄,η)

p
(2)
Xγ |θ

(x2)
1
2 p

(m)
Xγ |θ

(xm)
1
2 ν(dθ).

(4.16)

Now, multiplying and dividing each term in the summation over Xm by
∫

Bc(θ̄,η)
p
(m)
Xγ |θ

(xm)
1
2 ν(dθ) gives that

Aff(p
(m+2)

Xγ |θ̄
, qν(p

(m+2)
Xγ |θ

))

=
∑

xm∈Xm

p
(m)

Xγ |θ̄
(xm)

1
2

∫

Bc(θ̄,η)

p
(m)
Xγ |θ

(xm)
1
2 ν(dθ)

×
∑

x2∈X 2

p
(2)

Xγ |θ̄
(x2)

1
2

∫

Bc(θ̄,η)

p
(2)
Xγ |θ

(x2)
1
2

p
(m)
Xγ |θ

(xm)
1
2

∫

Bc(θ̄,η)
p
(m)
Xγ |θ

(xm)
1
2 ν(dθ)

ν(dθ).

(4.17)

For each fixed outcome xm, the sum in the last row of Equation (4.17) is

Aff(p
(2)

Xγ |θ̄
, qνxm (p

(2)

Xγ |θ̄
)) where the measure νxm over Θ has density with

respect to ν given by

p
(m)
Xγ |θ

(xm)
1
2

∫

Bc(θ̄,η) p
(m)
Xγ |θ

(xm)
1
2 ν(dθ)

.

Thus, by the base case, Equation (4.13), for each fixed outcome xm,
the sum in the last row of Equation (4.17) is smaller than e−2β. The

sum in the second last row of (4.17) is Aff(p
(m)

Xγ |θ̄
, qν(p

(m)
Xγ |θ

)) which by

the induction hypothesis, Equation (4.14), is smaller than e−mβ. We

conclude that Aff(p
(m+2)

Xγ |θ̄
, qν(p

(m+2)
Xγ |θ

)) < e−(m+2)β for all even m.

To complete the proof we need to consider also uneven powers of
pXγ |θ. Let m be even and notice that by Lemma 4.4, with k = eβ , we
also have

Aff(p
(m+1)

Xγ |θ̄
, qν(p

(m+1)
Xγ |θ

)) ≤ Aff(p
(m)

Xγ |θ̄
, qν(p

(m)
Xγ |θ

)) ≤ e−mβ = ke−(m+1)β.

Lemma 4.8. For any η > 0, for any probability measure ν on Bc(θ̄, η)
and for all sufficiently large n,

Aff(pXn|θ̄, qν(pXn|θ)) < e−αn for some α > 0.
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Proof. As noted in the beginning of this section, the pmf of the data Xn

can be expressed as

pXn|θ(x
n) =

s
∏

Γ=1

∏

γ∈I
(n)
Γ

pXγ |θ(xγ),

where for each Γ ∈ {1, . . . , s},
∏

γ∈I
(n)
Γ

pXγ |θ(xγ) is the pmf of a num-

ber of identically distributed vectors. Define cΓ for Γ ∈ {1, . . . , s} by

cΓ = 1
2 lim infn→∞(|I

(n)
Γ |/n). For some Γ we have cΓ > 0. Assume for

notational simplicity that c1 > 0 and let mn = |I
(n)
1 |.

Consider now the subsequence (Xγ)
γ∈I

(n)
1

of Xn = (Xi)
n
i=1 of iden-

tically distributed vectors with pmf
∏

γ∈I
(n)
1
pXγ |θ = p

(mn)

X1|θ̄
. By Lemma

4.4 the affinity of two marginal pmf’s is greater or equal to the affinity
of the full pmf’s, and hence

Aff(pXn|θ̄, qν(pXn|θ)) ≤ Aff(p
(mn)

X1|θ̄
, qν(p

(mn)
X1|θ

)) (4.18)

Moreover, by Lemma 4.7 we have that for all sufficiently large mn

Aff(p
(mn)

X1|θ̄
, qν(p

(mn)
X1|θ

)) ≤ ke−mnβ . (4.19)

Furthermore, for sufficiently large n, we have that mn = |I
(n)
1 | is suffi-

ciently much larger than nc1 and for such n we have

ke−mnβ ≤ e−c1nβ (4.20)

Thus, with α = c1β the lemma follows from equations (4.18), (4.19) and
(4.20).

Lemma 4.9. For any η > 0, for some β0 > 0

lim
n→∞

enβ0JBc(θ̄,η)(X
n) = 0 Pθ̄-a.s.

Proof. Recall JBc(θ̄,η)(X
n) =

∫

Bc(θ̄,η)

pXn|θ(Xn)

p
Xn|θ̄(Xn)dΠ(θ). Let Π⋆ denote the

probability measure obtained by restricting Π to Bc(θ̄, η) and normalizing
it. The key to the proof is to observe that

Eθ̄[(JBc(θ̄,η)(X
n))

1
2 ] = Π(Bc(θ̄, η))

1
2 Aff(pXn|θ̄, qΠ⋆(pXn|θ)), (4.21)

which follows directly from expanding the right hand side by the defini-
tion of the affinity and using that

qΠ⋆(pXn|θ)(·) =

∫

Bc(θ̄,η)

pXn|θ(·)Π(dθ)/Π(Bc(θ̄, η)). (4.22)
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We have

Pθ̄(JBc(θ̄,η)(X
n)

1
2 > e−nγ) ≤ enγ Eθ̄[JBc(θ̄,η)(X

n)
1
2 ]

= enγΠ(Bc(θ̄, η))
1
2 Aff(pXn|θ̄, qΠ⋆(pXn|θ))

≤ Π(Bc(θ̄, η))
1
2 enγe−nα

(4.23)

for some α > 0. The first inequality follows from the fact that the
probability that a non-negative random variable is larger then 1 is less
then the expectation of it. The equality follows from the key observation
in Equation (4.21) and the last inequality follows from Lemma 4.8.

Now we chose γ so that 0 < γ < α and conclude that

∞
∑

n=1

Pθ̄(JBc(θ̄,η)(X
n)

1
2 > e−nγ) < Π(Bc(θ̄, η))

1
2

∞
∑

n=1

e(γ−α)n <∞.

By the first Borel-Cantelli Lemma (see Durrett [6]) we conclude that

Pθ̄(JBc(θ̄,η)(X
n)

1
2 > e−nγ i.o.) = 0 which implies that Pθ̄(JBc(θ̄,η)(X

n) >

e−nγ i.o.) = 0, where i.o. stands for infinitely often. Thus, almost surely
with respect to Pθ̄, for sufficiently large n, JBc(θ̄,η)(X

n) < e−nγ and we

conclude that, if β0 < γ, then limn→∞ enβ0JBc(θ̄,η)(X
n) = 0 Pθ̄-a.s.

We now prove Theorem 3.2

Proof. It suffice to prove that for any θ̄ ∈ Θ and η > 0,

lim
n→∞

Π(Bc(θ̄, η)|Xn) = 0 Pθ̄-a.s.

We have

Π(Bc(θ̄, η)|Xn) =
JBc(θ̄,η)(X

n)

J(Xn)
,

which, if the support of the prior Π is Θ, by Lemma 4.5 and Lemma
4.9 (by taking β0 = β), converges to zero as n → ∞ almost surely with
respect to Pθ̄.

4.3 Definitions and preliminary results for the proof
of Theorem 3.4

Our proof of Theorem 3.4 is modelled after Lachout et. al. [13]. Before
we proceed to the proof we need some definitions and preliminary results.

Definition 4.10. Let (Ω,F , P ) be a probability space and {fn}∞n=1 a
sequence of functions fn : Θ × Ω → R ∪ {+∞}, which can be regarded
as random functions {fn(·)}∞n=1, where fn(x) stands for fn(x, θ). The
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sequence {fn}∞n=1 is a lower semi-continuous approximation almost surely
to f : Θ → R ∪ {+∞} on Θ′ ⊂ Θ if and only if

P

{

sup
V ∈N (θ0)

lim inf
n→∞

inf
t∈V

fn(t) ≥ f(θ0)∀θ0 ∈ Θ′

}

= 1,

where N (θ0) is the system of neighbourhoods of θ0.

If {fn}∞n=1 is a lower semi-continuous approximation almost surely to
f : Θ → R ∪ {+∞} on Θ′ ⊂ Θ we write

fn
l. on Θ′

→ f a.s.

The following Theorem is a rewritten form of Theorem 2.1 of Lachout et.
al. [13].

Theorem 4.11. Suppose θ̂n, for each n ∈ N, is the minimizer of fn,
i.e.,

fn(θ̂n) = inf
θ∈Θ

fn(θ). (4.24)

and that Θ is compact. Furthermore, assume that there is a function
f : Θ → R ∪ {+∞} with an unique minimum in θ = θ̄ such that

fn
l. on Θ\{θ̄}

→ f a.s. (4.25)

and

lim
n→∞

fn(θ̄) = f(θ̄) a.s. (4.26)

Then

lim
n→∞

θ̂n = θ̄ a.s.

4.4 Proof of Theorem 3.4

As in the proof of Theorem 3.2 the strategy is to consider independent
and identically distributed subsequences (Xγ)

γ∈I
(n)
Γ

, Γ ∈ {1, . . . , s}, of

the data Xn = (Xi)
n
i=1. Recall that dΓ is the length of the data vector

Xγ = (Xγ,1, . . . , Xγ,dΓ), for γ ∈ IΓ, and that each component Xγ,i of
Xγ can take the value 0 or 1. Let mΓ = 2dΓ denote the number of
different outcomes of Xγ , for γ ∈ Iγ , and let bΓ,1, . . . ,bΓ,mΓ represent
these different vectors.

For each Γ ∈ {1, . . . , s}, we define a probability vector pΓ where the
ith element corresponds to the probability of the outcome bΓ,i of the
random variable Xγ , for γ ∈ IΓ:

pΓ(θ) = (pΓ,1(θ), . . . , pΓ,mΓ(θ)) = (pXγ |θ(bΓ,1), . . . , pXγ |θ(bΓ,mΓ)).
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We also define for each Γ ∈ {1, . . . , s} and n ∈ N a vector a
(n)
Γ where

the ith element corresponds to the fraction of outcomes equal to bΓ,i of
the random variables (Xγ)

γ∈I
(n)
Γ

:

a
(n)
Γ = (a

(n)
Γ,1, . . . , a

(n)
Γ,mΓ

)

=

(

|{γ ∈ I
(n)
Γ : Xγ = bΓ,1}|

|I
(n)
Γ |

, . . . ,
|{γ ∈ I

(n)
Γ : Xγ = bΓ,mΓ}|

|I
(n)
Γ |

)

.

Note that by the strong law of large numbers, if limn→∞ I
(n)
Γ = ∞, then

limn→∞ a
(n)
Γ = pΓ(θ̄) Pθ̄-a.s.

Define gn(θ, ω) = (L(θ̄,Xn)
L(θ,Xn) )

1
n to be the

(

1
n

)th
power of the likelihood

ratio of θ̄ and θ of data from the first n primary subgraphs from a per-

colation process on Gn. If we also define g
(Γ)
n to be the likelihood ratio

of the data vectors of the Γth type among the first n primary subgraphs,

g(Γ)
n (θ, ω) =

mΓ
∏

i=1

(pΓ,i(θ̄)

pΓ,i(θ)

)a
(n)
Γ,i

,

then gn(θ, ω) can be written as

gn(θ, ω) =

s
∏

Γ=1

(

g(Γ)
n (θ, ω)

)

|I
(n)
Γ

|

n .

This is seen from the following computation:

gn(θ, ω) =

(

L(θ̄,Xn)

L(θ,Xn)

)
1
n

=

(

pXn|θ̄(X
n)

pXn|θ(Xn)

)
1
n

=

(

s
∏

Γ=1

∏

γ∈I
(n)
Γ

pX|θ̄(Xγ)

pX|θ(Xγ)

)
1
n

=

(

s
∏

Γ=1

mΓ
∏

i=1

(

pΓ,i(θ̄)

pΓ,i(θ)

)|{γ∈I
(n)
Γ :Xγ=bΓ,i}|)

1
n

=

s
∏

Γ=1

(

mΓ
∏

i=1

(pΓ,i(θ̄)

pΓ,i(θ)

)a
(n)
Γ,i

)

|I
(n)
Γ

|

n

=

s
∏

Γ=1

(

g(Γ)
n (θ, ω)

)

|I
(n)
Γ

|

n .

(4.27)
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For each Γ we let bΓ,1 represent the vector 1 = (1, . . . , 1) containing dΓ

1’s and define

f (Γ)(θ) =
(pΓ,1(θ̄)

pΓ,1(θ)

)pΓ,1(θ̄)(1 − pΓ,1(θ̄)

1 − pΓ,1(θ)

)1−pΓ,1(θ̄)

Moreover we define

fmin(θ) = min
Γ∈{1,...,s}

f (Γ)(θ).

Below, we show that that

gn
l. on Θ\{θ̄}

→
1

2
+

1

2
fmin Pθ̄ -a.s. (4.28)

and that 1
2 + 1

2fmin has a unique minimum in θ̄. Moreover we show that

lim
n→∞

gn(θ̄) =
1

2
+

1

2
fmin(θ̄) Pθ̄ -a.s. (4.29)

Since by definition, the MLE θ̂n is the maximizer of the likelihood func-
tion, and thus, the minimizer of gn, the assertion of Theorem 3.4 then
follows from Theorem 4.11. We first state a lemma about properties of
the function fmin.

Lemma 4.12. The function fmin : Θ → R∪+∞ has a unique minimum
in θ = θ̄. Moreover, fmin is monotonically decreasing for θ < θ̄ and
monotonically increasing for θ > θ̄, and continuous. Furthermore, if we
define

g(Γ)(θ) =

mΓ
∏

i=1

(pΓ,i(θ̄)

pΓ,i(θ)

)pΓ,i(θ̄)

.

then
fmin(θ) ≤ g(Γ)(θ) ∀ θ ∀Γ (4.30)

Proof. Define for some constant p̄1,

φ(p1) =
p̄p̄1

1 (1 − p̄1)
1−p̄1

pp̄1

1 (1 − p1)1−p̄1
, (4.31)

and note that with p̄1 = pΓ,1(θ̄),

f (Γ)(θ) = φ(pΓ,1(θ)). (4.32)

Taking derivatives of φ(p1) shows that φ(p1) is monotonically decreasing
for p1 < p̄1 and monotonically increasing for p1 > p̄1. Since, by Lemma
4.1 (b), pΓ,1(θ) is monotonically increasing, it follows that f (Γ)(θ) =
φ(pΓ,1(θ)), and thus fmin(θ), is monotonically decreasing for θ < θ̄ and

21



monotonically increasing for θ > θ̄. The continuity of fmin(θ) follows
from the continuity of φ and pΓ,1(θ) for all Γ.

We now prove Equation (4.30). Firstly, note that by definition, fmin ≤
f (Γ) for all Γ. We show f (Γ) ≤ g(Γ) for all Γ. Define, for some constant
vector p̄ = (p̄1, . . . , p̄m),

δ(p) =

∏m
i=1 p̄

p̄i

i
∏m

i=1 p
p̄i

i

, (4.33)

and note that with p̄ = pΓ(θ̄)

g(Γ)(θ) = δ(pΓ(θ)). (4.34)

To compare f (Γ)(θ) = φ(pΓ,1(θ)) and g(Γ)(θ) = δ(pΓ(θ)), we consider
first the maximal possible value of the denominator of δ for a fixed value
of p1 under the constraints

∑m
i=1 pi = 1, pi ∈ [0, 1]. By Lemma 4.13,

argmax
(p2,...,pm):

P

m
i=1 pi=1,pi∈[0,1]

m
∏

i=1

pp̄i

i =
1 − p1

1 − p̄1
(p̄2, . . . , p̄m)

and the maximum value is therefore

max
(p2,...,pm):

P

m
i=1 pi=1,pi∈[0,1]

m
∏

i=1

pp̄i

i = pp̄1

1

m
∏

i=2

[(1 − p1

1 − p̄1

)

p̄i

]p̄i

= pp̄1

1

(1 − p1

1 − p̄1

)1−p̄1
m
∏

i=2

p̄p̄i

i .

We thus have, for any probability vector p = (p1, . . . , pm),

δ(p) =

∏m
i=1 p̄

p̄i

i
∏m

i=1 p
p̄i

≥

∏m
i=1 p̄

p̄i

i

pp̄1

1

(

1−p1

1−p̄1

)1−p̄1
∏m

i=2 p̄
p̄i

i

=
( p̄1

p1

)p̄1
(1 − p̄1

1 − p1

)1−p̄1

= φ(p1)

which shows that for any θ, g(Γ)(θ) = δ(pΓ(θ)) ≥ φ(pΓ,1(θ)) = f (Γ)(θ).

Next, we state a lemma by which we, among other things, can derive
a lower bound for gn.
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Lemma 4.13. The function h : [0, 1]n → R defined by h(p1, . . . , pn) =
∏n

i=1 p
ai

i , for non-negative constants ai, subject to the constraint
∑n

i=1 pi =
C is maximized for p = (p1, . . . , pn) proportional to a = (a1, . . . , an), i.e.,
if
∑n

i=1 ai = K, then

arg max
p:

P

n
i=1 pi=C

h(p) =
C

K
a.

Proof. We use Lagrange multipliers. We restrict the domain of to (0, 1]n.
It is obvious that h does not take it’s maximum value on the boundary
[0, 1]n \ (0, 1]n. Let g(p) =

∑n
i=1 pi and introduce the Lagrange function

Λ(p, λ) = h(p) + λ(g(p) − C).

Setting all partial derivatives of Λ to zero we get

a1

p1
h(p) = λ

a2

p2
h(p) = λ

...
an

pn
h(p) = λ

∑n
i=1 pi = C.

(4.35)

Since we have restricted the domain of h to (0, 1]n it is legitimate to
divide each of the n− 1 first equations by the second last equation in the
system of Equations (4.35). This gives pi = ai

an
pn for i = 1 . . . , n − 1.

Insertion into the last equation of the system of Equations (4.35) gives

a1

an

pn + . . .+
an−1

an

pn + pn = C ⇒ a1pn + . . .+ anpn = anC

⇒ pn = an

C

K
.

(4.36)

If we instead would have chosen to divide all the first n (except the
jth) equations of the system of Equations (4.35) by the jth equation and
inserted into the last equation we would have obtained pj = aj

C
K

. This

shows that p = C
K

a is a stationary point of Λ. Inspection gives that
it is in fact a maxima of Λ and thus a maxima of h under the given
constraints.

Lemma 4.14. For C ⊂ Θ = [0, 1], such that 0 or 1 are not contained in
the closure of C,

lim inf
n→∞

inf
θ∈C

(

gn(θ, ω) − fmin(θ)
)

≥ 0Pθ̄-a.s. (4.37)

Proof. Recall that gn is a product of (powers of) likelihood ratios of iid
sequences:

gn(θ, ω) =

s
∏

Γ=1

(

g(Γ)
n (θ, ω)

)

|I
(n)
Γ

|

n where g(Γ)
n (θ, ω) =

mΓ
∏

i=1

(pΓ,i(θ̄)

pΓ,i(θ)

)a
(n)
Γ,i

.
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We consider first the likelihood ratios of the iid sequences g
(Γ)
n and define

as in Lemma 4.12,

g(Γ)(θ) =

mΓ
∏

i=1

(pΓ,i(θ̄)

pΓ,i(θ)

)pΓ,i(θ̄)

,

and prove that for all Γ such that limn→∞ I
(n)
Γ = ∞,

lim
n→∞

sup
θ∈C

∣

∣g(Γ)
n (θ, ω) − g(Γ)(θ)

∣

∣ = 0. (4.38)

Having proved Equation (4.38) the assertion of the lemma, which con-
cerns the likelihood ratio of all data, easily follows.

Since 0 and 1 are not in the closure of C we have that for some δ > 0,

pΓ,i(θ) ≥ δ ∀θ ∈ C ∀Γ ∀i,

which implies that
pΓ,i(θ̄)

pΓ,i(θ)
≤

1

δ
∀θ ∈ C ∀Γ ∀i (4.39)

and we conclude that for all Γ such that limn→∞ I
(n)
Γ = ∞,

lim
n→∞

sup
θ∈C

∣

∣g(Γ)
n (θ, ω) − g(Γ)(θ)

∣

∣ (4.40)

= lim
n→∞

sup
θ∈C

∣

∣

∣

∣

mΓ
∏

i=1

(pΓ,i(θ̄)

pΓ,i(θ)

)a
(n)
Γ,i

−
mΓ
∏

i=1

(pΓ,i(θ̄)

pΓ,i(θ)

)pΓ,i(θ̄)
∣

∣

∣

∣

(4.41)

≤ lim
n→∞

sup
θ∈C

∣

∣

∣

∣

mΓ
∏

i=1

(1

δ

)a
(n)
Γ,i

−
mΓ
∏

i=1

(1

δ

)pΓ,i(θ̄)
∣

∣

∣

∣

(4.42)

= 0Pθ̄-a.s. (4.43)

where the inequality follows from Equation (4.39) and the last equality

follows since, by the law of large numbers, limn→∞ a
(n)
Γ,i = pΓ,i(θ̄)∀i, for

all Γ such that limn→∞ I
(n)
Γ = ∞Pθ̄-a.s. Thus we have proved Equation

(4.38).
We now prove Equation (4.37), the assertion of the lemma. From

Equation (4.38), we conclude that for an arbitrary β > 0 and for Pθ̄-
almost all ω ∈ Ω, there is an n0(ω), such that for all n > n0 and for all

Γ such that limn→∞ I
(n)
Γ = ∞,

inf
θ∈C

g(Γ)
n (θ, ω) ≥ inf

θ∈C
g(Γ)(θ) − β (4.44)

Assume for notational simplicity that limn→∞ I
(n)
Γ = ∞ for Γ ∈ {1, . . . , v}

and limn→∞ I
(n)
Γ <∞ for Γ ∈ {v+1, . . . , s}, where v obviously is positive,
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and note that

lim inf
n→∞

inf
θ∈C

s
∏

Γ=v+1

(

g(Γ)
n (θ, ω)

)

|I
(n)
Γ

|

n = 1. (4.45)

We now have

lim inf
n→∞

inf
θ∈C

(

gn(θ, ω) − fmin(θ)
)

= lim inf
n→∞

inf
θ∈C

(

v
∏

Γ=1

(

g(Γ)
n (θ, ω)

)

|I
(n)
Γ

|

n

s
∏

Γ=v+1

(

g(Γ)
n (θ, ω)

)

|I
(n)
Γ

|

n − fmin(θ)
)

≥ lim inf
n→∞

inf
θ∈C

(

v
∏

Γ=1

(

g(Γ)(θ) − β
)

|I
(n)
Γ

|

n − fmin(θ)
)

= lim inf
n→∞

inf
θ∈C

(

(

g(Γ)(θ) − β
)

Pv
Γ=1

|I
(n)
Γ

|

n − fmin(θ)
)

= inf
θ∈C

(

g(Γ)(θ) − β − fmin(θ)
)

> −β

(4.46)

where we have used Equations (4.44) and (4.45) for the first inequality
and Equation (4.30) for the last. Since β can be chosen arbitrarily small
the statement of the lemma follows.

We now have the following result

Lemma 4.15. It holds that

gn
l. on Θ\{θ̄}

→
1

2
+

1

2
fmin Pθ̄-a.s. (4.47)

Proof. To prove Equation (4.47), we need to show that

P

{

sup
V ∈N (θ0)

lim inf
n→∞

inf
t∈V

gn(t) ≥
1

2
+

1

2
fmin(θ0)∀θ0 ∈ Θ \ {θ̄}

}

= 1 Pθ̄-a.s.

(4.48)
We consider the cases θ0 < θ̄ and θ0 > θ̄ separately and start with the
case θ0 < θ̄. By Lemma 4.14, for small ρ > 0 (such that 0 or 1 are not
contained in the closure of B(θ0, ρ)),

lim inf
n→∞

inf
θ∈B(θ0,ρ)

(

gn(θ, ω) − fmin(θ)
)

≥ 0Pθ̄-a.s.

which implies

lim inf
n→∞

inf
θ∈B(θ0,ρ)

gn(θ, ω) ≥ inf
θ∈B(θ0,ρ)

fmin(θ)Pθ̄-a.s. (4.49)
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Equation (4.49) together with fmin being continuous, monotone, and
strictly larger than 1 (by Lemma 4.12), imply that (Pθ̄-a.s.) for a suffi-
ciently small ρ > 0

lim inf
n→∞

inf
θ∈B(θ0,ρ)

gn(θ) ≥ inf
θ∈B(θ0,ρ)

fmin(θ) = fmin(θ0 + ρ) ≥
1

2
+

1

2
fmin(θ0),

which shows

P

{

sup
V ∈N (θ0)

lim inf
n→∞

inf
t∈V

gn(t) ≥
1

2
+

1

2
fmin(θ0) for θ0 < θ̄

}

= 1 Pθ̄-a.s.

(4.50)
The proof of the corresponding statement for θ0 > θ̄ is analogous.

We now prove Theorem 3.4

Proof. We verify that all conditions of Theorem 4.11 are satisfied. By def-
inition, the MLE θ̂n = θ̂(Xn) is the maximizer of the likelihood function

L(θ,Xn) and thus θ̂n is the minimizer of gn(θ, ω) = (L(θ̄,Xn)
L(θ,Xn) )

1
n .

By Lemma 4.12, θ = θ̄ is the unique minimizer of fmin and thus also
the unique minimizer of 1

2 + 1
2fmin By Lemma 4.15,

gn
l. on Θ\{θ̄}

→
1

2
+

1

2
fmin Pθ̄-a.s.

Since 1
2 + 1

2fmin(θ̄) = 1 and gn(θ̄) = 1 for all n we trivially have that

lim
n→∞

gn(θ̄) =
1

2
+

1

2
fmin(θ̄) Pθ̄-a.s.

Thus all conditions of Theorem 4.11 are satisfied and we conclude that
limn→∞ θ̂n = θ̄ Pθ̄-a.s.

5 Markov Chains

We have now proved two consistency results for inference in a percolation
process. In Section 11 we present results for the inference procedures on
simulated data. To compute the relevant quantities for this inference, we
use Markov chain Monte Carlo algorithms. For completeness of presen-
tation, we recall some Markov chain theory. One of our Markov chain
Monte Carlo algorithms lives on an uncountable state space and we there-
fore recall theory for Markov chains on general state spaces.

Let S denote a general (i.e. not necessarily countable) state space.
Throughout the presentation S will be an r-dimensional space, where
r > 1 and we use boldface letters for vector-valued variables taking values
in S.
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From an informal perspective, a Markov chain on S is a sequence
of random variables (Y0,Y1, . . .), such that the distribution of Yn+1 is
independent of (Y0, . . . ,Yn−1), given Yn.

In a more formal setting, assume that random variables Yi, i =
0, 1, . . . are defined on a sample space (Ω,F) with a probability mea-
sure P and take values in (S,S), where S denotes a σ-algebra on S. A
transition kernel is a function Q : S×S → [0, 1] such that the following
two criteria are satisfied.

(i) For each y ∈ S,Q(y, ·) is a probability measure on (S,S).

(ii) For each D ∈ S, Q(·, D) is a measurable function.

We define a sequence of S-valued random variables (Y0,Y1, . . .) to be a
Markov chain on (S,S) with transition kernel Q if it satisfies

P(Yn+1 ∈ D|Y0, . . . ,Yn) = Q(Yn, D). (5.1)

Equation (5.1) states that the probability of Yn+1 taking a value in D
depends on (Y0, . . . ,Yn) only through Yn.

The transition kernel Q(Yn, D) of a Markov chain gives the proba-
bility of moving from a particular point y ∈ S to a set of points D ∈ S
in one step. The m-step transition kernel is similarly defined to be the
probability of moving from a particular point in S to a set of points in
S in exactly m steps: Qm(Yn, D) = P(Yn+m ∈ D|Y0, . . . ,Yn). In this
notation, the transition kernel of the Markov chain is its 1-step transition
kernel.

To be able to express probabilities concerning the whole sequence
(Y0,Y1, . . .), it is convenient to define a probability measure on the se-
quence space (S{0,1...},S{0,1...}). To specify probabilities of different out-
comes of (Y0,Y1, . . .) one needs, in addition to the transition kernel Q,
an initial distribution.

For our application it is convenient to consider the case where the
initial distribution is a point mass in some point y0. Denote by Py0

the
probability measure on the sequence space (S{0,1...},S{0,1...}) given by
setting Y0 = y0 and setting the value yi of Yi according to Q(yi−1, ·),
for i = 1, 2, . . .. The point y0 is called the starting point of the Markov
chain.

A distribution Ψ on (S,S) is called stationary for the transition
kernel Q (or the corresponding Markov chain) if

Ψ(D) =

∫

Ψ(dy)Q(y, D).

Under certain conditions on the transition kernel Q of a Markov chain
(Y0,Y1, . . .), there exists a unique stationary distribution and Qn(·,y0),
i.e. the distribution of Yn conditioned on Y0 = y0, converges to this
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stationary distribution, as n tends to infinity, for all starting points y0.
We state some relevant properties of the transition kernel Q for this
convergence to take place. The following definitions are from Roberts
and Rosenthal [19].

For D ∈ S, let τD = inf{n ≥ 1 : Yn ∈ D} be the first return time to
D with τD = ∞ if the chain never returns. For Markov chains on general
state spaces irreducibility is defined with respect to a σ-finite measure. A
Markov chain is φ-irreducible if there exists a non-zero σ-finite measure
φ on (S,S) such that Py(τD < ∞) > 0 for all y ∈ S and D ∈ S with
φ(D) > 0.

The period of a φ-irreducible Markov chain with stationary distribu-
tion Ψ is the largest n ∈ N = {1, 2, . . .} for which there exist disjoint
subsets S1, S2, . . . , Sn ∈ S with Ψ(Si) > 0, such that Q(y, Si+1) = 1 for
all y ∈ Si (1 ≤ i ≤ n− 1) and Q(y, S1) = 1 for all y ∈ Sn. If n = 1, then
the Markov chain is said to be aperiodic.

If a Markov chain on a general state space with Ψ as stationary distri-
bution is aperiodic and φ-irreducible, then Ψ is the unique stationary dis-
tribution for the Markov chain [18]. However, the distribution Qn(y0, ·)
of an aperiodic and φ-irreducible Markov chain (Y0,Y1, . . .) on a gen-
eral state space is not guaranteed to converge to Ψ for all starting points
y0. The convergence is guaranteed only for a set of starting points with
Ψ-measure 1. Instead, the property of Harris recurrence in combina-
tion with aperiodicity assures convergence from all starting points for a
Markov chain on a general state space. For a general discussion of Harris
recurrence see Roberts and Rosenthal [19].

Definition 5.1. A φ-irreducible Markov chain on a general state space
(S,S) with stationary distribution Ψ is Harris recurrent if for all D ∈ S
with Ψ(D) > 0 and all y0 ∈ S, it holds that Py0

(τD <∞) = 1.

In order to state the convergence results for aperiodic and Harris
recurrent Markov chains on general state spaces, we introduce the total
variation distance.

Definition 5.2. The total variation distance between two distributions
Ψ1 and Ψ2 on (S,S) is denoted by ||Ψ1,Ψ2|| and given by

||Ψ1,Ψ2|| = sup{|Ψ1(A) − Ψ2(A)| : A ∈ S}.

Theorems 5.3 and 5.4 below are fundamental for our applications of
Markov chains. See e.g. Tierney [21], (Theorem 1 and 3).

Theorem 5.3. Consider a Markov chain on general state space (S,S)
with transition kernel Q and stationary distribution Ψ. If the Markov
chain is aperiodic and Harris recurrent, then Ψ is the unique stationary
distribution for the Markov chain and for all y ∈ S and D ∈ S,

lim
n→∞

||Qn(y, D),Ψ(D)|| = 0.
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We explain the usefulness of Theorem 5.3 for constructing Markov
chain Monte Carlo (MCMC) algorithms. Assume we want to assign a
value to a random variable X according to a distribution Ψ and that
this cannot be done directly. Assume further that we can construct an
aperiodic and Harris recurrent Markov chain, (Y0,Y1, . . .), with Ψ as
its stationary distribution. If we set X = Yn for a sufficiently large n,
then by Theorem 5.3, X is distributed according to a distribution close to
Ψ. This is the idea behind Markov chain Monte Carlo which we discuss
further in the next section.

Theorem 5.4 below states a similar result as Theorem 5.3 above. As-
sume one wants to integrate an integrable function h with respect to a
complex distribution Ψ. Assume further that one can construct an aperi-
odic and Harris recurrent Markov chain with Ψ as stationary distribution.
Then averaging the function h over the states visited by the chain during
a sufficiently long run gives an approximation of the integral which is
sufficiently close to the value of the integral.

Theorem 5.4. Consider an aperiodic and Harris recurrent Markov chain
(Y0,Y1, . . .) on a general state space (S,S) with stationary distribution
Ψ. If EΨ|h| =

∫

S
|h(y)|Ψ(dy) <∞, then

lim
n→∞

1

n

n
∑

i=0

h(Yi) = EΨh a.s.

for any initial distribution.

The following theorem (a rewritten form of Theorem 6 of Roberts and
Rosenthal [19]) gives an easily checked criterion for Harris recurrence of
a Markov chain.

Theorem 5.5. Consider a φ-irreducible and aperiodic Markov chain on
(S,S) with stationary distribution Ψ. If for all y ∈ S and all D ∈ S with
Ψ(D) = 0, Py(Yn ∈ D for all n) = 0, then the Markov chain is Harris
recurrent.

5.1 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a sampling method based on a
Markov chain. It is useful for sampling from high-dimensional distribu-
tions which are too complex to allow direct sampling. To sample from
a target distribution Ψ one constructs an aperiodic and Harris recurrent
Markov chain (Y0,Y1,Y2, . . .) with Ψ as its stationary distribution. By
Theorem 5.3, the distribution of Yn converges to Ψ, as n tends to infinity,
irrespectively of the choice of starting point.

In the following sections we present two versions of MCMC algo-
rithms. In Section 5.2 we present the single-site Gibbs sampler, which
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is a simple variant and not suited for the target distributions related to
our problem. However, it is used as a building block for a more elab-
orate MCMC algorithm that we construct, and which is called a Block
Updating MCMC. This MCMC-algorithm is presented in Section 5.3.

We need to introduce some notation. Throughout the paper we use
Ψ to represent the target distribution of an MCMC. We consider only
the case when Ψ has a density denoted by ψ and referred to as the target
density. We use S to denote the space on which the target distribution Ψ
is defined and which, unless otherwise stated, is an r-dimensional product
space.

For Y = (Y1, . . . , Yr), a vector valued random variable taking values
in an r-dimensional space S and B ⊂ {1, . . . , r}, we let YB = {Yi : i ∈ B}
and SB be the range of YB . Moreover we denote Y−B = {Yi : i 6∈ B}
and, for i ∈ B, Y−i = Y−{i}. Also, if Ψ is the distribution of the
random variable Y, then we let Ψ(YB |Y−B) represent the conditional
distribution of YB, conditioned on Y−B. Likewise, if ψ is the density
of Y, then we let ψ(YB |Y−B) represent the conditional density of YB ,
conditioned on Y−B .

A transition kernel of an MCMC algorithm is typically built up by a
series of sub-kernels. We call a transition by one of these sub-kernels a
basic transition. In contrast, a transition according to the full transition
kernel is referred to as the full transition.

5.2 The Gibbs sampler

The Gibbs sampler introduced by Geman and Geman [7] is one type of
MCMC. An elementary version of this MCMC is the single-site Gibbs
sampler. One full transition of a single-site Gibbs sampler consists of
repeating a basic transition a number of times.

A basic transition from the current state, y, to the next state, y′,
of a single-site Gibbs sampler on an r-dimensional space consists of two
steps. In the first step an index i ∈ {1, . . . , r} is chosen in some way, then
in the second step the new state y′ = y′i ∪ y−i is obtained by drawing
y′i from Ψ(·|y−i). Thus, a single-site Gibbs sampler evolves by changing
one coordinate of y at a time.

If the index i ∈ {1, . . . , r} in the first step of this algorithm is chosen
uniformly, then the algorithm is called a random-scan single-site Gibbs
sampler. It is possible to prove by elementary techniques, that Ψ is a
stationary distribution for the random-scan single-site Gibbs sampler.
However, in light of Theorem 5.3 and 5.4, to be of practical use a Markov
chain on a general state space must be Harris recurrent.

In Section 7 we give an example which demonstrates that the single-
site Gibbs sampler is not φ-irreducible for all possible distributions related
to our problem and thus not Harris recurrent. The lack of irreducibility
of the single-site Gibbs sampler stems from the fact that only one element
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is updated at a time. If S′ ⊂ S denotes the support of the target density
ψ, then two elements y and x in S′, may be such that it is impossible
to move from y to x by changing only one element at a time without
leaving S′. A single-site Gibbs sampler which visits only states in S′ and
updates one element at a time is obviously not φ-irreducible in this case.

The Block Gibbs sampler is an alternative to the single-site Gibbs.
While a single-site Gibbs sampler updates one coordinate yi of y =
(y1, . . . , yr) at a time, a Block Gibbs sampler updates more general sub-
sets, yB where |B| ≥ 1, at a time.

A basic transition from the current state, y, to the next state, y′, of a
Block Gibbs sampler consists of two steps. First a set B ⊆ {1, . . . , r} is is
some way, then the new state y′ = y′

B ∪ y−B is obtained by drawing y′
B

from Ψ(·|y−B). One disadvantage with the Block Gibbs sampler is that
direct sampling from the possibly high-dimensional distribution Ψ(·|y−B)
may be very time consuming.

The Block Updating MCMC that we construct has the updates of
the more general subsets yB in common with the Block Gibbs Sampler,
but circumvents direct sampling from the high-dimensional distributions.
This Block Updating MCMC is inspired by Hurn [11].

5.3 The Block Updating MCMC

Like the Block Gibbs sampler, the Block Updating MCMC updates gen-
eral subsets, yB , where |B| ≥ 1, of coordinates of y = (y1, . . . , yr) at
a time. In contrast to the Block Gibbs sampler, the Block Updating
MCMC avoids possible time consuming direct sampling from the condi-
tional distributions Ψ(·|y−B).

In the first step of a basic transition of a Block Updating MCMC,
a set B ∈ {1, . . . , r} is chosen. In the second step, instead of generat-
ing a new state by direct sampling from Ψ(·|y−B), the Block Updating
MCMC employs a secondary Markov chain on SB to generate a new
state. Although this new state is not generated according to the con-
ditional distribution Ψ(·|y−B), we show in Theorem 5.7 below, that the
Block Updating MCMC, in fact, has Ψ as its stationary distribution.

If the target density ψ has support on S′ ⊂ S, then a state y ∈ S
is said to be legal if y ∈ S′ and illegal if y ∈ S \ S′. Recall that the
reason for not using the simpler single-site Gibbs sampler was the lack
of irreducibility of that algorithm steaming from the updating of one
element at a time. Two legal states, y,x ∈ S′, may be such that it is
impossible to move from y to x by changing only one element at a time
without leaving S′.

The key idea of the Block Updating MCMC is that the secondary
Markov chain is constructed so that if y⋆

B denotes a state of SB visited
by the secondary chain, then y⋆

B ∪y−B can be illegal as well as legal. Of
course, the output y′

B from the secondary chain is such that the generated
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next state y′
B ∪ y−B for the main chain is legal. This is achieved by

defining a relaxed density ψ⋆ with support on the whole set S and let
the secondary Markov chain update according to ψ⋆(·|y−B). We show
in Section 7 that this ensures irreducibility and Harris recurrence of the
Block Updating MCMC for our application.

We use a random-scan single-site Gibbs sampler to implement the
secondary Markov chain of the Block Updating MCMC.

Algorithm 5.6. The Block Updating MCMC for the (unnormal-
ized) target density ψ

S - an r-dimensional product space.
ψ - an (unnormalized) target density with support S′ ⊂ S.
ψ⋆ - a relaxed density with support on the whole set S

satisfying ψ(y) ∝ ψ⋆(y)IS′ .
B - a set of subsets of components of S.

One full transition of the Block Updating MCMC consists of a series of
basic transitions. If the state of the chain before the ith basic transition
is y, then a new state y′ is generated by the ith basic transition in two
steps:

I. A subset B of coordinates of y is drawn from B according to a
distribution ∆i (which is allowed to vary with i).

II. The new state y′ is drawn from QB(y, ·), where QB is defined
below in terms of the output from a secondary chain on SB.

Definition of QB. Holding the elements y−B fixed, a random-scan
single-site Gibbs sampler on SB, started in yB and updated according to
ψ⋆(yB |y−B) is initiated. If yB,y

⋆1
B ,y⋆2

B , . . . denotes the successive states
of this chain, then the chain is terminated at the smallest k such that
y⋆k

B ∪y−B is legal. If this y⋆k
B is denoted by y′

B, then the new state y′ of
the Block Updating MCMC is y′ = y′

B ∪ y−B.

We use the convention that B contains only subset of components of
S with positive probability of being updated in some basic transition, i.e,
B is in B if and only if B is in the support of ∆i for some i.

The following theorem guarantees that the Block Updating MCMC
in fact has ψ as stationary density.

Theorem 5.7. Consider a Block Updating MCMC for the (unnormal-
ized) density ψ. If Ψ denotes the distribution corresponding to ψ, then Ψ
is a stationary distribution for the Block Updating MCMC.

Proof. A distribution Ψ is said to be a reversible distribution for a tran-
sition kernel Q if

Ψ(dy)Q(y, dx) = Ψ(dx)Q(x, dy) ∀x,y ∈ S. (5.2)
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If Ψ is a reversible distribution for a Markov chain with transition ker-
nel Q, then Ψ is also a stationary distribution for the Markov chain. This
follows directly from the definition of reversibility by writing Ψ(dx) =
Ψ(dx)

∫

S
Q(x, dy) =

∫

S
Ψ(dx)Q(x, dy) and using Equation (5.2) in the

last expression to get Ψ(dx) =
∫

S
Ψ(dy)Q(y, dx).

If Ψ denotes the distribution corresponding to ψ, then it follows as a
special case of Equation (4) of Hurn et. al. [11] that the transition kernel
corresponding to one basic transition of the Block Updating MCMC sat-
isfies Equation (5.2). Thus Ψ is a stationary distribution for each basic
transition and we conclude that Ψ is a stationary distribution for the full
transition of the Block Updating MCMC.

Of course, the idea to update according to a relaxed density could
have been applied without restricting updates to elements of one subset
B at a time. One could have constructed a single-site Gibbs sampler that
updates according to the relaxed density and sampled it only at times it
stayed in legal states. However, such sampler would suffer from serious
time-inefficiency.

6 The Expectation Maximization (EM)

algorithm

We now present the Expectation Maximization (EM) algorithm. A stochas-
tic version of this algorithm, discussed in Section 6.1, is used to compute
the Maximum likelihood estimate of θ from data from a percolation pro-
cess. The EM algorithm introduced by Dempster et. al. [5] searches the
maximum of the likelihood function in an iterative fashion. It is suited
for problems that can be formulated in terms of unobserved data.

Let x represent a vector of observed data and u a vector of unobserved
data. The observed and unobserved data will later coincide with the data
xn from the percolation process and the configuration u, as defined in
Section 2, but for the moment, x and u represent any observed and
unobserved data. The vector (x,u) is referred to as the complete data.
The vectors x and u are realisations of the random vectors X and U.

For each θ in some parameter space Θ, let fX,U|θ(·|θ), fX|θ(·|θ) and
fU|X,θ(·|x, θ) denote the density of the complete data, the density of
the observed data and the conditional density of the unobserved data
conditioned on the observed data, all with respect to some measure which
we for each of these densities denote by ν.

The aim is to find the maximum likelihood estimate (MLE), θ̂, the
maximizer of the likelihood function:

θ̂ = argmax
θ∈Θ

L(θ,x),
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where L(θ,x) = fX|θ(x|θ) is the density of the observed data.

The EM algorithm finds the MLE, θ̂, by an iterative procedure. Let
in the tth iteration of the EM algorithm the current value of θ be θ(t−1).
Each iteration of the EM algorithm consists of two steps, the E-step
and the M-step. In the E-step an expectation of the complete data
log-likelihood, log fX,U|θ(x,u|θ), is computed. The expectation is com-
puted with respect to the density of the unobserved data, conditioned
on the observed data and the current value θ(t−1), i.e. under the density
fU|X,θ(u|x, θ

(t−1)). This expectation, known as the Q-function, is thus
given by

Q(θ|θ(t−1)) = Eθ(t−1) [log fX,U|θ|x],

where

Eθ(t−1) [log fX,U|θ|x] =

∫

log fX,U|θ(x,u|θ)fU|X,θ(u|x, θ
(t−1))ν(du).

Note the fundamental different roles played by θ and θ(t−1) in the defi-
nition of the Q-function. In the M-step, the new value of θ, θ(t), is set to
the value that maximizes Q(θ|θ(t−1)).

Theorem 6.1 below states that in each iteration of the EM algorithm
the likelihood function is increased. Thus with a bounded likelihood
function on an one-dimensional parameter space, convergence to a local
maximum is guaranteed. The following property is fundamental for the
EM-algorithm. For details see for example Lange [14].

Theorem 6.1. The EM iterates satisfy

L(θ(t),x) ≥ L(θ(t−1),x)

with strict inequality when

Q(θ(t)|θ(t−1)) > Q(θ(t−1)|θ(t−1)).

6.1 The Monte Carlo Expectation Maximization
(MCEM) algorithm

The Monte Carlo Expectation Maximization (MCEM) algorithm intro-
duced by Wei and Tanner [23] is an extension of the basic EM algorithm
to situations where the Q-function is hard to compute. It is a stochastic
version of the EM algorithm which instead of computing the Q-function
analytically uses an MCMC method to approximate the Q-function.

Let θ̃(t−1) denote the value of θ in the tth iteration of the MCEM
algorithm. Given a sample (u1, . . . ,un) from an MCMC algorithm with
stationary distribution corresponding to the density fU|X,θ(u|x, θ̃

(t−1)),
the Q-function is approximated by a Monte Carlo integration:

Q̃n(θ|θ̃(t−1)) =
1

n

n
∑

i=1

log fX,U(x,ui|θ).
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The theoretical base for the MCEM algorithm is Theorem 5.4. It
states that if the MCMC algorithm that generates the sample (u1, . . . ,un)
is aperiodic and Harris recurrent, then, for a fixed θ, the approximation
Q̃n(θ|θ̃(t−1)) converges almost surely to the value of the true Q-function,
Q(θ|θ̃(t−1)), as n tends to infinity.

Recall that n denotes the size of the sample used to approximate
the Q-function and let θ̃(t,n) denote the maximizer of the approximation
Q̃n(θ|θ̃(t−1)) of the Q-function. Before θ̃(t,n) is accepted, we want to
convince ourselves that changing the value of θ from θ̃(t−1) to θ̃(t,n) will,
with high probability, increase the true Q-function. We introduce some
notation to answer this question.

Let ∆Q(θ′) be the increment in the Q-function when changing the
value of θ from θ̃(t−1) to some θ′:

∆Q(θ′) = Q(θ′|θ̃(t−1)) −Q(θ̃(t−1)|θ̃(t−1)).

This increment is estimated by the Monte Carlo integration analogue

∆Q̃n(θ′) = Q̃n(θ′|θ̃(t−1)) − Q̃n(θ̃(t−1)|θ̃(t−1)). (6.1)

A large value of ∆Q̃n(θ̃(t,n)) indicates that changing the value of θ
from θ̃(t−1) to θ̃(t,n) increases the true Q-function. However, to judge
whether or not the suggested new value should be accepted, one also need
to estimate the variance of ∆Q̃n(θ̃(t,n)). How to estimate this variance is
discussed in Section 10.4.

If sufficiently strong evidence of an increase in the true Q-function is
achieved, then θ̃(t,n) is accepted and θ̃(t) is set to θ̃(t,n) and the algorithm
continues to the next iteration. If θ̃(t,n) is not accepted, then the sample
size n is increased and the procedure is repeated. When producing the
larger sample, the old sample is re-used and further realisations are ap-
pended to the old sample. This implementation of the MCEM algorithm
is influenced by the MCEM algorithm of Caffo et. al. [3].

The MCMC algorithm we use to produce the sample for the Monte
Carlo integration is the Block Updating MCMC introduced in Section
5.3. In the next section we show that the Block Updating MCMC for
this purpose as well as the one used in the Bayesian inference are Harris
recurrent under some conditions.

7 The Block Updating MCMC and data
from a percolation process

In the last two sections we have presented necessary background on
MCMC and the Monte Carlo EM algorithms. In this section we con-
sider sampling from target distributions related to the percolation pro-
cess. We show that while a single-site Gibbs sampler is not sufficient for
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Figure 4: Left: A small graph with 4 observation points,
u, v, w, z. Assume the observed data from this graph is that
(u, v) and (w, z) are the only connected pairs. Middle and
right: Two configurations agreeing with the data. There is no
way to change the status of one single edge in the first con-
figuration without entering an illegal state, thus a simple site
Gibbs sampler visiting only legal states with respect to the
data is not φ-irreducible.

sampling from these distributions, it is possible to construct Block Up-
dating MCMC’s which converges in the appropriate way to the desired
target distributions.

The reason why the single-site Gibbs sampler is not sufficient for
our problem is that it is not possible to create a φ-irreducible single-site
Gibbs sampler for all possible data from a percolation process on a graph.
Figure 4 gives an example of a tiny graph with four data points and data
such that a single-site Gibbs sampler which visits only legal states with
respect to the observed data is not φ-irreducible.

We fix some notation for distributions related to the percolation pro-
cess on a finite graph. As before, given a graph withm edges, U = {0, 1}m

denotes the set of all configurations and pθ denotes the probability mass
function over U under the parameter value θ ∈ Θ. Given observed
values x of the data vector X from the percolation process, we use
U′ = {u ∈ U : X(u) = x} to denote the set of configurations agree-
ing with the data. The elements of U′ are called the legal configurations
with respect to x.

For the Bayesian inference we define W = U×Θ and W′ = U′×Θ and
let w = (u, θ) represent a typical element of W. We also need to specify
a σ-algebra on W. With U ′ denoting the set of all subsets of U

′, we
define W ′ = U ′ × Θ. We assume the prior Π on (Θ,B(Θ)) is absolutely
continuous with respect to Lebesgue measure λ, and let π denote the
density of Π with respect to λ. A natural prior to have in mind is the
uniform prior, for which π(θ) ≡ 1 for θ ∈ Θ.

36



7.1 Harris recurrence of the Block Updating MCMC
used in the Bayesian inference

In the Bayesian setting, given data x from the percolation process on
a finite graph, we want to compute the posterior distribution. With U′

denoting the set of legal configurations with respect to x, the density
of the observed data can be expressed in terms of the density of the
configurations u as

pX|θ(x) =
∑

u∈U

pθ(u)I{u∈U′},

where we use IE to denote the indicator function of an eventE. Thus with
π denoting the density of the prior Π with respect to Lebesgue measure
λ, the posterior distribution Π(·|x) may be written as, for A ∈ B(Θ),

Π(A|x) ∝

∫

A

pX|θ(x|θ)π(θ)λ(dθ) =

∫

A

∑

u∈U

pθ(u)I{u∈U′}π(θ)λ(dθ).

(7.1)
Equation (7.1) states that sampling from the unnormalized target

density ψ(u, θ) = pθ(u)I{u∈U′}π(θ) and integrating over U with respect
to Lebesgue measure λ produces a sample from the posterior distribution
Π(·|x).

We use a Block Updating MCMC to sample from the unnormalized
target density ψ(u, θ) = pθ(u)I{u∈U′}π(θ). Theorem 7.1 below ensures
that the Block Updating MCMC can be constructed to in fact converge
in the appropriate way.

Theorem 7.1. Consider a Block Updating MCMC for the unnormalized
density ψ(u, θ) = pθ(u)I{u∈U′}π(θ). Assume the Block Updating MCMC
satisfies the following two conditions.

1. In each full transition every coordinate of w = (u, θ) has positive
probability of being updated.

2. All subsets of coordinates of u corresponding to a connected sub-
graph of G have positive probability of being chosen in step I of one
basic transition of Algorithm 5.6.

Then the Block Updating MCMC is aperiodic and Harris recurrent and if
Q denotes the transition kernel of the MCMC, then for all w ∈ W′ and
D ∈ W ′

lim
n→∞

||Qn(w, D),Ψ(D)|| = 0.

Proof. The product space of this Block Updating MCMC is W = U ×
Θ. However, the actual state space of a Block Updating MCMC is the
support of the target density, in this case W′ = U′×Θ. Recall the choice
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of σ-algebra on W′, W ′ = U ′ ×Θ, where U ′ denotes the set of all subsets
of U′

Now, let Q denote the transition kernel of a full transition of the
Block Updating MCMC, (W0,W1, . . .), which satisfies the conditions of
the theorem. By Theorem 5.7, ψ is a stationary density for this Block
Updating MCMC. If we also prove that the MCMC is aperiodic and
Harris recurrent, then the assertion of the theorem follows from Theorem
5.3

We first show that the MCMC is aperiodic and φ-irreducible. Then
the Harris recurrence follows easily from Theorem 5.5. Both the aperi-
odicity and the φ-irreducibility are evident if we show that

∀ large k : Qk(w, D) > 0 ∀w ∈ W
′ and D ∈ W ′ with Ψ(D) > 0. (7.2)

Instead of proving Equation (7.2) directly we prove that an alternative
statement is true, which is sufficient for Equation (7.2) to hold. Firstly,
note that each D ∈ W ′ with Ψ(D) > 0 contains a subset of the form
u×A, where u is a legal configuration and A has Lebesgue measure λ(A)
greater than zero.

Secondly, note that after the first update of the θ-coordinate of w =
(θ,u), all following states visited by the Block Updating MCMC have
θ-coordinate in the interior, int(Θ), of Θ (w.p.1). The proof of this state-
ment does not enhance the understanding of the proof of the theorem
and we therefore postpone it for the end.

Therefore, to show Equation (7.2) it suffices to show

∀ large k : Qk((u, θ), ũ ×A) > 0 ∀u, ũ ∈ U
′,

∀θ ∈ int(Θ) and

∀A ∈ B(Θ) s.t. λ(A) > 0. (7.3)

To prove Equation (7.3) we introduce two new concepts, those of a critical
element of a configuration and a critical configuration. An element uj of
a legal configuration u = (u1, . . . , um) with respect to the observed data
x(u) = (x1(u), . . . , xd(u)), is said to be a critical element for the ob-
served data point xi(u) = 1, if uj = 1 and xi(u1, . . . , uj−1, 0, ul+1, . . . , um)
= 0. The meaning of a critical element is the following. Holding all other
components of the configuration fixed and changing the critical element
from 1 to 0 destroys an open path so that the new configuration does no
longer satisfy the data.

A legal configuration u ∈ U′ with respect to observed data x is said
to be a critical configuration if it satisfies that

(i) for each coordinate xi of x with xi = 1, there is a critical element
in u, and
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(ii) all subsets of coordinates of u corresponding to some connected
subgraph of G with no two observation points connected by an
open path, are zero.

The first part, (i), states that a critical configuration has, for each pair
of connected observation points, an edge such that if it is removed then
the observation points are no longer connected by an open path.

The proof of Equation (7.3) consists of three parts. The idea is that
from any legal configuration u, it is possible to reach any other legal
configuration ũ, by first go to a critical configuration ucrit in finitely
many transitions (part a), then in one transition go from ucrit to an other
critical configuration ũcrit (part c) from which it is possible to reach ũ in
finitely many transitions (part b):

(a) For any u ∈ U
′, there is a critical configuration ucrit ∈ U

′, such
that for any θ ∈ int(Θ) and all large n:

Qn((u, θ), {ucrit}×A) > 0, for all A ∈ B(Θ) with λ(A) > 0. (7.4)

(b) For any ũ ∈ U
′, there is a critical configuration ũcrit ∈ U

′, such
that for any θ ∈ int(Θ) and all large n:

Qn((ũcrit, θ), {ũ}×A) > 0, for all A ∈ B(Θ) with λ(A) > 0. (7.5)

(c) For any two critical configuration ucrit and ũcrit and for any θ ∈
int(Θ):

Q((ucrit, θ), {ũcrit} ×A) > 0, for all A ∈ B(Θ) with λ(A) > 0.
(7.6)

We first show (a). For any legal configuration it is possible to reach
a critical configuration by changing the value of q elements from 1 to 0.
Formally, for any legal configuration u there is a critical configuration
ucrit and a sequence of legal configurations (u0,u1, . . . ,uq), with u0 = u

and uq = ucrit, such that for each i ∈ {0, 1, . . . , q − 1} there is an l′ ∈
{1, . . . ,m} such that

ui
l′ = 1, ui+1

l′ = 0 ui
l = ui+1

l for l ∈ {1, . . . ,m} \ {l′}.

At any basic transition of the Block Updating MCMC, the u-coordinate
can be unaltered and we thus have that for all θ ∈ int(Θ),

P(u0,θ)(W1 ∈ {u1} × int(Θ), . . . ,

Wq−1 ∈ {uq−1} × int(Θ),

Wq ∈ {uq} ×A) > 0,

(7.7)
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which implies that for all θ ∈ int(Θ),

Qq((u, θ), {ucrit} ×A) > 0 for all A ∈ B(Θ) with λ(A) > 0. (7.8)

Since q is obviously finite and the u-coordinate can be unaltered by a full
transition, Equation (7.4) follows from Equation (7.8). The proof of (b)
is totally analogous.

We now prove (c). Assume the graph G has k connected subgraphs.
Recall that each element of u ∈ U corresponds to one particular edge of
G. Let Ui, for each i = 1, . . . , k, denote the subspace of U where each
element corresponds to an edge in the ith connected subgraph of G. The
elements of the two critical configurations ucrit and ũcrit are partitioned
in the obvious way

ucrit = (ucrit
1 , . . . ,ucrit

k ) and ũcrit = (ũcrit
1 , . . . , ũcrit

k ). (7.9)

Let Ui be a variable on Ui which denotes the state of the chain a
some point. We show that if at some point Ui = ucrit

i , then within one
full transition of the Block Updating MCMC, Ui = ũcrit

i happens with
positive probability.

By definition, if the ith connected subgraph of G has no two connected
observation points then ucrit and ũcrit are identical - all elements of both
ucrit and ũcrit are zero - and there is nothing to show.

Consider now the case when the ith connected subgraph of G has at
least two connected observation points. There is by assumption 2 of the
theorem a positive probability that all components of Ui are chosen in
step I of the algorithm. Given that all the components of Ui are chosen
in step I, the secondary Markov chain in step II, can, with positive
probability, evolve as follows:

In the first step of the secondary MCMC an element of Ui corre-
sponding to a critical element of ucrit

i is set to zero. In the following
steps all elements of Ui are set to zero. Then all elements of Ui which
are 1 in the configuration ũcrit

i are set to 1. The last element set to 1
is one corresponding to a critical element of ũcrit

i . This secondary chain
does indeed not visit any legal configuration before it reaches ũcrit

i . We
have shown (c). The statements of (a), (b) and (c) imply that the Block
updating MCMC is φ-irreducible and aperiodic.

We use Theorem 5.5 to show that the φ-irreducible and aperiodic
Block Updating MCMC on (W ′,W ′) is also Harris recurrent. We need
to prove that for any w ∈ W

′ and D ∈ W ′ with Ψ(D) = 0, we have
Pw(Wn ∈ D for all n) = 0.

If D ∈ W ′ is such that Ψ(D) = 0, then D ⊂ U′ × ξ, where ξ has
Lebesgue measure zero. By assumption 1 of the theorem, the θ-coordinate
of w = (θ,u) is updated within finitely many steps of the Block Updating
MCMC. Since when θ is updated it leaves the null-set ξ the aperiodic
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Block Updating MCMC is also Harris recurrent. The statement of the
Theorem therefore follows from Theorem 5.3.

Left to prove is only the unproven statement in the beginning of the
proof. It stated that after the first update of the θ-coordinate of w =
(θ,u), all following states visited by the Block Updating MCMC have
θ-coordinate in the interior int(Θ) of Θ (w.p.1).

To validate this statement, recall that the secondary Markov chain of
the Block Updating MCMC is a single-site Gibbs sampler which updates
according to the conditional densities of the relaxed density ψ⋆ with sup-
port on the whole space W = U × Θ. When the θ-coordinate is updated
by the single-site Gibbs sampler, a new θ-value is thus generated from
the conditional density ψ⋆(·|u). Since ψ⋆(u, θ) has support W = U × Θ,
it follows that ψ⋆(θ|u) has support Θ for all u ∈ U.

We conclude that even if the Block Updating MCMC is started in a
starting point with the value of the θ-coordinate on the boundary of Θ,
after the first update, the θ-value will leave the boundary and never come
back (w.p.1).

7.2 Harris recurrence of the Block Updating MCMC
used in the frequentist inference

In the frequentist setting, given data x from a percolation process, we
want to compute the MLE, θ̂ = argmaxθ∈Θ L(θ,x), where L(θ,x) =
pX|θ(x). We construct an MCEM algorithm to compute the MLE. We
view the configuration u as missing data. The observed data are x.

Within the tth MCEM iteration we need to approximate theQ-function.
Recall that the Q-function is the expectation of the complete data log-
likelihood with respect to the density of the unobserved data conditioned
on the observed data and the current value θ̃(t−1). The complete data log-
likelihood is in our case log pθ(u) and the density of the unobserved data
u conditioned on the observed data x, is proportional to pθ̃(t−1)(u)IU′ .

Given a sample (u1, . . . ,un) from pθ̃(t−1)(u)IU′ we approximate the
Q-function by

Q̃n(θ|θ̃(t−1)) =
1

n

n
∑

i=1

log pθ(ui).

We use a Block Updating MCMC to generate the sample (u1, . . . ,un).
Theorem 7.2 below ensures that it is possible to construct this Block
Updating MCMC such that the approximation Q̃n(θ|θ̃(t−1)) converges to
the true expectation, Q(θ|θ̃(t−1)), irrespectively of the starting point of
the Block Updating MCMC.

The Block Updating MCMC in Theorem 7.2 lives on a finite sample
space U and we could have stated the result in Theorem 7.2 in terms of
classical irreducibility for Markov chains on finite state spaces. However,
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to keep the formulation of Theorems 7.1 and 7.2 uniform, we use the
more general concept of Harris recurrence.

Theorem 7.2. Consider a Block updating MCMC, (U0,U1, . . .), for the
unnormalized target density ψ(u) = pθ(u)IU′ (for some θ ∈ Θ). Let Ψ be
the distribution corresponding to ψ. Assume the Block Updating MCMC
satisfies the following two conditions.

1. In each full transition every coordinate of u has positive probability
of being updated.

2. All subsets of coordinates of u corresponding to a connected sub-
graph of G have positive probability of being chosen in step I of one
basic transition of Algorithm 5.6.

Then the Markov chain is aperiodic and Harris recurrent, and thus for
any starting value u0 ∈ U′ and for any θ ∈ Θ

lim
n→∞

Q̃n(θ|θ̃(t−1)) = Q(θ|θ̃(t−1)) a.s.

Proof. We need to show that the Markov chain is Harris recurrent. Then,
since for all θ ∈ Θ, log pθ in Equation 7.2 satisfies the integrability con-
dition in Theorem 5.4, the convergence in 7.2 follows.

The Block Updating MCMC lives on the finite space (U′,U ′) where
U′ denotes the set of all legal configurations with respect to the data,
and U ′ is the set of all subsets of U′. We assume θ is not 0 and nor 1. If
θ is 0 or 1 then there is only one configuration with positive probability
and there is nothing to prove. If Q denotes a transition kernel on (U′,U ′)
which satisfies the conditions of the theorem, then, in analogy with the
proof of Theorem 7.1, to prove aperiodicity and irreducibility, we need to
show that

∀ large k : Qk(u, D) > 0 ∀u ∈ U
′ and D ⊂ U

′ 6= ∅. (7.10)

The proof of Equation (7.10) consists of three parts.

(a’) For any u ∈ U′, there is a critical configuration ucrit in U′, such
that for all large n:

Qn(u, {ucrit}) > 0. (7.11)

(b’) For any ũ ∈ U
′, there is a critical configuration ũcrit in U

′, such
that for all large n:

Qn(ũcrit, {ũ}) > 0. (7.12)

(c’) For any two critical configuration ucrit and ũcrit:

Q(ucrit, {ũcrit}) > 0. (7.13)
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The proof of a’, b’ and c’ are analogous to the proof of a, b and c in the
proof of Theorem 7.1.

Classical irreducibility corresponds to φ-irreducibility with respect to
counting measure. The conditions in Theorem 5.5, for an φ-irreducible
and aperiodic Markov chain to be Harris recurrent are trivially satisfied
for the Markov chain on the finite space U

′.

8 A simulation study

We performed a simulation study to evaluate the inference procedures
presented in Section 2. We start by describing the graphs on which the
percolation processes lives in this simulation study and explain the choice
of parameter values θ. Finally we comment on the use of burn-in and
thinning of a sample from an MCMC algorithm.

In Section 9 we specify the Block Updating MCMC used in the
Bayesian inference and in Section 10 the MCEM algorithm used in the
frequentist approach. In Section 11 we present the results from the sim-
ulation study.

8.1 The graph used in the simulation study

To illustrate the consistency results of Theorems 3.2 and 3.4, we per-
formed inference for a percolation process on a graph of the type intro-
duced in Section 2, i.e. a graph which is the union of a number of graphs
isomorphic to a base graph. We use L to denote the base graph and con-
sequently Ln denotes the graph consisting of the n graphs, L1, . . . , Ln,
that are isomorphic to L.

The choice of base graph L is made with respect to computational
load. We decided to let L be a 60 × 60 subset of the square lattice. The
vertex set V (L) and edge set E(L) of L are given by:

V (L) = {1, . . . , 60}2, E(L) = {〈u, v〉 : u, v ∈ V (L), |u− v| = 1}.

To illustrate the convergence results, we have performed the inference on
Ln for an increasing value of n.

Recall that the subgraph Lk of Ln is referred to as the kth primary
subgraph of Ln. Although not required in Theorems 3.2 and 3.4, we use
the same set of observation points in each primary subgraph Lk, which
consists of 13 vertices. We denote this set by O(13), see Figure 5. The
choice of observation points is arbitrary.

We are also interested in the convergence of sequences of posterior
distributions and MLE’s based on data from more general graphs than
those described above. Next, we turn to a type of graph Ln

conn which, in
contrary to the graph Ln, is a connected graph and therefore generates
data without the independence structure of the data from Ln.
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Figure 5: Left: The graph L which is a 60 × 60 subset of the
square lattice. Right: The set of observation points O(13).

Given Ln, Ln
conn is constructed by connecting the n primary subgraphs

of Ln to obtain a single connected graph. Illustrations of the graphs Ln

and Ln
conn for n = 3 are given in Figures 6 and 7.

Figure 6: The graph L3

8.2 The values of θ used in the simulation study

The existence of the so-called phase transitions is a principal result in
percolation theory. For percolation processes on many different regular
infinite lattices, there is a critical value θc of the parameter θ such that
if θ < θc, then the probability that there exists an infinite open cluster
is 0, and if θ > θc, then the probability that there exists an infinite open
cluster is 1 [10]. This abrupt change in the systems behaviour resulting
from a small change from a θ less than θc to a θ larger than θc is called
a phase transition. The value θc at which the phase transition occurs is
called the critical value. For a percolation process on the infinite square
lattice the critical value is θc = 0.5, see [10].
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Figure 7: L3
conn

The phase transition phenomenon for a percolation process on the
infinite square lattice has implications also for the percolation process on
the finite square lattice L. If the percolation process is generated with a
θ that is much larger than θc = 0.5, then it is very likely that any two
vertices in L are connected by an open path. Likewise, if the percolation
process is generated with a θ considerably smaller than θc = 0.5, then it
is highly unlikely that any two well-separated vertices in L are connected
by an open path. Consequently, the most interesting values of θ are
those in a interval around θc = 0.5 for which some pairs are connected
and other pairs are not. We have chosen to consider the parameter values
θ = 0.47, 0.50 and 0.53 in the simulation study.

8.3 Using a sample from an MCMC algorithm: burn-
in and thinning

Given the output from an MCMC algorithm it is practice to disregard
a number of initial iterations, which is called the burn-in. After the
burn-in the Markov chain is assumed to be in stationarity.

An MCMC in stationarity provides a sample of correlated realisa-
tions from the desired target distribution. This correlation can be mea-
sured by means of the autocorrelation function. For a stationary process
(Y0, Y1, . . .) the k-lag autocorrelation is given by

R(k) =
E[(Yt − µ)(Yt+k − µ)]

σ2
,

where µ = E[Yt] and σ2 = V ar(Yt).
The autocorrelation can be reduced by thinning the Markov chain,

which is done by retaining only every nth iterate. The value n is called
the thinning interval.
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9 Specification of the Block Updating

MCMC for the Bayesian inference

Assume data xn has been observed from the percolation process on Ln.
The goal is to compute the posterior distribution Π(·|xn) after choosing
the prior distribution Π. Here we have chosen as prior the uniform with
density π(θ) ≡ 1, θ ∈ [0, 1], with respect to Lebesgue measure λ.

With this choice of prior, we have from Section 7.1 that, if U′ de-
notes the set of legal configurations with respect to the observed data
xn, then integrating a sample from the unnormalized density ψ(u, θ) =
pθ(u)I{u∈U′} over U produces a sample from the posterior distribution
Π(·|xn).

By Theorem 7.1, it is possible to construct a Block Updating MCMC
on W = U × Θ such that the distribution of the nth iterate of the chain
converges to ψ(u, θ) = pθ(u)I{u∈U′} as n tends to infinity, for whatever
choice of starting point.

Before we proceed any further we need to choose the values for the
different parameters entering the algorithm. If the total number of edges
in Ln is m, then the Block Updating MCMC lives on W = U×Θ, where
U = {0, 1}m. A typical element of W is w = (u, θ), where u is a possible
realisation of the percolation process on Ln.

Recall that the edge set of Ln is E(Ln) = ∪n
k=1E(Lk), where E(Lk)

is the edge set of the kth primary subgraph of Ln. In order to specify the
Block Updating MCMC we will occasionally write u = (u1, . . . ,un) and
let uk contain the elements of u which corresponds to edges in the kth

primary subgraph Lk. Since each element of u corresponds to an edge
we sometimes refer to these elements as edges.

9.1 Different basic transitions within a full transition

In the first basic transition of a full transition the θ-value of w = (u, θ)
is updated while in the rest of the basic transitions only the coordinates
of u = (u1, . . . ,uk) are updated. For all k, k = 1, . . . , n, R subsets of
the uk’s are updated in each full transition. The value of R is chosen
to achieve an efficient balance between updates of edges and updates
of the parameter θ. We used different values of R in preliminary runs
and evaluated the computational load and auto-correlation and found
R = |E(Lk)| to be suitable.

9.2 The set of subsets B

Recall that B denotes, in the case of a Block Updating MCMC on W =
U×Θ, the set of subsets of components of W that have positive probability
of being updated simultaneously in one basic transition. From Section
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9.1, it follows that the one-element set {θ} is included in B and that any
other element of B is a subset of E(Lk) for some k ∈ {1, . . . , n}, i.e. a
subset of edges of the kth primary subgraph. We let Bk denote that subset
of B that contains the subsets of E(Lk) and is defined in the following
way.

Let us denote by (i, j), for i, j ∈ {1, . . . , 60} an element of the vertex
set V (Lk). We define an s-sized quadratic subset V ′ of V (Lk) to be
a set of the form

V ′ = {(i, j) : a ≤ i ≤ min(a+ s, 60), b ≤ j ≤ min(b+ s, 60)} (9.1)

for some a, b ∈ {1, . . . , 60} and an s-sized quadratic subsetE′ ofE(Lk)
to be a set

E′ = {〈u, v〉 ∈ E(Lk) : u, v ∈ V ′} (9.2)

for some s-sized quadratic subset V ′ of V (Lk).
Now, let Bs

k be the set of s-sized quadratic subsets of E(Lk) and for
some appropriate minimal size smin, we define Bk = ∪∞

s=smin
Bs

k.
There seems to be no point in including too small quadratic subsets of

E(Lk) in Bk. On the other hand, since as seen in Example 4 in Section 7,
a quadratic subsets of E(Lk) of size only 4 can resolve some irreducibility
problems, we chosen to take smin = 4.

9.3 The distribution ∆i over B

We now specify the distribution ∆i over B. Within the ith basic transition
of the Block Updating MCMC the subset of components of W to be
updated simultaneously is chosen according to ∆i.

The distribution ∆i varies with the basic transition number i within
a full transition. From Theorem 7.1 follows immediately, that for Harris
recurrence, ∆i(uk) > 0 for some i, is sufficient.

Recall that Bk ⊂ B denotes those subsets of edges of the kth primary
subgraph which have positive probability of being updated simultane-
ously. In each basic transition (except the first), from Bk, k = 1, . . . , n, a
subset of edges is updated. Now, assume that in the ith basic transition,
we choose to update an element of Bk. Then, we define ∆i, by the fol-
lowing. First a size s is drawn from a geometrical distribution truncated
at smin = 4. Then, given s, an element is chosen uniformly among the el-
ements in B

s
k, i.e. from the set containing all s-sized quadratic subgraphs

of the kth primary subgraph.
The truncated geometrical distribution is chosen in order to obtain a

good balance between the updates of small and large subsets of edges.
Updating many large subsets ensures that the chain can easily move
between different regions of the state space. On the other hand, updating
too many large subsets may slow down the algorithm. However, the
choice of truncated geometrical distribution did not seem to influence
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the performance of the algorithm very much. In this study, we have used
the geometrical distribution with mean 4 truncated at smin = 4.

9.4 The relaxed density ψ⋆

By Theorem 7.1 we can choose the relaxed density ψ⋆ of the Block Updat-
ing MCMC freely as long as it is proportional to the unnormalized target
density ψ(u, θ) = pθ(u)I{u∈U′} on the set of legal states, W′ = U′ × Θ.
The obvious choice of ψ⋆ = pθ(u) is far from optimal. Hence, we follow
Hurn [11] in the choice of relaxed density ψ⋆.

We start by noting that there is a natural hierarchy among the illegal
states. The more data points violated by an illegal state, the ’more illegal’
it is. To prevent the Markov chain to move too far away from the legal
states it is natural to choose a relaxed density ψ⋆ which penalizes the
more illegal states.

For this, we define a function C : U → [0,∞) which takes the value
0 for a legal u, and is increasing with respect to the ’degree of ille-
gality’. Recall that the observed data xn = (x1, . . . ,xn), with xk =
(xk,1, . . . , xk,dk

) is a realisation of the data vector Xn. Then let C(u) =
∑n

k=1

∑dk

l=1 I{Xk,l(u) 6=xk,l} denote the number of data points not satisfied
by the configuration u. Finally, we choose ψ⋆ by

ψ⋆(u, θ) ∝ pθ(u) exp {−aC(u)},

for some a > 0. The value of a determines how easily the secondary
Markov chain of the Block Updating MCMC can move away from the
legal states. We set a = 0.8.

9.5 Starting point for the Block Updating MCMC

We use a single-site Gibbs sampler started in θ = 0.5 and a randomly
generated (not necessarily legal) configuration to find a legal starting
point for the Block Updating MCMC.

10 Specification of the Monte Carlo EM

algorithm for the frequentist inference

Next, we specify the MCEM algorithm that we use in the frequentist
inference. We need to specify several parameters in the algorithm. More-
over, we need to decide on appropriate starting values for the algorithm,
stopping criteria and an estimation procedure for the Monte Carlo error
of the approximation Q̃n.
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10.1 Starting value for the MCEM algorithm

The choice of starting value for θ in the MCEM algorithm is crucial.
This value of θ is used to generate a starting point, u, for the Block
Updating MCMC in the first iteration of the EM algorithm. (In any
other EM iterate the last configuration of the Block Updating MCMC in
the previous EM iterate is used as starting point.)

As discussed in Section 8.2, the percolation process on the infinite
square lattice exhibits a phase transition at θc = 0.5. This implies that
also on the finite square lattice L, the process generated by a θ somewhat
smaller than θc = 0.5 is qualitatively different from the process generated
by a θ somewhat larger than θc = 0.5. Thus, it is important to prevent
the situation where the starting value and the true value of θ are on
opposite sides of θc = 0.5. Therefore, the only natural choice of starting
value for the Monte Carlo EM algorithm is θ = 0.5.

10.2 The scheme to increase the sample size in ap-
proximating the Q-function

Recall that θ̃(t,n) denotes the maximizer of the approximation Q̃n(θ|θ̃(t−1))
of Q(θ|θ̃(t−1)) based on a Monte Carlo sample of size n. Within each EM-
iteration a sequence of suggested new values {θ̃(t,n)}n is computed until
eventually a value is accepted. The sample size is increased by 5 at a
time, i.e. n = 5, 10, 15, . . .. Also, in generating the sample, we have used
burn-in time 10 and thinning interval 1.

10.3 The Block Updating MCMC used within each
iteration of the MCEM algorithm.

We turn now to the Block Updating MCMC used within each EM iter-
ation to generate a sample for the Monte Carlo integration. This Block
Updating MCMC is similar to the Block Updating MCMC used for the
Bayesian inference presented in Section 9, the difference being that the
Block Updating MCMC in the latter case lives on W = U × Θ, whereas
the Block Updating MCMC in former lives on U.

Recall that only in the first basic transition of the Block Updating
MCMC used in the Bayesian inference, the element θ ∈ Θ is updated,
while in the rest we only update the coordinates of u of U. The Block
Updating MCMC used in the frequentist inference is defined by letting
a full transition of this algorithm be equivalent to all but the first basic
transition of a full transition in the Block Updating MCMC defined in
Section 9.

The relaxed density ψ⋆ of this Block Updating MCMC on U is the ob-
vious modification of the relaxed density for the Block Updating MCMC
on W = U × Θ obtained by fixing θ at the value of the current EM
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iteration, θ̃(t−1):

ψ⋆(u) ∝ pθ̃(t−1)(u) exp {−aC(u)},

for some a > 0. As for the Block Updating MCMC used in the Bayesian
setting, we chose a = 0.8.

10.4 The decision to accept or reject a suggested
value θ̃(t,n)

Recall that the Q-function is the expectation of the log-likelihood of the
complete data which in our case is log pθ(u). The expectation is computed
with respect to the unnormalized density pθ̃(t−1)(u)IU′ :

Q(θ|θ(t−1)) = Eθ(t−1) [log pθ(U)|xn].

Recall also that Q̃n is a Monte Carlo integration analogue of Q:

Q̃n(θ|θ̃(t−1)) =
1

n

n
∑

i=1

log pθ(ui), (10.1)

where (u1, . . . ,un) is a sample from an MCMC algorithm with stationary
distribution corresponding to the unnormalized density pθ̃(t−1)(u)IU′ .

In Section 6.1, ∆Q(θ′) was defined as the increment when the value
of θ changes from the current value in the tth EM iteration, θ(t−1), to
some new value θ′:

∆Q(θ′) = Q(θ′|θ̃(t−1)) −Q(θ̃(t−1)|θ̃(t−1)).

We also defined the Monte Carlo integration analogue ∆Q̃n(θ′) of ∆Q(θ′):

∆Q̃n(θ′) = Q̃n(θ′|θ̃(t−1)) − Q̃n(θ̃(t−1)|θ̃(t−1)),

which for the suggested new value θ̃(t,n), by Equation 10.1, can be written
as

∆Q̃n(θ̃(t,n)) = 1
n

∑n
i=1 log

p
θ̃(t,n) (ui)

p
θ̃(t−1) (ui)

where (u1, . . . ,un) is a sample from an MCMC algorithm with stationary
distribution corresponding to the unnormalized density pθ̃(t−1)(u)IU′ .

With U distributed according to pθ̃(t−1)(u)IU′ , we define,

W (U) = log
pθ̃(t,n)(U)

pθ̃(t−1)(U)
,

Hence, ∆Q(θ̃(t,n)) is the expectation of W and by letting Wi = W (Ui),
∆Q̃n(θ̃(t,n)) is simply the sample average: ∆Q̃n(θ̃(t,n)) = 1

n

∑n
i=1Wi.
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In order to judge whether to accept or reject θ̃(t,n) we need to estimate
the variance of ∆Q̃n(θ̃(t,n)). Since W1,W2, . . . are correlated, we use a
(non-overlapping) batch means estimate. This is a way to reducing the
correlation by grouping the observations.

Let a denote the number of batches and assume the sample size n is
a multiple of an integer b. Then the kth batch mean

W̄ b
k =

1

b

kb
∑

i=(k−1)b+1

Wi

is the sample average based on the kth batch of b observations from W .
Let V denote the variance of W . We assume, somewhat inaccurately,
that the batch means, (W̄ b

1 , . . . , W̄
b
a ), are independent and normally dis-

tributed with variance V/b. Under this assumption

V̂ =
1

b(a− 1)

a
∑

k=1

(W̄ b
k − ¯̄W )2,

where ¯̄W is the mean of the batch means, is an unbiased estimator of V
and we can form a t-statistic

T =
∆Q̃n(θ̃(t,n))
√

V̂ /n
.

The appropriate degree of freedom of T is a− 1. (See Sherman [20].) If,
for an appropriate choice of α, this t-statistic is in the upper α-quantile,
then we accept θ̃(t,n) and set θ̃(t) = θ̃(t,n). We chose α = 0.05.

10.5 A stopping rule for the MCEM algorithm

A well-known problem when using a regular non-stochastic EM algorithm
is possible slow convergence [14], [22]. Slow convergence can be even more
problematic when using a stochastic EM algorithm, such as the MCEM
algorithm.

If the Monte Carlo error is large compared to the increase in the Q-
function, then the time until a θ-value is accepted can be extremely long.
Thus, we may have to stop the MCEM algorithm at values where it is
suspected that we do not have yet convergence.

The randomness of a stochastic EM algorithm implies that the changes
|θ̃(t)−θ̃(t−1)| between consecutive iterates of the MCEM algorithm are not
a smooth function of the iteration number. Therefore, it is not advisable
to base a stopping rule for the MCEM algorithm on them.

Instead, we evaluate a stopping rule repeatedly within each step of
the MCEM algorithm. Recall that a sequence of suggested new values
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{θ̃(t,n)}n∈{5,10,15,...} based on a Monte Carlo integration from an increas-

ing sample are evaluated within each MCEM iteration. If θ̃(t,n) is rejected
and |θ̃(t,n) − θ̃(t−1)| is less than some small number δ for a sequence of K
consecutive suggested values, then the MCEM algorithm is terminated.
We found δ = 0.5 × 10−3 to be suitable.
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Figure 8: The evolution of θ(t) in the MCEM algorithm for
three different realisations. The dark line represents the value
of θ(t). The gray line represents the suggested new value θ(t,n).
Each jump in the value of θ(t) corresponds to that a suggested
new value θ(t,n) has been accepted. Thus, each plateau of
the value of θ(t) corresponds to one iteration of the MCEM
algorithm. The length of the plateau thus corresponds to n in
the accepted value θ(t,n), i.e. the size of the sample used to
approximate the Q-function when the suggested new value is
accepted. The three dots in each graph indicates the time of
termination for three different rules for termination. All three
rules use the same value δ = 0.5× 10−3 but different values of
K. The three values of K are 30, 100 and 300.

The choice of value of K is crucial. It must be chosen so that the
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algorithm terminates in a neighbourhood of the maximum of the likeli-
hood function but at the same time is not too time-consuming. Because
of the slow convergence of the MCEM algorithm this is a delicious prob-
lem. We illustrate the problem with the slow convergence of the MCEM
algorithm for our particular application in Figure 8. The value of θ(t)

in each iteration of the MCEM algorithm for three realisations of the
percolation process on L8 with θ = 0.47 is presented. The time of termi-
nation is indicated for three different choices of termination rule, all with
δ = 0.5 × 10−3 but with different values of K.

Obviously there is a trade of between the accuracy in the approxima-
tion of the MLE and the computation time. We decided to use K = 100
in our simulations.

11 Simulation results

In this section we present results of the implementation of the Block
Updating MCMC for the Bayesian inference and the MCEM algorithm
for the frequentist inference. The algorithms were implemented in C and
executed on a 3 GHz computer.

11.1 Illustration of Theorem 3.2, the consistency re-
sult in the Bayesian inference

We first illustrate Theorem 3.2, the consistency result in the Bayesian
approach to inference. We generated three different realisations of the
percolation process on L64 with parameter value θ = 0.47. Recall that
the data from L64 are denoted X64 and that for n < 64, Xn denotes the
data from the first n primary subgraphs of L64.

For each of the three realisations we computed the sequence of poste-
rior distributions corresponding to the data, x2,x4,x8,x16,x32,x64. The
results are presented in Figures 9 and 10. Figure 9 illustrates how the
posterior distribution accumulates close to the true value θ = 0.47 as
more data are observed. In Figure 10 we present the means and stan-
dard deviations of the posterior distributions.

The decrease in the standard deviations as more data are observed
is visible for all three realisations. It is also clear that the means of the
posteriors tends to be closer to 0.47 the more data the posteriors are
based on. We note though that this trend is not clear when the number
of primary subgraphs that the posteriors are based on, is changed from
32 to 64. An explanation for this is that two of the three posteriors based
on data from 32 primary subgraphs, happens, by chance, to be very close
to 0.47.

53



0.45 0.47 0.49
0

50

100

π(
θ|

x2 )

1:st realisation

0.45 0.47 0.49
0

50

100

π(
θ|

x4 )

0.45 0.47 0.49
0

50

100

π(
θ|

x8 )

0.45 0.47 0.49
0

50

100

π(
θ|

x16
)

0.45 0.47 0.49
0

50

100

π(
θ|

x32
)

0.45 0.47 0.49
0

50

100

π(
θ|

x64
)

0.45 0.47 0.49
0

50

100
2:nd realisation

0.45 0.47 0.49
0

50

100

0.45 0.47 0.49
0

50

100

0.45 0.47 0.49
0

50

100

0.45 0.47 0.49
0

50

100

0.45 0.47 0.49
0

50

100

0.45 0.47 0.49
0

50

100

0.45 0.47 0.49
0

50

100

0.45 0.47 0.49
0

50

100

0.45 0.47 0.49
0

50

100

0.45 0.47 0.49
0

50

100

Posterior distributions for an increasing amount of data

0.45 0.47 0.49
0

50

100
3:rd realisation

Figure 9: Illustration of the consistency result, Theorem
3.2. Each of the three columns corresponds to one re-
alisation of the percolation process. Each row repre-
sents the posterior based on an increasing amount of data:
π(θ|X2), π(θ|X4), π(θ|X8), π(θ|X16), π(θ|X32), π(θ|X64). The
burn-in is 1000, the thinning interval is 5 and the sample size
is 4200.
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Figure 10: Summary of the posterior distributions in Figure
9. Left: The mean for each posterior distribution for an in-
creasing amount of data, for three different realisations. Right:
The standard deviation for each posterior distribution for an
increasing amount of data, for three different realisations.
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11.2 Illustration of Theorem 3.4, the consistency re-
sult in the frequentist inference

We now illustrate Theorem 3.2, the consistency result in the frequentist
approach to inference. We generated 27 different realisations of the per-
colation process on L64 with parameter value θ = 0.47. For each of the
27 realisations we computed the sequence of maximum likelihood esti-
mates corresponding to the data, x2,x4,x8,x16,x32,x64. The results are
presented in Figure 11 and Table 1.
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Figure 11: Illustration of the consistency result, Theorem 3.4.
The MLE’s θ̂2, θ̂4, θ̂8, θ̂16, θ̂32 and θ̂64 for 27 different realisa-
tions. Each line represents a particular realisation.

Estimate h h̄ =
∑27

i=1 hi

√

1
26

∑27
i=1(hi − h̄)2

h = θ̂2 0.4712 0.0119

h = θ̂4 0.4744 0.0081

h = θ̂8 0.4722 0.0053

h = θ̂16 0.4723 0.0040

h = θ̂32 0.4716 0.0030

h = θ̂64 0.4706 0.0022

Table 1: Summary of the MLE’s in Figure 11.
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11.3 Convergence results for more general graph

We now consider a percolation process on the more general graph Ln
conn

introduced in Section 8.2. For n = 2, 4, 8 we generated a realisation of
the percolation process Ln

conn
from a realisation of the process on Ln,

where Ln, for n < 8, denotes the subgraph of L8 consisting of the first n
primary subgraphs of L8. The process on L8 was generated with θ = 0.47.
For three different realisations and for each n = 2, 4, 8, we computed
the posterior distributions and the MLE’s based on the data from the
percolation process on Ln

conn
.
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Figure 12: Each column corresponds to the posterior from
L2

conn, L4
conn and L8

conn generated from L2, L4 and L8, where
Ln for n < 8 is the subgraph of L8containing the n first primary
subgraphs of L8. The burn-in is 1000, the thinning interval is
5 and the sample size is 5000.

The results for the Bayesian inference are presented in Figure 12.
A comparison of the posteriors based on data from Ln and Ln

conn for
n = 2, 4, 8 is presented in Table 2. A comparison of the MLE’s based on
the data from Ln and Ln

conn for n = 2, 4, 8 is presented in Table 3. For
both aproaches the rate of convergence is similar for the data from Ln

and Ln
conn

for this particular case.
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Posterior means from realisation 1
n Ln Ln

conn

2 0.4752 (0.0117) 0.4740 (0.0135)
4 0.4662 (0.0093) 0.4614 (0.0097)
8 0.4679 (0.0067) 0.4670 (0.0061)

Posterior means from realisation 2
n Ln Ln

conn

2 0.4568 (0.0143) 0.4630 (0.0140)
4 0.4796 (0.0088) 0.4700 (0.0086)
8 0.4733 (0.0066) 0.4753 (0.0060)

Posterior means from realisation 3
n Ln Ln

conn

2 0.4726 (0.0124) 0.4640 (0.0137)
4 0.4759 (0.0083) 0.4681 (0.0091)
8 0.4642 (0.0066) 0.4618 (0.0068)

Table 2: Comparison of the posterior distributions in Figure 9
(from Ln) and the posterior distributions in Figure 12 (from
Ln

conn
).

h̄ =
∑27

i=1 hi

√

1
26

∑27
i=1(hi − h̄)2

n Ln Ln
conn Ln Ln

conn

2 0.4712 0.4721 0.0119 0.0122
4 0.4744 0.4750 0.0081 0.0060
8 0.4722 0.4718 0.0053 0.0045

Table 3: Comparison of the MLE’s in Figure 11 (from Ln) and
the MLE’s from Ln

conn
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11.4 Performance of the inference procedures depend-
ing on the value of θ

We have also carried out simulations to evaluate the dependence of the
performance of the inference procedures on the ’true’ value of θ. We have
considered both the accuracy of the inference procedures themselves and
the performance of the algorithms for different values of θ.

For each parameter value θ = 0.47, 0.50 and 0.53 we generated a num-
ber of realisations of the percolation process on L4. The Block Updating
MCMC algorithm for the Bayesian inference was run on data from three
different realisations for each of the three parameter values. The posterior
distributions are presented in Figure 13 and Table 4.
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0.5 0.53 0.56
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Posterior distributions, data generated by Pθ for different θ

0.5 0.53 0.56
0

500

1000
θ = 0.53

Figure 13: The posterior distribution for three realisations of
the percolation process on L4 for three different values of θ.
The burn in is 10000, the thinning interval is 20 and the sample
size is 6800. Column 1: θ = 0.47, Column 2: θ = 0.5, Column
3: θ = 0.53.

The MCEM algorithm for the frequentist inference was run on 168
realisations for each of the three parameter values, θ = 0.47, 0.50 and 0.53.
The mean of the MLE’s, θ̂4, over the 168 realisations for the different
values of θ are presented in Figure 14 and Table 5.
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θ = 0.47 θ = 0.50 θ = 0.53
0.4669 (0.0093) 0.5041 (0.0078) 0.5441 (0.0152)
0.4787 (0.0084) 0.5027 (0.0080) 0.5356 (0.0097)
0.4756 (0.0088) 0.5031 (0.0082) 0.5358 (0.0121)

Table 4: The means and standard deviations (in parenthesis)
for the 9 posterior distributions in Figure 13.
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Figure 14: Summary of MLE’s for different values of θ.

We note that for both approaches the accuracy seems to be higher for
θ = 0.5 than for θ = 0.47 or 0.53 (See Tables 4 and 5), which seems to
be natural, since this is the critical value of the percolation process. The
derivative with respect to θ of the probability Pθ{o1 ↔ o2} of connected-
ness of two well-separated vertices o1 and o2 on a large proportion of the
infinite square lattice is large at values of θ close to the critical probability
θc = 0.5. Consequently, given the information of connectedness for a set
of pairs of vertices, two parameter values θ and θ + ǫ (for a small ǫ > 0)
are easily distinguishable if θ is close to θc = 0.5.

In Figure 14 we also note something that has been visible also in earlier
graphs. There seems to be a bias in the approximated MLE towards 0.5.
This bias is due to the starting value θ = 0.5 for the MCEM algorithm.
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As explained in Section 10.1, this choice was necessary. Due to the slow
rate of convergence of the MCEM algorithm (See discussion in Section
10.5) it has to be stopped before it converges. A better implementation
of the MCEM can probably decrease this bias.

θ h̄ =
∑168

i=1 hi

√

1
167

∑168
i=1(hi − h̄)2

0.47 0.4721 0.0097
0.50 0.4999 0.0070
0.53 0.5264 0.0104

Table 5: Summary of the 168 estimates θ̂4 in Figure 14. Here
hi denotes the value of θ̂4 from the ith realisation of the per-
colation process on L4.

We also considered the dependence of the auto-correlation and the
computational time on θ. The sample auto-correlations and the times
to compute the posterior distributions in Figure 13 are given in Table
6. Both the auto-correlation and the computational time seems to be
dependent on θ, see Table 6.

θ = 0.47 θ = 0.50 θ = 0.53
R(20) time R(20) time R(20) time

0.23 46 0.12 85 0.63 168
0.17 57 0.12 89 0.28 140
0.19 56 0.15 96 0.47 159

Table 6: The estimated 20-lag auto-correlation, R(20), and
the time (in hours) to generate each of the samples for the 9
posterior distributions in Figure 13.

12 Conclusions

We have presented an inference problem for a percolation process on a
graph and shown a consistency result for a particular class of graphs in
both the Bayesian and the frequentist approach to inference.

Moreover we have developed two algorithms in order to compute the
relevant quantities. In the Bayesian inference we developed a block up-
dating MCMC which was shown to converges to the posterior distribu-
tion, from any starting point. In the frequentist case, we developed a
Monte Carlo EM algorithm. The algorithms were implemented in a sim-
ulation study.
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The simulation results illustrated the already shown theoretical con-
sistency results for the percolation process on the restricted class of
graphs. Moreover, the simulation study indicated that the convergence
of both the sequences of posterior distributions and MLE’s might extend
to more general graphs.

The simulation results also suggest that when we have the option of
choosing the inference approach, the Bayesian should be preferred in this
special case, since we have seen that the MCEM approach introduced
some bias into the estimate due to the critical phenomenon of the perco-
lation process.
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