
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PREPRINT 2011:14 
 

A New Robustness Index  
for Multi-Objective Optimization 
based on a User Perspective 
 
 
 

CHRISTOFFER CROMVIK 
PETER LINDROTH  
MICHAEL PATRIKSSON  
ANN-BRITH STRÖMBERG 
 
 
 
 
 
Department of Mathematical Sciences 
Division of Mathematics 

CHALMERS UNIVERSITY OF TECHNOLOGY 
UNIVERSITY OF GOTHENBURG 
Gothenburg Sweden 2011 





 
 
 

Preprint 2011:14 
 
 
 
 
 

A New Robustness Index for Multi-Objective 
Optimization based on a User Perspective 

 
Christoffer Cromvik, Peter Lindroth,  

Michael Patriksson, Ann-Brith Strömberg 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Department of Mathematical Sciences 
Division of Mathematics 

Chalmers University of Technology and University of Gothenburg 
SE-412 96  Gothenburg, Sweden 

Gothenburg, May 2011 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Preprint 2011:14 
ISSN 1652-9715 

 
 

Matematiska vetenskaper 
Göteborg 2011 



A New Robustness Index for Multi-Objective
Optimization based on a User Perspective

Christoffer Cromvik∗ Peter Lindroth†‡ Michael Patriksson‡

Ann-Brith Strömberg‡

Abstract

Solving practical optimization problems that are sensitive to small changes in the
variables or model parameters requires special attention regarding the robustness
of solutions. We present a definition of a new robustness index for multi-objective
optimization problems. The definition is based on an approximation of the un-
derlying utility function for a single decision maker. We further demonstrate an
efficient computational procedure to evaluate robustness. The procedure is ap-
plied to two numerical examples: one analytic test problem and one real-world
problem in antenna design. The results show that the robustness varies over the
Pareto front and that it can be improved if the decision maker is willing to sacri-
fice in optimality of the solution.

Keywords: multi-objective optimization, vector optimization, robustness, multi-criteria deci-
sion making, utility theory

1 Introduction

Many applications of optimization comprise several more or less conflicting objec-
tives, such as cost versus quality and expected return versus risk. These are to be op-
timized simultaneously and the aim is to find the most appropriate balance between
all of the objectives. Mathematically, such a problem is denoted a multi-objective opti-
mization problem (MOOP) and is formulated as that to

minimize
x∈X

(f1(x), . . . , fk(x)) . (1)
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Here, x ∈ R
n denotes a vector of decision variables, X ⊆ R

n is the feasible deci-
sion space, and each function fi : X → R, i = 1, . . . , k, is an objective function
to be minimized. Since minimization of a vector in general is not well defined, the
notion of optimality for multi-objective problems is different compared to that of
single-objective problems. Optimality is here based on dominance, and the follow-
ing standard definition is used.

DEFINITION 1.1 (Pareto Optimality) A feasible solution x̂ ∈ X is called Pareto opti-
mal if there exists no vector x ∈ X such that fi(x) ≤ fi(x̂), i = 1, . . . , k, with at least one
inequality holding strictly. The set of all Pareto optimal solutions is denoted P ⊆ X .

It is reasonable to assume that a decision maker (DM) prefers solution in this set,
since for every feasible decision vector outside of P , there is a solution in P which is
at least as good in all objectives (and strictly better in at least one).

The perhaps most intuitive method for solving a MOOP, i.e., to find P or at least a
good approximation of P , is to solve a sequence of standard optimization problems
of the form

minimize
x∈X

k∑
i=1

wifi(x), (2)

where the multiple objectives are transformed to single objectives by varying the
weight vector w within the set {v ∈ R

k | ∑k
i=1 vi = 1, vi ≥ 0, i = 1, . . . , k}. This

solution strategy suffers from serious limitations, such as that it is possible to find
only the subset of P which is mapped onto the convex part of the Pareto front [31],
and also that the mapping between w and the optimal values to (2), i.e., R

k � w �→
minx∈X

∑k
i=1 wifi(x) ∈ R

k, is non-linear and strongly depends on the properties of
the functions involved [10]. To avoid finding weakly Pareto optimal solutions (where
the strict inequality requirement in Def. 1.1 is dropped), the weights must be strictly
positive. Despite of its limitations, the weighting strategy is fundamental, and it is
used as a starting point for the definition of robustness presented in this paper.

Observe that a DM seeks one final solution which is preferred or optimal to
him/her in the sense of balancing the different criteria. The reason for using a multi-
objective formulation is to push forward the decisions until more knowledge is re-
vealed about the characteristics and the limitations of the problem at hand. With this
in mind, a multi-objective problem can often be viewed as a single-objective opti-
mization problem with the caveat that the single objective function is not explicitly
known. Although the multi-objective formulation is “DM independent”, the corre-
sponding single objective problem is not.

This single-objective optimization problem can be formulated as that to

minimize
x∈X

u (f1(x), . . . , fk(x)) , (3)

where u : R
k → R, the utility or value function, is the single objective. The ideas

developed in this paper is based on this formulation. Note that the utility function is
used to quantitatively capture the preferences of the DM with a scalar function, thus
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enabling a total ordering of the feasible decision vectors for each DM. In this paper
the convention that a smaller utility value is better than a larger is used. See [28] for
extensive material on decision problems and utility functions.

Incidentally, compared to the value function method optimization [31], our ap-
proach can be seen as an inverse problem: we start with a solution on the Pareto front
and seek an objective u such that its minimum would result in our initial solution.

1.1 Robustness in single- and multi-objective optimization

An optimal solution which is sensitive to perturbations in the data is often not use-
ful in a practical application. A natural approach to deal with this situation is to
incorporate the uncertainty into the model. This approach is used in Stochastic Pro-
gramming (SP) (cf. [8, 27]) and Robust Optimization (RO) (cf. [5]). In SP, the objective
function is typically the expected value over all uncertain parameters, which implies
that an optimal solution is good on average. In RO, feasibility is required for all
outcomes of the uncertain parameters, which produces a “conservative” optimal so-
lution. Although most RO theory is restricted to convex problems with an explicit
objective function, there are some recent development of RO methods also for non-
convex as well as simulation-based optimization problems (cf. [6, 7]).

There are, however, situations where it is not suitable or even possible to remodel
the problem including robustness directly, but where there is an interest in assessing
the robustness of an optimal solution in a post-process. This could be the case, e.g.,
if the risk aversion of the DM is unknown, or if the mathematical modeling of the
uncertainty is not very clear. This opens up the question of how robustness is evalu-
ated. Considering a single-objective problem, we can use the sensitivity of the objec-
tive value at an optimal solution as a measure of robustness, but for multi-objective
problems this is less straightforward. For such problems we have to quantify the
uncertain responses in the objective space; see Figure 1 for an illustration.

X f(X)

x
f(x)

fi

fj

(f1, . . . , fk)

Figure 1: Uncertainties in x (e.g. implementation precision) and in f = (f1, . . . , fk)
(e.g. in model parameters) lead to uncertain responses f(x) in the objective space.

Among the many papers published on robust optimization, only few concerns
multi-objective optimization. One has to distinguish between robust multi-objective
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optimization for which robustness is one objective and performance is the other, i.e.,
single-objective problems where the robustness of the solutions is taken as an objec-
tive in itself (cf. [9, 25]), and our interpretation of robust multi-objective optimization
where the wish is to find robust solutions to a multi-objective optimization problem.
For the latter, Deb and Gupta [11, 12, 13] have made a direct extension of SP by us-
ing averaged values of the objective functions over a small ball around the intended
value in the decision space to define a robust Pareto front (cf. Section 4.1). The work
of Deb and Gupta may be seen as the current reference work in this area of research.
In this framework, solutions are classified as robust or not, without any further grad-
ing. This is noted by Barrico and Antunes [2, 3, 4]. The authors introduce the concept
of degree of robustness, with which decision vectors are graded with respect to how
the corresponding objective vectors are affected by small variations of the values of
the decision vectors and/or small variations of model parameters. Gunawan and
Azarm [19] use a similar idea for robustness that relates the change in the objective
value due to changes in the model parameters. This measure is also used, in a slightly
different way, by Li et al. [30]. In another recent work, Gaspar-Cunha and Covas [17]
also use a graded measure of the robustness, here with the aim of finding the most
robust parts of the Pareto front. The robustness of a decision vector is measured by
the expectation and the variance of the fitness (in an evolutionary algorithm) of the
decision vector. In [20], Hassan and Clark note that the relative positions of objec-
tive vectors might alter when uncertain parameters take on different values, but that
a DM should be interested in a solution which maintains the characteristics of its
objectives such that it still fulfills his/her preferences. Therefore, the authors define
robustness by measuring how well points stay in certain clusters based on the cur-
rent objectives and how well they keep their rank w.r.t. the different objectives. The
method is described in a setting for a specific application, but the main idea is similar
to ours. The way of measuring the characteristics of the objective functions, and thus
the defintion of robustness, however differs. The method by Hassan and Clark may
lead to bad decisions since objective vectors will not necessarily keep their utility
properties.

Compared to the current methods in the literature, a weakness of our definition of
robustness is the fact that the robustness cannot be computed until the (unperturbed)
Pareto front is known, thus implying that it cannot be used as an objective in itself
during the optimization. The major strength, however, is that the measure is more
elaborate than the ones previously suggested, and it should in a better way capture
the true preferences of the DM and thus in a better way measure what he/she cares
about.

1.2 Outline

In Section 2, we discuss and construct utility functions for specific DMs evaluating
the objectives from his/her point of view. We also present some mathematical prop-
erties of these functions and define two measures of robustness based on them. In
Section 3, we then discuss the computation of these robustness measures, or indices.
Depending on the properties of the problem in terms of constraints and differen-
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tiability, we suggest two approaches to compute approximations of these measures.
We also deal with the search for robust solutions. Instead of just assessing the ro-
bustness of the Pareto solutions, we state an optimization problem with the goal to
find robust, near-optimal solutions. In Section 4 we present two numerical examples.
The first uses a known multi-objective test problem and the second considers a real-
world problem instance in antenna design. Finally, in Section 5, we summarize the
article and suggest some future work.

1.3 Summarizing the main idea

To quantify the change in the objective space due to uncertainties in the decision
space and in the objective functions, we find an approximate utility function for each
potential DM capturing his/her preferences. The robustness of a solution is then
measured using this function. With this approach, the computation of robustness
must be considered as a post-process, since the preferences of the DM depend on the
Pareto front.

The idea is to present a set of candidate solutions that are robust and constitute
a reasonable approximation of the Pareto front. This implies that robustness can be
treated as an objective in itself, which is natural in a multi-objective setting.

2 Robustness based on a utility function

This section begins with a technical note on the requirements that we pose on a utility
function. As we shall see, these requirements ensure that the function accurately
captures a reasonable DM. The section then continues with the presentation of two
robustness indices based on the utility functions.

2.1 Properties of the utility function

We begin with a definition whose requirements should be fulfilled for a reasonable
utility function. In the literature, this definition coincides with the notion of a utility
function being consistent with the preference structure (which in our case is given
by the ≤ relation) [28].

DEFINITION 2.1 (rationality) A utility function u : R
k → R is rational if for x,y ∈

R
n, f(x) ≤ f(y) implies that (u◦ f)(x) ≤ (u◦ f)(y). A DM is rational if his/her associated

utility function is rational.

Rationality means that if a point y is dominated by a point x, then x must be appre-
ciated as at least as good as y by the DM.

With the above definition of rationality, the following proposition shows how
rational utility functions can be characterized.

PROPOSITION 2.2 The utility function u is rational if and only if u(f1, . . . , fk) is mono-
tonically increasing with each fi, i = 1, . . . , k.
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Proof If u is monotonically increasing in each argument it holds that u (f(x)) ≤
u (f(y)) whenever f(x) ≤ f(y), i.e., u is rational. Suppose now that u is rational,
but not monotonically increasing, i.e., ∃f ∈ R

k, j ∈ {1, . . . , k} and ε > 0 such that
u (f1, . . . , fj , . . . , fk) > u (f1, . . . , fj + ε, . . . , fk). But u is rational and hence, since
(f1, . . . , fj , . . . , fk) ≤ (f1, . . . , fj + ε, . . . , fk), it holds that u (f1, . . . , fj , . . . , fk) ≤
u (f1, . . . , fj + ε, . . . , fk). This is a contradiction, whence u must be monotonically
increasing.

We make the following assumption on the function values of the Pareto solutions.

Assumption A The Pareto set satisfies f(P) ⊆ (0, 1]k.

If the range of f over X is bounded, it is always possible to scale the objectives
such that this assumption holds true.

The utility functions that we will assign to potential DMs are assumed to have
the following additive form:

u(f) :=
k∑

i=1

wif
α
i , (4)

where w > 0k
+ are weights and α ≥ 1 is a parameter that controls the curvature of

the function. Although simple, this expression does have some attractive properties
as we shall see.

Before continuing, we remark that the general design of utility functions is a sub-
ject of multi-attribute utility theory (MAUT). For a background on this subject we
refer to [28, 34]. The utility function designed in this paper follows a different ap-
proach than the traditional in MAUT since it is based on the Pareto front entirely,
and does not require any direct interactions with a DM.

We define a family of utility functions:

DEFINITION 2.3 (attainable utility functions) A family U of attainable utility func-
tions is defined as

U =

{
k∑

i=1

wif
α
i

∣∣∣∣ wi > 0, i = 1, . . . , k; α ∈ [1,∞)

}
. (5)

We associate a utility function to each candidate vector x̄ ∈ X , i.e., to any solution
that a DM might be interested in. If x̄ ∈ P , then w and α are chosen such that α is as
small as possible and that x̄ ∈ arg min {u ◦ f(x) | ‖∇f (u ◦ f)(x)‖1 = 1}. This means
that w is selected such that u is minimized at x̄, and that thereafter u is scaled to
be of similar value for different values of α. Note that for α = 1, the reasonable
requirement

∑
i wi = 1 is implied.

In the following, we present a few properties of the family of utility functions
in (5). The main goal is to show that the family is rational, and complete with respect
to certain Pareto optimal points in a sense to be defined below. These are points that
can be reached using a utility function in the family U , and we will use the notion of
proper Pareto optimality to identify them.
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We first define completeness for a general family of utility functions.

DEFINITION 2.4 (completeness) A family of utility functions U is complete with re-
spect to a set P̂ ⊆ P if for every x∗ ∈ P̂ there exists a u ∈ U such that

x∗ ∈ arg min
x∈X

u
(
f1(x), . . . , fk(x)

)
.

This means that, in a complete family, for each x∗ ∈ P̂ ⊆ P there is at least one
utility function that evaluates x∗ as a best one. A good family of utility functions is
both rational and complete with respect to a set which is a close approximation to P .
We will show that the family (5) is good.

PROPOSITION 2.5 The family of utility functions defined by (4) is rational.

Proof Since w ≥ 0k and α ≥ 1, all u ∈ U are monotonically increasing in all their
arguments; the result then follows immediately from Prop. 2.2.

Geoffrion [18] introduced the notion of proper Pareto optimality to exclude some
Pareto optimal solutions that are insensible to reasonable DMs.

DEFINITION 2.6 (proper Pareto optimality) A feasible solution x̂ ∈ X to (1) is called
proper Pareto optimal in the sense of Geoffrion if it is Pareto optimal in (1) and if there
exists a number M > 0 such that for each i ∈ {1, . . . , k} and each x ∈ X satisfying
fi(x) < fi(x̂), there exists a j ∈ {1, . . . , k}\{i} such that fj(x̂) < fj(x) and

fi(x̂) − fi(x)
fj(x) − fj(x̂)

≤ M. (6)

We denote the set of all proper Pareto vectors in the sense of Geoffrion by Pp.

A vector x is properly Pareto optimal in the sense of Geoffrion if it has finite trade-
offs between the objectives. We make a somewhat different definition of proper
Pareto optimality based on the family of utility functions (5).

DEFINITION 2.7 (firmly proper Pareto optimality) A feasible solution to (1) is called
firmly proper Pareto optimal if it is the minimizer of (3) for some utility function u in the
family U defined in (5). We denote the set of all firmly proper Pareto vectors by Pfp.

Figure 2 illustrates some firmly proper, proper and non-proper Pareto optimal solu-
tions. The definition of firmly proper Pareto optimal points implies that the family of
utility functions is complete with respect to these points. The question now is which
points that are firmly proper.

The two following propositions show that firmly proper Pareto optimal solutions
are indeed Pareto optimal, and that these solutions are also proper in the sense of
Geoffrion.
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PROPOSITION 2.8 Under Assumption A, each firmly proper Pareto optimal solution
to (1) is a Pareto optimal solution, i.e., Pfp ⊆ P .

Proof Suppose that x ∈ X\P . Then, ∃y ∈ X such that fi(y) ≤ fi(x), i = 1, . . . , k,

with fj(y) < fj(x) for some index j. It follows that u (f(y)) =
∑k

i=1 wifi(y)α <∑k
i=1 wifi(x)α = u (f(x)) since wj > 0, fj(y) < fj(x), α ≥ 1, and f(y) > 0k. Thus

x /∈ Pfp and the proposition follows.

PROPOSITION 2.9 Under Assumption A, each firmly proper Pareto optimal solution
to (1) is a proper Pareto optimal solution, i.e., Pfp ⊆ Pp.

Proof Choose a vector w > 0k and an α ≥ 1. We define K = {1, . . . , k} and let
x∗ ∈ arg minx∈X

∑
k∈K wifi(x)α. From Definition 2.7 follows that x∗ ∈ Pfp and

Proposition 2.8 then implies that x∗ ∈ P .
Now, assume that x∗ /∈ Pp. Then for every M > 0, there exists an ı̄ = i(M) ∈ K

and an x̄ = x(M) ∈ X , with fı̄(x̄) < fı̄(x∗) such that fı̄(x
∗)−fı̄(x̄)

fj(x̄)−fj(x∗) > M for every
j ∈ K \ {ı̄} for which the inequality fj(x∗) < fj(x̄) holds. We will show that this
assumption leads to the conclusion that x∗ /∈ Pfp, which contradicts the above defi-
nition of x∗.

From the characterization of x̄ and ı̄ it follows that fj(x̄) < fj(x∗) + 1
M [fı̄(x∗) −

fı̄(x̄)], j ∈ K \ {ı̄}. By the definition (4) it then follows that

u(f(x∗)) − u(f(x̄)) =
∑
j∈K

wj

[
fj(x∗)α − fj(x̄)α

]

> wı̄

[
fı̄(x∗)α−fı̄(x̄)α

]
+
∑

j∈K\{ı̄}

(
wj

[
fj(x∗)α−

(
fj(x∗)+

1
M

[
fı̄(x∗)−fı̄(x̄)

])α
])

= wı̄

[
fı̄(x∗)α − fı̄(x̄)α

]
+

∑
j∈K\{ı̄}

(
wjfj(x∗)α

[
1 −

(
1 +

fı̄(x∗) − fı̄(x̄)
Mfj(x∗)

)α])
.

Due to Assumption A and the definitions of x∗, x̄, and ı̄, the strict inequalities 0 <

fı̄(x∗) − fı̄(x̄) < 1 hold. Therefore, for every M ≥ M∗ :=
(
minj∈K{fj(x∗)})−1 it

holds that 0 < fı̄(x
∗)−fı̄(x̄)

Mfj(x∗) < 1. We can thus utilize the exact Taylor expansion

(1 + y)α = 1 + α(1 + θy)α−1y, for all y ∈ (−1, 1) for some θ = θ(y) ∈ (0, 1), (7)

to conclude that the relations

u(f(x∗))−u(f(x̄))

> wı̄

[
fı̄(x∗)α−fı̄(x̄)α

]
+
∑

j∈K\{ı̄}

(
−wjfj(x∗)αα

[
1+θ

fı̄(x∗)−fı̄(x̄)
Mfj(x∗)

]α−1[
fı̄(x∗)−fı̄(x̄)

Mfj(x∗)

])

=
[
fı̄(x∗)−fı̄(x̄)

]⎛⎝wı̄
fı̄(x∗)α−fı̄(x̄)α

fı̄(x∗)−fı̄(x̄)
−
∑

j∈K\{ı̄}

[
wjfj(x∗)α−1α

M

(
1+θ

fı̄(x∗)−fı̄(x̄)
Mfj(x∗)

)α−1
]⎞⎠
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hold for all M ≥ M∗. The presumptions that w > 0k and α ≥ 1, Assumption A
(implying that 0 < fj(x∗)α−1 ≤ 1), and the conclusion that x∗ ∈ P (implying that
fı̄(x∗) − fı̄(x̄) < 1) then yields that the strict inequality

u(f(x∗))−u(f(x̄)) >

[
fı̄(x∗)−fı̄(x̄)

]⎛⎝wı̄
fı̄(x∗)α−fı̄(x̄)α

fı̄(x∗)−fı̄(x̄)
− α

M

∑
j∈K\{ı̄}

wj

[
1+

1
Mfj(x∗)

]α−1
⎞
⎠ ,

holds for all M ≥ M∗. Utilizing the fact that the inequality fı̄(x
∗)α−fı̄(x̄)α

fı̄(x∗)−fı̄(x̄) ≥ fı̄(x∗)α−1

holds whenever 0 ≤ fı̄(x̄) < fı̄(x∗) and α ≥ 1, it then follows that

u(f(x∗))−u(f(x̄))

>
[
fı̄(x∗)−fı̄(x̄)

]⎛⎝wı̄fı̄(x∗)α−1− α

M

∑
j∈K\{ı̄}

[
wj

(
1+

1
M mini∈K{fi(x∗)}

)α−1
]⎞⎠

≥ [
fı̄(x∗)−fı̄(x̄)

]⎛⎝min
j∈K

{
wjfj(x∗)α−1

}− α

M

(
1+

M∗

M

)α−1 ∑
j∈K\{ı̄}

wj

⎞
⎠ ,

for all M ≥ M∗. By the assumptions made, the strict inequality fı̄(x∗) − fı̄(x̄) >
0 holds for all values of M > 0. Further, the strict inequalities wjfj(x∗)α−1 > 0,
j ∈ K, and

∑
j∈K\{ı̄} wj > 0 hold irrespective of the value of M > 0. Moreover,

since
{

α
M

(
1 + M∗

M

)α−1} → 0 as M → ∞, it follows that u(f(x∗)) − u(f(x̄)) > 0,
for some x̄ = x(M), when M ≥ M∗ is sufficiently large, i.e., the utility of some x̄
is strictly better than that of x∗, which implies that x∗ /∈ Pfp. The result follows by
contradiction.

We will next identify which points on the Pareto front that are firmly proper. It turns
out that for convex multi-objective problems, i.e., with all fi convex and X convex,
it is sufficient with α = 1 and w ∈ R

k
+ in (4) to make the family (2.3) complete

with respect to Pfp. Since we require that the weights are strictly positive, there may
be a few non-proper solutions; however, almost all Pareto optimal points to convex
problems are firmly proper.

In the following proposition and corollary we show that also certain non-convex
multi-objective problems have Pareto fronts consisting of only firmly proper Pareto
points. The proposition is similar to what is shown in [29]; however, we assume
that the objectives are scaled such that f(P) ⊆ (0, 1]k. This enables another line of
arguments, leading to a significantly shorter proof.

PROPOSITION 2.10 (convexification) Consider the problem (1). Let the Pareto front
f(P) be parameterized by fk = φ(f1, . . . , fk−1). Assume that the local trade-offs on the
Pareto front between the pairs of objectives are continuous , and assume that φ is twice con-
tinuously differentiable. Then, for a sufficiently large p ∈ [0,∞), the Pareto front of the
problem minx∈X(f1(x)p, . . . , fk(x)p) is convex.

9



f1

f2 1

2
3

4

Figure 2: An illustration of a Pareto optimal set for a problem with two objectives.
All points except the four marked are proper Pareto optimal points. Points 1 and
2 are not proper, and point 3 is not even Pareto optimal. Point 4 is proper but not
firmly proper. Note that point 4 has points arbitrary close on both sides with different
values of the trade-offs; this point can therefore be seen as insensible to a reasonable
DM.

Proof Let f̄ = {f1, . . . , fk−1} and h(f̄) = φ(f̄)p, and let x∗ ∈ P arbitrarily. We will
show that ∇2

(f̄p)2
h is positive semi-definite at f(x∗) and hence that the Pareto front is

convex. From the chain rule, we have that ∂h
∂(fp

j )
= ∂h

∂fj

1

pfp−1
j

and that

∂2h

∂(fp
j )2

=
∂2h

∂f2
j

1
p2(fp−1

j )2
− p − 1

p2f2p−1
j

∂h

∂fj
,

∂2h

∂fj∂fi
=

∂2h

∂fj∂fi

1
p2fp−1

j fp−1
i

.

We define the exponent of a vector to be component-wise, and introduce the matrices
D = diag(f̄p−1)−1 and E = Dp−1. We then have that

∇̄fph =
1
p
D∇̄fh, (8a)

∇(f̄p)2h =
1
p2

D∇2
f̄2hD − p − 1

p
D diag(∇̄fh)DE. (8b)

Now, since ∂h
∂fj

= pφp−1 ∂φ
∂fj

and ∂2h
∂f2

j
= p(p − 1)φp−2( ∂φ

∂fj
)2 + pφp−1 ∂2φ

∂f2
j

, we get

∇2
f̄2h = p(p − 1)φp−2∇̄fφ(∇̄fφ)T + pφp−1∇2

f̄2φ.

Finally, by inserting the above expression into (8) we get

∇(f̄p)2h =
p−1

p
φp−2D∇̄fφ(∇̄fφ)TD +

1
p
φp−1D∇2

f̄2φD− (p−1)2

p2
φp−1D diag(∇̄fφ)DE.

10



The first term is positive semi-definite, and since ∇̄fφ ≤ 0k−1 (φ is a parameterization
of a Pareto front), so is the last term. As p → ∞, the second term tends to zero faster
than the first term, wherefore the result is proved.

COROLLARY 2.11 Let the Pareto front be parameterized by fk = φ(f1, . . . , fk−1), and
let x∗ ∈ P . Assume that the local trade-offs on the Pareto front between all pairs of objectives
are continuous at f(x∗), and assume that φ is twice continuously differentiable. Then, each
proper Pareto optimal point is a firmly proper Pareto optimal point, and therefore Pp = Pfp.

Proof It is well known (cf. [15], Thm. 3.11) that all proper Pareto optimal points
to convex multi-objective optimization problems can be found using the standard
weighting method with non-negative weights. Thus Pp ⊆ Pfp and the result then
follows from Prop. 2.9.

The corollary implies that all points on sufficiently smooth Pareto fronts are firmly
proper, i.e., for problems with such Pareto fronts, the family U of utility functions is
complete with respect to the entire set P .

To conclude this subsection, we have shown that the family U of utility functions
is rational and complete with respect to almost all Pareto solutions arising from con-
vex problems and all Pareto fronts that are smooth enough.

2.2 The robustness index

We present two definitions of robustness for a given decision vector: absolute robust-
ness and relative robustness. Both measures are based on the utility function (4), and
for both of them a smaller value means a more robust point.

DEFINITION 2.12 (absolute robustness index) Let x̄ ∈ R
n be the point whose robust-

ness is to be measured, and let η ∈ Ω ⊆ R
m be a stochastic variable with mean η0. Suppose

that u(·) is the utility function associated with x̄. The absolute robustness index of x̄ is de-
fined as

RA(x̄) = E [(u ◦ f)(x̄,η) − (u ◦ f)(x̄,η0)] . (9)

REMARK 2.13 If (u◦f)(x̄, ·) is convex, then the absolute robustness index is non-negative,
since Jensen’s inequality (cf. [16], Prop. 12) implies that

RA(x̄) ≥ (u ◦ f)(x̄, E[η]) − (u ◦ f)(x̄,η0) = 0.

DEFINITION 2.14 (relative robustness index) Let x̄ ∈ R
n be the point whose robust-

ness is to be measured, and let η ∈ Ω ⊆ R
m be a stochastic variable with mean η0. Suppose

that u(·) is the utility function associated with x̄ and that x∗(η) ∈ X∩arg min(u◦f)(x,η).
The relative robustness index of x̄ is defined as

R(x̄) = E [(u ◦ f)(x̄,η) − (u ◦ f)(x∗(η),η)] . (10)

11



In contrast to absolute robustness, relative robustness is not necessarily affected by
large changes in the objective space due to different outcomes of η, since it measures
the relative loss to an optimal solution for each η; see Figure 3.

Which robustness index should be used is a matter of choice for a DM, but prac-
tice may motivate the use of one before the other. For example, using relative ro-
bustness requires a minimization for each η which limits its practical use on some
problems. In Section 3, we present procedures for computing approximations of the
robustness indices.

f(x̄,η0)

f(x̄,η1)

f(x∗(η1),η1)

f1

f2

Figure 3: Two Pareto fronts for two realizations of the uncertainty parameter η. There
is a quality loss since the chosen candidate x̄ is not optimal for the outcome η1. This
quality loss is measured in the relative robustness index.

3 Computation of the utility function and robustness
index

In this section we present practical approaches for computing the utility function
and the robustness indices. We start by noting that the computation of robustness is
a post-process, since it requires a sufficient resolution of the Pareto front.

The computation of the robustness indices for a specific solution, which we call
the candidate, is organized in a series of steps, summarized in Algorithm 1.

Algorithm 1 Calculate robustness index
Require: Candidate x̄, Pareto front f(P).

1. Approximate the Pareto front by a quadratic implicit curve around x̄.
2. Compute the utility function u for the candidate such that equations (11) and
(12) are fulfilled.
3. Compute R or RA according to the descriptions in subsections 3.2 and 3.3.

Ensure: R or RA.
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3.1 Computation of a utility function given a specific point x̄

We assume that the Pareto front f(P) is described by a level set of an implicit func-
tion z(f(P)) = 0. By the definition of the utility function u, it is minimized by the
candidate x̄. This implies the following two conditions which are also illustrated in
Figure 4:

∇fu = γ∇fz, (11)
κ(u) ≥ κ(z), (12)

where γ ∈ R+, and κ(·) is a measure of curvature (cf. (14)). We construct a quadratic
function Q(f) whose zero level set is fitted to the Pareto points within a ball of radius
τ > 0. In particular, given a candidate x̄ and the Pareto points xj for j = 1, . . . , p,
within the ball B(x̄, τ), we solve the following linear least-squares problem

minimize
c∈R

k
+,b∈Rk

p∑
j=1

k∑
i=1

(
cifi(xj)2 + bifi(xj) − 1

)2
,

subject to

k∑
i=1

cifi(x̄)2 + bifi(x̄) = 1, (13)

and set Q(f) := 1
2 f

T diag(c) f +bTf −1. The level set Q(f) = 0 then yields an estimate
of the normal and curvature of the front.

Since Q is quadratic with a diagonal Hessian, we can write an explicit expression
for fk in the remaining objectives f1, . . . , fk−1 in the zero level set of Q. Here, (13)
is used to decide on the correct solution of the two given by the resulting quadratic
equation. Furthermore, the expression for fk will be at least twice continously dif-
ferentiable. Hence, there exists a twice continuously differentiable φ such that fk =
φ(f1, . . . , fk−1) and this implies, according to Prop. 2.10, that all points on the fitted
surface are firmly proper. So even though the Pareto front may not be sufficiently
smooth, we are always able to reach all points on the approximate front, and there
always exists an α such that equations (11) and (12) hold. We use normal curvature
in equation (12) and we define it, along with a vector d, to be

κ =
dTHd

‖d‖2
, (14)

where H is the Jacobian of the normal N ∈ R
k to the surface,

H =

⎡
⎢⎣

∂N1
∂x1

. . . ∂N1
∂xk

...
. . .

...
∂Nk

∂x1
. . . ∂Nk

∂xk

⎤
⎥⎦ . (15)

We note that in three dimensions, the principal curvatures are the two non-zero
eigenvalues of the matrix H [1]. Equations (12) and (14) should hold for all direc-
tions d ∈ R

k, although in practice we only consider a finite set of directions. For the
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quadratic implicit surface Q(f) = 0, equation (15) reduces to (cf. [1, 21])

H =
∇2

ffQ

||∇fQ|| −
(∇fQ∇fQT)∇2

ffQ

||∇fQ||3 . (16)

Equation (12) will be satisfied for a sufficiently high value of α. Therefore, a utility
function u fulfilling the equations (11) and (12) can be found by iteratively increasing
the curvature parameter α ≥ 1 such that it, together with an accompanying weight
vector w > 0k

+, satisfies (11).

f1

f2
z(f(P)) = 0

∇u

∇z
u = c1u = c2u = c3

Figure 4: An illustration of the requirements (11) and (12) on the utility function u.

Given a candidate with a corresponding utility function, the next step is to com-
pute R or RA. This is described in the following subsections. For unconstrained prob-
lems with analytic objective functions, we present an approximate closed-form ex-
pression for relative robustness. For constrained problems, we show how a Monte-
Carlo method can be used. Both methods are used in the numerical experiments in
Section 4.

3.2 Robustness of x̄ – unconstrained problem

In addition to Assumption A of normalized objective function values, assumed to
hold for f(x,η0), we in this subsection also add the following:

Assumption B

(B1) The functions fi(·, ·) > 0, i = 1, . . . , k, are twice continuously differentiable.

(B2) The feasible set is X = R
n.

Under these assumptions, we can formulate a closed-form expression for an approx-
imation of relative robustness. The approximation is based on the second-order Tay-
lor expansion U of the utility function u. With û(x,η) := u(f(x,η)), we have

U(x,η) = û(x̄,η0) + ∇xû(x̄,η0)
T(x−x̄) + ∇ηû(x̄,η0)

T(η−η0)

+ (x−x̄)T∇2
xηû(x̄,η0)(η−η0) + 1

2 (x−x̄)T∇2
xxû(x̄,η0)(x−x̄)

+ 1
2 (η−η0)

T∇2
ηηû(x̄,η0)(η−η0).
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Since the candidate x̄ is defined to minimize the utility function, the Hessian of u
is positive semi-definite. If it is positive definite, and thus non-singular, we get an
expression for the optimal solution x∗(η) ∈ arg minx∈X U(x,η) as a (linear) function
of the uncertainty parameter η:

x∗(η) = x̄ −∇2
xxû(x̄,η0)

−1
[∇xû(x̄,η0) + ∇2

xηû(x̄,η0)
T(η−η0)

]
.

Inserting this into the definition (2.14) of robustness leads to a closed-form expres-
sion for the approximate relative robustness index:

RU (x̄) := E [û(x̄,η) − û(x∗(η),η)]

= E
[
1
2∇xûT∇2

xxû−1∇xû+∇xûT∇2
xxû−1∇2

ηxûT(η−η0) (17)

+ 1
2 (η−η0)

T∇2
ηxû∇2

xxû−1∇2
ηxûT(η−η0)

]
.

Introducing Λ as the covariance matrix of η, and noting that ∇xû(x̄,η0) = 0 since x̄
is the minimizer, the expression (17) reduces to

RU (x̄) = 1
2 tr

(
Λ∇2

ηxû∇2
xxû−1∇2

ηxûT
)
. (18)

This expression only requires the solution of one linear equation with n unknowns
and a few matrix-matrix multiplications, and is thus relatively fast to compute.

3.3 Robustness of x̄ – constrained problem

If any of the functions fi are non-differentiable, if the problem includes constraints,
or if analytic expressions of the functions fi are not available, then the closed-form
expression (18) does not apply. The robustness indices can however be computed us-
ing a Monte-Carlo method with randomized sampling. With N i.i.d. samples ηi, i =
1, . . . , N , of η, we replace the expected value by the sample mean. We here only
consider the absolute robustness index, since the relative index would require one
minimization computation for each sample. The Monte-Carlo estimate is then given
by

R̂A(x̄) =
1
N

N∑
i=1

[
u
(
f(x̄,ηi)

)− u
(
f(x̄,η0)

)]
.

3.4 Search for robust solutions

We have assumed that the Pareto front is pre-computed, and that the computational
procedures that were presented previously referred to candidates on the front. How-
ever, we may forsake optimality of a solution if robustness can be gained; that is, by
moving away from a Pareto optimal solution x̄ on the front, we can search for solu-
tions in its neighborhood and thereby presenting a possibly more robust alternative.
Note that the parameters of the utility function is computed for the Pareto solution x̄,
whence the utility function values for inner (non-Pareto) solutions depend on from
which Pareto point one emanates. Let τ > 0 be the radius of the ball around f(x̄)
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used for the quadratic approximation Q of the front, and let ε > 0. We use the util-
ity function u to define the neighborhood. For absolute robustness we formulate the
optimization problem to

minimize
x

RA(x),

subject to u (f(x)) − u (f(x̄)) ≤ ε,

‖f(x) − f(x̄)‖ ≤ τ,

x ∈ X.

(19)

The solution to (19) is the most robust point with at most a decrease of ε in utility
compared to x̄ and which is sufficiently close to x̄ in the objective space such that the
local approximation of the Pareto front remains valid. In Section 4.2, problem (19) is
used to find alternative robust solutions.

For relative robustness, we have to take into account that inner solutions will
have a lower utility value than the optimal solution x∗(η) for each realization of η
(see the expression (10) and Figure 3). This difference has to be subtracted from the
objective function in the optimization problem in order to not having inner solu-
tions being punished due to a utility loss independent of the perturbation. Letting
Δu(x) = u(x,η0) − u(x̄,η0) denote the loss in utility at the unperturbed state, we
formulate the optimization problem to

minimize
x

R(x) − Δu(x),

subject to u (f(x)) − u (f(x̄)) ≤ ε,

‖f(x) − f(x̄)‖ ≤ τ,

x ∈ X.

(20)

Similar to above, the solution to (20) is the most (relatively) robust point which is
sufficiently close to x̄ both in terms of function values and in terms of utility value.

4 Numerical Experiments

The ideas developed and the measures introduced in this article have been applied
to both the analytical test functions constructed by Deb and Gupta [12] and on func-
tions derived from real-world numerical data used for antenna optimization [23, 32].

The reader should note that the test functions in the first numerical example
are designed to illustrate different principal cases when introducing uncertainty in
multi-objective problems, and are not designed to imitate practical applications. Our
intention with this example is to show how our definition of robustness compares to
other already published ones.

The theory developed in this article poses no theoretical restriction on the number
of objectives. In the numerical examples we, however, for illustrative reasons only
consider bi-objective problems.
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4.1 Analytical functions

Deb and Gupta [12] consider uncertainty in the decision space and formulates a pro-
gram where each objective function is replaced by its respective average computed
over a ball around the intended decision variable, i.e.,

f eff
i (x) =

1
|B(x, δ)|

∫
y∈B(x,δ)

fi(y)dy.

The radius of the ball is given by the parameter δ > 0 which is varied in the
numerical tests. A larger value of δ smoothens out the functions and makes sharp
global optima less attractive. By using this framework, a “robust” Pareto optimal
front is always found, but there is no distinction between the points on this front
with respect to robustness. Furthermore, there is no continuous grading of robust-
ness of the points that are not in the robust Pareto set. Deb and Gupta also present
an alternative robustness model where they enforce robustness of the resulting solu-
tions using a constraint. Here, the norm of the difference between the (unperturbed)
function value and the averaged (or, the worst case) function value is required to be
kept smaller than a certain threshold value. From our point of view, this formula-
tion also suffers from the weakness that it just classifies solutions as robust Pareto
optimal or not. It is also possible that large parts of the objective space will not con-
tain any robust solutions if the effect of uncertainty is large. From now on, we will
concentrate on Deb and Gupta’s first formulation.

Since we derive robustness for the unperturbed front, and Deb and Gupta present
a robust front possibly consisting of completely different solutions, it is difficult to
directly compare the respective results.

We present numerical results for one test problem, DEBGUP3, which is one of four
bi-objective problems from [12] which are also considered in [2, 3, 4]. The problem is
to

minimize
x

(f1(x), f2(x)) =(
x1,

(
2 − 0.8e−( x2−0.35

0.25 )2

− e−( x2−0.85
0.03 )2)

(1 −√
x1)

5∑
i=3

50x2
i

)
,

subject to 0 ≤ xi ≤ 1, i = 1, 2, (DEBGUP3)
−1 ≤ xi ≤ 1, i = 3, 4, 5.

The uncertainty appears in the decision space, such that x is replaced by x + η and
η is drawn from a uniform distribution, η ∈ U([−0.03, 0.03]5). A close study of the
functions reveals that the unperturbed problem with η = 05 has one local and one
global Pareto optimal front (where a local Pareto front consists of points that are lo-
cally Pareto optimal, i.e., points x̂ for which there is an ε > 0 such that x̂ fulfilles
Def. 1.1 with the decision space X replaced by a small ball B(x̂, ε)). The fronts are
shown in Figure 5(a). Figure 5(b) presents the approximation (18) of the relative ro-
bustness index (Def. 2.14) for the corresponding points. We have chosen to ignore the
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bounds when computing relative robustness which enabled the use of the closed-
form expression (18). The implication of ignoring the bounds may be that the value
of RU is overestimated, i.e., the robustness value is underestimated. Note that the
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(a) Function values (original functions).
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(b) Robustness indices.

Figure 5: The global and the local Pareto fronts for the problem DEBGUP3. The ro-
bustness indices are shown for the corresponding points, parameterized by the val-
ues of the first objective.

robustness varies both along each single front, and also between the two fronts. For
example, there are points at the global front at which the expected loss in utility due
to perturbations are about four times as large compared to other points at the global
front. The explanation for the relatively large values of the robustness indices, i.e.,
the expected utility loss (which for problems with convex Pareto fronts can be inter-
preted approximately as the expected increase in a weighted sum of the objectives),
is that the constructed test example has a sharp local minimum in the second objec-
tive at the global Pareto front. This leads to that points at the front will be sensitive
already for small perturbations. The local front is more robust than the global one as
is expected from the results in [12]. Here, we can distinguish a difference between
using the robustness index and using averaged objectives. Depending on the size
of the radius δ, the robust front will equal either the local front, the global front, or
a combination of these. It is possible to construct problems where the global front
equals the robust Pareto front, but having a local Pareto front arbitrarily close and
which has much better robustness indices according to our definition. The value of δ
(which has to be selected prior to the analysis) highly determines which solutions are
presented to a DM, whereas the idea in our paper is to partly push forward the de-
cision of how much robustness is desired to the DM, and therefore present solutions
of different robustness values. The robustness index may also show that robustness
may vary along the Pareto front. With more complex objective functions found in
real-world applications, we anticipate that there may be more dramatic changes in
robustness between solutions close to each other on the Pareto front. In such cases,
the DM may prefer a solution slightly off his/her ideal (optimal) solution if the ro-
bustness properties are better. This situation is presented in the following example.
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4.2 A real-world example

Designing antennas typically involves a number of conflicting requirements. These
may be based on spatial size, so called S-parameters related to electromagnetic prop-
erties, functions of the directivity of the antenna, band width, input impedance,
or other characteristics of the antenna. In a joint project between the Fraunhofer–
Chalmers Centre and the Antenna Research Centre at Ericsson AB a multi-objective
optimization approach is taken on the antenna design problem, as described in [23,
32]. We have chosen to study this problem using a subset of the proposed objectives.
The decision variables are the positions and geometrical dimensions of the antenna,
and the objectives chosen are the maximum return loss (|S11|) over the frequency
band [750, 850] MHz and the area of the hull of the antenna. An approximate Pareto
front is shown in Figure 6, where it is clearly shown that the two objectives are con-
flicting. The objective functions are expensive to evaluate since they are outcomes of
time-consuming computer simulations. For this reason, a surrogate modeling tech-
nique [24] is used, where approximate functions are constructed using the function
values computed at a number of sample points. Jakobsson et al. [22, 23] have devel-
oped a new technique based on interpolation with rational radial basis functions to
handle the sharp function behaviors around the resonance levels. The two objectives
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Figure 6: An approximate Pareto front (with the objectives scaled) to the problem
found using the NSGA-II algorithm [14] with 400 generations and a population size
of 196.

are interesting for a robustness study. Near resonance, small variations of the deci-
sion variables yield large differences in the function values. This is the case for many
practical problems where resonance phenomena are part of the problem character-
istics. We have noticed that the surrogate models are quite sensitive to the choice of
sample points (and this choice is not obvious) and have constructed our numerical
study based on this fact.

Originally, the decision space has been sampled at 2000 distinct points chosen
using an ad-hoc design–of–experiments strategy, and the surrogate models (or, re-
sponse surfaces) have been constructed using the rational RBF technique on the func-
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tion evaluations at these points. In our numerical experiments, we have randomly
selected 500 out of the 2000 points and constructed new response surfaces using only
these. The uncertainty characteristics depend on which 500 of the 2000 points that are
chosen, reflecting the fact that it is not clear from the start which sample points to
choose. Obviously, a robust solution is a solution for which the randomness does not
have a large effect, according to our definition of robustness.

To be able to handle robustness with respect to this type of uncertainty is a great
advantage of our method as compared to the one by Deb and Gupta and others,
where it is only possible to handle uncertainties in the precision of x and/or uncer-
tainties in the parameter values of parameterized objective functions.
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Figure 7: Absolute robustness for the points on the Pareto front, parameterized by
the first objective.

In Figure 7, the (absolute) robustness index is shown for the points on the Pareto
front to the original problem, where the objective functions are the response surfaces
constructed using all 2000 data points. The index varies substantially along the front,
and for some Pareto points, there are other points on the front that are close in the
objective space but with a very different robustness index. This opens up the possi-
bility for a DM to choose a point which lies close to his/her ideal point with respect
to the function values, but which are much more robust. Doing so will, on average,
improve the utility. But since the front is only valid for the unperturbed problem,
a DM could also be searching for a non-Pareto optimal solution since such a point
can be even more robust; see Section 3.4. In Figure 8, we illustrate such a search.
For each (unperturbed) Pareto optimal point, we search for optimal points accord-
ing to the model (19) with the parameter values ε = 0.01 and τ = 0.1. We use the
global optimization algorithm DIRECT [26], implemented in TOMLAB [33]. We have
also implemented a simple local search strategy to complement the algorithm. In the
left figure, the points obtained are shown together with the original (approximate)
Pareto front. The right figure shows a histogram of the size of the improvements in
robustness when—for each unperturbed point—picking the corresponding robust
alternative. One obvious conclusion is that for most Pareto optimal points, there are
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robust solutions that are close with respect to the value of the utility but with signif-
icantly better robustness indices (note the large portion of solutions with robustness
improvements close to 1). This fact can be used by a DM, who then gets an option to
balance between robustness and “optimality” for the unperturbed problem.
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Figure 8: In a), robust points are added to the (approximate) Pareto front. In b), the
relative improvements in the robustness index for the points found are shown.

To further illustrate the framework, we consider the following scenario: Suppose
we have presented a Pareto front corresponding to the unperturbed problem to a
specific DM, and that he/she has located a candidate solution. Since the problem
contains uncertain parameters, the DM is also interested in the robustness of this
solution. We now solve problem (19) for varying values of the parameter ε. This
will produce solutions that are more robust, but with lower utility values. These
candidates are then presented to the DM, who gets the option to consider how much
he/she values robustness considering how much utility is lost. In the spirit of multi-
objective optimization, the decision of robustness versus optimality is thus left to
the DM. Figure 9 shows the results for a specific candidate. In a), the robustness
index is shown as a function of the utility for the alternative solutions. In b), the
unperturbed Pareto front is shown along with level curves of the utility function for
the specific candidate. The DM can clearly see that he/she can substantially improve
the robustness if he/she is willing to sacrifice some utility.
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Figure 9: Figure a) shows the utility function values and robustness index values for
the alternative solutions. The robustness index is normalized by the original candi-
date. Figure b) shows the unperturbed function values for the candidates and level
curves of the utility function. In both figures, the ring (o) corresponds to the unper-
turbed Pareto point originally chosen by the DM and the plus signs (+) correspond
to the alternative points.

5 Summary and conclusions

We have presented a new definition of robustness for multi-objective problems based
on an approximation of the utility function for each single decision maker and we
present two robustness indices measuring the relative and absolute, respectively, ex-
pected loss in the utility function due to uncertainties. We have shown that the family
of utility functions suggested has certain nice properties such as rationality and com-
pleteness. We have also presented procedures for computing the robustness indices
and applied them to two numerical examples: one analytic test problem from [12],
and one practical antenna optimization problem from [23, 32].

The formulation of robustness by Deb and Gupta [12] for multi-objective opti-
mization, which consists of replacing the objectives by their respective expected val-
ues, is very natural and direct, and is suitable for many applications. In line with the
main idea of multi-objective optimization, our approach, however, has the advan-
tage that the decisions are moved to a later point in time at which more information
about the problem is revealed. Also, our method produces a continuous measure of
robustness and it does that to all points; it does not only tell whether a certain point is
a robust Pareto optimal point or not. Furthermore, our method enables the handling
of very general types of uncertainties.

In the future, our methodology will be applied to more numerical examples, in-
cluding also problem instances with more than two objectives. The inclusion of con-
straints when considering relative robustness should be further developed. It would
also be interesting to develop and apply other types of robustness measures based

22



on utility functions.
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