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Pure Categorical Optimization
– a Global Descent Approach

Peter Lindroth∗† Michael Patriksson†

Abstract

In this article we introduce and study the pure categorical optimization problem.
This is a problem in discrete variables, but where the discrete variables have no
natural ordering in the decision space. It is argued that such a problem is a natural
framework for the study of, e.g., the problem of finding the right configuration
for a customer for certain types of platform-based products.

It is shown that the problem can be reformulated into several different nonlin-
ear integer programming models that all are equivalent from a categorical point
of view. We investigate its mathematical properties; in particular we establish
properties corresponding to those of continuity and convexity for numerical op-
timization problems.

For the solution of the problems we propose to extend the discrete global de-
scent method from the area of (numerical) nonlinear integer programming. We
suggest extensions of the principal algorithmic steps within these methods in
order to adapt it to categorical problems, utilizing the fact that there are many
equivalent problem formulations.

Numerical results are provided when applying the proposed methods both
to some standard test problems from the literature, and to real-world problems
concerning the configuration of heavy-duty trucks. It is concluded that problems
in this class can be solved using mathematical techniques. In particular, it is pos-
sible to utilize the discrete global descent method, and it is concluded that the
extensions added in order to adapt it to categorical problems also improve its
performance.

Keywords: pure categorical optimization, categorical variables, discrete global optimization,
global descent methods, nonlinear integer programming, configuration

1 Introduction and motivation

A pure categorical optimization problem is a discrete non-linear optimization problem
where all variables can be given a numerical value, but where the values themselves

∗Volvo 3P, Chassis & Vehicle Dynamics, Chassis Strategies & Vehicle Analysis, SE-405 08, Gothenburg,
Sweden. E-mail: peter.lindroth@volvo.com

†Mathematical Sciences, Chalmers University of Technology, and Mathematical Sciences, University
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do not have a physical meaning as they simply enumerate the possible variable re-
alizations. The following example illustrates a real-world problem belonging to this
class, and serves to motivate the study of such problems and their solution.

EXAMPLE 1.1 Volvo 3P is the business unit within the Volvo group responsible for prod-
uct development for the truck brands within the Volvo group. Their strategy is to create
modularized parts with common interfaces such that a large number of truck configurations
matching customer needs at different markets can be built using different combinations of the
parts; there are in fact very few completely identical trucks that are built. A truck is specified
using about 500 different options, each to be selected from a finite set of alternatives. One ex-
ample is the color of the cab, another is the type of suspension to be used for the rear axle. In
general, there is no natural ordering of the alternatives for each option. Given a customer on a
specific market and with a specific transport mission, the task is to find the truck specification
best matching his/her needs.

The concepts Product family design and Platform-based product development have re-
ceived lots of attention during the last decades as a way of handling the increasingly
competitive market situation, in which it is required to meet customized demands
while at the same time keeping development and manufacturing costs down ([23,
39]). The idea is to use shared technology with parts or modules that are used in
different combinations and/or sizes in products targeted at specific market niches.
Research within these areas involves many aspects ranging from soft topics such
as how to create an efficient organization around the development of technology
that is to be shared within a product, and hence among different design groups (cf.,
e.g., [20, 21]), to quantitative optimization in which particular design problems are
modelled and solved as mathematical programming problems. Key references for
the latter topic include [9, 10, 24, 37, 40]; see also the references in [39], in which
it is concluded that there is no standard optimization technique for product family
design problems because of the principal differences among them.

The problem illustrated in Example 1.1 is a special case of a product family design
problem: there is a fixed number of modules or components to select from and the
variables representing these selections are unorderable placeholders for components
in a list. In engineering design terms, the problem could be denoted as a fixed config-
uration problem ([7]) (the structure of a product is defined and what is left is to select
a module for each dimension of the structure), a component selection problem ([8, 9])
or a catalog-based design problem ([10]). The full problem for a company like Volvo 3P
amounts to finding the components such that the feasible combinations (that is, con-
figurations) match the varying customer demands on the different markets where
the trucks are sold. This problem can be formulated as a multi-objective categorical
optimization problem. Example 1.1 is a restriction of this problem to that of find-
ing the right truck given an already defined product structure and given a specific
customer and his/her specific needs, i.e., his/her individual (scalar-valued) utility
function. This problem is naturally associated with the sales process when searching
for the right truck for a given customer.
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The primary purpose of this article is to argue that problems of the type illus-
trated in Example 1.1, denoted as pure categorical optimization problems, could be an-
alyzed and solved using mathematical techniques. A secondary purpose is to intro-
duce a particular solution method based on a recently developed tool for nonlinear
discrete optimization.

During the last decade, a number of papers concerning mixed-variable program-
ming (or MVP) have started to appear in the optimization literature (cf. [2, 3, 4, 5,
27, 41, 42]). In these problems, the variable types are allowed to be continuous, dis-
crete or categorical. Examples of applications of MVPs include surface structure de-
termination for nanomaterials ([46]), optimal sensor placement ([6]) and the design
of thermal insulation systems ([25]). Important to note is that the term mixed-variable
programming is not reserved for problems containing categorical variables, but is also
sometimes used to state that a problem contains both continuous and (numerically)
discrete variables (cf., e.g., [26]). A typical use of a categorical variable could be the
material selection of a component in a mechanical construction. The continuous vari-
ables then represent the dimensions of the components, and the numerically discrete
variables are, e.g., dimensions that have to be selected from a specified list, or a num-
ber of layers in the design of some material. In the applications presented, most vari-
ables are continuous or numerically discrete; only a few are of a categorical type.
We consider a problem in which all variables are categorical, making the necessary
theoretical and algorithmical development significantly different.

Important to note is that the term mixed-variable programming is not reserved
for problems containing categorical variables, but is also sometimes used to state
that a problem contains both continuous and (numerically) discrete variables (cf.,
e.g., [26]).

Is is noted in the recent articles [14, 15] that a common feature of real-life design
optimization problems is that choices can only be made from some specified list of
alternatives. A natural way of modeling such alternatives is by using categorical, or,
as they are denoted in these articles, integer choice variables. It is assumed that a cer-
tain alternative represents a set of values for a number of parameters, i.e., a point in a
multi-dimensional space, and also that the transformation to the multi-dimensional
space is known. Using these transformations, the authors suggest a branching tech-
nique for the integer choice variables by considering the corresponding points in the
multi-dimensional parameter space, implying the existence of an implicit distance
measure between the categorical variables. With this branching technique, it is possi-
ble to use branch-and-bound methods for mixed-integer nonlinear programming to
solve the problems. This method is however not applicable to the most general pure
categorical programming problem, since even if a categorical variable corresponds to
certain values of a set of parameters in, say, a simulation model, the transformation
might depend on the values of other decision variables or even be unknown.

To conclude, we have not found anyone studying the general pure categorical
problem from a mathematical perspective which motivates that we do it. Pure cate-
gorical optimization problems have to be solved, as demonstrated by the problem in
Example 1.1.
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The article is structured as follows. We begin in Section 2 by formulating the
pure categorical optimization problem in mathematical terms, and note that there
is a family of equivalent nonlinear integer programs corresponding to the categori-
cal problem. We also show why categorical variables must be considered for some
applications, since methods based on relaxation and convex combinations of the cat-
egorical variables will in general not work.

In Section 3 we define local optimality in a categorical context and relate it to
local optimality in the numerically discrete world. We show the equivalence of the
problems in the family of nonlinear integer programs corresponding to the categor-
ical problems. We then suggest some mathematical properties for functions defined
over categorical spaces related to continuity and convexity for numerical problems.

To illustrate that mathematical methods can be used for solving pure categorical
problems, we develop in Section 4 a simple neighborhood search method to find lo-
cal categorical minimizers. We then present the discrete global descent method for
numerically discrete optimization. We suggest extensions to this method in order
to adapt it to categorical problems, making use of the whole family of equivalent
problem representations. The method suggested is guaranteed to converge to a lo-
cal minimum, and by using the global descent approach, the hope is that the local
minimum is also a good local minimum.

Some experimental results are shown in Section 5 when applying the method
both to standard test examples from the literature and to real-world problems con-
cerning the configuration of trucks. We end in Section 6 with an outlook on possible
future work.

2 Problem formulation

We denote a solution to a categorical optimization problem by a configuration, in-
spired by Example 1.1. A general pure categorical problem of minimizing a real-
valued function over a feasible set of configurations can be written as that to

minimize f̃(x̃),
subject to x̃ ∈ Ω,

(1)

where f̃ : Ω→ R, and where Ω is assumed to be a finite set of feasible configurations.
For a real-world problem, the size of the feasible decision space might be too large
to allow for a brute-force calculation of all the feasible alternatives, wherefore more
sophisticated procedures should be developed.

Observe that with some arbitrary ordering of the variables, a categorical opti-
mization problem can be formulated as that to

minimize f̂(x),
subject to gj(x) ≤ 0, j ∈ J , (2)

x ∈ X ⊆ Z
n.
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where f̂ : {x ∈ X | gj(x) ≤ 0, j ∈ J } → R is a reformulation of f̃ to a function of
the (physically meaningless) numbers of the variables counting their list positions.
We call this transformation from (1) to (2) (or (4)) to numerize the problem. Without
any loss of generality we let X =

∏n
i=1 Xi, where Xi = {1, . . . , mi} includes the list

numbers for the possible realizations of the i:th decision variable. The constraints
defined by the functions gj , j ∈ J , are used to remove configurations that are not
feasible. Suppose that, for example, x′ ∈ X should be removed; then, e.g.,

g(x) =

{
1, if x = x′,
0, otherwise,

(3)

could be used. Observe that we only assume that f̂ is defined for feasible points. As is
common for pattern search methods for discrete problems, infeasible points are dealt
with by letting f̂(x) := M , where M equals +∞ as in [3], or a large number as in [4].
In other words, we replace the objective function f̂ : {x ∈ X | gj(x) ≤ 0, j ∈ J } → R

with f : X → R. For general set constraints, for which the only output is whether or
not a given point is feasible, such a constraint handling approach is reasonable ([3]).

In practice, we let M := f(x0), where x0 is the first feasible point x ∈ {x ∈ X |
gj(x) ≤ 0, j ∈ J } that is evaluated. Since the solution method that will be described
in Section 4 requires descent in each iteration, this value of M implies that infeasible
points are never considered to be local minima for the converted problem (4), which
now is defined over a box in Z

n:

minimize f(x),
subject to x ∈ X ⊆ Z

n.
(4)

Loosely speaking, ordinary optimization problems (that is, numerical optimization
problems) have a decision space which is equipped with a metric, and it is normally
at least implicitly assumed that points that are “close” in the decision space are close
also in the objective space. This is not true for categorical problems since there is no
such metric in general. Since methods for numerical optimization rely on this fact,
such methods are not directly applicable to categorical problems.

It must be emphasized that when the variables are transformed into integers
when numerizing the problem, one must not over-interpret the numbers. A differ-
ent translation (ordering) between the original decision variables and the integers
results in different problems of the form (4) when viewing them as general nonlin-
ear integer problems. Viewing them as categorical problems they are, however, still
equivalent. We have now transformed our pure categorical optimization problem to
a class of equivalent general nonlinear integer programs.

General nonlinear integer programming problems belong to the class of NP-hard
problems, wherefore all exact algorithms for their solution have exponential com-
putational complexity (unless P = NP). For this reason, it is important to develop
approximate methods for the general problem. For classical methods for the general
nonlinear integer programming problem, see the survey [11]. One of the interesting
members within the class of approximate methods is the recently developed discrete
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global descent, or filled function, method ([35, 36, 38, 44, 45, 47]), which, as will be
shown, can be extended such that a pure categorical problem is not only considered
as a general nonlinear integer program, but where the whole class of nonlinear in-
teger programming equivalents of the categorical problem can be exploited. One of
the main purposes of this article is to investigate the application of discrete global
descent methods for pure categorical optimization problems.

2.1 Why relaxation methods cannot be used for general categorical
optimization problems

In [1] an optimization problem containing categorical variables is reformulated into a
mixed-integer nonlinear program (MINLP), in which the categorical variables have
been removed, and which then can be solved with a standard MINLP solver. To
achieve this, the authors, without saying so explicitly, evaluate original fractional
points as convex combinations of non-fractional ones. The following example shows
why this procedure is not reasonable in general; in particular it is never possible to
use when the objective function is a black box.

EXAMPLE 2.1 Suppose n = 2, Ω = {a, b} × {α, β, γ} and consider the optimization
problem to

minimize f̃(x̃),
subject to x̃ ∈ Ω.

Suppose that f̃ : Ω→ R cannot be evaluated for any x̃ /∈ Ω and that the image of Ω is

f̃({(a, α), (a, β), (a, γ), (b, α), (b, β), (b, γ)}) = {f1, f2, f3, f4, f5, f6}.
Let us now construct a binary reformulation of the problem, with the aim of using some
general 0/1-nonlinear optimization algorithm to solve the problem. Let

y11 =

{
1, if x̃1 = a,

0, otherwise,
y21 =

{
1, if x̃2 = α,

0, otherwise,

y12 =

{
1, if x̃1 = b,

0, otherwise,
y22 =

{
1, if x̃2 = β,

0, otherwise,

y23 =

{
1, if x̃2 = γ,

0, otherwise.

The reformulated problem is then to

minimize f(y),
subject to y11 + y12 = 1,

y21 + y22 + y32 = 1,

yi� ∈ {0, 1}, i = 1, 2, � = 1, 2, 3.
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Assume that some method based on continuous relaxation is applied to the reformulated prob-
lem. Since f̃ is only computable for x̃ ∈ Ω, f cannot be evaluated at fractional points. Using
a method of convex combinations as in [1], we have that, e.g., the point y = [ y11 y12

y21 y22 y23 ] =
[ 0.3 0.7

1 0 0 ] , feasible in the linearly relaxed problem, is evaluated as f(y) = 0.3f1 + 0.7f4. In
the same way, we have that the point y = [ 0.3 0.7

0.1 0.4 0.5 ] is evaluated as f(y) = 0.3 · 0.1f1 +
0.3·0.4f2+0.3·0.5f3+0.7·0.1f4+0.7·0.4f5+0.7·0.5f6, i.e., it is the convex combination
of all feasible points.

To summarize, to be able to evaluate one point consisting of solely fractional values,
one has to compute the value of f̃ for all feasible decision vectors, i.e., the whole im-
age f̃(Ω) is needed to compute only the value of f(y). This is equivalent to solving
the problem by using complete enumeration. In general, with zi� = 1 if yi� is frac-
tional and 0 otherwise, one has to evaluate

∏n
i=1

∑mi

i=1 zi� integral points in order to
compute f(y). Obviously, this is not a reasonable method.

3 Optimality conditions and mathematical properties
of functions in categorical variables

In this section, we state a number of mathematical properties for pure categorical op-
timization problems. We start by defining optimality in a categorical setting which
then is related to the numerically discrete one. We then move on to show the equiva-
lence of the categorical problem to a whole family of nonlinear integer programming
problems. In the Subsection 3.2 we establish mathematical properties of functions
defined over categorical spaces that mimic continuity properties of numerical func-
tions; the latter are not available over categorical spaces since there is then no metric
in the domain. In the Subsection 3.3 we introduce a property of categorical functions
resembling the property of convexity for numerical problems in the sense that local
optimality implies global optimality.

3.1 Local and global optimality properties

We begin by defining a locally optimal point in a categorical optimization problem,
which is analogous to the classic local optimality definition.

DEFINITION 3.1 (local categorical optimality) Given a function f : X → R and a
definition of a (categorical) neighborhood N (x) ⊂ X to a point x ∈ X , a local categorical
minimum x∗ ∈ X is a point such that f(x∗) ≤ f(y), y ∈ N (x∗).

In general, N (x) could be any set-valued function N : X → 2X , where for some
applications including categorical variables certain choices could be natural. In this
article, we use the Hamming metric

dH(x,y) = card
{
i ∈ {1, . . . , n} | xi �= yi

}
,
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to define the categorical neighborhood to a point x ∈ X as

N (x) = {y ∈ X | dH(x,y) ≤ 1} , (5)

which seems reasonable when considering a problem as the one in Example 1.1 when
no special structure of the objective function over the domain is known. The discrete
neighborhood (where there is an order of the variables in the decision space) is natu-
rally defined as

Nd(x) =
{{x} ∪ y ∈ X | y = x± d, d = ei, i = 1, . . . , n

}
. (6)

Using the discrete neighborhood (6) instead of the categorical neighborhood (5), Def-
inition 3.1 defines an ordinary local discrete minimum.

A connectedness property for integer sets is defined according to the following.

DEFINITION 3.2 (pathwise connected set) A set X ⊆ Z
n is called a pathwise con-

nected set if for all pairs of distinct points x′ and x′′ in X , there is a sequence of steps{
xi

}u

i=0
⊆ X such that x′ = x0, x′′ = xu and ‖xi+1 − xi‖ = 1, i = 1, . . . , u− 1.

Two obvious implications are collected in the following proposition.

PROPOSITION 3.3 (categorical minimum implies discrete minimum) Suppose x∗

is a (strict) local categorical minimum of f on X with respect to the neighborhood defini-
tion (5). Then x∗ is also a (strict) local discrete minimum of f on X . If x∗ is a strict local
discrete minimum of f on X , and all level sets of the image f(X) are pathwise connected,
then x∗ is also a strict categorical local minimum of f on X .

DEFINITION 3.4 (sorting) Let πi be a permutation of {1, . . . , mi} and collect the per-
mutations in Π = (π1, . . . , πn). A sorting of a variable x ∈ X is then defined as Πx :=(
π1(x1), . . . , πn(xn)

)
.

PROPOSITION 3.5 (categorical equivalence) Consider the problems to

(P )
minimize f(x),
subject to x ∈ X ⊆ Z

n,
and (PΠ)

minimize fΠ(x),
subject to x ∈ X ⊆ Z

n.

(7)

for some collection of permutations Π, and where we use the notation fΠ(x) := f(Πx). Given
the definition (5) of a categorical neighborhood, the problems (P ) and (PΠ) are categorically
equivalent in the sense that corresponding points in the respective problem have the same
categorical neighborhoods. Furthermore, the numbers of local categorical minima in the two
problems coincide.

Proof The result is a consequence of the identity N (x) = N (Πx), x ∈ X , which
holds since dH(x,y) = dH(Πx,Πy), x,y ∈ X .
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As a remark, we note that the number of local discrete minima in categorically
equivalent problem formulations might be very different, as illustrated in the fol-
lowing example.

EXAMPLE 3.6 Consider the problem (P ) defined by the objective space to the left in Fig-
ure 1 below. This problem has 8 local discrete minima (marked with a bold font), where 2 of
these (the ones with f(x) = 1) are categorical local minima. If the variables are sorted ac-
cording to Π = ({1, 3, 2, 4}, {1, 3, 2, 4}), then the objective space to the sorted problem (PΠ)
becomes as to the right.

f(X) =

⎡
⎢⎢⎣

4 1 5 2
2 3 3 4
3 2 4 3
1 4 2 5

⎤
⎥⎥⎦ fΠ(X) =

⎡
⎢⎢⎣

4 5 1 2
3 4 2 3
2 3 3 4
1 2 4 5

⎤
⎥⎥⎦

Figure 1: An example showing the invariance of the number of categorical minima,
but not of the discrete minima, with respect to sorting.

We see that (PΠ) still has 2 local categorical minima, but these are also the only local
discrete minima to this problem.

We will return to permutations and suggestions on how to construct desirable
permutations in Section 4.3.2.

In optimization of numerical functions, one implicitly assumes a regularity prop-
erty of the objective function in order to be able to infer information from evaluated
points in the domain to non-evaluated ones; example properties are linearity, conti-
nuity, continuity almost everywhere, Lipschitz continuity, and convexity. To be able
to draw inferences also in categorical problems, and make other methods than com-
plete enumeration meaningful, regularity properties of a similar kind are necessary.
The aim of the following subsections is to suggest a number of such properties.

3.2 Continuity-like properties

The standard continuity definition for functions between metric spaces would, for
our metric spaces (X, dH) and (R, | · |), require that for f to be continuous in X , then
for all a ∈ X , and for each ε > 0 there must be a δ > 0 such that dH(x,a) < δ implies
|f(x) − f(a)| < ε. This property holds for any function f for any δ ∈ (0, 1), i.e.,
all categorical functions are continuous with respect to the neighborhood definition
given by the Hamming metric. Therefore, the standard continuity definition is not an
appropriate tool for deciding if a function over a categorical space is well-behaved
or not.

The intuitive interpretation of continuity for f : X → R is that images of points
that are close in X are close in R. The smallest reasonable neighborhood of a categor-
ical vector x containing more points than x itself (by only using information from
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the decision space X) is the suggested neighborhood N (x) defined in equation (5).
Therefore, a natural requirement of a continuity-like definition for functions over a
categorical space is that a pair of points belonging to the same neighborhood are
more likely to be close in the objective space than an arbitrary pair.

However, it is natural to argue that it does not matter if there are some points in
the neighborhood N (x) that are far away from x in the objective space, if there are
others that are close. If the problem has a structure which would be revealed with
some sorting, then the definition (5) ofN (x) is natural, since the sorting is unknown;
however, for a continuity-like property of f it would suffice to have some point in
the neighborhood close to x. A formal definition of such a property is given below.

DEFINITION 3.7 (property P1) Let x, z1, . . . , zcard N (x) ∈ X be selected from uniform
distributions and let y′ ∈ arg miny∈N (x) |f(x)− f(y)|. Then, if

E [|f(x)− f(y′)|] < E

[
min

�=1,...,card N (x)
|f(x)− f(z�)|

]

holds, we say that the property P1 holds for f over X .

Since the ordinary continuity property implies closeness in all directions, we could
require that the above property should hold not just for any point y in the neigh-
borhood of x, but if there is a structure in all dimensions, then the closeness should
also hold in all dimensions of the decision space. Such a property would, however,
be unnecessarily strong. The continuity-like property should be related to whether
a neighborhood search method, as presented as a local search method for categor-
ical problems in Section 4.1, is reasonable. Property P1 should be enough for such
a method to be applicable. In continuous optimization there is normally an under-
lying assumption of a limited multi-modality of the objective functions considered.
Then, by evaluating the points in a neighborhood around a current iterate, the likeli-
hood of finding an improving point is larger than if evaluating the same number of
points, but randomly distributed, in the domain. In the categorical setting, the above
underlying assumption could be interpreted as that P1 holds.

We suggest also a second property that instead of resembling the standard conti-
nuity definition focuses more on the structure of f over X . The idea is that a sorting
that is done with local information of f in a neighborhood can be inferred to the
whole domain. This property should hold if the second extension of the discrete
global descent method presented in Section 4.3.2 should be meaningful. Formally,
this property is defined according to the following.

DEFINITION 3.8 (property P2) For each i ∈ {1, . . . , n}, let x ∈ X , � ∈ {1, . . . , n}\{i}
and y� ∈ {1, . . . , m�} be selected from uniform distributions. Consider Ni = Ni(x), which
is a line in X . Create a sorting of the variables by constructing a collection of permutations
Π at x such that f increases along all dimensions of N (Πx). Let N ′

i := {y ∈ X | y =
z + e�, z ∈ Ni(Πx)}, where e� denotes the unit vector with the value 1 in the �:th position
where e��

∈ {−1, 1} is selected such that |f(Πx)− f(Πx + e�)| is minimal. This is the line
along the i:th dimension of X and shifted in the �:th dimension, which is closest toNi(x) with
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respect to the information gained by computing f over N (x). An arbitrary line is likewise
defined as N ′′

i = {y ∈ X | yj = zj , ∀j �= �, z ∈ Ni(x)} (see Figure 2 for an illustration).
Then, if

E
[‖f(Ni(x))− f(Ni(x)′‖] < E

[‖f(Ni)− f(N ′′
i )‖], i = 1, . . . , n,

where the norm is Euclidean, but where the element corresponding to xi is not considered,
holds, we say that the property P2 holds for f over X .

i

�

x

Ni(x)N ′
i (x) Ni(′′x)

0 2 3 6 8

Figure 2: Illustration of the Property P2 . The dots represent the points in the sorted
domain, and the gray dots represent N (x). The numbers are examples of function
values that would lead to this sorting. If property P2 holds, then the neighboring
linesNi(x) andN ′

i (x) in the sorted domain would be more similar than an arbitrary
pair of lines (such as Ni(x) and N ′′

i (x)).

To summarize this subsection, we have suggested mathematical properties for
functions defined over categorical domains. The property P1 is related to if the neigh-
borhood definition is reasonable for the function, and thereby if a neighborhood
search method is meaningful for the optimization of a categorical problem. Prop-
erty P2 is related to if the behavior of the function locally within a neighborhood is
similar to the behavior in neighborhoods elsewhere in the domain. Such a property
is necessary for the solution method to be presented in Section 4.3.2. It is reasonable
to believe that many real-world problem possess these properties, and we assume
that they hold for the categorical problems that we want to solve in what follows.

3.3 A convexity-like property

An important concept in continuous optimization is convexity and a central result
for continuous optimization problems is that if the objective function is convex over
a convex feasible set, then a local minimum is also a global minimum.
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The concept of convexity has also in various ways been generalized to (numeri-
cally) discrete domains. Some well-known concepts are discretely-convexity [29], in-
tegrally convexity [13], M �-convexity and L�-convexity [31, 32]. For definitions and
properties of the concepts, we refer to the references. These generalizations all carry
the important property that some local minimality implies global minimality.

In [34], relations between the above types of convexity concepts are analyzed. It
is shown that the strict inclusions

Discretely-convexity ⊃ Integrally convexity ⊃M �- and L�-convexity (8)

hold. For all these concepts, the max-norm is somehow used to define local neigh-
borhoods or allowed perturbations around a point such that “diagonal” steps can
be taken. Using the max-norm in the definition of discrete neighborhoods is, how-
ever, not natural in our application, since such a neighborhood will not be a subset of
the categorical neighborhood. We suggest a new type of discrete convexity property
suited to categorical domains and for which a similar important relation between
local and global minima holds.

DEFINITION 3.9 (categorical convexity) Given a function f : X → R, if there exists a
collection of permutations Π such that all level sets to fΠ(X) are pathwise connected, then f
is categorically convex over X .

PROPOSITION 3.10 (convexity implication) Suppose that f is a categorically convex
function over its domain X . If x∗ ∈ X is a strict local categorical minimum to (PΠ), then
x∗ = x∗

glob is a unique global minimum to (P ) (and (PΠ)).

Proof Suppose that x∗ ∈ X is a strict local categorical minimum to (PΠ) and that
all level sets to fΠ(X) are pathwise connected. Then all points in N (x∗) \ {x∗} have
strictly larger function values than x∗, wherefore x∗ is an isolated point in the level
set {x ∈ N (x∗) | f(x) ≤ f(x∗)}.

Suppose now that x∗ is not a unique global minimum. Then ∃y ∈ X \ N (x∗)
such that fΠ(y) ≤ fΠ(x∗). But there is no discrete path connecting x∗ and y in the
level set defined by {x ∈ X | fΠ(x) ≤ f(x∗)}. This contradicts the assumption that
the level sets of fΠ(X) are pathwise connected, and therefore the result is proved by
contradiction.

REMARK 3.11 Strictness is necessary in the assumptions in Prop. 3.10. This is shown
with the example f(X) = [ 2 2

2 1 ], where the original sorting leads to pathwise connected level
sets and where the upper left element is a (non-strict) local categorical minimum but not a
global minimum.

REMARK 3.12 The converse result of Proposition 3.10 is not true, i.e., that each strict local
categorical minimum is a global minimum does not imply that there is a sorting such that
all level sets of fΠ(X) are pathwise connected. A counterexample is given by the objective

space f(X) =
[

3 2 2
2 3 2
1 2 3

]
, in which the bottom left element is the single strict local categorical

minimum and also the unique global minimum, but where none of the possible collections of
permutations lead to connected level sets.

12



There are no inclusion relationships between any of the previously defined convex-
ity concepts for discrete domains presented above and the categorical convexity con-
cept, as shown by the following proposition. This motivates the introduction of the
new convexity-like property.

PROPOSITION 3.13 (inclusion relationships) There are no inclusion relationships be-
tween any of the concepts of discretely-convexity, integrally convexity, M �-convexity, and
L�-convex with the concept of categorical convexity.

Proof The proof is constructed by the use of exemplifying functions. The function f
with the image f(X) = [ 0 1 2

2 1 1 ] is categorically convex but not discretely-convex, as
easily shown from the definition in [29]. From (8) we conclude that the class of cat-
egorically convex functions is not included in the class of integrally convex, neither
among M �-convex or L�-convex, functions.

The function f with the image f(X) = [ 2 1
1 2 ] is L�-convex since it possesses

the mid-point convexity property ([34]) which in [16] is shown to be equivalent to
L�-convexity. From the relations (8) it is clear that f is also integrally convex and
discretely-convex. However, it is not categorically convex.

Finally, the function f with the image f(X) = [ 1 2
2 1 ] is M �-convex since it fulfills

its so called exchange properties ([33]). However, it is not categorically convex.

To conclude this subsection, we note that we have in Definition 3.9 suggested a new
convexity-like property, categorical convexity, for functions defined on discrete do-
mains. This property is suited for categorical problems, and has the implication that
a strict local categorical minimum is also a unique global minimum. We have also
shown that the new property has no inclusion properties with some previous con-
vexity concepts for functions defined over discrete domains.

It is at least as unlikely that a real-world categorical problem is categorically con-
vex as that a real-world continuous problem is convex, unless the former problem
has some special structure. And even if it has the property, no efficient method is
known for checking whether it holds or not. Still, the result is important in itself for
the foundations of optimality in pure categorical optimization problems, and it is
possible that the concept can be exploited in future solution methods.

As opposed to the continuity-like properties presented in the previous subsec-
tion, we do not assume that the pure categorical problems have the convexity-like
property P2 for the suggested solution methods.

4 Solution methods

The purpose of this article is to show that pure categorical optimization problems
can be solved using mathematical techniques. In this section, we suggest a particular
method.
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4.1 Finding local minimizers to categorical optimization problem

Recall Definition 3.1 of a local minimizer to a categorical problem. Since there is no
distance measure in the domain for a categorical problem, there are no “directions”.
Therefore, all types of line search or gradient based methods for the solution of a cat-
egorical problem are disqualified. It is instead natural to employ a direct (or pattern)
search technique, in which one iteratively computes the objective function in the cat-
egorical neighborhood (5) of the current point, moving to an improved point if one
is found. This process is then repeated until the current point is the best one in its
categorical neighborhood, and hence is a local minimizer according to Definition 3.1.
The steps of this simple descent algorithm are shown in Algorithm 1 below.

Algorithm 1 Single-objective algorithm for local (categorical) minimizers

1: Pick starting point x = x0 and let f̄ = f(x).
2: compute N (x).
3: for xi ∈ N (x) \ {x} do
4: if f(xi) < f̄ then
5: Let f̄ = f(xi) and return to 2 with x← xi.
6: end if
7: end for
8: Return the locally optimal point x∗ = x with objective value f̄ .

Since the method requires strict descent in each iteration, and since the domain
is finite, the method converges in a finite number of steps. The method can in the
worst-case, however, require that all points in the domain are computed, even for
a well-behaved categorical problem fulfilling the categorical convexity property of
Definition 3.9. An example is given by the objective space

f(X) =

⎡
⎢⎢⎣
5 5 5 4
6 1 0 4
6 2 3 3
6 6 6 6

⎤
⎥⎥⎦ , (9)

where the lower left point (with f(x) = 6) is selected as the starting point. The bold-
face numbers correspond to the improving points in the six iterations needed for
convergence (to a vector x with f(x) = 0). The union of the categorical neighbor-
hoods of the sets of bold-face iteration points equals the whole domain, wherefore
all points in the domain have to be computed before finding an optimal solution.

This worst-case behavior seems unavoidable; however, it is not unique for cate-
gorical problems: if we instead consider a numerical discrete problem with the dis-
crete neighborhood definition given by (6) and a problem instance given by the ob-
jective space

f(X) =

⎡
⎢⎢⎣
0 1 2 3
4 4 4 4
9 8 7 5
9 8 7 6

⎤
⎥⎥⎦ , (10)
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then the same negative result holds in the sense that there are functions requiring
that the whole domain has to be computed until a local minimum is found.

If the categorical problem possesses the property of categorical convexity (Defi-
nition 3.9), then we know from Proposition 3.10 that if the local minimum obtained
is strict, it is also the unique global minimum to the problem. However, for a general
pure categorical problem, categorical convexity is not expected to hold, wherefore
we need a procedure not only for finding a local minimum, but to find a good local
minimum. The following section presents a method for finding (hopefully) good lo-
cal minima to general nonlinear integer programs, and in the section thereafter we
adapt this method to problems of the categorical type.

4.2 Discrete global descent methods

Global descent methods (or filled function methods) were introduced in the 1980s as
a way of solving nonlinear continuous optimization problems ([17]). The main idea
is to repeatedly descend from one local minimum to another and better one, until
a global optimum is reached. Once a local minimum has been determined by some
local optimization method, an auxiliary function is constructed such that for this
auxiliary function the current local minimizer is a local maximizer (we say that the
basin of attraction of the local minimum is “filled”), and it should have no minimiz-
ers in any basin of f which is higher than the current local minimum. By minimizing
the auxiliary function starting from this local maximizer, the hope is to find a point
in a basin of attraction of a minimum to f lower than the previous one.

In, e.g., [18], the global descent method is applied to discrete problems by con-
verting the discrete problem to an approximate continuous counterpart before ap-
plying the (continuous) global descent method. More recently, several types of global
descent methods have been developed for nonlinear (numerical) discrete optimiza-
tion problems ([35, 36, 38, 44, 45, 47]), handling the discreteness explicitly, with vary-
ing constructions of the auxiliary function and with varying theoretical properties.
In the article [43], a review of various suggested discrete filled function methods in
terms of theoretical properties and computational efficiency is provided. Applica-
bility, reliability and efficiency of this global optimization technique is verified, and
from the computational experiments it is concluded that, from the variants that are
implemented, the algorithm from [35] works the best. We summarize this version of
the method next.

In [35] the problem

minimize f(x), (11)
subject to x ∈ X,

is considered and X is assumed to be a finite and pathwise connected set (see Defi-
nition 3.2). The authors define a discrete global descent function at a local minimizer x∗

of f to be a function Gx∗ : X → R satisfying the conditions

(1.) x∗ is a strict local maximizer of Gx∗ over X ,
(2.) Gx∗ has no local minimizers in {x ∈ X | f(x) ≥ f(x∗)} \Xc, and
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(3.) x∗∗ ∈ X \Xc is a local minimizer of f over X with f(x∗∗) < f(x∗) if and only
if x∗∗ is a local minimizer of Gx∗ over X ,

where Xc is the set of corner points of X , i.e.,

Xc :=
{
x ∈ X | x + d ∈ X ⇒ x− d /∈ X, d ∈ {±ei | i = 1, . . . , n}}.

A family of two-parameter discrete global descent (or filled) functions are proposed
as the auxiliary function constructed at a local minimum x∗ of (11) as

Gμ,ρ,x∗(x) = Aμ (f(x)− f(x∗))− ρ‖x− x∗‖, in which (12)

Aμ(y) = yμ
[
(1− c)

( 1− cμ

μ− cμ

)−y/τ

+ c
]
,

where c ∈ (0, 1] and τ > 0 is a sufficiently small number, theoretically required
to be smaller than min {|f(x′)− f(x′′)| : x′, x′′ ∈ X, f(x′) �= f(x′′)}. When certain
conditions of the parameters μ and ρ are satisfied, then the global descent function
has the desired properties (1.)–(3.) above; these conditions, however, require that μ
and ρ are sufficiently small compared to certain values defined by, among others, the
problem dependent Lipschitz constant

L := max
x′,x′′∈X

|f(x′)− f(x′′)|
‖x′ − x′′‖ ,

which in general is impossible to know a priori. Furthermore, even if the conditions
on μ and ρ are satisfied, it is not certain that one is guaranteed to succeed in finding a
minimum x∗∗ of Gμ,ρ,x∗ with f(x∗∗) < f(x∗)), even if such a minimum exists, since
one can end up in Xc, i.e., in corner points of X , when minimizing Gμ,ρ,x∗ starting
from x∗.

In the algorithm, both parameters μ and ρ are initialized to some small values.
These are reduced sequentially if no improving points for f are obtained when mini-
mizing Gμ,ρ,x∗ . If the parameter values are decreased below preset threshold values,
then the last local minimum x∗ = x∗

final is taken as an approximation of the global min-
imum x∗

glob. As shown by a number of numerical examples, the resulting approximate
global minimum is often a true global minimum. In Algorithm 2, the principal steps
of the discrete global descent method implemented in [35] are shown. We refer to the
original article for the full description. In Figure 3, the discrete global descent func-
tion is illustrated using the values μ = ρ = 0.01 for the integrality-constrained modi-
fication (13) of the 3-hump camel back problem proposed in [12] in its original form,
and used for illustrative purposes also in, e.g., [35, 43]. This problem has one global
minimum at x∗ = (0, 0)T and two non-global local minima at x∗ = ±(1.748, 0.874).

minimize f(x) := 2x2
1 − 1.05x4

1 +
1
6
x6

1 − x1x2 + x2
2,

subject to xi =
yi

1000
, i = 1, 2,

−2000 ≤ y1 ≤ 2000, (13)
−1500 ≤ y2 ≤ 1500,

y1, y2 ∈ Z.
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Algorithm 2 Discrete global descent method
1: Initialize the parameters c, τ , μ and ρ, and decide on reduction strategies and

thresholds μ̂, ρ̂ for the latter two. Pick a starting point x = x0 ∈ X .
2: Find a local minimizer x∗ of f starting from x.
3: Compute Gμ,ρ,x∗ .
4: for xi ∈ Nd(x∗) \ {x∗} do
5: Start minimizing Gμ,ρ,x∗ starting from xi leading to an iteration sequence{

xi,k
}N

k=1
.

6: if for some k, f(xi,k) < f(x∗) then
7: Return to 2 with x← xi,k.
8: end if
9: end for

10: if μ > μ̂ or ρ > ρ̂ then
11: Reduce parameters according to the reduction strategy. Return to 3.
12: end if
13: Take x∗ = x∗

final as an approximation of a global optimum.

As noted in [43], the typical way of handling constraints in discrete global descent

−2 −1 0 1 2

−1

0

1

x1

x
2

(a) Level curves for f(x) in (13). The three local
minima are marked with black dots with white
borders.

−2 −1 0 1 2

−1

0

1

x1

x
2

(b) Level curves for Gμ,ρ,x∗ (x) for the local min-
imum x∗ = (−1.748,−0.874)T. The point x∗ is
marked with a black dot with a white border.

Figure 3: Illustration of the global descent function for the 3-hump camel back func-
tion.

approaches is by representing them by penalty terms in the objective, thus convert-
ing the constrained problem to one with a pathwise connected feasible set; the latter
property is needed for many existence results such as that there is a global descent
function fulfilling the properties (1.)–(3.). One exception, however, is the method de-
scribed in [44], where constraints are included explicitly in the global descent func-
tion.
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4.3 Global descent methods for categorical problems

To the principal steps of a discrete global descent method we suggest two extensions
in order to adapt it to categorical problems. In this article, we have focused on the
discrete global descent method as presented in [35]; however, the extensions should
be valid for any variant of the method.

4.3.1 Categorical local search

The first necessary extension of the principal method is due to the fact that the prob-
lem is not numerical but categorical. In the latter case it is not reasonable to use the
discrete neighborhood definition (6) in the local search of f , since the ordering of
the variables is arbitrary, wherefore points in Nd(x) should in general not be any
“closer” to x than a point which lies inN (x) \ Nd(x). Therefore, we suggest that the
local search, i.e., Step 2 should be performed with respect to the categorical neigh-
borhood, i.e., using Algorithm 1.

4.3.2 Sorting

The second extension of the principal method builds on the fact that different permu-
tations of the variables lead to categorically equivalent, but not numerically equiv-
alent, problems. The idea is to find good sortings such that the numerized prob-
lems are as well-behaved as possible in the sense that they are easy to solve using a
method for numerical optimization, in particular the discrete global descent method.
We assume that the categorical problem has some underlying structure, correspond-
ing to property P2 (see Definition 3.8), which we, at least partly, hope to be able to
reconstruct by computing the function values at a limited number of points in the
domain. Specifically, each time we arrive at Step 3 in Algorithm 2, standing in the
local minimum x∗, the function values already computed in N (x∗) are utilized to
construct sortings.

We suggest two variants of sorting procedures, Increasing and Central. For both
variants, a permutation πi, i = 1, . . . , n, is constructed for each dimension of the
domain, and the sorting given by Π = (π1, . . . , πn) is collected.

Let Ni(x) be the neighborhood of x ∈ X in the i:th dimension, with the corre-
sponding image f(Ni(x)). In the Increasing procedure, we let πi be the ordering of
f(Ni(x)) from smallest to largest, where ties are broken arbitrarily. With this sort-
ing procedure, the number of strict local discrete minimum points of f restricted to
N (x) is at most one. For example, if f(Ni(x)) = (1, 3, 2, 5, 2), then the permutation
πi should transform

(1, 2, 3, 4, 5) πi→ (1, 3, 5, 2, 4) or (1, 2, 3, 4, 5) πi→ (1, 5, 3, 2, 4)

such that f(πiNi(x)) = πif(Ni(x)) = (1, 2, 2, 3, 5).
Since the sorting will always be performed at a local categorical minimum of f ,

the Increasing procedure will permute the domain such that the current point x =
x∗ is at a corner of the sorted domain. In the discrete global descent method, the
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hope is to find an improved local minimum in the interior of (or at least not in a
corner of) X ; hence, it might be better to design a sorting procedure that positions
x∗, the starting point for the minimization of Gμ,ρ,x∗ , at somewhere central in the
domain. This is done in the Central procedure, where πi is constructed such that
f(πiNi(x)) monotonically decreases in the first half of the vector and monotonically
increases in the second. There are always multiple sortings fulfilling this property (in
contrast to the former procedure) since for each point it is not determined if it should
be positioned in the decreasing or in the increasing part of f(πiNi(x)). The Central
procedure is designed such that if x = x∗ is a local categorical minimum, then it is
always positioned as close as possible to the mid point of the sorted domain.

The two procedures Increasing and Central, respectively, are shown as imple-
mented in Algorithm 3 and Algorithm 4.

Algorithm 3 The Increasing sorting procedure at a point x ∈ X

1: for i ∈ {1, . . . , n} do

2: Retrieve the function values f(Ni(x)) :=
(
f1
Ni(x), . . . , f

mi

Ni(x)

)
whose original

order is given by the value of xi.
3: Sort the vector f(Ni(x)) from the smallest to the largest value. If there are ties,

consider the earlier point in the original order as the smallest.
4: Let πi be the ordering of f1

Ni(x), . . . , f
mi

Ni(x) in the sorted vector.
5: end for
6: Collect Π = (πi, . . . , πn).

Algorithm 4 The Central sorting procedure at a point x ∈ X

1: for i ∈ {1, . . . , n} do

2: Retrieve the function values f(Ni(x)) :=
(
f1
Ni(x), . . . , f

mi

Ni(x)

)
whose original

order is given by the value of xi.
3: Take the smallest element of f(Ni(x)) and let the sorted vector contain only

this element. Then take the next smallest element of f(Ni(x)) and extend the
sorted vector with this element in front of the first. Continue by taking the
smallest remaining element of f(Ni(x)) and put every other smallest element
in the front and every other smallest element in the rear of the partially built
sorted vector. If there are ties, consider the earlier point in the original order as
the smallest.

4: Let πi be the ordering of f1
Ni(x), . . . , f

mi

Ni(x) in the sorted vector.
5: end for
6: Collect Π = (πi, . . . , πn).

By using the two sorting procedures, the problems (PΠ) that are constructed
have, at least within the neighborhoods of the current point at which the sorting
has been performed, a well-behaved structure. If the assumption that there is an

19



underlying structure in the problems such that the function behavior within neigh-
borhoods is similar among neighborhoods holds true, then it is expected that there
will be some structure of the sorted function in the rest of the domain as well.

In Figure 4, the two sorting procedures are illustrated on the discretized ver-
sion (14) of the standard Goldstein–Price test problem for global optimization pre-
sented in [19] in its original form:

minimize f(x) := log
((

1+(x1+x2+1)2(19−14x1+3x2
1−14x2+6x1x2+3x2

2)
)

·(30+(2x1−3x2)2(18−32x1+12x2
1+48x2−36x1x2+27x2

2)
))

,

subject to xi =
yi

10
, i = 1, 2, (14)

−20 ≤ yi ≤ 20, i = 1, 2,

y1, y2 ∈ Z.

In Figure 4(a) the original objective space of the problem is shown; it clearly has a
structure. In Figure 4(b) a categorical problem (P ) has been mimicked with an ar-
bitrary ordering of the variables constructed in each dimension. In the Figures 4(c)
and 4(d) the objective spaces of the sorted problems (PΠ) obtained using the In-
creasing and the Central sorting procedures, respectively, are shown. In the latter two
figures, we see that the structure of the original (unknown) problem can partially be
reconstructed. To evaluate the “well-behavior” of the different numerized functions,
one option is to compute the number of discrete local minima. For this problem, the
original problem has 12 local categorical minima and 42 unique local discrete min-
ima. The categorical problem illustrated in Figure 4(b) still has 12 local categorical
minima (in accordance with Proposition 3.5), but has 300 unique local discrete min-
ima. By sorting according to the Increasing and the Central procedure, the number of
unique local discrete minima decreases to 168 and 90, respectively. Another measure
of the “well-behavior” could be the average distance between discrete neighbors in
the objective space, i.e.,

dmean =

∑
{x,y∈X:‖x−y‖=1} |f(x)− f(y)|

card{x,y ∈ X : ‖x− y‖ = 1} , (15)

where the norm is Euclidean. For this measure, we have dmean = 0.32 for the original
problem, dmean = 2.26 for the categorical problem (P ), dmean = 1.09 for the problem
(PΠ) sorted with the Increasing procedure, and dmean = 0.86 for the problem (PΠ)
sorted with the Central procedure. The interpretation is that the discretely neighbor-
ing points are closer in terms of function values in the sorted domains compared to
that with the arbitrary ordering, however not as close as for the original numerical
problem.

We conclude, both by visual inspection of the figures and from the numeric well-
behavior measures, that the two sorting procedures were able to reconstruct some
of the structure of the original unknown problem. For this illustrative problem, the
Central sorting procedure seems to be the most successful.
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(a) Original problem.
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(b) The categorical problem (P ) given
by a randomized ordering of the vari-
ables.
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(c) The sorted problem using the In-
creasing procedure.
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(d) The sorted problem using the Cen-
tral procedure.

Figure 4: A discretized version of the Goldstein-Price test function. A lighter color
means a larger function value than a darker. In (c) and (d) the obtained problems
(PΠ) are obtained by construction of a sortings using the two different procedures.
The sortings have been constructed at the (globally optimal) original point (0,−1)T,
marked with a ring in all figures.

To summarize, we have in this section suggested a simple neighborhood search
method in order to find categorical local minima. In order to find good local minima,
a discrete global descent framework is utilized. Within the framework, the domain
is repeatedly sorted with the aim of finding numerized problems that are as easy
as possible to solve utilizing the numerical optimization technique provided by the
global descent method.
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5 Experimental results

We have implemented the global descent method from in [35] in MATLAB R© ([28]);
its principal steps are shown in Algorithm 2. To the method we have added the
extensions of categorical local search and the different variants of sorting given by
Algorithms 3 and 4.

Test problems from the literature on discrete global descent methods and global
unconstrained optimization have been selected, and the method has also been ap-
plied to two versions of two real-world problems considering the configuration of
heavy-duty trucks at Volvo 3P. For the (numerical) test examples from the literature,
categorical counterparts have been created by constructing random orderings of the
variables in each dimension. All problems have been solved with and without the
extension of a categorical local search, and with and without the extension of the
two sorting variants. To reduce the effects of randomness, all problems have been
solved 50 times. In each run, the starting point has been selected randomly in the
domain.

The results from the numerical experiments are shown in Table 1 for the test prob-
lems from the literature and in Table 5 for the real-world problems. The first three
columns of the tables specify the problem, the neighborhood definition (D = Discrete,
C = Categorical) and the sorting strategy (N = No sorting, I = Increasing, C = Central).
The fourth and the fifth columns contain the approximation of the global minimum
obtained and the proportion of runs finding a global minimum x∗

glob. The sixth and the
seventh columns contain, respectively, the number of unique discrete minima and
the objective function distance dmean as defined in (15) between discretely neighbor-
ing points at the final numerized problem sorted at the global minimizer obtained.
The number of discrete minima has been estimated by generating 10,000 uniformly
distributed points in the domain, checking how many of these that are unique local
minimizers, and extrapolating the result to the whole domain. In a similar way, pairs
of points have been generated at random, and their objective function distances have
been computed and extrapolated. The eighth column contains the number of main
iterations of the global descent method. In the ninth and tenth columns of the ta-
bles, the number of unique function evaluations used, and, for the runs where the
true optimum x∗

glob is found, the number of unique function evaluations until x∗
glob

is found, are presented. The last column in the tables contains the proportion of all
configurations in the domain that have been evaluated for each problem.

The test problems selected from the literature, with modifications, are the follow-
ing:

Colville ([22, 35])

minimize f(x) := 100(x2
1−x2)2+(x1−1)2+(x3−1)2+90(x2

3−x4)2

+10.1
(
(x2−1)2+(x4−1)2

)
+19.8(x2−1)(x4−1),

subject to xi ∈ [−10, 10], i = 1, . . . , 4,

xi integer, i = 1, . . . , 4.

Optimal solution: x∗
glob = [1, 1, 1, 1], f(x∗

glob) = 0.
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Powell’s singular function ([30, 35]) (discretized)

minimize f(x) :=(x1+10x2)2+5(x3−x4)2+(x2−2x3)4+10(x1−x4)2,

subject to xi =
yi

10
, i = 1, . . . , 4,

yi ∈ [−100, 100], i = 1, . . . , 4,

yi integer, i = 1, . . . , 4.

Optimal solution: x∗
glob = [0, 0, 0, 0], f(x∗

glob) = 0.

Shekel10 ([12]) (discretized)

minimize f(x) := −
10∑

j=1

1
cj +

∑4
i=1(xi −Aij)2

,

subject to xi ∈ [0, 10], i = 1, . . . , 4,

xi integer, i = 1, . . . , 4,

where c =
1
10

(1, 2, 2, 4, 4, 6, 3, 7, 5, 5)T,

A =

⎡
⎢⎢⎣

4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 5 1 2 3.6
4 1 8 6 3 2 3 8 6 7
4 1 8 6 7 9 3 1 2 3.6

⎤
⎥⎥⎦ .

Optimal solution: x∗
glob = [4, 4, 4, 4], f(x∗

glob) ≈ −10.536.

The real-world problems have been supplied by Volvo 3P and consider finding (fea-
sible) truck configurations as in Example 1.1 that are optimal with respect to two
measures, one related to the rollover stability, and one related to the transport ef-
ficiency of the truck. To create test problems of reasonable sizes, the configuration
space in which to search has been limited to 6 dimensions by starting from an ac-
tually produced truck and by allowing changes in some design options that have
been determined to be particularly important. These design options consider, e.g.,
the axle arrangement (7 alternatives), the battery box mounting (14 alternatives) and
the wheel brake type (19 alternatives). In total, the configuration space consists of
312, 816 truck specifications. For each of the two objectives, two problem instances
have been constructed: one variant considering the objective function exactly as
given from a computer simulation, and one variant where a normally distributed
deterministic noise has been added to the objective space in order to simulate some
uncertainty in the objective functions as if they were, e.g., given by physical experi-
ments. The latter variant should also increase the difficulty of the problem by increas-
ing the number of local minima. The objective functions have in all cases been lin-
early scaled such that f(x) = 0 for the globally optimal configuration and f(x) = 1
for the worst configuration in the configuration space. Monte-Carlo simulation has
been used in order to validate that the test problems fulfill the continuity-like proper-
ties P1 and P2. The results indicate that all problems, both the ones from the literature
and the real-world problems, fulfill both properties P1 and P2 .
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Table 1: Experimental results when applying the different versions of discrete global
descent to test examples selected from the literature.

Problem N. S. f(x∗
final) prop. runs #discr. dmean #glob. #fcn #fcn ev. prop.

f(x∗
glob) min desc. its ev. tot. unt. x∗

glob ev. pts
Colville D N 36 0.24 3404 1.8e5 8.2 3,112 2,279 1.6e-2

C N 54 0.36 3433 1.8e5 2.2 2,154 1,123 1.1e-2
C I 183 0.18 473 4.8e4 1.6 1,668 440 8.6e-3
C C 0 1 57 5.7e4 3.4 2,046 1,068 1.1e-2

Powell D N 6.4 0 4.9e7 1.2e5 17.7 38,884 – 2.4e-5
C N 0.3 0.02 4.9e7 1.2e5 1.1 27,462 19,962 1.7e-5
C I 0 1 3.8e8 1.5e5 4.6 36,568 24,525 2.2e-5
C C 0 1 1 5.9e3 4.6 38,565 27,208 2.4e-5

Shekel10 D N -5.8 0.36 435 0.099 4.4 963 567 6.6e-2
C N -5.4 0.26 436 0.097 1.3 660 202 4.5e-2
C I -4.3 0.12 401 0.071 1.1 725 103 5.0e-2
C C -9.4 0.78 127 0.064 2.1 912 384 6.2e-2

Table 2: Experimental results when applying the different versions of discrete global
descent to the real-world problems.

Problem N. S. f(x∗
final) prop. runs #discr. dmean #glob. #fcn #fcn ev. prop.

f(x∗
glob) min desc. its ev. tot. unt. x∗

glob ev. pts
Volvo1 D N 0 1 844 0.088 4.66 3,593 2,854 1.1e-2

C N 0 1 818 0.086 1.04 1,513 161 4.8e-3
C I 0 1 783 0.063 1.10 1,662 175 5.3e-3
C C 0 1 267 0.065 1.06 2,193 161 7.0e-3

Volvo1b D N 8.4e-4 0.64 1,035 0.088 6.0 3,556 1,882 1.1e-2
C N 5.0e-4 0.76 1,023 0.090 1.4 2,526 587 8.1e-3
C I 0 1 877 0.062 1.7 2,143 622 6.9e-3
C C 4.9e-5 0.98 496 0.069 1.6 2,653 643 8.5e-3

Volvo2 D N 0 1 404 0.092 2.26 2,924 672 9.3e-3
C N 0 1 405 0.094 1.02 2,479 114 7.9e-3
C I 0 1 482 0.059 1.02 1,490 112 4.7e-3
C C 0 1 202 0.078 1.04 1,922 113 6.1e-3

Volvo2b D N 2.9e-3 0.06 2,503 0.092 6.4 4,207 3,740 1.3e-2
C N 2.4e-3 0.10 2,359 0.090 2.4 3,392 226 1.0e-2
C I 4.6e-3 0.40 1,317 0.056 2.4 2,427 1,085 7.7e-3
C C 1.0e-3 0.30 877 0.075 2.8 3,459 1,123 1.1e-2

From the tables, we conclude that both our suggested extensions to the discrete
global descent method seem to improve its performance in solving categorical op-
timization problems. The first extension, to use a categorical neighborhood based
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on the Hamming metric, results for all problems but one (Shekel 10) at a better (or
equal) approximation of the global minimum. Additionally, in all these cases, the ra-
tio of runs ending up in the global minimum x∗

glob is greater (or equal) when using
the categorical neighborhood instead of the discrete one. We also note that the num-
ber of function evaluations needed until the global optimum is found, is often much
smaller when using the categorical neighborhood.

For the different sorting strategies, the analysis is not as clear. For the test exam-
ples in Table 1 the Central strategy is clearly the most successful one with the best
approximations of the global minimum, and the highest ratios of runs ending up
at a true global minimum. However, the numbers of function evaluations to find
the true global minima are lower for the Increasing and, when succeeding in finding
them, also in some cases when not using sorting at all.

We see that the number of unique local minima is for all problems the lowest
when using the Central sorting strategy. However, the number of local minima can-
not always be used as an indicator of how easily solvable a problem is; see problem
Powell with the Increasing sorting strategy compared to no sorting. The indicator
given by dmean is not always good either; see problem Colville where dmean is the low-
est for the Increasing strategy, but where this strategy leads to poor approximations
of the global minimum and a low ratio of success in finding x∗

glob.
Concerning the real-world problems, the first conclusion is that the method sug-

gested works perfectly, but is overly sophisticated for these categorical problem in-
stances. In every case the problems are solved to global optimality by just consider-
ing them as a nonlinear integer program with the given variable ordering, and by
applying the standard discrete global descent method. We see, however, that using
the categorical neighborhood definition dramatically reduces the number of function
evaluations needed.

For the real-world problems with deterministic noise added to the objective func-
tions, the results, as for the numerical test examples, indicate that both using categor-
ical neighborhoods in the local optimizations, and using sortings when constructing
the global descent functions, improve the performance when applying a discrete
global descent method to categorical problems. It is, however, hard to say in this
case if the Increasing or the Central sorting strategy works best. Clearly, more testing
is needed.

6 Outlook

In this article we argue that pure categorical optimization problems must be studied
and solved. We show that the discrete global descent method for nonlinear integer
programming problems can be utilized in order to solve the categorical problems
and we suggest mathematical properties that should hold in order for the proposed
solution methods to work. The mathematical properties should be analyzed further.
It is possible that there are other properties that better reflect whether a categorical
optimization problem can be solved or not using our suggested technique. It is also
possible that there are other, essentially different, properties that often are fulfilled
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for problems from certain applications, enabling other solution techniques to be ex-
ploited.

In the article, discrete global descent methods for categorical problems have been
developed by converting the problems to (families of) numerical nonlinear integer
programs. This evolution resembles the early development of extensions of global
descent methods from continuous to numerically discrete problems where discrete
problems were converted to approximate continuous counterparts. Later, descent
methods explicitly concerning discrete functions were developed. It is an open ques-
tion whether there is some global descent function that explicitly considers a cate-
gorical problem as the categorical problem it really is.

We deal in this article with infeasible points by considering them as feasible but
by assigning a sufficiently large penalty value to them such that they will not be in-
teresting for the descent method. This is reasonable if the constraints are of a general
set type, where the only output is if a point is feasible or not. If a constraint evalua-
tion gives more information than just yes/no, then some more intelligent constraint
handling technique should be developed. A suitable technique depends, however,
on the characteristics of the evaluation of the particular constraints in question.

It would be interesting to develop other methods for finding well-behaved nu-
merical representations of the categorical problems than the ones based on sortings
in the categorical neighborhood presented. It would also be interesting to develop
and evaluate more measures or indicators of how well a numerical representation is
behaved and how these measures or indicators correspond to the result when solv-
ing the numerized instances with numerical techniques. The measures suggested
give a hint about the well-behavior; however, it is obvious that just counting the
number of discrete local minima in the domain or measuring the difference in objec-
tive values for neighbors in the domain does not say everything about how easily a
problem is solved to global optimality.

More numerical testing of the method suggested, and also comparisons against
methods of essentially different types, clearly is needed in order to evaluate the per-
formance of suggested method. This article serves as a proof of concept that discrete
global descent could be used for categorical problems, and hence that such problems
can be approached with mathematical techniques.
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