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AN ADAPTIVE FINITE ELEMENT METHOD FORNONLINEAR OPTIMAL CONTROL PROBLEMSKARIN KRAFT AND STIG LARSSONAbstract. Lagrange's method in the calculus of variations is applied toa nonlinear optimal control problem. The optimality conditions are dis-cretized by a �nite element method. The methodology of dual weightedresiduals is used to derive an a posteriori error estimate. This is com-bined with Newton iterations in an adaptive multilevel method, whichis implemented and tested on model problems.1. IntroductionWe consider optimal control problems with a nonlinear system of ordinarydi�erential equations as state equations. The system of di�erential equationshas boundary values at the initial and �nal times, and the �nal time is �xed.The goal functional is nonlinear, although in practice it is often quadratic.The optimality conditions are derived by Lagrange's method in the calculusof variations and the resulting di�erential/algebraic equations are discretizedby a �nite element method. The purpose is to investigate the potential ofadaptive �nite element methods for the numerical solution of this type ofproblem.The �nite element method has been widely used for spatial discretizationof optimal control problems for partial di�erential equations [1, 8, 11, 12].The use of �nite element methods for temporal discretization is not as com-mon but it has been used in [2, 3, 4, 5, 6].The Lagrange framework requires the solution of a linearized adjoint sys-tem of the same size as the equations of state. In the previous work [3, 4, 6]all equations are merged into one large system, which is solved by an adap-tive �nite element method. The theoretical basis is the standard dualityargument for proving a posteriori error estimates. This requires the solutionof the linearized adjoint of the new system, thereby doubling the number ofvariables.The dual weighted residuals methodology [1] for a posteriori error analysisis formulated within the Lagrange framework and is therefore well suited1991 Mathematics Subject Classi�cation. 65L60, 49K15.Key words and phrases. adaptive �nite element, a posteriori, error estimate, nonlinear,optimal control, multilevel, Newton method, dual weighted residuals.Research supported by the Swedish Research Council (VR) and by the Swedish Foundationfor Strategic Research (SSF) through GMMC, the Gothenburg Mathematical ModellingCentre. 1



2 K. KRAFT AND S. LARSSONfor optimal control problems. No additional adjoint problem is introduced.The procedure provides a representation formula for the error in the goalfunctional. The formula can be expanded into an error estimator, which isan elementwise sum of dual weighted residuals. Each of these consist of aresidual from the state equation multiplied by a weight computed from theadjoint solution and a residual from the adjoint equation multiplied by aweight from the state equation.In our previous work [5] we developed this approach for optimal controlproblems with quadratic goal function and linear state equations. In thepresent work we extend this to fully nonlinear problems. Discretization bythe �nite element method results in an nonlinear algebraic problem, which issolved by Newton's method. The error estimator includes terms representingthe approximate solution of the algebraic equations. The Newton iterationis combined with the adaptive re�nement iteration into a multilevel adaptivemethod, which is implemented and tested on model problems.The outline of the article is: In Section 2 the mathematical setting of theoptimal control problem is done, the Lagrange framework is presented, theoptimality conditions are derived and the Newton method for the solutionof the nonlinear equations is described. In Section 3 the discretization isdescribed and in Section 4 a representation formula for the error is provedand the computation of the resulting error estimate is discussed. The im-plementation of the multilevel adaptive �nite element solver is described inSection 5. The last section contains two numerical examples and a discussionof the performance of the solver.2. A Nonlinear optimal control problemWe consider optimal control problems of the form: Determine states x(t) ∈
R
d and controls u(t) ∈ R

m, whichminimize J (x, u) = l(x(0), x(T )) +

∫ T

0

L(x(t), u(t)) dt,subject to ẋ(t) = f(x(t), u(t)), 0 < t < T,

I0x(0) = x0, ITx(T ) = xT .

(2.1)Here
l : Rd × R

d → R,

L : Rd × R
m → R,

f : Rd × R
m → R

d,are smooth functions and I0 and IT are binary diagonal matrices, and x0 ∈
R(I0), xT ∈ R(IT ), where R(A) denotes the range of a matrix A.2.1. Lagrange framework. In order to set the optimal control problem inthe Lagrange framework we introduce some function spaces. Let Ck denote ktimes continuously di�erentiable functions and let H1 denote functions with



ADAPTIVE FEM FOR NONLINEAR OPTIMAL CONTROL 3square integrable derivative. Further, C1
PW

denotes piecewise continuouslydi�erentiable functions [0, T ] → R
d; more precisely, functions that are C1except at a �nite number of points in [0, T ] and with left and right limits

w(t−) = lims↓t w(s), w(t+) = lims↑tw(s) for all points t ∈ [0, T ].We introduce the function spaces
W = R

d × C1
PW([0, T ],Rd)× R

d;

Ẇ = R(I − I0)× C1
PW([0, T ],Rd)×R(I − IT )

=
{

w ∈ W : I0w(0
−) = 0, ITw(T

+) = 0
}

;

V = H1([0, T ],Rd);

U = H1([0, T ],Rm).The two factors Rd in W are used to accomodate the boundary values w(0−)and w(T+). These spaces are linear spaces. For some x̂ ∈ W such that
I0x̂(0

−) = x0 and IT x̂(T+) = xT , we also de�ne the a�ne space
Ŵ = x̂+ Ẇ =

{

w ∈ W : w − x̂ ∈ Ẇ
}

.The weak formulation of the state equation in (2.1) is: Given u ∈ U �nd
x ∈ Ŵ such that(2.2) F(x, u;ϕ) = 0 ∀ϕ ∈ V.Here, the functional

F : W ×U × V → R,is de�ned by(2.3) F(x, u;ϕ) =

N
∑

n=1

∫ tn

tn−1

(ẋ− f(x, u), ϕ) dt+

N
∑

n=0

([x]n, ϕ(tn)),where (·, ·) denotes the scalar product in R
d, [x]n = x(t+n ) − x(t−n ), andthe sum is taken over all points {tn}

N
n=0 of discontinuity of x, and t0 = 0,

tN = T . Although x is expected to be smooth, the functional F is de�ned forpiecewise di�erentiable functions x ∈ W with ẋ written as a weak derivativein order to admit also piecewise smooth �nite element functions. We use thenotation that functionals depend arbitrarily on the arguments before thesemicolon and linearly on the arguments after the semicolon.2.2. Necessary conditions for optimality. In order to derive the opti-mality conditions, we introduce the Lagrange functional(2.4) L(x, u; z) = J (x, u) + F(x, u; z), (x, u, z) ∈ W × U × V,where z is a Lagrange multiplier. In order to �nd minima we seek (x, u, z) ∈

Ŵ × U × V such that(2.5) L′(x, u; z, ϕ) = 0 ∀ϕ ∈ Ẇ × U × V.



4 K. KRAFT AND S. LARSSONTaking partial derivatives of the Lagrangian in (2.4) gives
L′
x(x, u; z, ϕx) = J ′

x(x, u;ϕx) + F ′
x(x, u; z, ϕx) = 0 ∀ϕx ∈ Ẇ,(2.6a)

L′
u(x, u; z, ϕu) = J ′

u(x, u;ϕu) + F ′
u(x, u; z, ϕu) = 0 ∀ϕu ∈ U ,(2.6b)

L′
z(x, u; z, ϕz) = F(x, u;ϕz) = 0 ∀ϕz ∈ V.(2.6c)Expanding (2.6a)�(2.6c) and using integration by parts in (2.6a) gives
∫ T

0

(ϕx,−ż − f ′x(x, u)
∗z + L′

x(x, u)) dt(2.7a)
+ (ϕ+

x,N , zN + l′2(x
−
0 , x

+

N ))

+ (ϕ−
x,0,−z0 + l′1(x

−
0 , x

+

N )) = 0 ∀ϕx ∈ Ẇ,
∫ T

0

(ϕu, L
′
u(x, u)− f ′u(x, u)

∗z) dt = 0 ∀ϕu ∈ U ,(2.7b)
N
∑

n=1

∫ tn

tn−1

(ẋ− f(x, u), ϕz) dt+

N
∑

n=0

([x]n, ϕz,n) = 0 ∀ϕz ∈ V,(2.7c)
I0x

−
0 = x0, ITx

+

T = xT ,(2.7d)where x±n = x(t±n ), ϕ±
x,n = ϕx(t

±
n ), ϕz,n = ϕz(tn), and l′1 and l′2 denotederivative with respect to the �rst and the second variable. .Here we have di�erentiated the term

f(x, u; z) := (f(x, u), z),and identi�ed the derivatives with matrices f ′x(x, u), f ′u(x, u) by means ofthe Riesz representation theorem:(2.8) f ′x(x, u; z, ϕx) = (f ′x(x, u)ϕx, z) = (ϕx, f
′
x(x, u)

∗z),

f ′u(x, u; z, ϕu) = (f ′u(x, u)ϕu, z) = (ϕu, f
′
u(x, u)

∗z).Similarly, we de�ned the vectors L′
x(x, u), l′i(x−0 , x+N ), i = 1, 2.2.3. Newton's method. We use Newton's method to solve the nonlinearequations in (2.7). Given an approximate solution (x, u, z) it yields a newapproximate solution (x̂, û, ẑ) by(2.9) (x̂, û, ẑ) = (x, u, z) + α(δx, δu, δz),where α ∈ R is a parameter and the increment δ = (δx, δu, δz) ∈ Ẇ × U × Vis the solution of(2.10) L′′(x, u; z, ϕ, δ) = −L′(x, u; z, ϕ) ∀ϕ ∈ Ẇ × U × V.To clarify the following equations we identify matrices f ′′xx(x, u; z), f ′′xu(x, u; z),

f ′′uu(x, u; z) by further di�erentiation in (2.8):
f ′′xx(x, u; z, ϕx, ψx) = (f ′′xx(x, u; z)ϕx, ψx) = (ϕx, f

′′
xx(x, u; z)ψx),

f ′′xu(x, u; z, ϕx, ϕu) = (f ′′xu(x, u; z)ϕx, ϕu) = (ϕx, f
′′
xu(x, u; z)

∗ϕu),

f ′′uu(x, u; z, ϕu, ψu) = (f ′′uu(x, u; z)ϕu, ψu) = (ϕu, f
′′
uu(x, u; z)ψu),



ADAPTIVE FEM FOR NONLINEAR OPTIMAL CONTROL 5and similarly for derivatives of L and l.Writing (2.10) explicitly yields the following equations: Find (δx, δu, δz) ∈

Ẇ × U × V satisfying
∫ T

0

(ϕx,−δ̇z − f ′x(x, u)
∗δz + (L′′

xx(x, u) − f ′′xx(x, u; z))δx

+ (L′′
xu(x, u) − f ′′xu(x, u; z)

∗)δu) dt

+ (ϕ+

x,N , δz,N + l′′21(x
−
0 , x

+

N )δ−x,0 + l′′22(x
−
0 , x

+

N )δ+x,N )

+ (ϕ−
x,0,−δz,0 + l′′11(x

−
0 , x

+

N )δ−x,0 + l′′12(x
−
0 , x

+

N )δ+x,N )

= −

∫ T

0

(ϕx,−ż − f ′x(x, u)
∗z + L′

x(x, u)) dt

− (ϕ+

x,N , zN + l′2(x
−
0
, x+N ))− (ϕ−

x,0,−z0 + l′1(x
−
0
, x+N )) ∀ϕx ∈ Ẇ ,

∫ T

0

(ϕu, (L
′′
uu(x, u)− f ′′uu(x, u; z))δu

+ (L′′
ux(x, u) − f ′′ux(x, u; z)

∗)δx − f ′u(x, u)
∗δz) dt

= −

∫ T

0

(ϕu, L
′
u(x, u)− f ′u(x, u)

∗z) dt ∀ϕu ∈ U ,

N
∑

n=1

∫ tn

tn−1

(δ̇x − f ′x(x, u)δx − f ′u(x, u)δu, ϕz) dt+

N
∑

n=0

([δx]n , ϕz,n)

= −
N
∑

n=1

∫ tn

tn−1

(ẋ− f(x, u), ϕz) dt−
N
∑

n=0

([x]n , ϕz,n) ∀ϕz ∈ V.3. DiscretizationThe optimality conditions and the Newton equations derived in the pre-vious section are discretized by a �nite element method and solved.3.1. A �nite element problem. The equations in (2.6a)�(2.6c) are dis-cretized by a �nite element method based on the mesh 0 = t0 < t1 < t2 <
. . . < tN = T with steps hn = tn − tn−1 and intervals Jn = (tn−1, tn). With
P k denoting polynomials of degree k, we introduce some function spaces.Let Wh denote a space of discontinuous piecewise constant vector-valuedfunctions, that is,

Wh = R
d ×

{

w : w|Jn ∈ P 0(Jn,R
d), n = 1, . . . , N

}

× R
d,

Ẇh = R(I − I0)×
{

w : w|Jn ∈ P 0(Jn,R
d), n = 1, . . . , N

}

×R(I − IT )

=
{

w ∈ Wh : I0w
−
0 = 0, ITw

+

N = 0
}

.In the de�nition of Ŵ = x̂+ Ẇ we may choose x̂ ∈ Wh and de�ne
Ŵh = x̂+ Ẇh.



6 K. KRAFT AND S. LARSSONThe spaces Vh and Uh consist of continuous piecewise linear functions andde�ned as
Vh =

{

v ∈ C([0, T ] ,Rd) : v|Jn ∈ P 1(Jn,R
d)
}

,

Uh =
{

v ∈ C([0, T ] ,Rm) : v|Jn ∈ P 1(Jn,R
m)

}

.Then we have Wh ⊂ W, Ẇh ⊂ Ẇ , Ŵh ⊂ Ŵ, Uh ⊂ U , and Vh ⊂ V.The �nite element problem now reads: Find (xh, uh, zh) ∈ Ŵh × Uh × Vhsuch that
J ′
x(xh, uh;ϕx,h) + F ′

x(xh, uh; zh, ϕx,h) = 0 ∀ϕx,h ∈ Ẇh,(3.1a)
J ′
u(xh, uh;ϕu,h) + F ′

u(xh, uh; zh, ϕu,h) = 0 ∀ϕu,h ∈ Uh,(3.1b)
F(xh, uh;ϕz,h) = 0 ∀ϕz,h ∈ Vh.(3.1c)3.2. Newton's method. We solve this nonlinear system by Newton's method.For a given approximate solution (xh, uh, zh) ∈ Ŵh × Uh × Vh, �nd δh =

(δx,h, δu,h, δz,h) ∈ Ẇh × Uh × Vh such that(3.2) L′′(xh, uh; zh, ϕh, δh) = −L′(xh, uh; zh, ϕh) ∀ϕh ∈ Ẇh × Uh × Vh.Then set(3.3) (x̂h, ûh, ẑh) = (xh, uh, zh) + α(δx,h, δu,h, δz,h).The equation (3.2) has the same form as the corresponding equations inSubsection 2.3. By using standard �nite element basis functions we obtain alinear system of equations as follows. The piecewise constant basis functions
{φn}

N+1
n=0 are de�ned by φn(t) = 0 except for

φ0(t) = 1, t < 0,

φn(t) = 1, tn−1 < t < tn,

φN+1(t) = 1, t > tN ,and the piecewise linear basis functions {ϕn}
N
n=0 are de�ned by

ϕn(t) =











0, if t /∈ Jn ∪ Jn+1,
t−tn−1

tn−tn−1
, if t ∈ Jn,

t−tn+1

tn−tn+1
, if t ∈ Jn+1.We make the Ansatz

δx,h(t) =

N+1
∑

i=0

δx,iφi(t), δx,i ∈ R
d,

δu,h(t) =

N
∑

i=0

δu,iϕi(t), δu,i ∈ R
m,

δz,h(t) =

N
∑

i=0

δz,iϕi(t), δz,i ∈ R
d.



ADAPTIVE FEM FOR NONLINEAR OPTIMAL CONTROL 7When inserted into (3.2) this gives rise to a linear symmetric system ofequations of the form




Axx A∗
ux A∗

zx

Aux Auu A∗
zu

Azx Azu 0









δx
δu
δz



 =





Fx

Fu

Fx



 .This is of saddle point form provided that
[

Axx A∗
ux

Axu Auu

]is positive de�nite. 4. A posteriori error analysis4.1. A representation formula for the error. The error can be mea-sured in various ways. The dual weighted residuals methodology yields arepresentation formula for the error in the goal functional J .Theorem 4.1. Let (x, u, z) ∈ Ŵ × U × V be a solution to the optimalityconditions in (2.5) and (x̂h, ûh, ẑh) ∈ Ŵh × Uh × Vh denote an approximatesolution of the discrete problem in (3.1). Then the error in the objectivefunctional J satis�es(4.1) J (x, u) −J (x̂h, ûh) =
1

2
ρx +

1

2
ρu +

1

2
ρz +F(x̂h, ûh, ẑh) +R,with the residuals

ρx = J ′
x(x̂h, ûh;x− x̂h) + F ′

x(x̂h, ûh; ẑh, x− x̂h),

ρu = J ′
u(x̂h, ûh;u− ûh) +F ′

u(x̂h, ûh; ẑh, u− ûh),

ρz = F(x̂h, ûh; z − ẑh),and the remainder
R = 1

2

∫ 1

0

(

J ′′′(xh + sêx, uh + sêu; ê, ê, ê)

+ F ′′′(x̂h + sêx, ûh + sêu; ẑh + sêz, ê, ê, ê)
)

s(s− 1) ds,where ê = (êx, êu, êz) = (x− x̂h, u− ûh, z − ẑh) ∈ Ẇ × U × V.Proof. The de�nition of L in (2.4) and the fact that F(x, u; z) = 0 from(2.6c) gives



8 K. KRAFT AND S. LARSSON
(4.2) J (x, u) − J (x̂h, ûh)

= L(x, u; z)−F(x, u; z) − L(x̂h, ûh; ẑh) + F(x̂h, ûh; ẑh)

= L(x, u; z)− L(x̂h, ûh; ẑh) + F(x̂h, ûh; ẑh)

=

∫ 1

0

L′(x̂h + sêx, ûh + sêu; ẑh + sêz, ê) ds+ F(x̂h, ûh; ẑh)

= 1

2
L′(x̂h, ûh; ẑh, ê) +

1

2
L′(x, u; z, ê) +R+ F(x̂h, ûh; ẑh)

= 1

2
L′(x̂h, ûh; ẑh, ê) + F(x̂h, ûh; ẑh) +R.We used the trapezoidal rule with remainder R for the integral and L′(x, u; z, ê) =

0 by (2.5). The remainder term R is readily computed from
∫

1

0

f(s) ds = 1

2
(f(0) + f(1)) + 1

2

∫

1

0

f ′′(s)s(s − 1) ds.This completes the proof. �4.2. An a posteriori error estimate. In order to develop the error for-mula into an error estimator we need to take further steps. The �rst is thefollowing a posteriori error estimate.Corollary 4.2. We have(4.3) |J (x, u)− J (x̂h, ûh)| ≤
1

2
(ρ̂x + ρ̂u + ρ̂z) + |F(x̂h, ûh; ẑh)|+ |R|,where (with h0 = hN+1 = 0)

ρ̂x =

N
∑

n=1

∫

Jn

‖x− x̂h‖‖L
′
x(x̂h, ûh)−

˙̂zh − f ′x(x̂h, ûh)
∗ẑh‖dt

+ ‖xN − x̂+
h,N

‖‖l′2(x̂
−
h,0
, x̂+

h,N
) + ẑh,N‖

+ ‖x0 − x̂−
h,0

‖‖l′1(x̂
−
h,0
, x̂+

h,N
)− ẑh,0‖

ρ̂u =

N
∑

n=1

∫

Jn

‖u− ûh‖‖L
′
u(x̂h, ûh)− f ′u(x̂h, ûh)

∗ẑh)‖dt

ρ̂z =
N
∑

n=1

∣

∣

∣

∫

Jn

( ˙̂xh − f(x̂h, ûh), z − ẑh) dt

+
hn

hn−1 + hn
([x̂h]n−1

, zn−1 − ẑh,n−1)

+
hn

hn + hn+1

([x̂h]n , zn − ẑh,n)
∣

∣

∣
.Proof. The result follows directly from applying the triangle inequality in(4.1) using the expressions in (2.7) after a symmetric distribution of the



ADAPTIVE FEM FOR NONLINEAR OPTIMAL CONTROL 9jump terms over the mesh intervals according to a calculation of the form
N
∑

n=0

an =

N
∑

n=0

hn + hn+1

hn + hn+1

an =

N
∑

n=1

hn
hn + hn+1

an +

N−1
∑

n=0

hn+1

hn + hn+1

an

=

N
∑

n=1

( hn
hn + hn+1

an +
hn

hn−1 + hn
an−1

)

.

�The functions x, u, z that appear in the error estimate are not computable.We compute them approximately by solving the necessary conditions foroptimality on a much �ner mesh to obtain x�ne, u�ne, z�ne. Then we replace
x by x�ne and so on in the error estimate. We also replace x̂h by xh and soon. The remainder is formally cubic in ê and is neglected.In this way we obtain an error estimator in the form of an elementwisesum of dual weighted residuals. So, for example, we see that ρ̂x is a sumof residuals from the adjoint equation weighted by ‖x − x̂h‖ from the stateequation, and ρ̂z contains residuals from the state equation with weightsfrom the adjoint equation. The term |F(x̂h, ûh; ẑh)| measures how well thediscretized state equation is satis�ed and is computed similarly to ρ̂z.The terms ρ̂x, ρ̂u, and ρ̂z are associated with the discretization error, whilethe �algebraic residual� |F(x̂h, ûh; ẑh)| is related to the error in the nonlinearequations solver, that is, the Newton iteration.5. Description of the solverIn the following section the implementation of the solver is described.5.1. The Newton solver. Solving the linear system (3.3) yields a searchdirection for one Newton iteration. In order to decide how far to go in thisdirection, a simple line search is performed. We compute (xh, uh, zh)new forvarious α ∈ [0, 1] according to(5.1) (xh, uh, zh)new = (xh, uh, zh)old + α(δx,h, δu,h, δz,h),and the α that gives the smallest right hand side of (3.2) is chosen.5.2. The adaptive solver. An adaptive �nite element solver based on theerror estimate in Corollary (4.2) has been implemented. After solving theproblem on a coarse mesh, the discretization part of the error estimate iscomputed. The intervals that give the largest contribution to the total errorare re�ned. The procedure is iterated until the tolerance of the discretizationerror is reached.



10 K. KRAFT AND S. LARSSON5.3. A multilevel algorithm. Following [7] we combine the Newton loopand the re�nement iteration into an adaptive multilevel algorithm.The algorithm generates a sequence (Ŵh×Uh×Vh)0 ⊂ (Ŵh×Uh×Vh)1 ⊂

· · · ⊂ (Ŵh × Uh × Vh)N of �nite element spaces based on adaptively re�nedmeshes, and a sequence of approximate solutions (x̂h, ûh, ẑh)n ∈ (Ŵh×Uh×

Vh)n. A solution (x̂h, ûh, ẑh)0 ∈ (Ŵh×Uh×Vh)0 is computed on the coarsestmesh. This solution can either be achieved by iterating a �xed number oftimes or until the algebraic solution has reached a given tolerance. Thecoarse mesh is then re�ned using the adaptive algorithm in Subsection 5.2.The solution on the coarse mesh is extrapolated to the re�ned mesh andused as a starting guess for the Newton iteration on the re�ned mesh. Thisprocedure is iterated until the total error, that is, the discretization plusalgebraic error, has reached the desired tolerance. In practice, only a fewNewton iterations on each mesh seem to be su�cient.6. Numerical examplesIn this section we present numerical examples which have been solved withthe method derived in previous sections.6.1. A hyper-sensitive optimal control problem. The folloving exam-ple is taken from [9]:Minimize ∫ T

0

(x(t)2 + u(t)2) dtsubject to
ẋ(t) = −x3(t) + u(t), 0 < t < T,

x(0) = 1, x(T ) = 1.The example is solved with T = 25 and the error tolerance 10−3. The stateand control can be found in Figure 6.1. The adaptive multilevel algorithmstarts on a coarse mesh with 10 nodes and two Newton iterations are doneon each mesh, except for the last, where the solver is iterated until toleranceof 10−12. The adaptively re�ned mesh is in Figure 6.2. We can see thatmany nodes are inserted close to the boundaries while only a few nodes areneeded in the middle of the time interval. In Figure 6.3 the performance ofthe adaptive solver is compared to the same solver using uniform re�nement.With an adaptive re�nement the number of nodes needed to reach a certainprecision is substantially lower. The solution has been validated againstPROPT [10] with very good agreement.
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0

(x1(t)
2 + u(t)2) dt
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[

ẋ1(t)
ẋ2(t)

]

=

[

x2
−x1 + 1.4x2 − 0.14x32 + 4u

]

, 0 < t < T,

[

x1(0)
x2(0)

]

=

[

−5
−5

]

,

[

x1(T )
x2(T )

]

=

[

0
0

]

.The result can be found in Figures 6.4�6.6. In Figure 6.4 the optimalstates, computed with the adaptive �nite element solver, are plotted togetherwith the states from Propt. As we can see the solutions coincide. The optimalcontrol is plotted in Figure 6.5. The re�ned mesh can be found in Figure6.6. In this example the initial mesh consists of �ve nodes and the toleranceof the total error is 10−3.
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