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A Minimax Strategy for Global Optimization

Stefan Jakobsson∗ Peter Lindroth†‡ Ann-Brith Strömberg‡

Abstract

A computationally expensive multi-modal optimization problem is considered.
After an optimization loop it is desirable that the optimality gap, i.e., the differ-
ence between the best value obtained and the true optimum, is as small as possi-
ble. We define the concept of maximum loss as being the supremum of the optimal-
ity gaps over a set of functions, i.e., the largest possible optimality gap assuming
that the unknown objective function belongs to a certain set of functions. The
minimax strategy for global optimization is then to—at each iteration—choose a
new evaluation point such that the maximum loss is decreased as much as possi-
ble. This strategy is in contrast to the maximum gain strategy, which is utilized in
several common global optimization algorithms, and the relation between these
strategies is described. We investigate how to implement the minimax strategy
for the Lipschitz space of functions on box-constrained domains. Several prob-
lems are revealed. For example, to obtain uniqueness of the set of solutions to
the minimax problem it is often necessary to decrease the domain such that the
problem is more localized. We propose a number of algorithmic schemes, based
on sequential linearization, to solve the different subproblems that appear. The
algorithms are illustrated by numerical examples. We conclude that the minimax
strategy is promising for global optimization when the main concern is to guar-
antee that the resulting solution is near-optimal.

Keywords: global optimization, minimax optimization, Lipschitz optimization

1 Introduction

Many real-world optimization problems in, e.g., engineering design, can be formu-
lated as

f∗ = max
x∈Ω

f(x), (1)

where f : Ω → R is a computationally expensive multi-modal function which is
to be optimized over its domain Ω ⊆ R

n, and which is assumed to be continuous
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and bounded from above. We consider the case when derivative information for the
function is missing, usually then f is denoted as a black-box function. This can be the
case, e.g., when f(x) is the outcome of a computer simulation at x using a software
without access to the source code, and/or when automatic differentiating techniques
are inappropriate due to noise in the function or simply that the extra evaluations
needed for the differentiation are better spent elsewhere in the domain.

Since, in a practical situation, one can afford to make only a finite number of func-
tion evaluations, only an approximate maximum value to the optimization problem
(1) can be expected to be found. The difference between the true maximum value f∗

and the obtained approximate value can be seen as a loss. In this article we apply
concepts from statistical decision theory to global optimization and we begin by a
classification of global optimization algorithms with respect to these concepts. We
consider the choice of a new evaluation point in the optimization loop as a decision.
Some common decision criteria in statistical decision theory are to

A. maximize the absolute gain,

B. maximize the expected gain,

C. minimize the expected loss, and

D. minimize the absolute loss.

This implicitly assumes a space of scenarios and a space of possible decisions and it
also requires precise definitions of gain and loss. For criteria B and C some sort of
probability model is also required. In Jones [9] and Jones et al. [10], this is implicitly
imposed by using the maximum likelihood method to create a response surface by
the kriging method. This allows to set up optimization algorithms for maximizing
the probability for improvement and maximizing the expected gain.

In this article we consider the criterion A, to maximize the absolute gain, and the
criterion D, to minimize the absolute loss, with a special emphasis on the latter. To
our knowledge, the strategy of minimizing the absolute loss has not been applied
to global optimization before which makes this study particularly interesting. The
concern is to solve a minimax problem to find a new evaluation point for the outer
optimization problem (1). In the sequel we drop the word ’absolute’ in criterion A
to simplify the terminology, and we replace the word ’absolute’ with ’maximum’ in
criterion D to emphasize that we have the maximum over a set of scenarios, or, in
our case a set of functions.

The ouline of the article is as follows: We begin in Section 2 by defining the maxi-
mum loss with respect to a function set and to subsets of the computational domain
called the reference and evaluation sets. With this concept we present the two strate-
gies for global optimization mentioned above. At this point we also classify some
existing algorithms as maximum gain strategies. Upper and lower envelope func-
tions for the function and evaluation sets are also introduced, and it is seen that
the maximum gain solution coincides with with the maximum point of the upper
envelope function. In Section 3 we apply this framework to function classes in the
Lipschitz space. Since Lipschitz functions are very robust, e.g., the supremum of a
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bounded set of Lipschitz functions is a Lipschitz function, the upper and lower en-
velope functions have explicit representations in this case, and it turns out that it is
possible to formulate both criteria A and D as well-posed optimization problems us-
ing the upper envelope function. In one dimension for the Lipschitz space, criterion
A is known as the Piyavskii–Shubert algorithm [17, 18] (the authors discovered the
algorithm independently).

Because of the special form of the objective function in the minimax problem in
the Lipschitz case we study in Section 4 the “two-functions minimax problem”. We
prove, under some mild conditions, that the function to be minimized in this prob-
lem is quasi-convex but not strictly quasi-convex, implying that the problem may
not have a unique solution. The cure to enforce uniqueness is to reduce the refer-
ence domain for the minimax problem. A characterization of the minimax solution
in terms of control points is also given. In Section 5 we present algorithms for solving
the different subproblems required to find the new evaluation point according to the
minimax strategy. To find the maximum gain solution we combine a sequential lin-
ear programming technique with a Branch-and-Bound scheme. The algorithm used
to find the minimax solution is also based on sequential linear programming with
the idea to iteratively improve the approximations of the control points and the so-
lution itself. The algorithms are illustrated on some numerical examples in Section 6.
The article ends with some conclusions and outlooks.

2 Problem formulation

The purpose of this section is to formalize the concept of maximum loss for an opti-
mization problem and to relate it to the concept of maximum gain. In a first subsec-
tion we define the maximum loss in a general setting and in the subsequent subsec-
tion we present strategies for the selection of new points utilizing a maximum loss
or a maximum gain strategy, respectively.

2.1 The maximum loss in a general setting

We assume that any objective function f considered for the optimization problem (1)
belong to some Banach space B(Ω) of continuous functions over the domain Ω. Fur-
thermore we assume that Ω is a compact set so that the maximum value of f is
attained. The maximum loss is defined according to the following.

DEFINITION 2.1 Let F be a closed subset of B(Ω), called the function set. Let D be a
closed subset of Ω, called the reference set (possibly the entire Ω), and let E be a closed
subset of Ω, called the evaluation set. The maximum loss is a function defined for a triplet
(F ,D,E) given by

ML(F ,D,E) = sup
s∈F

{
max
x∈D

s(x)−max
x′∈E

s(x′)
}
. (2)
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There are some immediate consequences of this definition. The maximum loss in-
creases monotonically with the function and the reference sets and decreases when
the evaluation set is increased. In addition, the maximum loss is non-negative when-
ever E ⊆ D. We summarize these properties in a proposition.

PROPOSITION 2.2 The maximum loss has the following properties

1. If F ⊆ F ′ then
ML(F ,D,E) ≤ML(F ′,D,E). (3)

2. If D ⊆ D′ then
ML(F ,D,E) ≤ML(F ,D′, E).

3. If E ⊆ E′ then
ML(F ,D,E) ≥ML(F ,D,E′). (4)

4. If E ⊆ D then
ML(F ,D,E) ≥ 0.

As will be shown, it is convenient to rewrite the expression of maximum loss in the
following way by interchanging to order of the max operators:

ML(F ,D,E) = max
x∈D

sup
s∈F

{
s(x)−max

x′∈E
s(x′)

}
. (5)

For (5) to hold true we have to assume that the function set F is such that the supre-
mum over F is itself a continuous function, so that its maximum value over D is
attained. This assumption is made from now on. At each point x ∈ Ω, there exist
upper and lower bounds for the functions in the set F . We introduce the upper and
lower envelope functions representing these bounds.

DEFINITION 2.3 The upper envelope function UF : Ω → R and the lower envelope
function LF : Ω→ R for the subset F ⊆ B(Ω) are defined by

UF (x) = sup
s∈F

s(x), x ∈ Ω, (6)

LF (x) = inf
s∈F

s(x), x ∈ Ω. (7)

Suppose that we are solving (1) and that N evaluations of the objective function
f have been made at the points x1, . . . ,xN ∈ Ω with the objective values f(xk) = fk,
k = 1, . . . , N . The evaluation set is the union of all points at which the function has
been evaluated;

E := EN = ∪N
k=1xk. (8)

For the function set F it must hold that

F ⊆ {s ∈ B(Ω) : s(xk) = fk, k = 1, . . . , N}. (9)
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Since all s ∈ F are completely determined on the evaluation set EN , the following
relation between the maximum loss (5) and the upper envelope function holds:

ML(F ,D,EN ) = max
x∈D

UF (x)− max
k=1,...,N

fk. (10)

If the optimization of (1) was terminated at this stage, the best point in EN would
be chosen as an approximation of the optimum. The maximum loss is thus the dif-
ference between the best value that can be obtained (the maximum of the upper
envelope function) and the best value obtained so far, i.e., the worst case optimality
gap assuming that f is a function in F . A termination criterion for the optimization
of (1) is therefore that the maximum loss is sufficiently close to zero.

To choose an appropriate function set it is reasonable to assume that the objective
function has a norm that is bounded by some constant c ∈ R+ (as a comment, with-
out putting any restriction on f , it is impossible to guarantee convergence within
any ε > 0 in finite time). Therefore we choose the function set as

FN,c = {s ∈ B(Ω) : ‖s‖ ≤ c, s(xk) = fk, k = 1, . . . , N}, (11)

i.e., all functions in B(Ω) interpolating f at the points {xk}Nk=1 and having a norm
that is less than or equal to c. The value of c has a large impact on the value of the
maximum loss and also on the optimization strategies to be studied, this is further
discussed in Section 6.

2.2 Strategies for choosing new evaluation points

In the optimization of (1), new points y ∈ Ω are included in the evaluation set in
each iteration. An iteration consists of the two steps to

1. choose a new evaluation point y ∈ Ω, and

2. evaluate the objective function at y, i.e., compute f(y).

In each step the maximum loss decreases but for different reasons. In Step 1 a new
point is added to the evaluation set, E → E ∪ {y}, and thereby the maximum loss
is reduced according to (4). In Step 2 we impose a new restriction on the set of func-
tions, F → F ∩{s : s(y) = f(y)}, reducing the maximum loss according to (3). What
can be controlled by an optimization algorithm is Step 1. Symbolically we describe
it as follows. The function and evaluation sets Fk and Ek at iteration k satisfy the
respective inclusion relations

Fk ⊇ Fk+1 and Ek ⊆ Ek+1. (12)

The properties (4) and (3) imply the inequalities

ML(Fk,D,Ek) ≥ML(Fk,D,Ek+1) ≥ML(Fk+1,D,Ek+1). (13)

We define two alternative strategies for global optimization of which at least the first
is well-known and used, but, however, not described in this terminology. The main
idea of this article is to analyze and to develop methods for the second one.
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DEFINITION 2.4 (Maximum gain strategy) In the maximum gain strategy, i.e., cri-
terion A on page 2, the new evaluation point x̂ ∈ Ω is chosen such that

x̂ ∈ arg max
x∈Ω

UF (x). (14)

DEFINITION 2.5 (Minimize the maximum loss strategy (minimax)) In the minim-
ize the maximum loss strategy (the minimax strategy from now on), i.e., criterion D on
page 2, the new evaluation point y∗ ∈ D ⊆ Ω is chosen such that

y∗ ∈ arg min
y∈D
ML(F ,D,E ∪ {y}). (15)

This strategy can be extended to parallel evaluation by choosing several new evaluation points
y∗

k ∈ D ⊆ Ω, k = 1, . . . ,K, such that

{y∗
k}Kk=1 ∈ arg min

yk∈D,k=1,...,K
ML(F ,D,E ∪ {yk}Kk=1). (16)

In the maximum gain strategy a new evaluation point is chosen such that the new
function value potentially can be as large as possible in each step. This strategy is
used by several global optimization algorithms. For example, Piyavskii’s and Shu-
bert’s Lipschitz optimization algorithm [17, 18] is of this type with function sets of
the form (11). This algorithm was later extended to multiple dimensions by [15]. See
also [8, 13, 14]. In [7], Gutmann introduces a global optimization algorithm based on
interpolation with radial basis functions (RBF). A Hilbert space of functions, called
the native space, is associated to each RBF. One variant of Gutmann’s algorithm can
be interpreted in the maximum gain setting with function sets of the form (11) in
the Native space norm (the standard variant of the algorithm is similar but then so
called target values are used instead).

In economics, the maximum gain strategy might be called the gamblers choice be-
cause of its potential high reward but also high risks (the span between the lower and
upper envelope functions might be wide). In optimization the drawback of this strat-
egy is that new evaluation points are often chosen on the boundary of the domain
which—especially in higher dimensions—can imply that evaluations are wasted
through excessive exploration of the boundary.

The minimax strategy is more conservative. It is less likely to put new evaluation
points on the boundary since the strategy tries to balance the areas with high loss.
For the Lipschitz case with convex domains, which is explored in later sections, new
evaluation points may be found on the boundary, but never at extreme points of the
domain (points which do not lie in any open line segment joining two points in the
domain).

The starting point for the minimax strategy is to find the maximum gain solu-
tion (14), since this is also the point where the current maximum loss is attained. The
introduction of the reference set D, which might be a strict subset of Ω, in the defini-
tions of the maximum loss and of the minimax strategy is made for technical reasons.
A suitable choice of D may avoid non-uniqueness of the optimal solution in the re-
sulting minimax problem, which otherwise may occur. Examples of non-uniqueness
will be presented in Section 4.1.
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In some situations it is interesting to compute the objective function at several
evaluation points simultaneously, e.g., if several simulations can be run in parallel.
This can be handled in the minimax strategy by minimizing over a fixed number of
points (see (16)) , although this obviously increases the complexity of the strategy.
It is in the end of the optimization procedure that the maximum loss should be a
small as possible, not in each particular iteration, which also motivates the inclusion
of more points in the minimax problem. To consider only one additional point at a
time can be seen as a greedy version of this general strategy.

The main drawback of the minimax strategy is its complexity. In some situations
the resulting minimax problem (15) might even be a harder problem to solve than
the original problem (1). This will, however, not be the case when the evaluation of
the objective function in (1) is sufficiently computationally expensive.

3 Maximum loss in the Lipschitz space

In the former section the maximum loss was defined for a general function class.
A common assumption in global optimization (particularly in simulation-based op-
timization) is that the objective function is Lipschitz continuous. In this section we
analyze the case when the function class consists of Lipschitz continuous function.
We will see that this simplifies the general expressions considerably.

A function f : Ω → R is said to be Lipschitz continuous if there exists a constant
c ≥ 0 such that

|f(x′)− f(x′′)| ≤ c‖x′ − x′′‖, x′,x′′ ∈ Ω. (17)

The smallest such constant c is called the Lipschitz norm of the function and is de-
noted by ‖f‖Lip(Ω). Returning to the optimization setting where the function f has
been evaluated at the points {xk}Nk=1 ⊆ Ω, the Lipschitz norm can be estimated by
the lower bound given by the inequality

‖f‖Lip(Ω) ≥ max
k,�=1,...,N, k �=�

|fk − f�|
‖xk − x�‖ . (18)

The right hand side of (18) can be interpreted as the Lipschitz norm of f on the
discrete evaluation set EN = ∪N

k=1xk. One important result on Lipschitz functions
is Kirszbraun’s Theorem ([11]), which states that it is always possible to extend a
Lipschitz function on a subdomain to a larger domain, containing the subdomain,
without increasing the Lipschitz norm. In particular, this implies that the set FN,c

defined in (11) is non-empty whenever

c ≥ max
k,�=1,...,N, k �=�

|fk − f�|
‖xk − x�‖ . (19)

The next proposition proves a representation formula for the upper envelope func-
tion (6) in the Lipschitz case, showing that the upper envelope function then has an
explicit expression.
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PROPOSITION 3.1 For the Lipschitz space we can write the upper envelope function for
the function set FN,c as

UFN,c
(x) = min

k=1,...,N

{
fk + c‖x− xk‖

}
, x ∈ Ω. (20)

Proof From the definitions of UF in (6) and of FN,c in (11) it follows that

UFN,c
(x) = sup

s∈FN,c

s(x)

= sup
s∈B(Ω)

{
s(x) : ‖s‖ ≤ c, s(xk) = fk, k = 1, . . . , N

}
= sup

s∈B(Ω)

{
s(x) : s(x) ≤ fk + c‖x− xk‖, k = 1, . . . , N

}
= sup

s∈B(Ω)

{
s(x) : s(x) ≤ min

k=1,...,N
{fk + c‖x− xk‖}

}
= sup

s∈B(Ω)

{
min

k=1,...,N
{fk + c‖x− xk‖}

}
= min

k=1,...,N

{
fk + c‖x− xk‖

}
.

The right hand side of (20) is also included, e.g., in [17, 18]. We can now express
the objective function of the minimax problem explicitly in terms of the upper enve-
lope function instead of considering the whole space of functions F . This is a main
result and is the basis for our implementation of the algorithm.

THEOREM 3.2 Define h to be the objective function in the minimax problem (15), i.e.,

h(y) :=ML(FN,c,D,EN ∪ {y}), y ∈ D,
for the evaluation set EN and the function set FN,c as defined by (8) and (11), respectively,
with the Lipschitz norm c. This objective function also has the explicit representation

h(y) = max
x∈D

min
{
UFN,c

(x)− max
k=1,...,N

fk, c‖x− y‖
}
, y ∈ D. (21)

Moreover, unless h(y) is constant over D, the set of optimal points for the minimax prob-
lem (15) satisfies

arg min
y∈D
ML(FN,c,D,EN ∪ {y}) ⊆

{
x ∈ D : UFN,c

(x) > max
k=1,...,N

fk

}
. (22)

The proof of Theorem 3.2 relies on the following lemma, whose proof is postponed
to Appendix A.

LEMMA 3.3 Let EN and FN,c be defined by (8) and (11), respectively, with the Lipschitz
norm. Then, for all x,y ∈ Ω it holds that

max
s∈FN,c

{
s(x)− max

x′∈EN∪{y}
s(x′)

}
= min

{
UFN,c

(x)− max
k=1,...,N

fk, c‖x−y‖
}
. (23)
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Proof of Theorem 3.2 The first part of the theorem, i.e., the equivalence (21), follows
immediately from Lemma 3.3 by utilizing the reformulation (5) of the maximum loss.

For the second part, i.e., the inclusion (22), suppose that we have y′ ∈ D such
that UFN,c

(y′) ≤ maxk=1,...,N fk. The intention is to show that such a y′ cannot be
optimal for the problem on the left hand side of (22). Let x̂ ∈ arg maxx∈D UFN,c

(x).
From the Lipschitz property of UFN,c

, it then follows that

c‖x̂− y′‖ ≥ UFN,c
(x̂)− UFN,c

(y′) ≥ UFN,c
(x̂)− max

k=1,...,N
fk.

Thus,

h(y′) = max
x∈D

min
{
UFN,c

(x)− max
k=1,...,N

fk, c‖x− y′‖
}

≥ min
{
UFN,c

(x̂)− max
k=1,...,N

fk, c‖x̂− y′‖
}

= UFN,c
(x̂)− max

k=1,...,N
fk.

Furthermore, for any y ∈ D it holds that

h(y) = max
x∈D

min
{
UFN,c

(x)− max
k=1,...,N

fk, c‖x− y‖
}

≤ max
x∈D

{
UFN,c

(x)− max
k=1,...,N

fk

}
= UFN,c

(x̂)− max
k=1,...,N

fk,

meaning that any y ∈ D is at least as good as y′. Since h is non-constant over D,
there must exist a y ∈ D with h(y) < h(y′), implying that

y′ /∈ arg min
y∈D
ML(FN,c,D,EN ∪ {y}),

and the result follows.

The upper envelope function and the objective function in the minimax problem
are illustrated in Figure 1 for a one-dimensional case, in which the minimax function
is computed for the reference set D = [0, 1]. One can see in the right subfigure that
h in this case does not have a unique minimum. We will study this uniqueness issue
further in the next section.

4 Optimality conditions for the minimax problem

The purpose of this section is to study optimality conditions for minimax problems
where the objective function is a generalization of the resulting maximum loss from
the Lipschitz case; these are later exploited in the proposed solution methods.

Theorem 3.2 shows that the loss function h in the minimax problem (15) for the
Lipschitz case has a special and simple representation. In the following definition we
make a generalization of this type of minimax problem.
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Figure 1: An illustration of the upper envelope function for the univariate function
f(x) = sin(πx) + 0.2x sampled at three points, EN = {0.1, 0.6, 0.9}, and with the
value c = 4 of the Lipschitz constant. The right subfigure shows the function h(y) as
represented in Equation (21) to be minimized in the minimax problem (15).

DEFINITION 4.1 (Two-functions minimax problem) Let g : D → R and g̃ : R
n →

R be two continuous functions. We denote

min
y∈D

h(y), (24)

where
h(y) := max

x∈D
min {g(x), g̃(y − x)} , (25)

the two-functions minimax problem.

With
g(x) = UFN,c

(x)− max
k=1,...,N

fk and g̃(x) = c‖x‖,

the objective function h characterized in (21) is recovered.
Recall that a function g̃ is said to be quasiconvex on a convex set D if

g̃((1− λ)x′ + λx′′) ≤ max {g̃(x′), g̃(x′′)} , (26)

for all x′,x′′ ∈ D and λ ∈ [0, 1]. A function is strictly quasiconvex if strict inequality
in (26) holds whenever λ ∈ (0, 1), provided that g̃(x′) �= g̃(x′′). The following is an
immediate result for quasiconvex functions (see, e.g., [2]).

THEOREM 4.2 Every strict local minimum of a quasiconvex function is a global mini-
mum, and the set of minimizing points for a quasiconvex function is convex.
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THEOREM 4.3 Let h be defined by (25) with a convex domain D. Then h is quasiconvex if
g̃ is quasiconvex. As a consequence, the set of optimal points

arg min
y∈D

h(y) (27)

is convex (if non-empty).

Proof Let y1,y2 ∈ D and λ ∈ [0, 1]. The quasiconvexity of g̃ yields that

h ((1− λ)y1 + λy2)) ≤ max
x∈D

min
{
g(x),max {g̃(y1 − x), g̃(y2 − x)}}.

Since min
{
a,max{b, c}} = max

{
min{a, b},min{a, c}}, for all a, b, c ∈ R, we have

that

h((1− λ)y1 + λy2) ≤ max
x∈D

max
{
min{g(x), g̃(y1 − x)},min{g(x), g̃(y2 − x)}}

= max {h(y1), h(y2)} ,
where we have interchanged the order of the max operators in the last equality, and
the first result follows. The convexity of the optimal set then follows from Theo-
rem 4.2

In general, the function h is neither convex nor strictly quasiconvex (with no lo-
cally constant regions) even if g̃ is. Therefore, the minimax problem does not neces-
sarily have a unique optimal solution. The cure for this is to modify the reference
set D. In a typical situation, we begin by calculating the maximum gain solution x̂
according to (14) and choose the reference set D such that x̂ ∈ D ⊆ Ω. A key fea-
ture of a two-functions minimax problem with a unique solution is balance in the
sense that no matter which direction we move y from the optimal solution y∗, an
increased value of h emerges for an x ∈ D in the opposite direction. The next section
contains optimality conditions for the minimax problem with respect to D, and also
gives some suggestions on how to choose this domain.

4.1 Optimality conditions and domains of uniqueness for the two-
functions minimax problem

We now restrict ourselves to the case when g̃(x) = φ(‖x‖), for some continuous and
strictly increasing function φ : R+ → R with φ(0) = 0. For this special case it turns
out that the two-functions minimax problem is closely related to following geomet-
rical problem: Let P ⊂ R

n be a closed and bounded set. The smallest enclosing ball
problem for P is to find a center y ∈ R

n and a radius r by solving the optimization
problem

min {r : y ∈ R
n, r ∈ R+, B(y, r) ⊇ P} , (28)

where B(y, r) is the closed ball in R
n with center at y ∈ R

n and radius r ∈ R+.
This problem is treated by, e.g., Nielsen and Nock in [16] when P is a finite point
set, but was considered already by Sylvester in [19]. The following fact, which is a
consequence of the optimality of the smallest enclosing ball, will be useful in the
further analysis.
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LEMMA 4.4 Let B(y∗, r∗) be the smallest enclosing ball for the set P . Denote the points
in the set ∂B(y∗, r∗) ∩ P control points. Then, the center y∗ belongs to the convex hull of
the control points. Equivalently, every closed half-space containing y∗ also contains at least
one control point.

Let r be the function mapping a closed set P ⊂ R
n to the radius r∗ of the smallest

ball enclosing P according to (28);

r(P ) = r∗.

A trivial property of the function r is that if P ⊆ Q, then r(P ) ≤ r(Q). The follow-
ing proposition connects the smallest enclosing ball problem and the two-functions
minimax problem.

PROPOSITION 4.5 The two-functions minimax problem (24) has a unique solution if and
only if there exists a solution d∗ (which is necessarily unique) to the equation

φ(r({x ∈ D : g(x) ≥ d})) = d. (29)

Suppose that d = d∗ solves (29) and let B(y∗, r∗) be the smallest ball enclosing {x ∈ D :
g(x) ≥ d∗}. Then y∗ is also the solution to the minimax problem (24) and h(y∗) = φ(r∗) =
d∗.

Proof Suppose that d = d∗ solves (29). We first estimate h(y∗):

h(y∗) = max
x∈D

min
{
g(x), φ(‖y∗ − x‖)}

= max
{

max
x∈D\B(y∗,r∗)

min
{
g(x), φ(‖y∗−x‖)}, max

x∈D∩B(y∗,r∗)
min

{
g(x), φ(‖y∗−x‖)}}

≤ max
{

max
x∈D\B(y∗,r∗)

g(x), max
x∈D∩B(y∗,r∗)

φ(‖y∗−x‖)
}
≤ max {d∗, d∗} = d∗.

This shows that y∗ is a candidate for an optimal solution to the minimax problem (24)
with an objective value less than or equal to d∗. Now, take any y �= y∗. Since there
exists an x ∈ D with ‖y − x‖ > r∗ such that g(x) > d∗ and since φ is strictly increas-
ing, we have that φ(‖y − x‖) > φ(r∗) = d∗. Thus, h(y) > d∗ which proves that the
unique minimum is attained at y∗. By continuity, h(y∗) = d∗.

For the converse implication, assume that y∗ is the unique solution to the mini-
max problem with value d∗ = h(y∗). Then there exists a number r∗ > 0 such that
φ(r∗) = d∗. Since φ is strictly increasing it follows that g(x) ≤ d∗ for x ∈ D\B(y∗, r∗),
otherwise h(y∗) > d∗ which is a contradiction. ThereforeQ := {x ∈ D : g(x) ≥ d∗} ⊆
B(y∗, r∗). Now let B(ỹ, r̃) be the smallest enclosing ball for Q. The aim is to show
that B(ỹ, r̃) = B(y∗, r∗). Assume on the contrary that the balls are not equal. Then,
since Q ⊆ B(y∗, r∗) it must hold that r̃ < r∗. Now let r′ be such that r̃ < r′ < r∗.
Then it follows that there exists a δ > 0 such that g(x) ≤ d∗ − δ for x ∈ D \ B(ỹ, r′)
and φ(‖ỹ− x‖) ≤ d∗ − δ for x ∈ B(ỹ, r′). Therefore h(ỹ) ≤ d∗ − δ < h(y∗). This con-
tradicts the optimality of y∗ for the minimax problem which yields that B(y∗, r∗) is
the smallest enclosing ball for Q. Now since φ(r∗) = d∗ it follows that d∗ solves (29).

12



Since
{x ∈ D : g(x) ≥ d} ⊆ {x ∈ D : g(x) ≥ d′}

whenever d ≥ d′ it follows that

d → r({x ∈ D : g(x) ≥ d}) (30)

is a decreasing (not necessarily strictly) function of d. By imposing a continuity as-
sumption, which is related to a suitable D, we can prove an existence result for the
solution of the equation (29).

COROLLARY 4.6 Suppose that g andD ⊆ Ω are such that the function (30) is continuous
for d ∈ (a, b) ⊂ [−∞,maxx∈D g(x)] for some a, b ∈ R such that

φ (r({x ∈ D : g(x) ≥ a})) > a,

φ (r({x ∈ D : g(x) ≥ b})) < b.

Then there exists a unique solution d∗ ∈ (a, b) to the equation (29) and therefore to the
minimax problem (25).

Proof From the assumptions on φ and from (30), it follows that the function

q(d) := φ(r({x ∈ D : g(x) ≥ d}))− d

is continuous and strictly decreasing on (a, b), and that q(a) < 0 and q(b) > 0. There-
fore there exists a unique d∗ ∈ (a, b) such that q(d∗) = 0 which is equivalent to (29).

The aim is to construct aD such that the assumptions of Corollary 4.6 are fulfilled.
The following result is clear from the definition of the minimax problem and

shows that for certain (small) domains, the minimax problem has a particularly sim-
ple solution.

COROLLARY 4.7 Suppose that D and g are such that

φ (r(D)) ≤ min
x∈D

g(x). (31)

Then the minimax solution y∗ is the center of the smallest enclosing ball of D.

Proposition 4.5 and Corollary 4.6 are illustrated in Figure 2 with the example from
Figure 1, for which the minimax solution is non-unique. This non-uniqueness is a
consequence of the rightmost local maximum which induces a jump in the radius
function (30) and therefore in the left hand side of (29). In the two lower subfigures
the reference set D is decreased so that it only includes one of the local maxima,
making the radius function continuous and therefore yielding a unique minimax so-
lution. The conclusion to be made from Proposition 4.5 is that for a suitable choice
of D, the optimal solution to the minimax problem (24) is unique. A strategy for
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Figure 2: By decreasing the domain D in the lower set of subfigures (excluding the
gray region) so that the upper envelope function only contains one local maximum
over the domain, a unique solution to (29) and hence to the minimax problem is
obtained.

decreasing the reference set D to obtain uniqueness in the minimax problem is pre-
sented in Section 4.2.

Proposition 4.8 involves a set of auxiliary control points which is shown to be
balanced when corresponding to the optimal solution y∗ to (24). Our proposed algo-
rithm for solving the problem (24) seeks simultaneously for these points and for the
optimal solution y∗.

PROPOSITION 4.8 (optimality conditions with control points) Let g andD be spec-
ified as in Corollary 4.6. A point y∗ ∈ D is the unique solution to the two-functions minimax
problem if and only if there is a set {zk}Mk=1 ⊂ D of control points and a scalar d∗ ∈ R such
that

1. y∗ ∈ conv
( {zk}Mk=1

)
,

14



2. min {g(zk), φ(‖y∗ − zk‖)} = d∗, k = 1, . . . ,M (if zk ∈ int (D), then g(zk) =
φ(‖y∗ − zk‖) = d∗), and

3. h(y∗) = maxx∈D min {g(x), φ(‖y∗ − x‖)} = d∗.

Proof Assume that y∗ ∈ D is the unique solution to the two-functions minimax
problem (Definition 4.1) with value d∗. Let B(y∗, r∗) be the smallest ball enclosing
the set {x ∈ D : g(x) ≥ d∗}. According to Proposition 4.5, the equality φ(r∗) = d∗

holds. By Lemma 4.4, there exists a set of control points {zk}Mk=1 ⊂ D such that
y∗ ∈ conv

( {zk}Mk=1

)
. Since ‖y∗−zk‖ = r∗, it follows that φ(‖y∗−zk‖) = d∗ and also

that g(zk) ≥ d∗. Item 3 is a consequence of the optimality of the minimax solution.
For the reverse implication, the idea is to prove that under the assumption that

1–3 hold, the value h(y∗) will be smaller than the function values for all points in a
ball around y∗. Then y∗ is a strict local minimum, and from Theorem 4.2 the result
will be proved.

Pick an arbitrary point y′ in a ball B(y∗, ε) specified by y′ = y∗ + ε′v where
v ∈ R

n and 0 < ε′ < ε. Let z be one of the zk, k = 1, . . . ,M , that, from 1, are
contained in the closed half-space {x ∈ R

n : vT(x− y∗) ≤ 0}.
Clearly, φ(‖y∗ − z‖) ≥ d∗ from 2 and φ(‖y′ − z‖) > φ(‖y∗ − z‖) since φ is strictly

increasing with the norm of its argument. From continuity, there now exists a ball
B(z, δ), δ > 0, such that for all x ∈ B(z, δ) it holds that

φ(‖y′ − x‖) > φ(‖y∗ − z‖) ≥ d∗.
Furthermore, from 2 we have that g(z) ≥ d∗ holds. If g(z) > d∗, then g(x) > d∗ holds
for all x ∈ B(z, δ) if δ is chosen sufficiently small. Otherwise, if g(z) = d∗, then it can
be concluded from the assumptions onD and g that g(z) cannot be a local maximum
over D (since g(z) ∈ (a, b) and a local maximum in this interval would lead to a
non-continuous radius function, see Corollary 4.6). Therefore, we get

max
x∈B(z,δ)∩D

g(x) > g(z) ≥ d∗.

Hence, h(y′) > h(y∗), i.e., the arbitrarily chosen point y′ ∈ B(y∗, ε) results in a
strictly larger function value and the result follows.

In general, we want to have a domain D which results in a continuous radius
function (30), but we also want the domain to be as large as possible in order to max-
imize the information provided from the function. However, the searched sample
point y will affect the upper envelope function only locally, and therefore there is an
upper bound on the size of a useful set D. Such a bound can be used when design-
ing a practical method for constructing a domain. The following result gives such an
upper bound in the Lipschitz case in the sense that a larger set D will not affect the
value of y∗ when solving the minimax problem.

PROPOSITION 4.9 Assume that φ(r) = cr. Let x̂ ∈ arg maxx∈Ω UFN,c
(x). Suppose

that y ∈ Ω is such that h(y) < UFN,c
(x̂) − maxk=1,...,N fk. Then y ∈ B(x̂, R), where

R =
(UFN,c

(x̂)−maxk fk

)
/c. Furthermore, the corresponding control points zk, k =

1, . . . ,M , fulfill zk ∈ B(x̂, 2R).
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Proof In order for the vector y to affect the maximum value of the upper envelope,
and hence the maximum loss that is to be minimized, it has to be sufficiently close to
x̂. From the expression (20), it follows that y ∈ B(x̂, R). In Proposition 4.8 containing
necessary and sufficient optimality conditions for the minimax problem, it is shown
that y affects the upper envelope at a set of control points. The value of the upper
envelope function at each of the control points is obviously smaller than UFN,c

(x̂).
Therefore, as above, their distance to y must be smaller than R, and hence zk ∈
B(x̂, 2R). This concludes the arguments for the proposition.

4.2 Constructions of suitable domains

There are a number of criteria which seem natural to pose on a suitable domain D
for the minimax problem:

1. D should be a domain of uniqueness for the minimax problem.

2. D should have a simple, e.g., convex, shape (simplifying the computation of
the minimax solution and the corresponding control points).

3. The computational effort for computing D should be reasonable.

Finding an algorithm which generates domains fulfilling all these criteria has turned
out to be the hardest subproblem for the problem considered in this article. Up to
now, all algorithms found, meet some, but not all, of the above criteria. An exception
is the one with D = {x̂}, however, that is clearly not what we want. Below we define
constructions which are proved to be domains of uniqueness for the two-functions
minimax problem. Unfortunately, these sets are in general not convex and no fail-
safe algorithm has been found to generate them. An attempt to define a cheaply
computable approximation is presented in the end of this section.

DEFINITION 4.10 (The descent set) The descent set Dg(S) for a starting set S ⊂ Ω
with respect to a function g ∈ C(Ω) is the union of all points y ∈ Ω for which there exists a
continuous function γ : [0, T ]→ Ω such that γ(0) ∈ S, y = γ(T ), and g ◦ γ is a decreasing
function on [0, T ].

From this definition follows that Dg(S) \S cannot contain any local maximum for g.
For this reason the descent set for S = {x̂} = arg maxx∈Ω g(x) is a candidate for the
reference set for the minimax problem (24). This is actually how the reference set for
the lower two subfigures of Figure 2 was chosen. However, the requirements for the
descent set is slightly too weak, implying that such a domain can result in jumps in
the radius function. As a remedy, we propose the Lipschitz descent set, for which we
require strict and controllable decay of the function g ◦ γ.

DEFINITION 4.11 (The Lipschitz descent set) The Lipschitz descent set Dg(S, α),
α > 0, for a starting set S ⊂ Ω with respect to a function g ∈ C(Ω) is the union of all
points y ∈ Ω for which there exists a continuously differentiable function γ : [0, T ] → Ω
with ‖γ̇(t)‖ = 1 for all t ∈ [0, T ] such that γ(0) ∈ S, y = γ(T ), and g ◦ γ is a uniformly
decreasing function g(γ(s))− g(γ(t)) ≥ α(t− s) whenever T ≥ t ≥ s ≥ 0.
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The next result is a consequence of the above definition.

PROPOSITION 4.12 Let Dg(S, α) be a Lipschitz descent set for a starting set S with
respect to g. Then the radius function (30) for D = Dg(S, α) is Lipschitz continuous for
d ≤ minx∈S g(x) with norm at most 1/α.

Proof Let q > 0. We will prove that the distance from an arbitrarily chosen point in
{x ∈ Dg(S, α) : g(x) ≥ d− q} to a point in {x ∈ Dg(S, α) : g(x) ≥ d} is at most q/α.
This implies that if B(xd, rd) is the smallest ball enclosing {x ∈ Dg(S, α) : g(x) ≥ d}
then B(xd, rd + q/α) is enclosing {x ∈ Dg(S, α) : g(x) ≥ d− q}. This proves that the
radius function is Lipschitz continuous with Lipschitz constant 1/α.

Now, let y ∈ {x ∈ Dg(S, α) : g(x) ≥ d − q}. If g(y) ≥ d there is nothing to prove
so assume that g(y) < d. By assumption there exists a continuously differentiable
function γ : [0, T ]→ Ω with ‖γ̇(t)‖ = 1 for all t ∈ [0, T ] such that y = γ(T ), γ(0) ∈ S
and g(γ(s)) − g(γ(t)) ≥ α(t − s) whenever t ≥ s ≥ 0. By continuity there exists an
s′ < t such that x = γ(s′) with g(x) = d (since g(γ(0)) ≥ d > g(γ(t)) = g(y)). Now,
‖y − x‖ = ‖γ(t)− γ(s′)‖ ≤ t− s′ and hence

‖y − x‖ ≤ α(t− s′)
α

≤ g(γ(s′))− g(γ(t))
α

≤ d− (d− q)
α

=
q

α
,

which yields the result.

To make this notion useful for implementation into a computer code we need
discrete analogues of the descent set and the Lipschitz descent set. A simplex is the
convex hull of n+1 affinely independent points in R

n. LetK be a covering of the do-
main Ω of non-overlapping simplices. In two dimensions such coverings are called
triangulations. This induces a graph connecting the different vertices in K: two ver-
tices are connected with an edge if there exists a simplex to which they both belong.

DEFINITION 4.13 (The discrete descent set) Let the starting set S be a subset of all
vertices in K. A vertex ν ∈ K belongs to the discrete descent set of vertices if there exists a
chain of vertices {νk}Nν

k=0 in K such that (i) ν0 ∈ S, (ii) ν = νNν
, (iii) for k = 1, . . . , Nν

there exists a simplex in K which contains both νk−1 and νk, and (iv)

g(νk−1)− g(νk) ≥ 0. (32)

The discrete descent set Dd
g(S) of simplices is the union of all simplices whose all vertices be-

long to the discrete descent set of vertices. For the discrete Lipschitz descent setDd
g(S, α), (32)

should be replaced by
g(νk−1)− g(νk) ≥ α‖νk−1 − νk‖. (33)

Figure 3 shows an example of a discrete descent set Dd
g(S) for a simple example.

Each extreme point of the domain Ω = [−1, 1]2 is a local maximum to the upper en-
velope function UFN,c

and the extreme point x̂ = (−1, 1)T is the global maximum. In
this example the starting set S = {x̂}. In the figure the saddle points of UFN,c

have
been marked. At these pointsDd

g(S) is partly blocked from continuing to grow which
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(b) The discrete descent set for a given triangula-
tion K.

Figure 3: Illustration of a discrete descent set.

prevents it to reach the other local maxima. As can be seen in the figure, Dd
g(S) de-

pends critically on the triangulation of the domain, which also makes it smaller than
the true descent set. This dependence seems unavoidable unless the triangulation is
adapted during the computation of the descent set itself.

5 Solution methods

Up until now we have explored the theoretical properties of the minimax problem
with an emphasize on the case when the function class consists of Lipschitz contin-
uous functions. For this case we have been able to derive explicit expressions and
optimality conditions that can be exploited in order to solve the minimax problems.

In this section we provide solution methods for the minimax problem in the Lips-
chitz case with the norm bounded by the constant c. The optimization problem under
consideration is thus to solve (15), i.e., (utilizing Proposition 3.1 and the relation (21))
to find y∗ that solves

min
y∈D

max
x∈D

min
{

min
k=1,...,N

{fk + c‖x− xk‖} − max
k=1,...,N

fk, c‖y − x‖
}
. (34)

In order to construct a suitable domain D ⊆ Ω, first the maximum gain solution x̂,
i.e., the maximizer to the upper envelope function (20) has to be found. A procedure
for this is presented in Section 5.2. We begin, however, with a discussion about the
possible choices of the Lipschitz constant c, and the convergence properties when
using the minimax method repeatedly for determining the sample points xk when
solving the original maximization problem (1).
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5.1 The Lipschitz constant and convergence

As discussed in Section 3, the Lipschitz constant of a function can be estimated
from below using a set of already sampled points and the inequality (18). For any
value of c larger than this underestimation, the minimax optimization problem (34)
will have a solution. If it is also possible to estimate the Lipschitz constant from
above (e.g. if the function is an explicit composition of elementary functions, or if
there are physical limitations on the function derivatives), then a repeated use of
the minimax strategy guarantees convergence towards a global optimum of (1), this
without ending up with the sample set being dense in the whole domain. The con-
vergence is clear since if a global optimum x∗ is not already among the sampled
points xk, k = 1, . . . , N , then it holds that the maximum loss ML(FN,c,D,EN ) =
maxx∈D UF (x) − maxk=1,...,N fk > 0, since UF (x∗) ≥ f(x∗) > fk, k = 1, . . . , N .
Furthermore, unless the maximum loss is equal to zero, it decreases strictly after a
finite number of iterations of the main algorithm described in Section 2.2 (when, at a
certain iteration, all, possibly non-unique but finitely many, global maxima of UFN,c

,
have been used to define a domain D). This concludes the convergence argument.

Which value of c larger than the underestimation given by (18) that is best to use
cannot be said with certainty. A too large value of c will lead to a too large emphasis
on filling out the space, yielding unnecessary samples in regions where the function
values are low. A too small value of c might, however, lead to that subregions are
erroneously discarded, and that the global optimum is missed.

It is possible that using local estimates of the Lipschitz constant—rather than
the global estimate that we consider in this article—would increase the efficiency
of our method. One idea is to let the Lipschitz constant in the definition (20) of the
upper envelope be dependent on k, i.e., on the evaluation points. Then c = ck could
be estimated locally by using only close surrounding sample points in the lower
estimate according to (18).

5.2 A spatial Branch-and-Bound scheme for finding the maximizer
of the upper envelope function

Given a box-constrained region Ω = [�,u] ⊂ R
n, an unknown function f : Ω → R,

and a set of sampled points {(x1, f1) , . . . , (xN , fN )} this section presents a model
of, and a spatial Branch-and-Bound scheme for, finding x̂, i.e., the maximizer to the
upper envelope function UFN,c

as defined by (20).
From Proposition 3.1 we have that UFN,c

(x) = mink=1,...,N {fk + c‖x− xk‖} for
the Lipschitz space of functions. Therefore, we introduce an auxiliary variable θ and
find x̂ by solving the problem to

minimize
x,θ

−θ,
subject to θ ≤ fk + c‖x− xk‖, k = 1, . . . , N, (35)

� ≤ x ≤ u,

θ ∈ R.
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This is a nonlinear programming problem for which Algorithm 1 below presents a
local optimization algorithm based on sequential linearization; it will be used within
the Branch-and-Bound framework.

Algorithm 1 Find a local maximizer x∗ of the Lipschitz upper envelope function

Require: A set of sampled points with corresponding function values {(xk, fk)}Nk=1,
a consistent Lipschitz constant c (fulfilling the inequality (19)), and a domain Ω =
[�,u]. An initial guess x0 of x̂ and a solution tolerance εgap > 0.

Ensure: A local maximizer x∗ of UFN,c
within the tolorance εgap in terms of objective

value.
Start
Define p = (xT, θ)T.
θ0 ← f(x0); i← 0.
repeat
i← i+ 1.
Linearize the constraints θ ≤ fk + c‖x − xk‖, k = 1, . . . , N, around p = pi−1

⇒ Aip ≤ bi.
Collect the lower and upper bounds on the decision variables in the vectors �p
and up.
Solve the linear program

pi ∈ arg min
p

− θ,
s.t. Aip ≤ bi, (36)

�p ≤ p ≤ up,

until ‖pi − pi−1‖ < εgap.
Return: x∗ = xi.

It can be shown (see e.g. [2], Chapter 4) that when (and only when) the optimal
solution to (36) corresponds to a zero step in p (i.e., pi = pi−1), then a Karush-Kuhn-
Tucker (KKT) point to the nonlinear program (35) has been found, thus motivating
the termination criterion of Algorithm 1. In practice, such a KKT point normally cor-
responds to a local maximum of UFN,c

in the concave region in which the initial guess
x0 is located. That the nonlinear constraints in (35) are not differentiable everywhere
(they are actually non-differentiable at each point in the evaluation set ∪N

k=1xk) is not
a severe practical issue, since they will be differentiable around each local maximum
of UFN,c

. Rapid convergence of the suggested method towards a maximum of UFN,c

has been obtained in our numerical experiments. This is also expected from the dis-
cussion in Chapter 10 in [2], since such a method behaves essentially like Newton’s
algorithm when entering a close neighborhood of the final solution.

Each solution found by Algorithm 1 is a lower bound on the global maximum of
UFN,c

. Furthermore, upper bounds are easily obtained by employing the Lipschitz
property of UFN,c

. With x restricted to some set Ω̄ ⊆ Ω and with B
(
xΩ̄, r(Ω̄)

)
de-

noting the smallest ball enclosing Ω̄, we have that UFN,c
(x∗) ≤ UFN,c

(xΩ̄) + cr(Ω̄).
The bounding procedures are utilized in a breadth-first spatial Branch-and-Bound
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scheme for the global maximizer x̂ of UFN,c
. We begin with a family T of unprocessed

boxes, starting with T = {Ω}. At each iteration—or level in the Branch-and-Bound
tree—the upper envelope function UFN,c

is evaluated at the mid point of each box in
the family. The upper bound of UFN,c

restricted to each box is computed as above,
and if it is concluded that the global maximum can be contained in the box, then it is
split into 2n new boxes that are included in T , and a new lower bound to the global
maximum is computed by running Algorithm 1 restricted to the box using its mid
point as a starting guess x0. The procedure is terminated when a local maximum that
is guaranteed to be within εgap > 0 of the global maximum has been found. In prac-
tice, the algorithm can also be terminated with a suboptimal solution after a limited
number of local optimizations or at a limited depth in the search tree.

5.3 The algorithm for finding the minimax solution

This section presents an algorithm for finding the minimizer y∗ to the two-functions
minimax problem (34) in the Lipschitz case, given the maximizer x̂ of the upper en-
velope function UFN,c

and a domain D of uniqueness, i.e., D ∈ D := {D ⊆ Ω |
D such that the assumptions of Proposition 4.5 are fulfilled}, is known, and, further-
more, that it has a polyhedral representation. The procedure is based on the charac-
terizations made in Proposition 4.8 and the solution idea is similar to that of Algo-
rithm 1.

From Proposition 4.8 it can be concluded that by utilizing an auxiliary variable
θ ∈ R, the two-functions minimax problem (34) can be rewritten as

minimize
y, θ, zj , λj , j=1,...,n+1

−θ,

subject to θ ≤ fk + c‖zj − xk‖, k = 1, . . . , N, (37a)
j = 1, . . . , n+ 1,

θ ≤ max
k=1,...,N

fk + c‖y − zj‖, j = 1, . . . , n+ 1, (37b)

zj ∈ D, j = 1, . . . , n+ 1,
y ∈ D,
θ ∈ R,

y =
n+1∑
j=1

λjzj , (37c)

n+1∑
j=1

λj = 1, (37d)

λj ∈ [0, 1], j = 1, . . . , n+ 1. (37e)

The construction is similar to that of (35), but in (37) the maximization is done at the
control points z1, . . . , zn+1 instead of at x. The term maxk=1,...,N fk in (37b) repre-
sents, due to Lemma 3.3, the worst-case objective value at the searched sample point
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y. By the construction of (37a)–(37b) and from the minimization of θ, the value of the
inner function of (34), given by

min
{

min
k=1,...,N

{fk + c‖x− xk‖} − max
k=1,...,N

fk, c‖y − x‖
}
,

will, for y = y∗, take its largest value at x = zj , j = 1, . . . , n+ 1.
The constraints (37c)–(37e) are actually redundant and will be automatically ful-

filled in an optimal solution. However, in the iterative algorithm presented below, we
have noted that their utilization reduce the risk of ending up in poor local minima.

Algorithm 2 Find a global optimizer y∗ to the minimax problem (34)

Require: A set of sampled points with corresponding function values {(xk, fk)}Nk=1,
a consistent Lipschitz constant c (fulfilling the inequality (19)), a polyhedral do-
main D = {x ∈ Ω : ADx ≤ bD}, the maximizer x̂ of the Lipschitz upper envelope
UFN,c

and a solution tolerance εgap > 0.
Ensure: A global minimizer y∗ to the minimax problem (34) within the tolerance
εgap in terms of objective value.
Start
y0 ← x̂; z0

j ← y0 + εvj , j = 1, . . . , n + 1, where V = {v1, . . . ,vn+1} is a positive
basis with uniform angles (see [5]) and ε > 0 is a small constant.
Let λ0 be such that (37c)–(37e) hold for λ = λ0.
Define p := (yT, z1

T, . . . , zn+1
T,λT, θ)T.

i← 0.
repeat
i← i+ 1.
Linearize the inequality constraints (37a) and (37b) around p = pi−1 and
compose these with the domain constraints for yi and zi

j , j = 1, . . . , n + 1
⇒ Aip ≤ bi.
Linearize the equality constraints (37c) around p = pi−1 and compose these
with (37d)⇒ Ai

eqp = bi
eq.

Collect the lower and upper bounds on the decision variables in the vectors �p
and up.
Solve the linear program

pi ∈ arg min
p

− θ,
s.t. Aip ≤ bi,

Ai
eqp = bi

eq,

�p ≤ p ≤ up,

until ‖pi − pi−1‖ < εgap.
Return: y∗ = yi.

As for Algorithm 1, the solution that is returned from Algorithm 2 after a zero
step in p corresponds to a KKT point of the nonlinear program (37). In Section 4.1 it
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is shown that there are domains in D such that the minimax problem has a unique
optimum. However, even with D ∈ D, it is possible that the output of Algorithm 2 is
a local, but not global, minimax solution. This is due to the optimization being per-
formed over a larger space containing also the variables zj and not only the variable
y considered in Proposition 4.5. Heuristic techniques can be employed to improve on
the possible termination at a local, but not global, optimum. For example, the Branch-
and-Bound algorithm presented in Section 5.2 can be applied to the Lipschitz upper
envelope UFN,c

given the evaluation set including the found minimax solution y∗. If
a value that is larger than the function values at the found control points z1, . . . , zn+1

is the result from the Branch-and-Bound scheme, then y∗ is not the global optimal
solution. One can now create a scheme where y∗ is moved towards the maximizer
of the updated Lipschitz envelope, possibly in combination with a repeated applica-
tion of Algorithm 2, until there is a set of control points z1, . . . , zM fulfilling Propo-
sition 4.8, thus guaranteeing that the global optimal solution to (34) has been found.

6 Numerical experiments

In this section, the algorithms proposed in Section 5 are illustrated and the minimax
and the maximum gain strategies are compared. The aim of the minimax strategy is
to minimize the (worst-case) optimality gap, i.e., the maximum loss, after the sam-
pling of a new point in order to find a good point to evaluate in the next iteration for
the outer optimization problem (1). In a first example, the purpose is to show that the
strategy leads to desirable results when applying it repeatedly on a simple function.
In a second experiment, the algorithms are then applied to a standard benchmark
problem in global and simulation-based optimization.

The focus, and purpose, of this article is to a perform a theoretical investigation
of whether a maximum loss strategy can be applied to global optimization, and to
analyze the principles that such an application would rely on. Hence, the focus is not
to construct and validate a competitive algorithm. Therefore—although generally
valid—the dimension of the decision space is limited to R

2 in the numerical studies.
In higher dimensions, however, the problem of implementing an efficient method for
finding a domainD of uniqueness for the minimax problem remains. The algorithms
are coded in MATLAB R© ([12]) and the numerical tests have been run on a standard
desktop computer.

6.1 Problem I - A concave quadratic objective function

The following simple problem in which a concave quadratic function is to be maxi-
mized over a box-constrained domain is used to illustrate the behaviour of the min-
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imax strategy:

maximize
x

f(x) := (x− q)TQ(x− q),

subject to −1 ≤ x1 ≤ 1, (38)
−1 ≤ x2 ≤ 1,

where Q =
(−1 0.2

0.2 −0.5

)
and q =

(
π/8

√
2/4

)T
.

In Figure 4(a) the level curves of f is shown and in Figure 4(b) the upper envelope
function is shown together with the 100 first sample points that are found by ap-
plying the minimax strategy repeatedly with the evaluation set at each iteration of
the main algorithm, described in Section 2.2, updated with the latest minimax solu-
tion y∗. Here, the mid point (0, 0) has been used as the sole starting member of the
evaluation set and the Lipschitz constant has been estimated adaptively based on
the points in the evaluation set at each main iteration. As can be seen, the sampling
becomes more dense in regions with higher function values, a behavior which obvi-
ously is a desirable property since the larger the function value, the more interesting
the region.
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(a) Level curves for f in (38).
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(b) The upper envelope UFN,c
and the found sam-

ple points (rings).

Figure 4: A concave quadratic test function.

In Figure 5, the evaluated points are shown in a particular iteration of the main
algorithm, in Figure 5(a) using the minimax strategy and in Figure 5(b) using the
maximum gain strategy. To find the regionD of uniqueness, an ad-hoc method based
on the saddle points of the envelope function (whose details are left out here) has
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been used. Also for the maximum gain strategy it has been assumed that the function
value at the next evaluation point, i.e., x̂, is equal to that of the evaluated point with
the largest value found so far; this implying the worst-case optimality gap as shown
in Lemma 3.3. The figures show that the worst-case optimality gap becomes lower
when using the minimax strategy compared to when employing the maximum gain
strategy. This behavior is expected since the worst-case optimality gap is essentially
what is optimized within the minimax strategy.
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(a) Minimax solution.
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(b) Maximum gain solution.

Figure 5: Results at a particular iteration using the minimax (a) and the maximum
gain (b) strategies. The star denotes in (a) the optimal minimax solution (with the
corresponding control points marked with squares) and in (b) the maximum gain
solution. The black edges define the region D.

If one can afford to evaluate a larger number of samples, it is not absolutely clear
that minimax is superior to maximum gain in terms of the resulting optimality gap.
The minimax strategy is a greedy strategy for minimizing the long-term optimality
gap with no guarantee of being the best one. The maximum gain strategy, however,
does not focus explicitly on the optimality gap at all. In the next example, we give
some numerical results from a comparison of the minimax and the maximum gain
strategies, using a larger number of samples.

6.2 Problem II - A standard test problem

The following is a modification of the standard Branin test problem for global opti-
mization [3], having three global optima in a box-constrained subset of R

2. We have
transformed the original minimization problem to an equivalent maximization one.
The modified problem (39), given by maximizing (the negation of) the logarithm of

25



the original objective function, possesses a lower Lipschitz constant than does the
original one. Aside from this, the theoretical properties of the problem are, however,
unchanged.

maximize
x

f(x) := − log
(
fbra(x)

)
,

subject to fbra(x) =
(
x2− 51

40π2
x2

1+
5
π
x1 − 6

)2

+10
(
1− 1

8π

)
cosx1+10,

−5 ≤ x1 ≤ 10, (39)
0 ≤ x2 ≤ 15.

The Lipschitz constant of f in the given domain is c ≈ 5.34 and is attained at x ≈
(−3.33, 12.25) (compared to c ≈ 114 for the original function fbra).
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Figure 6: Level curves of the function f in (39).

In a numerical study to compare the average performance of the minimax strat-
egy compared to that of the maximum gain strategy, we have applied both strategies
50 times to problem (39). In each run, we start with a sample set of 5 points positioned
in a randomized latin hypercube. Thereafter, 15 more samples are sequentially gen-
erated, using the minimax and the maximum gain strategy, respectively. Here we
employ the true Lipschitz constant, c = 5.34.

In Figure 7(a) the averaged maximum loss, i.e., (20) inserted in(10), is compared
for the minimax and the maximum gain strategies. From the figure, we conclude
that, by using the minimax strategy when generating new evaluation points, the
optimality gap will in the worst case be smaller than when employing the more
traditional maximum gain strategy. This seems to be particularly true for a small
number of samples, which can also be expected. This since the minimax problem is
in each main iteration solved locally over a regionD and the number of local maxima
of the upper envelope is increased with a larger number of sample points. Therefore,
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Figure 7: Results when applying the minimax and the maximum gain strategy, re-
spectivly, on (39). The results are averaged over 50 runs.

by decreasing the sizes of the suitable domains, the amount of extra information used
by the minimax strategy compared to that of the maximum gain strategy decreases
with the size of the evaluation set. Therefore, the advantage of the minimax strategy
is also reduced.

Figure 7(b) shows that the minimax strategy for this test problem yields a better
lower bound on the global optimum value compared to that generated by the maxi-
mum gain strategy. This result is somewhat surprising since the method is focusing
on the upper bound, and not explicitly on the lower bound.

6.3 Discussion

Concluding the numerical experiments, the minimax strategy behaves as desired
with many (few) sample points in regions with high (low) function values. Different
strategies for selecting the value of the Lipschitz constant c affect the balance be-
tween space filling, i.e., global search, and sampling within promising regions, i.e.,
local search. In some situations (see Figure 5) the minimax strategy clearly chooses
better sample points. In a comparison using a classical test problem we have shown
that the minimax strategy does lead to a reduced worst-case optimality gap com-
pared to the minimax strategy. However, the computational effort required for solv-
ing the minimax problem compared to that required for the maximum gain prob-
lem is significantly larger with yet another solution step according to the following:
First, both methods solves for the maximum gain solution x̂. Then, in the minimax
strategy, a suitable domain D is constructed, which is in general not an easy task,
especially not in high dimensions. Thereafter a similar problem as the one for x̂ has
to be solved to find y∗.
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If the minimax strategy is to be preferred over the maximum gain strategy for a
global maximization problem, the following two main aspects have to be considered:

1. What is the computational effort for evaluating the objective function f com-
pared to that of solving the minimax problem (34)? This effort should be com-
paratively high for the minimax strategy to be preferred.

2. What is the main concern for the optimization – a guarantee on a small gap in
terms of objective value for the resulting point compared to the true optimum
value, or the hope of finding a point whose objective value is as high as pos-
sible? For the minimax strategy to be preferred, the former concern should be
the most important.

7 Conclusions and outlook

In this article we have presented and explored a minimax principle for global op-
timization, a principle which apparently has not been used before. Although the
principle is conceptually appealing it is far from straightforward to implement it
into a working computer code. Here we have focused on applying it to the Lips-
chitz space of functions. Finding a new evaluation point according to this strategy
involves three steps. The first step is to find the point where the current maximum
loss is attained (which is also the maximum gain solution). The second step is to find
an appropriate reference set for the minimax problem, i.e., the domain in which the
solution is to be sought. The third step is to compute the minimax solution. For the
local optimizations in steps one and three, we have developed algorithms based on
sequential linearization. For step one, global optimality is ensured by a Branch-and-
Bound technique. Practically it has turned out that step two, finding the reference
set, is the most difficult and the most critical step for the whole strategy. On one
hand, it is desirable that the reference set is as large as possible so that the minimiza-
tion of the local maximum loss also decreases the global maximum loss effectively in
the long run. On the other hand, the reference set should define a unique minimax
solution and be easy to handle within the linear programming problems emerging
from the sequential linearization (e.g. by being a convex polytope). Some theoreti-
cal aspects on the reference set are described and ideas for procedures for choosing
the reference set are discussed. However, to implement the minimax principle for
the Lipschitz space in higher dimensions these procedures needs to be improved
further. It is also in higher dimensions that this strategy possesses better odds to be
favorable to the maximum gain strategy since the boundary of a set in higher di-
mensions is more dominant (e.g., the number of extreme points of a hyperrectangle
grows exponentially with the dimension).

A natural question is whether it is possible to implement the minimax strategy
for other spaces of functions with higher regularity than the Lipschitz space, such
as Sobolev spaces [1] or the native spaces for radial basis functions (RBF) [4, 6, 20].
We then partition the problem of finding a new evaluation point into the same steps
as for the Lipschitz case. The first step, to find the maximum gain solution, leads to
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a global optimization problem of the upper envelope function (which hopefully is
relatively cheap to evaluate); it is in that respect very similar to the Lipschitz case.
The following steps are more unclear. In general it will not be possible to formulate
the minimax problem in terms of the upper envelope function. Since the minimax
solution should be balanced in the sense given by Proposition 4.8, it may be pos-
sible to generalize the concept of control points (at which the minimal maximum
loss is attained supposing the worst-case function value f(y∗) at the optimal min-
imax solution y∗) for some auxiliary function. Preliminary studies in the RBF case
have shown that this function involves the minimal norm interpolant and the power
function measuring the uncertainty of the interpolant at different points. The analy-
sis of these subproblems depends, however, much on the underlying function space
and may be very complicated to carry out.

The high computational effort associated with our approach may seem discour-
aging. However, for a successful application, exact solutions to the minimax prob-
lems are not necessary; it is enough if the algorithm terminates at an approximately
optimal solution with a small maximum loss. Therefore, one should develop esti-
mates for approximate solutions and simplify the various problems involved ac-
cording to this. A successful tool for this might be heuristic methods for solving
the smallest enclosing ball problem (28).

The minimax and the maximum gain solutions differ the most when the maxi-
mum gain solution is located at the boundary of the domain. If the maximum gain
solution is in the interior the solutions might be very close (indeed identical for the
Lipschitz case in one dimension). Thus, simplifying assumptions, such as y∗ = x̂
whenever x̂ is not close to the boundary, might be reasonable from a computational
point of view. However, in many engineering applications, very time-consuming
simulations are needed for the computation of objective function values. Then it may
be worthwhile to use a costly algorithm for the selection of sample points, provided
that it can be proved efficient.

As a final comment, the definition of maximum loss is in this article generally
stated, and may therefore be used also in other contexts. One can, for example, think
of product portfolio optimization where the function set is interpreted as the set of
utility functions for the potential customers. A product family strategy can then be
formulated as that to decide on a limited number of products to make available such
that the maximum loss in the end is minimized, meaning that the distance in utility
for the customer with the worst distance is minimized. Of course, putting such a
strategy into practice will involve many challenges besides the problems of the kind
studied in this article, however, the concept presented can be used for a formalization
of a strategy for product portfolio optimization.

A Appendix

Proof of Lemma 3.3 Pick a vector y ∈ Ω arbitrarily. Suppose first that UFN,c
(y) ≤

maxk=1,...,N fk. Then, for any x ∈ Ω, it holds that UFN,c
(x) − maxk=1,...,N fk ≤

UFN,c
(x) − UFN,c

(y) ≤ c‖x − y‖, where the latter inequality is due to the Lipschitz

29



property, and therefore the right hand side of (23) equals UFN,c
(x)−maxk=1,...,N fk.

Since s(y) ≤ UFN,c
(y) ≤ maxk=1,...,N fk, s(xk) = fk, k = 1, . . . , N , and

max
s∈FN,c

s(x) = UFN,c
(x),

it follows that also the left hand side of (23) equals UFN,c
(x)−maxk=1,...,N fk.

Now, suppose conversely that, UFN,c
(y) ≥ maxk=1,...,N fk holds and let α ∈

[LFN,c
(y),UFN,c

(y)]. By Kirszbraun’s Theorem ([11]), ∃s ∈ FN,c with s(y) = α. By
the Lipschitz assumption for the function set FN,c, it then holds that

s(x) ≤ s(y) + c‖x− y‖ = α+ c‖x− y‖, x ∈ Ω.

Define the function ξ : R × Ω × Ω → R by ξ(α,x,y) := maxs∈FN,c:s(y)=α {s(x)}. By
the definition (11) and Proposition 3.1, for any α ∈ [LFN,c

(y),UFN,c
(y)] and x,y ∈ Ω

it then holds that

ξ(α,x,y) = sup
s∈B(Ω):s(y)=α

{s(x) : s(x) ≤ fk + c‖x− xk‖, k = 1, . . . , N}

= sup
s∈B(Ω):s(y)=α

{
s(x) : s(x) ≤ UFN,c

(x)
}

= min
{UFN,c

(x), α+ c‖x− y‖} .
Now, denoting the left hand side of the equation (23) by ψ : Ω× Ω→ R, where
ψ(x,y) := maxs∈FN,c

{
s(x)−maxx′∈EN∪{y} {s(x′)}} it holds that

ψ(x,y) = max
s∈FN,c

{
s(x)−max

{
max

k=1,...,N
fk, s(y)

}}
= max

α∈[LFN,c
(y),UFN,c

(y)]
{η(α,x,y)} ,

where, for any α ∈ [LFN,c
(y),UFN,c

(y)] and x,y ∈ Ω,

η(α,x,y) := max
s∈FN,c:s(y)=α

{
s(x)−max

{
max

k=1,...,N
fk, α

}}
= max

s∈FN,c:s(y)=α
{s(x)} −max

{
max

k=1,...,N
fk, α

}
= ξ(α,x,y)−max

{
max

k=1,...,N
fk, α

}
= min

{
UFN,c

(x), α+ c‖x− y‖
}
−max

{
max

k=1,...,N
fk, α

}
= min

{
UFN,c

(x)− max
k=1,...,N

fk, UFN,c
(x)− α,

α+ c‖x− y‖ − max
k=1,...,N

fk, c‖x− y‖
}
.

For ᾱ := maxk=1,...,N fk and any ε �= 0 it holds that

η(ᾱ,x,y) = min
{
UFN,c

(x)− ᾱ, c‖x− y‖
}
≥ η(ᾱ+ ε,x,y).
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It then follows that the maximum value maxα∈[LFN,c
(y),UFN,c

(y)] η(α,x,y) is attained
at α = ᾱ = maxk=1,...,N fk. By assumption, ᾱ ≤ UFN,c

(y), and from the defini-
tions (7) and (11) it then follows that LFN,c

(x) ≤ ᾱ, x ∈ Ω. Hence, maxk=1,...,N fk ∈
[LFN,c

(y),UFN,c
(y)], thus implying that

ψ(x,y) = max
α∈[LFN,c

(y),UFN,c
(y)]
{η(α,x,y)}

= η( max
k=1,...,N

fk,x,y)

= min
{
UFN,c

(x)− max
k=1,...,N

fk, c‖x− y‖
}

and the lemma follows.
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