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Multi-Objective Design of a Combinatorial
Structure

Peter Lindroth∗ Michael Patriksson† Ann-Brith Strömberg†

Abstract

Engineering design problems are often formulated as multi-objective optimiza-
tion problems. We consider the problem of designing an optimal population of
configurations, where the configurations are composed by common elements.
Searching for a population of solutions that are good with respect to different
combinations of the multiple objectives can be seen as a search for a clustering
of the Pareto optimal set to the multi-objective optimization problem. Further,
a natural wish is to use common parts to construct the population of design so-
lutions. This paper proposes a (single-objective) optimization problem through
which the clustering is performed in a way such that the resulting solutions ap-
proximate the Pareto optimal solution well, while at the same time the variables
in the decision space are, by construction, required to be common. The procedure
is applied to instances constructed from test functions from the literature with
interesting results. The usefulness of applying the procedure to practical prob-
lems and what types of sensitivity analyses that can be performed are discussed
and demonstrated. Suggestions are also made on how to adapt the developed
methodology to simulation-based multi-objective optimization problems.

1 Introduction

A frequent wish in engineering design of mass-market products is to create a large
variety of product configurations using just a few variants of each part. One example
is trucks, another is kitchen cupboards.

In this paper we tackle the problem of deciding which variants to create by using
a mathematical modeling approach with a strategy based on an underlying multi-
objective optimization problem. We assume that the quality of a configuration is
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2 1 INTRODUCTION

measured by a number of objective functions, each to be optimized, and that each
configuration comprises a number of parts, each to be selected from a specific set
of possible designs. The goal is to maximize the quality of the total product variety
given the sets of possible parts. To our knowledge this approach is not apparent in
the literature.

1.1 Motivation

A common property of engineering design problems is that they invoke a number
of more or less conflicting criteria (or, objectives). Examples are weight ↔ durability
and cost ↔ feature level. The objectives may be appreciated differently by different
customers, for example depending on how and in which environment the product
should be used and on the financial strength of the customer. This makes a multi-
objective approach for solving such problems natural. Further, for cost and flexibility
reasons, it is advantageous to design a small number of variants of each of the parts
to be combined, forming a large number of possible configurations. Moreover, it
is not enough to require that each configuration is good in itself; due to synergies
of scale, the set of all produced configurations must be evaluated as a collective.
We study the problem of how to systematically design the different variants such
that the resulting collection of variants yields an, in a certain sense, optimal set of
configurations.

We denote the technique to be introduced by Implicit clustering. Through tra-
ditional clustering or Explicit clustering, one partitions a set into groups, where ob-
jects belonging to the same group are similar, whereas objects belonging to different
groups are dissimilar. An extensive overview of clustering techniques is found in [8].
Explicit clustering cannot be applied directly to our problem, since there is both a de-
cision space and an objective space, both in which it is important where the resulting
configurations are located. Clustering in the decision space only leads to no control
of the distribution in the objective space, and clustering in the objective space only
leads to a set of configurations without structure in the decision space. The tech-
nique presented in this paper resolves these problems by considering both spaces
simultaneously, by the construction of a certain optimization problem.

1.2 Outline

In Section 2 we give a mathematical formulation of the design problem, discuss how
to measure the quality of a set of configurations, and investigate the mathematical
properties of the problem. We present a solution procedure in Section 3. In Section 4
we discuss the type of sensitivity analyses that can be performed for a practical prob-
lem and in Section 5 we solve some instances of the design problem using test func-
tions from the literature. Then, in Section 6 we propose a procedure to be added to
the solution process, which is reasonable if the objective functions are computation-
ally intense. Finally, in Section 7 we conclude the paper and give some propositions
for future work. These intend to make the solution strategy applicable to a larger
class of design problems than that originally considered.
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2 A mathematical formulation of the problem

We begin this section by defining multi-objective optimization. We then formulate
our design problem, which, since it utilizes an underlying multi-objective optimiza-
tion problem in its objective function, is called the Multi-Objective Combinatorial De-
sign Problem (MOCDP). The objective function to use is discussed and some mathe-
matical properties of MOCDP are analyzed.

2.1 Multi-objective optimization

A multi-objective (non-linear) optimization problem (MONP) can mathematically be
formulated by the standard notation

min
x∈X

{f1(x), . . . , fk(x)} , (1)

where x ∈ �n is a vector of decision variables, X ⊆ �n denotes the decision space,
and each function fi : X → �, i = 1 . . . , k, is an objective function to be minimized.
We adopt the convention of letting the minimization operator apply to vectors. If
the objective functions are at least partially in conflict, i.e., there exists no x ∈ X
that simultaneously minimizes all k objectives, then an optimal solution to (1) is
not well-defined since there exists no natural complete ordering between vectors.
However, there exists a set of decision vectors, in which the best solution by rational
judgements, provided the mathematical formulation, must be contained regardless
of the relative importance of each single objective. This is the Pareto optimal set (or,
equivalently, the efficient or non-dominated set).

Definition 2.1 Given a set X of feasible vectors and a set {f1, . . . , fk} of objective functions
to minimize, a vector x∗ ∈ X is defined as Pareto optimal if there exists no other vector
x ∈ X such that fi(x) ≤ fi(x∗), i = 1, . . . , k, and fj(x) < fj(x∗) for at least one
j ∈ {1, . . . , k}. An objective vector z∗ = f(x∗) is called Pareto optimal if the corresponding
vector x∗ is Pareto optimal. The set of all Pareto optimal vectors is denoted P ⊆ X .

Definition 2.2 Given a set X of feasible vectors and a set {f1, . . . , fk} ∈ Ω = {f | f :
�n → �k} of objective functions to minimize, the Pareto operator P : �n × Ω → �n is
defined by P (X, f) = P .

2.2 The multi-objective combinatorial design problem

Initially, we assume that the decision variables are continuous and that X ⊆ �n is
defined by box constraints: X =

∏n
j=1 Xj , where Xj = [lj , uj ] , j = 1, . . . , n, with

−∞ < lj < uj < ∞. The assumption that each configuration consists of a fixed
number of parts that are combined then translates to that each variant xj of part j
is to be selected from the interval Xj = [lj , uj ], and that each configuration has the
representation x = (x1, . . . , xn) , xj ∈ Xj , j = 1, . . . , n.
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Assume that part j may have mj different variants, and let the variants selected
be represented by the variables xj�, � = 1, . . . , mj . The available configurations are
then defined by the product set XD =

∏n
j=1

{
xj1, . . . , xjmj

}
. Such a configuration

set is illustrated in Figure 1 where n = 2,m1 = 3, and m2 = 2.

X XD

l1

l2

u1

u2

x11 x12 x13

x21

x22

Figure 1: Illustration of a set of configurations XD ⊂ X .

We wish to select the values of the variables xj�, � = 1, . . . , mj , j = 1, . . . , n, such
that the product set of configurations is, in a certain sense, optimal. We collect the
decision variables in the vector

y = (x11, . . . , x1m1 , x21, . . . , x2m2 , . . . . . . , xn1, . . . , xnmn
) ∈ Y ⊆ �

∑ n
j=1 mj , (2)

where

Y = X1 × · · · × X1︸ ︷︷ ︸
m1 factors

×X2 × · · · × X2︸ ︷︷ ︸
m2 factors

× · · · · · · × Xn × · · · × Xn︸ ︷︷ ︸
mn factors

, (3)

and denote the resulting set of available configurations as XD(y). The motiva-
tion behind the problem formulation is that with just m :=

∑n
j=1 mj decision vari-

ables we decide on (the much larger number)
∏n

j=1 mj configurations. Further, let
QR : �

∑ n
j=1 mj → � be a function measuring the negative collective quality of a set

of configurations (negative quality is utilized in order to obtain a minimization prob-
lem). The subscript R on the quality function represents a possible reference set for
the configurations to be compared to.

We next introduce the (single-)objective optimization problem, the Multi-Objec-
tive Combinatorial Design Problem (MOCDP):
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Q∗
R(m1, . . . ,mn) = minimize

y
QR (y) (4a)

subject to lj ≤ xj� ≤ xj,�+1 ≤ uj , � = 1, . . . , mj − 1, (4b)
j = 1, . . . , n.

The constraints (4b) ensure that the value of each decision variable is chosen from its
feasible interval, i.e., y ∈ Y and thus XD ∈ X ; they also exclude solutions that are
equivalent due to symmetry. For mj = 1, the constraints (4b) should be replaced by
lj ≤ xj1 ≤ uj , j = 1, . . . , n.

The above formulation uses exactly mj variants of part j (however not necessar-
ily distinct). One could think that “at most” mj variants would be more appropriate.
These two formulations are, however, equivalent in the sense that their optimal QR-
values are the same. The latter formulation is a relaxation of the former, and the
optimal objective function Q∗

R(m1, . . . ,mn) is monotonously decreasing with each
mj , j = 1, . . . , n, for all reasonable quality functions QR(·).

Remark 2.3 The formulation (4) can, with a suitable definition of QR(·), also be used for
single-objective optimization design, with the aim of finding a combinatorial set of solutions
which, as a collective, is robust with respect to variations or uncertainties in the underlying
optimization problem.

We next present an instance of MOCDP (without specifying the quality measure
QR(·)), which will be used for illustrative purposes in the paper.

Example 2.4 Let the underlying MONP be defined by the decision space X = [0, 1]2 and
the objective functions f(x) := {f1(x), f2(x)}, where

f1(x) =
(

x1 +
1
4

)2

+
(

x2 +
1
4

)2

, (5a)

and

f2(x) =
(

x1 − 3
4

)2

+
(

x2 − 3
4

)2

. (5b)

The Pareto optimal set P =
{
x ∈ �2 | 0 ≤ x1 = x2 ≤ 3

4

}
. Let now m1 = m2 = 2, which

leads to the vector y = (x11, x12, x21, x22) of decision variables and the configuration set
XD(y) = {(x11, x21), (x11, x22), (x12, x21), (x12, x22)}. We get the MOCDP

minimize QR (y) , (6a)
subject to 0 ≤ xj1 ≤ xj2 ≤ 1, j = 1, 2. (6b)

Figure 2 illustrates (a) the decision space and (b) the objective space of the underlying
MONP.
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(a) The decision space, X , level curves for the two
objective functions, and the Pareto optimal set P ⊆
X .
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(b) The objective space, Z = f(X), and the im-
age, f(P), of the Pareto optimal set.

Figure 2: Illustration of the design and objective spaces of the MONP in Example 2.4.
The Pareto optimal set P ⊆ X , and the image of the Pareto optimal set f(P) ⊆ Z =
f(X), are marked in black in the respective figures.

2.3 Measuring the quality of the set of configurations

It is not obvious how to define the quality function QR(·), but it is clear that f(P)
in some suitable sense should be approximated by f(XD). As noted e.g. in [16,
18, 3, 21] there is no standard technique in the literature for measuring the quality
of approximate Pareto sets, and for many of the intuitive measures one can easily
construct examples that shows good results for obviously bad approximations and
vice versa.

Two measures that have been designed for evaluation of metaheuristics for multi-
objective optimization problems, and which make sense also in our application, are
Dist1R and Dist2R, proposed in [4] and also used in e.g. [19]. We give the definitions
of Dist1R and Dist2R below. We will replace QR(·) by Dist1R, Dist2R, or with a
combination of these. These two metrics reward approximate sets (in our case XD)
that comprise points that are near-Pareto optimal while being evenly distributed
over the Pareto set. For the evaluation of the approximate set XD, both Dist1R and
Dist2R require a reference set R ⊂ X , which should be a discrete approximation
of the true Pareto optimal set P . If P is known, R can be an evenly spread discrete
subset of P , which is the ideal situation. If P is not known, R may consist of (a subset
of) the non-dominated points found using any solution method for multi-objective
optimization.

A high quality of a set XD means that to each vector xr ∈ R there is a vector
xd ∈ XD close to xr. The closeness, cw(xr,xd), of the vectors xr ∈ R and xd ∈ XD is
a non-symmetric measure defined as

cw(xr,xd) = max
i∈{1,...,k}

{
max

{
0, wi

(
fi(xd) − fi(xr)

)}}
, xr ∈ R, xd ∈ XD, (7)
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where wi ≥ 0 is the weight assigned to objective i, i = 1, . . . , k, and w={w1, . . . , wk}.
In contrast to the original definition in [4] we will from now on replace XD in the
definition (7) of closeness by PD = P (XD, f), since a dominated solution is never
preferred to a non-dominated solution by a rational decision maker. Thus, the close-
ness of a point xr ∈ R to a point xd ∈ XD, where xr is (weakly) dominated by
xd, (i.e., f(xd) ≤ f(xr)), is defined to be zero. Otherwise, the closeness is given by
the maximum weighted deterioration of an objective value over the set of objective
functions. The weights in the expression (7) are set to

wi =
1

max
x∈R

fi(x) − min
x∈R

fi(x)
, i = 1, . . . , k, (8)

i.e., inversely proportional to the range of fi over R 1. An illustration of the closeness
between two points xr and xd is given in Figure 3.

f(xr)

f(xd)

cw(xr,xd)

fi

fj
denotes the set XD

denotes the set R

Figure 3: An illustration of the closeness between two points xr and xd according to
the definition (7). Here, wi = wj = 1.

The Dist1R measure yields information on the average distance from a point
xr ∈ R to its closest point in XD, and is defined as

Dist1R(y) =
1
|R|

∑
xr∈R

(
min

xd∈XD(y)
cw(xr,xd)

)
. (9)

Correspondingly, Dist2R yields information on the maximum distance and is de-
fined as

Dist2R(y) = max
xr∈R

{
min

xd∈XD(y)
cw(xr,xd)

}
. (10)

Note that if the points in R are more dense in some region of X , Dist1R will lead to a
biased result, since the denser part of the approximation will possess a larger weight
in the sum.

1Assumed is that the range is non-zero which is a reasonable assumption for practical problems. If
this assumption is not valid, then a positive constant could be added to the denominator in (7) or an
estimation could be made of the “scale” of each objective over the interesting region.
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Remark 2.5 The Dist1R and Dist2R measures are adopted from the evaluation of meta-
heuristics for applications for which P is not known. If there exists an explicit expression for
P one can choose R = P and replace the sum in Dist1R with an integral. This is also pos-
sible if there exists a function describing R, e.g. by interpolating the non-dominated points
found by some (approximate) solution method.

2.4 Some mathematical properties of MOCDP

We are interested in MOCDP applied to practical problems. The purpose of this
section is to analyze enough mathematical properties of MOCDP such that a suitable
solution method can be proposed for such problems.

Proposition 2.6 MOCDP with the quality function QR(·) being either Dist1R or Dist2R
is continuous if the underlying MONP is continuous.

Proof. All fi’s are continuous since MONP is continuous and the max- and min-
operators in Dist1R, Dist2R are continuous. A composition of continuous function is
continuous. The feasible set of MOCDP is continuous and, hence, so is the problem.

Since the closeness function defined in (7) is non-differentiable for y ∈ Y such
that cw(xr,xd) = cw(xs,xd), r, s ∈ R for some xd ∈ XD(y) (i.e. when xd changes its
nearest point in R), we have the following result:

Proposition 2.7 If R a discrete set of points then MOCDP is non-differentiable.

We continue with investigating convexity properties of MOCDP. If MOCDP is
convex, then a local optimum is a global optimum and the problem can be solved
to global optimality using a local optimization algorithm. Unfortunately, as shown
below, this is not the case, even under very strong assumptions on the underlying
MONP.

Example 2.8 Recall Example 2.4. The underlying MONP is convex since both objective
functions are convex and the feasible decision space X is a convex set. Let the reference
set be R = {( 1

10 , 1
10 ), ( 6

10 , 6
10 )}. Then R ⊂ P =

{
(x1, x2) ∈ �2| 0 ≤ x1 = x2 ≤ 3

4

}
. A

globally optimal solution to MOCDP is then y∗ = (x∗
11, x

∗
12, x

∗
21, x

∗
22) = ( 1

10 , 6
10 , 1

10 , 6
10 )

with QR(y∗) = 0 since the number of decision variables is enough to meet all elements in R
2. However, experimenting with a local optimizer shows that it is possible to end up in a local
minimum with a positive quality measure. The instance of MOCDP is clearly non-convex
which is exemplified below. Let

y1 = (0, 0.50, 0.35, 0.70)T,

y2 = (0, 0.70, 0.35, 0.70)T,

λ = 0.5.

2This is always true when each mj , j = 1, . . . , n, is larger than the number of distinct values in R in
the corresponding dimension.
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A necessary condition for a function to be convex is that a linear interpolation of two function
values never is lower than the function itself at the corresponding interpolation between the
decision variables. We have a counterexample for convexity of MOCDP for both Dist1R and
Dist2R, since

0.149 ≈ QR(λy1 + (1 − λ)y2) � λQR(y1) + (1 − λ)QR(y2) ≈ 0.117

for QR(·) = Dist1R and

0.150 ≈ QR(λy1 + (1 − λ)y2) � λQR(y1) + (1 − λ)QR(y2) ≈ 0.148 (11)

for QR(·) = Dist2R.

The disappointing non-convexity result is obviously true also when the quality
function QR is a convex combination of Dist1R and Dist2R. As far as we know there
exists no reasonable quality function that preserves the convexity property.

Assuming that the underlying MONP is continuous, we conclude that MOCDP
is in general continuous, non-differentiable, and non-convex; we conclude that some
suitable global optimizer is needed to solve it.

Our interest in the following result is motivated by the fact that we intend to use
penalty-based methods in the solution procedure to handle constraints. The result
requires some weak assumptions that are quite vaguely formulated. The important
point is that it is likely to hold for practical problems, which are of our interest.
Figure 4 helps to understand the result.

Proposition 2.9 Let X =
∏n

j=1[lj , uj ] be a box-constrained decision space to the underly-
ing MONP to a MOCDP. Assume that MOCDP has a reference set R which is sufficiently
large compared to the cardinality of the configuration set XD. Assume further that R is
sufficiently spread in X , that f(R) is sufficiently spread in f(X), and that the objectives
f1, . . . , fk, are sufficiently well-behaved. Then to MOCDP, there exists optimal solutions
y∗ ∈ int(Y ) or, equivalently, XD(y∗) ⊂ int(X).

Proof. If R is sufficiently large and spread, then at an optimal solution y∗ ∈ Y , many
xr ∈ R will share the same xd ∈ XD(y∗) as their nearest point in XD. In particular,
each xr ∈ ∂X has other vectors x̂r ∈ int(X) with the same nearest point xd ∈ XD.
Then, if f1, . . . , fk, are sufficiently well-behaved there will be an optimal solution y∗

where each xd /∈ ∂X , or, equivalently, y ∈ int(Y ). This because a small movement of
a xd ∈ ∂X out from the boundary will not decrease the maximum closeness between
each xr ∈ R to its nearest xd ∈ XD.

Remark 2.10 A similar result as in Proposition (2.9) with an analogous proof can be for-
mulated for the symmetry-breaking constraints xj� ≤ xj,�+1 in (4b). In an optimal solution
to MOCDP, there are (likely to exist) optimal solutions where the constraints are not active.
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X XD

R

li

lj

ui

uj

Figure 4: A rough illustration of the fact that the optimal configuration likely will lie
in the interior of the decision space X to the underlying MONP for most practical
problems. For sufficiently well-behaved objective functions, the closeness between
the upper-left-most xd ∈ XD and its neighbor xr ∈ int(X) to the right, will not be
minimal if xd is moved to the left onto the boundary.

3 A solution procedure

First, observe that for a real application the numbers mj , j = 1, . . . , n, of variants
may often be decision variables. We suggest to treat them as input parameters, and
to solve the problem for different values of mj to study the sensitivities, i.e., how the
optimal solution to MOCDP varies with changes in mj (cf. Section 4).

We propose a two-step method for solving MOCDP. If there is no problem-speci-
fic distance measure known for the evaluation of an approximate Pareto optimal
set, we suggest using either of the functions Dist1R, Dist2R or a combination of
these. In the first step of the procedure, a representation of the Pareto optimal set
of the underlying MONP should be found. The method for this is arbitrary, and
should be chosen with respect to the actual MONP. If this is a non-convex problem
with unknown problem characteristics, some evolutionary method [5] might be a
reasonable choice.

In the second step of the procedure some global optimization method should be
used to find the optimal decision variables y∗ ∈ Y given the reference set found in
step 1. Figure 5 illustrates the two steps of the solution process.

To handle the box and symmetry-breaking constraints (4b) we have used a mod-
ified barrier method where linear/logarithmic penalties are added to the objective
instead of using constraints. An illustration of modified linear/logarithmic penalty
functions is given in Figure 6. By “modified” we mean here that the logarithmic
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{
X
{f1, . . . , fk}

=⇒

=⇒=⇒

=⇒

Step 1

Step 2

R

y∗

⎧⎪⎪⎨
⎪⎪⎩

Y
R
QR
[m1, . . . ,mn]

Figure 5: The solution process is divided into two steps. In step 1 , the underlying
MONP is solved using some multi-objective optimization solver and R is defined.
In step 2 a global optimizer is used to minimize QR over Y given the reference set R
and the number of allowed variants mj in each dimension j, j = 1, . . . , n.

penalties which lead to the objective function being undefined in parts of the do-
main, are replaced by linear functions near and outside the boundaries. For example,
the optimization problem

minimize f(x),
subject to x ≤ u, (12)

x ∈ �,

is replaced by

minimize f(x) − ν

(
1(−∞,u−ε}(x) log(u−x) + 1(u−ε,+∞)(x)

(
x−u

ε
+ 1 − log ε

))
,

subject to x ∈ �, (13)

where 1S(x) is an indicator function, i.e., equal to one if x ∈ S and zero otherwise,
and ε is the distance from the boundary where the logarithmic function is replaced by
a linear function. ν is a penalty parameter. For a sufficiently well-behaving function
f a globally optimal solution to (13) converges towards a globally optimal solution
to (12).

Due to the result in Proposition 2.9 we have good reasons to believe that an opti-
mal solution y∗ lies in the interior of Y and where the symmetry-breaking constraints
are non-active. Here, the added penalty does not affect the objective function that
much even for a penalty parameter with a positive value of significant size.

Since neither step 1 nor step 2 in general will reach a point, where it is not pos-
sible to improve anymore, the maximum allowed computational time of both steps
must be set. In step 1, the longer time the algorithm is permitted to work, the more
accurate representation of P is generally obtained. In step 2, the longer the global
algorithm is applied, the higher the probability of finding a good solution. However,
for sensitivity studies (cf. Section 4) step 1 only has to be performed once.

The fact that the solution algorithm is partitioned into two steps can be taken
advantage of for problems with expensive function evaluations, e.g., given by com-
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Figure 6: Example of a penalty function using a modified barrier method added to
a problem with box constraints, x ∈ [0.1, 0.9]. The logarithmic function transcends
smoothly into a linear function at a distance ε from the borders. Here ε = 0.008.

putationally intensive simulations. The evaluations of the objective function made
in step 1 can then be used for the computation of explicit response surfaces to be
used in step 2, cf. Section 6 for more details.

So far we have not specified which quality function to use. The two possibilities
Dist1R and Dist2R seem reasonable for general MOCDP’s. However, it is possible
that the MOCDP concerns some special application for which there is some other
better measure, i.e., leads to solutions that are more attractive from a practical stand-
point.

The main disadvantage of Dist1R is its sensitivity for the distribution of the
points in R. It is a well-known fact that evolutionary algorithms often output so-
lution sets P̂ (approximate Pareto optimal sets) whose “density” varies heavily and
possesses an a priori unknown distribution. Hence, Dist1R might not be a good
choice for the quality measure. The main disadvantage of Dist2R is that it is a worst-
case measure, only considering the point in R with the largest distance (closeness)
to a point in PD. As a special case, it assigns the same quality to a set PD from which
every point in R lies at distance d as to a set where PD that coincides with R but for
a single point in R at distance d from PD.

The two proposed quality functions Dist1R and Dist2R are obviously correlated;
their characteristics are, however, different. By using a convex combination of the
quality functions, their disadvantages can be diminished.

4 Sensitivity analysis

When modeling and solving a practical problem as a MOCDP, an important and in-
teresting analysis is to study how the number mj of variants, j = 1, . . . , n, in the n
decision dimensions of the MONP affects the optimal solution. For example, if there
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is a limitation on the total number of variants allowed, then it is critical to investigate
how sensitive the resulting objective value is to the distribution of the variants in the
respective dimensions. For the example in Figure 1, could it be favourable to use
three variants in the x2 dimension and just two in the x1 dimension? Or perhaps it
might be best to use only one variant in the x1 dimension and four in the x2 dimen-
sion. Further, if the costs of adding a new variant, or the savings of removing one, in
a certain dimension, is known, then this information could be used when designing
a good set of configurations.

Assume that the set of variants at some point in time is given by the vector ŷ
and that the cost of adding a variant in dimension j is δj . Observe that the optimal
objective value to MOCDP, Q∗

R, is a function of the underlying MONP (defined by f
and X) together with the number of allowed variants mj , j = 1, . . . , n:

Q∗
R = Q∗

R(f ,X,m1, . . . ,mj , . . . ,mn).

The decision to make is whether the quality increase is worth the extra cost, i.e., if
the profits gained by reducing the quality measure with

Q∗
R(f ,X,m1, . . . ,mj + 1, . . . ,mn) −Q∗

R(f ,X,m1, . . . ,mj , . . . ,mn)

is larger than the cost δj . An analogous study can be made for a possible removal of
variants by comparing the savings for removing the variants with the difference of
the quality measure when decreasing mj .

An assumption made above, which may not be valid in many real applications,
is that the cost for modifying the current set of variants is zero. For many practical
problems, there is a fixed set of current variants and costs arise when adding variants
to the fixed set. A sensitivity analysis of MOCDP could be used for this case as well.
The QR measure has to be computed for the current setup. Then MOCDP is solved
with mj equal to the number of added variants in each dimension where the current
variants specified by ŷ are added to y in the computation of the configurations. The
improvement in Q∗

R must now be compared to the cost of adding variants.
To investigate whether an existing variant should be removed is not possible

without calculating QR for all possible choices variant removals. That is to say, to
analyze whether one variant should be added, n problems need to be solved, one for
each dimension. To analyze whether one variant should be removed, m =

∑n
j=1 mj

problems have to be solved, one for each current variant. The latter problems, how-
ever, are very easy since there are no decision variables at all. What has to be done is
to compute the quality function QR for the

∑n
j=1 mj reduced configuration sets.

5 Numerical experiments

The purpose of this section is to exemplify how the MOCDP can be utilized, by
presenting some selected numerical experiments. By using the standard vector-
valued test function kursawe [15] as the underlying MONP, MOCDP has been for-
mulated and solved with the procedure proposed in Section 3 for different values of
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mj , j = 1, . . . , n. We have used a box constrained variable space of dimension three
in the MONP.

The objective functions and the feasible region are given by (14).

f1(x) =
n−1∑
i=1

(
−10 exp

(
−0.2

√
x2

i + x2
i+1

))
,

f2(x) =
n∑

i=1

(|xi|0.8 + 5 sin3(xi)
)
, (14)

x ∈ [−5, 5]n.

The kursawe function is a standard test function for the evaluation of multi-objective
evolutionary algorithms (see [11] for an extensive review).

In step 1 of the solution procedure—to find a representation R of the Pareto op-
timal set—we have used multiOb [10], a population-based evolutionary algorithm.
Examples of other evolutionary-based algorithms for solving MONP’s that could be
used are NCGA [20] and NSGA-II [6].

In step 2 of the solution process—in which a global optimization is to be perfor-
med—we have chosen the algorithms DIRECT [14, 7] and NEWUOA [17] to be used
in sequence. The former is a space-filling algorithm sampling the decision space
around points that either have low objective values or are far from already sampled
points. The termination criterion for DIRECT can be the number of space-dividing
iterations or the number of function evaluations. The output from the algorithm—
the best point measured so far—is then provided as a starting point for NEWUOA. This
is a local optimization algorithm for unconstrained derivative-free single-objective
optimization based on quadratic approximations of the objective function.

An approximation of the image of the Pareto optimal set (found by applying
multiOb with 2000 generations and with a population size of 4000) is shown in
Figure 7.
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Figure 7: An approximate Pareto front for the test problem kursawe with n = 3.

Many other test problems in the literature are limited to two decision variables
and/or have a Pareto optimal set that has a special structure in X that seems un-
natural for a practical problem. To generate more test problems we have kept the
objectives of (14) but chosen to rotate the decision space for the first objective. That
is, we let the objectives be {f1(Apx), f2(x)} , p = 0, . . . , 3, where Ap denote the rota-
tion matrices

A0 =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ (no rotation), A1 =

⎡
⎣ 1 0 0

0 0 1
0 −1 0

⎤
⎦ (rotation around x1),

(15)

A2 =

⎡
⎣ 0 0 1

0 1 0
−1 0 0

⎤
⎦ (rotation around x2), A3 =

⎡
⎣ 0 1 0
−1 0 0

0 0 1

⎤
⎦ (rotation around x3).

This yields four corresponding MONP’s, denoted by MONPp, p = 0, . . . , 3. In the
numerical experiments we have for each MONPp tested all combinations of numbers
[m1,m2,m3] of allowed variants in the set M = {m ∈ N3 | 1 ≤ ∑3

j=1 mj ≤ 8}. We
assume here that the variants in the three dimensions are equally expensive and that
the important issue is the total number of variants used.

For all numerical results presented below the quality measure

QR = 0.01Dist1R + 0.99Dist2R.

The first step of the solution procedure is to find a reference set R to use in the
second step and in the sensitivity analyses. We applied multiOb to each MONPp
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using 2000 generations and a population size of 4000 to generate the corresponding
reference set Rp, selected to be all found non-dominated points.

In the second step of the procedure we applied DIRECT with a termination cri-
terion defined as a maximum number of function evaluations. The best point found
by DIRECT was then used as a starting point for NEWUOA.

The Figures 8 (a) and (b) show the objective values for the solutions found to
MOCDP for MONP0 using m = [2, 2, 2] and m = [3, 3, 3], respectively. It is interest-
ing to note that, even if this it not the aim, our algorithm in the second solution step
manages to find solutions that dominate parts of R (at (f1, f2) ≈ (−18,−3) both in
Figure 8 (a) and (b)). It is not a large part of R that is dominated. However, the com-
putational time for finding R in the first solution step was around 10 minutes while
the time for the second step of solving the MOCDP was only around 20 seconds.
It may be possible to create a new class of algorithms for solving multi-objective
optimization problems based on ideas similar to ours. Another interesting observa-
tion is that the resulting solutions in XD seem to form a good approximation at the
“knee” regions of f(R) which have the character that a small improvement in either
objective will cause a large deterioration in the other (see Figure 8(a)). The knee re-
gions are the most interesting solutions for decision makers whose evaluation of the
trade-offs between the conflicting objectives are relatively constant.
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(a) 2 variants in each dimension.
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(b) 3 variants in each dimension.

Figure 8: The objective space with the solutions found using MONP0 as the under-
lying problem and with m = [2, 2, 2] and m = [3, 3, 3], respectively.

The Tables 1–4 contain results on the quality measures found together with their
corresponding variant distributions. Due to space limitations we present the results
for the subset of combinations for which maxi,j{|mi − mj |} ≤ 1 only. In each row,
i.e., for each value of m, the best solution(s) is (are) written in bold face.
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∑
j mj m Q∗

R m Q∗
R m Q∗

R
3 [1 1 1] 0.555
4 [1 1 2] 0.344 [1 2 1] 0.344 [2 1 1] 0.344
5 [1 2 2] 0.222 [2 1 2] 0.331 [2 2 1] 0.222
6 [2 2 2] 0.100
7 [2 2 3] 0.064 [2 3 2] 0.081 [3 2 2] 0.063
8 [2 3 3] 0.058 [3 2 3] 0.046 [3 3 2] 0.058
9 [3 3 3] 0.046

10 [3 3 4] 0.048 [3 4 3] 0.045 [4 3 3] 0.048
11 [3 4 4] 0.040 [4 3 4] 0.042 [4 4 3] 0.048
12 [4 4 4] 0.040

Table 1: Numerical results for the solution of MOCDP with different numbers of
variants of the three underlying decision variables. The underlying multi-objective
problem is MONP0.

∑
j mj m Q∗

R m Q∗
R m Q∗

R
3 [1 1 1] 0.558
4 [1 1 2] 0.345 [1 2 1] 0.344 [2 1 1] 0.344
5 [1 2 2] 0.221 [2 1 2] 0.221 [2 2 1] 0.329
6 [2 2 2] 0.104
7 [2 2 3] 0.072 [2 3 2] 0.061 [3 2 2] 0.061
8 [2 3 3] 0.061 [3 2 3] 0.061 [3 3 2] 0.046
9 [3 3 3] 0.046

10 [3 3 4] 0.047 [3 4 3] 0.046 [4 3 3] 0.046
11 [3 4 4] 0.046 [4 3 4] 0.045 [4 4 3] 0.041
12 [4 4 4] 0.041

Table 2: Numerical results for the solution of MOCDP with different numbers of
variants of the three underlying decision variables. The underlying multi-objective
problem is MONP1.
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∑
j mj m Q∗

R m Q∗
R m Q∗

R
3 [1 1 1] 0.551
4 [1 1 2] 0.342 [1 2 1] 0.342 [2 1 1] 0.342
5 [1 2 2] 0.220 [2 1 2] 0.331 [2 2 1] 0.220
6 [2 2 2] 0.104
7 [2 2 3] 0.064 [2 3 2] 0.076 [3 2 2] 0.064
8 [2 3 3] 0.064 [3 2 3] 0.049 [3 3 2] 0.064
9 [3 3 3] 0.053

10 [3 3 4] 0.049 [3 4 3] 0.053 [4 3 3] 0.049
11 [3 4 4] 0.049 [4 3 4] 0.049 [4 4 3] 0.050
12 [4 4 4] 0.049

Table 3: Numerical results for the solution of MOCDP with different numbers of
variants of the three underlying decision variables. The underlying multi-objective
problem is MONP2.

∑
j mj m Q∗

R m Q∗
R m Q∗

R
3 [1 1 1] 0.557
4 [1 1 2] 0.344 [1 2 1] 0.344 [2 1 1] 0.344
5 [1 2 2] 0.329 [2 1 2] 0.221 [2 2 1] 0.221
6 [2 2 2] 0.101
7 [2 2 3] 0.065 [2 3 2] 0.065 [3 2 2] 0.084
8 [2 3 3] 0.049 [3 2 3] 0.065 [3 3 2] 0.065
9 [3 3 3] 0.058

10 [3 3 4] 0.049 [3 4 3] 0.048 [4 3 3] 0.058
11 [3 4 4] 0.041 [4 3 4] 0.049 [4 4 3] 0.048
12 [4 4 4] 0.046

Table 4: Numerical results for the solution of MOCDP with different numbers of
variants of the three underlying decision variables. The underlying multi-objective
problem is MONP3.

An important point that has to be kept in mind is that this optimization problem
is non-convex and non-linear. Thus, there is no guarantee for the optimality of the
solutions found. Study Table 4 and compare for m = [3, 4, 4] and m = [4, 4, 4].
The latter corresponds to a relaxed MOCDP compared to the former; however it
possesses a higher objective value. This shows an optimality gap, i.e., a relative
distance from the global optimum, of at least 0.046−0.041

0.041 ≈ 12% for the latter problem.
The explanation for the similarity of the results in the four problems and for the

frequent non-unique solutions found for a certain number of variants comes from
the symmetries in the underlying MONP’s. One interesting point is that it is not
always advantageous to use the largest number of variants in a certain dimension.
See Table 4 and compare the rows corresponding to m = 5 and m = 8. In the
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former, an optimal distribution of variants is m = [1, 2, 2] however m = [2, 3, 3]
is not an optimal choice in the latter. Another point which might be interesting in a
real application is that (however, we state no generality of this), it is possible to reach
optimal variant distributions at all m-levels by local steps, adding one variant at a
time, moving to the optimal distribution.

From the Tables 1–4 it seems like the solution sets are being “saturated”, meaning
that adding more variants do not decrease the objective value significantly. One
algorithmic reason for this is that the larger m, the higher dimensional space has to
be (globally) searched. Since the global search is limited by the number of function
evaluations, this means that the quality of its output decreases when the dimension
of the decision space is increased.

6 Extending to simulation-based MOCDP’s

The purpose of this section is to is propose how to adapt the procedure developed
to MOCDP for the case when MONP belongs to the class of simulation-based opti-
mization problems.

A general simulation-based optimization problem has expensive objective (or
constraint) function(s), e.g., involving computationally intense simulations. Such
problems require special treatment since the total number of function evaluations
is limited. A simulation-based MOCDP is a problem in which at least one of the
objective functions {f1, . . . , fk} of the underlying MONP is expensive.

When solving MOCDP, a very large number of function evaluations is required
in step 2 of the solution process, since for each variable vector y, a total number of
|XD| =

∏n
j=1 mj configurations must be evaluated.

The good thing, however, is that the solution procedure is divided into two steps
and that step 1 can be used not only for finding a good reference set R. Simultane-
ously, it can be used for constructing explicit, computationally cheap response sur-
faces {f̂1, . . . , f̂k} (see [13, 2]) that can be used instead of the expensive simulation-
based functions in step 2. The response surfaces can be continuously updated dur-
ing step 1, such that, by using the response surfaces within step 1, the number of
expensive function evaluations also in this step is limited. In [12] the algorithm
qualSolve is described. This algorithm uses radial basis functions [9] with the aim
of approximating the expensive functions that are sampled iteratively such that a cer-
tain quality measure is maximized. The algorithm can be applied to multi-objective
optimization problems, and the quality measure is then related to how good the ap-
proximations are in regions near the Pareto optimal set of the approximating prob-
lem. qualSolve, or a similar algorithm, can be used in step 1, producing response
surfaces to use in place of the original functions from there on.

As already stated, for sensitivity analyses, which might constitute a large part of
the computation time for a real application of the MOCDP-procedure, the expensive
functions must only be used once, since only step 2 is repeated when these analyses
are carried through. Furthermore, even in step 1 the number of expensive function
calls must not be that large, since the algorithm (e.g., qualSolve) mostly uses its
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current response surfaces and only now and then samples the original functions.

7 Conclusions and future work

We have presented a two-step procedure which can be regarded as an implicit clus-
tering of points in the objective space of a multi-objective optimization problem such
that the structure of the points in the decision space is controlled.

We have demonstrated the procedure on some test problems and discussed the
potential of using different types of sensitivity analyses to perform depending on the
actual application.

We have also proposed how the procedure can be adapted to simulation-based
problems for which the number of (expensive) function evaluations must be kept
low. The solution procedure consists of two steps and we have discussed how the
first step can be used for finding computationally cheap approximate functions to
use instead of the original ones in the second step. Thus, by construction of the
method, the large number of function calls that have to be made in the second step
is not a bigger issue for simulation-based MONP’s than for regular MONP’s with
explicit objective functions.

The results are encouraging and we see a potential to apply the methodology to
many real-world problems in industry.

There are some issues that should be addressed in order to adapt the current
methodology to a larger class of problems such that it will apply to more real-world
problems. One improvement would be to develop the procedure presented such that
it can handle more general constraints than box constraints in MOCDP. Examples of
such are general linear and non-linear constraints on the decision variables. Other
examples are constraints on the objective function values in the underlying MONP.
Finally, constraints in the decision space that are more connected to real configura-
tion applications are important to govern, e.g., that combinations of certain values of
the decision variables are forbidden.

In the original formulation of MOCDP, the decision variables are required to be
continuous. For many real-world applications, the decision variables are required to
be discrete. Also, the incorporation of the special type of discrete variables, categorical
variables [1], that can be assigned a discrete number, but where this number has no
physical meaning (e.g., representing a certain material, a certain suspension type,
etcetera), would substantially increase the range of applications for the procedure
presented.
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