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The opportunisti
 repla
ement problem: analysis and 
asestudiesTorgny Almgren∗ Ni
las Andréasson† Mi
hael Patriksson‡Ann-Brith Strömberg§ Adam Woj
ie
howski¶May 2011Abstra
tWe 
onsider an optimization model for determining optimal opportunisti
 maintenan
e (thatis, 
omponent repla
ement) s
hedules when data is deterministi
. This problem generalizesthat of Di
kman, Epstein, and Wilamowsky [21℄ and is a natural starting point for themodelling of repla
ement s
hedules when 
omponent lives are non-deterministi
. We showthat this basi
 opportunisti
 repla
ement problem is NP-hard. We show that the 
onvexhull of the set of feasible repla
ement s
hedules is full-dimensional, and that all the ne
essaryinequalities also are fa
et-indu
ing. We show that when maintenan
e o

asions are �xed, theremaining problem 
an be stated as a linear program; when maintenan
e 
osts are monotonewith time, the latter is solvable through a greedy pro
edure. Results from a series of 
asestudies performed in the areas of air
raft engine and wind turbine maintenan
e are alsoreported. These illustrate the advantages of utilizing opportunisti
 maintenan
e a
tivitiesbased on a 
omplete optimization model, as 
ompared to simpler poli
ies.1 Introdu
tionThe importan
e of performing maintenan
e operations well�and of improving the state of theart�seems to be impossible to overestimate: a

ording to [39, Ch. 1℄, maintenan
e 
osts inplants in the US alone a

ounted for more than $600 billion ($600 · 109) in 1981, more than $800billion in 1991, and were then proje
ted to in
rease to be
ome more than $1200 billion by theyear 2000. It is stated that these evaluations indi
ate that on average one third, or $250 billion,of all maintenan
e dollars are wasted through ine�e
tive maintenan
e management methods.A

ording to a re
ent study (made by Forum Vision Instandhaltung, Germany), maintenan
e
osts in the manufa
turing industry within the EU amount to roughly $2000 billion per year.Studies over the last 20 years have indi
ated that around Europe, the dire
t 
ost of maintenan
eis equivalent to between 4% and 8% of total sales turnover. Also in these 
ases, it is quitenatural to assume that not all the money spent is spent well: a

ording to information gatheredby the Swedish Center for Maintenan
e Management, maintenan
e is often performed in an un-
oordinated and/or 
orre
tive only (that is, after failure has o

ured) fashion, resulting in toofrequently needing to shut down produ
tion; surprisingly often equipment failure is triggered
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by inspe
tions and the 
ondition monitoring itself. A

ording to a study on fossil power plants([16℄) 56% of the for
ed outages o

ured within one week from an intrusive maintenan
e task.One obje
tive with 
onstru
ting and studying mathemati
al models for the optimization of thes
heduling of maintenan
e and inspe
tion a
tivities is to mitigate some of these problems, andto thereby 
ontribute to a shift of fo
us from 
onsidering maintenan
e as mainly a 
ost-indu
inga
tivity to that of an investment in availability improvement.One strategy for planning maintenan
e a
tivities is so 
alled opportunisti
 maintenan
e, inwhi
h a mathemati
al model is utilized to de
ide whether, at a (possibly already planned) main-tenan
e o

asion, more than the ne
essary maintenan
e a
tivities should be performed; we mayrefer to this as preventive maintenan
e a
tivities at an opportunity. A

ording to Di
kman et al.[21℄, Jorgenson and Radner [36℄ introdu
ed the original opportunisti
 repla
ement/maintenan
eproblem. They 
onsidered a system of sto
hasti
ally failing 
omponents, whi
h in
ur extensivemaintenan
e 
osts upon failure, that is, for shutting down and disassembling the system. Whenthe system is down for whatever reason, 
omponents may be repla
ed at no additional mainte-nan
e 
ost. Thereby, opportunities arise to trade o� remaining life of 
omponents in order toavoid maintenan
e 
osts asso
iated with 
omponent failure, perhaps already in the near future.This is their main motive for studying the problem.Our original motivation for studying the repla
ement problem was a proje
t 
on
erning theoptimization of jet engine maintenan
e s
hedules at Volvo Aero Corporation (VAC). An air
raftengine 
onsists of thousands of parts. Some of the parts are safety-
riti
al, whi
h means that ifthey fail there will be an engine breakdown, possibly with 
atastrophi
 
onsequen
es. Therefore,the safety-
riti
al parts have �xed life limits (before whi
h the probability of failure is e�e
tivelyzero), and must be repla
ed before they are rea
hed. Hen
e, we 
onsider, as does VAC, thesafety-
riti
al parts as having deterministi
 lives. (The 
orresponding situation is present, forexample, in nu
lear power plants; see [30, 17℄.) All other parts of the engine are 
onsideredto have sto
hasti
 lives; therefore, their life limits need to be estimated, whi
h in turn makesit mu
h more di�
ult to 
ompute a reliable repla
ement s
hedule. For some of these partsfailure distributions may be 
omputed from histori
al data and monitoring observations. Thisinformation 
ould then be dis
retized and used as an input into optimization models. This wasthe subje
t of two PhD proje
ts (see [4, 55℄).Taking into a

ount parts that are either deterministi
 or sto
hasti
 in a uni�ed model isquite a lot more 
omplex than what has been studied in the past; even sto
hasti
 models foundin the literature typi
ally do not in
orporate failure distributions but failure intensities only,and solution approa
hes provide simple maintenan
e poli
ies for in�nite horizon problems; seefurther the survey in Se
tion 3.The purpose of the present paper is to initiate a detailed mathemati
al study of a modelof the opportunisti
 repla
ement problem, to be de�ned below. In the near future we will
onsider several extensions thereof. In a re
ent 
ase study at VAC, the stru
ture of the jetengine, and in parti
ular the disassembly of its parts, has been taken better into a

ount throughdetailed 
ost dependen
ies between 
omponents. Further, re
ent appli
ations of opportunisti
maintenan
e optimization to the generation of wind and nu
lear power (e.g., [10℄) have resultedin the study of sto
hasti
 programming models, properly in
orporating sto
hasti
 informationabout the remaining lives of 
omponents.2 The opportunisti
 repla
ement modelConsider a set N of 
omponents; let N = |N |. Consider also a set T = {1, . . . , T} of times, with
T ≥ 2. Suppose a new 
omponent i ∈ N has a (deterministi
) life of Ti time steps. (Withoutloss of generality, 2 ≤ Ti ≤ T .) The pur
hase 
ost at time t ∈ T for 
omponent i is cit > 0.There is a �xed 
ost of dt > 0 asso
iated with a maintenan
e o

asion at time t, independent of2



the number of parts repla
ed.The obje
tive is to minimize the 
ost of having a working system between times 1 and T .Formally, we de�ne the opportunisti
 repla
ement problem as follows.De�nition 1 (opportunisti
 repla
ement problem). Given a �xed 
ost dt for a maintenan
e o

a-sion and a 
ost cit for repla
ing a 
omponent i ∈ N at time t ∈ T , �nd a maintenan
e s
heduleover the period T that minimizes the total maintenan
e 
ost and in whi
h, for ea
h 
omponent
i ∈ N , no period without repla
ement longer than the 
omponent's life Ti exist.Letting

zt =

{
1, if maintenan
e shall o

ur at time t,

0, otherwise, t ∈ T ,

xit =

{
1, if 
omponent i shall be repla
ed at time t,

0, otherwise, i ∈ N , t ∈ T ,the opportunisti
 repla
ement model is de�ned as that to
minimize

(x,z)

∑

t∈T

(∑

i∈N

citxit + dtzt

)
, (1a)

subject to

ℓ+Ti∑

t=ℓ+1

xit ≥ 1, ℓ = 0, . . . , T − Ti, i ∈ N , (1b)
xit ≤ zt, t ∈ T , i ∈ N , (1
)
xit ≥ 0, t ∈ T , i ∈ N , (1d)
zt ≤ 1, t ∈ T , (1e)

xit ∈ {0, 1}, t ∈ T , i ∈ N . (1f)
zt ∈ {0, 1}, t ∈ T . (1g)The 
onstraints (1b) ensure that ea
h part is repla
ed before the end of its life; the 
onstraints(1
) enfor
e the payment of the �xed maintenan
e 
ost dt whenever any part is repla
ed at time

t, and, on
e this 
ost is paid, indu
es maintenan
e opportunities at no extra maintenan
e 
ost.The remaining 
onstraints are de�nitional; the removal of (1f)�(1g) amounts to a 
ontinuousrelaxation of the problem.This model stems from [21℄; the model in [4℄ repla
es the original 
onstraints∑i∈N xit ≤ Nzt,
t ∈ T , in [21℄ with the equivalent but stronger 
onstraints (1
); the model (1), in turn, generalizesthe 
ost fun
tion in [4℄ to allow for time dependen
y.As a numeri
al illustration, we 
onsider an instan
e of (1) with T = 60, N = 4, T1 = 13,
T2 = 19, T3 = 34, T4 = 18, c1t = 80, c2t = 185, c3t = 160, and c4t = 125 for all t ∈ T . Thedata is 
hosen so that the relations between the lives and the 
osts are similar to those for thefan module of the RM12 engine, maintained at VAC. The model is solved for dt = 0, 10, and
1000 for all t (where dt = 10 represents the most reasonable value in the maintenan
e situationat VAC). For dt = 0, the optimal total number of repla
ement o

asions is 11 and there is noadvantage with repla
ing a 
omponent before its life limit is rea
hed. In
reasing the value of dtfrom 0 to 10 de
reases the optimal total number of repla
ement o

asions from 11 to �ve. Itis now bene�
ial to repla
e the 
omponents in larger groups and they are often repla
ed beforetheir respe
tive life limits are rea
hed. (Noti
e that the optimal solution obtained for dt = 10is, in fa
t, optimal also for the 
ase of dt = 0.) For dt = 1000 it is very important to utilizethe opportunity to repla
e several 
omponents at the same time. The optimal total number ofrepla
ement o

asions is four (whi
h is the minimum number of repla
ement o

asions for thisinstan
e). 3



Figure 1 shows optimal maintenan
e s
hedules for ea
h of the three 
ases. The horizontalaxis represents the 60 time steps and ea
h maintenan
e o

asion is represented by a verti
albar, where a dot at a 
ertain height represents a 
omponent of the 
orresponding type beingrepla
ed. The �gure 
learly illustrates how opportunisti
 repla
ement be
omes more bene�
ialwith an in
reasing �xed maintenan
e 
ost.
PSfrag repla
ements dt = 0

dt = 10

dt = 1000 timetimetime
Figure 1: Optimal maintenan
e s
hedules for dt = 0, 10, and 1000 for all t. When dt in
reasesfrom 0 to 10 the repla
ement o

asions 1�3, 5�7, and 9�11, are grouped into one o

asion ea
h.When dt is in
reased from 10 to 1000, the last four maintenan
e o

asions are rearranged intothree o

asions, also resulting in several more 
omponent repla
ements.The remainder of the paper is organized as follows. Se
tion 3 
ontains a survey of the mostrelevant literature on maintenan
e optimization. In Se
tion 4, we establish that the opportunisti
repla
ement problem is NP-hard, based on a redu
tion from the set 
overing problem. Se
tion 5presents some properties 
hara
terizing an optimal maintenan
e s
hedule. We show that ifthe variables zt are �xed to binary values, then the polyhedron arising from the 
ontinuousrelaxation of the variables xit is integral (i.e., possesses integral extreme points); in other words,the integrality restri
tions (1f) may be dropped. Moreover, we provide results, in part rea
hedin [21℄, on the possibility to a priori remove some maintenan
e o

asions from 
onsideration. InSe
tion 6 we perform a polyhedral study of the 
onvex hull of the set of feasible solutions to themodel (1), referred to as the repla
ement polytope. We show that the repla
ement polytope isfull-dimensional under natural assumptions and that the ne
essary inequality 
onstraints (1b)�(1e) in the original formulation (1) are fa
et-de�ning. Further, we show that they are notsu�
ient to 
ompletely des
ribe the repla
ement polytope. In Se
tion 7 we present results fromnumeri
al 
ase studies of problems with sto
hasti
 and deterministi
 lives, originating from theair
raft and wind power industries. We 
on
lude with remarks on 
urrent and planned resear
hendeavours.3 Literature overviewMajor resear
h e�orts on the mathemati
al modelling of, and methods for, maintenan
e andrepla
ement s
heduling were initiated during WWII at the military institute RAND at SantaMoni
a, CA, USA. (Prior to this e�ort isolated resear
h 
an be tra
ed ba
k at least to the1930s; see the histori
al review in [8℄.) The group at RAND in
luded Ri
hard Bellman, whoseinvention dynami
 programming was also the �rst e�
ient solution method applied in the area([3, 53, 9, 23℄). A later development took pla
e at Stanford University, where H. M. Wagner and
o-workers developed preventive maintenan
e and repla
ement models, starting from their integerprogramming work on s
heduling (e.g., [59℄). Maintenan
e planning models and methods alsofound a 
entral pla
e in OR text books around this time; 
f. [1, 58℄. (The perhaps �rst mentionof maintenan
e planning in text book form is found in the OR text by Morse and Kimball [41℄.)4



Several of these models 
an be found as appli
ations of dynami
 programming in Wagner's ORtext book ([58℄). In this early development, manpower planning was as an important part of theproblem as was the repla
ement part, as is eviden
ed in [41, p. 78℄, [58℄ as well as in the bookby Morse [40, Ch. 11℄.Common themes in this development are a fo
us on an in�nite planning horizon, few parts(often only one or two), and a quest for obtaining a simple maintenan
e/repla
ement poli
y.Perhaps more than anything, it re�e
ts the fa
t that (mixed) integer and 
ombinatorial opti-mization was not yet well developed. It also re�e
ts the fa
t that all problems were sto
hasti
,and the modelling and methodology development took pla
e in true OR fashion in a world wheremathemati
al statisti
s and mathemati
al programming are joint resear
h �elds. A good exam-ple of this interplay is the work of Morse, Barlow, Hunter, and others: Morse [40℄ analyzed apreventive maintenan
e model based on queueing theory; Barlow and Hunter [7℄ later provideda poli
y based on this work, fo
using on �reliability�. Further developments later lead to the
lassi
 mathemati
al statisti
s book on reliability by Barlow and Pros
han [8℄.Opportunisti
 maintenan
e models are less frequently found in the literature, 
ompared tothe preventive 
ase. Sasieni [53℄ presents a poli
y that in
ludes opportunities, for a Markovbased problem 
on
erning two parts. Campbell [13℄ is an ex
eptional, early paper from 1941.It 
on
erns the repla
ement of lamps, e.g. along a 
ity street. Two poli
ies 
an be utilized,where the �rst is to repla
e ea
h lamp when it breaks, and the other is to repla
e all lampsas soon as one breaks. (The latter therefore 
onstitutes an early opportunisti
 maintenan
epoli
y.) The resear
h question is when to go from the �rst poli
y to the se
ond. The paper isalso ex
eptional in that it dis
usses not only the in�nite horizon 
ase, but also a �nite planninghorizon. The �rst major developments on opportunisti
 maintenan
e following the work bySasieni were made at the beginning of the 1960s by RAND resear
hers (e.g., [36, 49, 50, 38℄),in parti
ular 
hara
terizations of optimal poli
ies for 
ertain problems. (See [60℄ for a thorougha

ount on poli
ies, and [35℄ for the early work done at RAND.)In many ways, later development has followed a similar path, in
orporating more parts, moreadvan
ed failure models and system states (e.g., [57℄), and also in 
ombination with, for example,produ
tion planning (see, e.g., [11℄). As stated in the surveys [47, 44℄, the in�nite horizon 
aseis still the one mainly treated, operations resear
h methods are still not well developed, and test
ases are also usually few and seldom realisti
. The development of �nite horizon models is in [44℄deemed essential for the maintenan
e of multi-
omponent systems to be
ome operational. Ourambition is to 
ontribute to an improvement in the analysis as well as utilization of maintenan
emodels, starting from the deterministi
 model studied here.The basi
 model (1) is developed from the one in [21℄, and it is therefore instrumentalto investigate the relation of the latter referen
e to the existing literature. We �rst tra
e itshistory. Epstein and Wilamowsky provide in [24℄ a simple poli
y for the maintenan
e of onelife-limited part (a jet engine 
ompressor unit) and an exponentially failing system (disks in theengine 
ompressor); they extend this poli
y to multiple life limited 
omponents in [25℄. In [27℄they establish the optimality of their poli
y wrt. the utilization of individual disks. In [26℄ theyisolate the life limited part of the problem, and study the deterministi
 problem for the 
ase of twoparts. Without providing an optimization model for their problem, they establish the spe
ial
ase of Proposition 2 below to the 
ase of time-independent 
osts, namely that maintenan
eneed only to be 
onsidered at points of failure of at least one of the parts. They are also able tofurther limit the number of interesting maintenan
e o

asions, and show that the time intervalbetween optimal repla
ements for a given part is non-in
reasing. (Dis
ussions on the di�
ultiesin extending poli
ies to more than two parts 
an be found, for example, in [19, 61℄.) Theabove referen
es 
on
ern the in�nite time horizon 
ase. Di
kman et al. [22℄ 
onsider also the�nite horizon 
ase of the deterministi
 problem with two parts, and extend the results in [26℄
on
erning patterns in optimal maintenan
e s
hedules. Their problem formulation has integer5



variables that 
orrespond to the a
tual maintenan
e times, and it is limited to the two-part 
ase.The 
onferen
e pro
eedings paper [20℄ presents a 0/1 integer formulation, whi
h, however, isnonlinear. The paper by Di
kman et al. [21℄, �nally, rea
hes a linear 0/1 formulation for thegeneral N -
omponent 
ase; it is a spe
ial 
ase of the problem (1), as dis
ussed in Se
tion 2.They also establish a version of Proposition 2, and that the integrality of the zt variables 
an berelaxed; the latter is done using a greedy argument, similar to that utilized in Proposition 3.A 
itation sear
h on these papers in February 2010 resulted in the following: The paper [25℄is 
ited in [26℄, in three surveys on maintenan
e s
heduling ([15, 18, 19℄), and in a 1990 paperon group poli
ies. The paper [26℄ is 
ited by four papers on poli
ies, none published later than1995, and the surveys [19, 56, 45℄. Our main sour
e, the paper [21℄, is 
ited only on
e, in [54℄ asa general referen
e to deterministi
 maintenan
e models. The very limited number of 
itationsshows that although the authors ta
kle a quite interesting problem, they have found no followersprior to this work.Also referen
es to the theoreti
al 
omplexity of maintenan
e optimization problems ares
ar
e. In [54℄, maintenan
e optimization is des
ribed as being possible to state as a partitioningproblem; it is then erroneously 
on
luded that optimal repla
ement therefore is an NP-hard prob-lem. In [31℄ a maintenan
e problem is studied where it is to be de
ided upon an optimal 
y
li
(periodi
) maintenan
e s
heduling pattern; the 
y
le length itself is assumed �xed. Referring tothe periodi
 maintenan
e problem in [5℄, where the 
y
le length is free, and the NP-hardnessproof of that problem in [6℄, they 
on
lude that their problem is also NP-hard. (The proof isnot 
omplete, however, and, indeed, in the survey [44℄ the authors state that the problem in [54℄�appears to be NP-hard.�) Their analysis 
annot be utilized in our setting, as we do not seekperiodi
 s
heduling patterns. In [12℄ the preventive maintenan
e of a railway system is studied.Both (short) routine a
tivities and (long) unique proje
ts must be s
heduled in a 
ertain period.Two versions of the problem are studied, one with �xed intervals between two 
onse
utive exe-
utions of the same routine work, and one with only a maximum interval; the problem resemblesin this sense that in [31℄, and the redu
tion from graph 
olouring utilized in [12℄ 
an not be usedfor our problem.For re
ent a

ounts of maintenan
e modelling in engineering and industry, see [32, 2, 43, 52℄(plants), [33, 28℄ (infrastru
ture), [34℄ (ele
tri
al networks), and [51, 14, 37℄ (produ
tion systems).4 Complexity analysisTheorem 1 (problem redu
tion). The set 
overing problem is polynomially redu
ible to theopportunisti
 repla
ement problem.Proof. Let {At}
m
t=1 be a given 
olle
tion of nonempty subsets of the �nite set {1, . . . , n} su
hthat ∪m

t=1At = {1, . . . , n}. Letting ait = 1 if i ∈ At and 0 otherwise, the set 
overing problem isrepresented as the following optimization model:minimize m∑

t=1

yt, (2a)subje
t to m∑

t=1

aityt ≥ 1, i = 1, . . . , n, (2b)
yt ∈ {0, 1}, t = 1, . . . ,m. (2
)Consider then an instan
e of the program (1) su
h that N = n, T = m, dt = 1, Ti = m, and

cit = 2(1−ait) for all i = 1, . . . , n and t = 1, . . . ,m. Sin
e Ti = T = m, ea
h 
omponent must berepla
ed on
e between the times 1 and T , and one repla
ement is always enough (for feasibility).Furthermore, in every optimal solution and for ea
h i and t su
h that ait = 0, xit = 0 holds sin
e6



cit = 2 > d and there exists a t̃ ∈ T with ait̃ = 1, whi
h implies that cit̃ = 0. Hen
e, this spe
i�
instan
e of (1) 
an be reformulated as the problem tominimize{ m∑

t=1

zt

∣∣∣∣∣

m∑

t=1

aitxit ≥ 1, i = 1, . . . , n, and (1
)�(1g) hold } . (3)An optimal solution (x∗, z∗) to (3) is given by
z∗ ∈ argmin

z∈{0,1}m

{
m∑

t=1

zt

∣∣∣∣∣

m∑

t=1

aitzt ≥ 1, i = 1, . . . , n

} (4)and x∗
it = aitz

∗
t , i = 1, . . . , n, t = 1, . . . ,m. The result then follows, sin
e the program (4) isequivalent to (2).Sin
e the set 
overing de
ision problem is an NP-
omplete problem (see [29℄), it followsthat the set 
overing optimization problem is an NP-hard problem and thus the opportunisti
repla
ement problem is NP-hard.It should be mentioned that the 
omplexity of the instan
e of the opportunisti
 repla
ementproblem for whi
h the 
osts cit are non-in
reasing with time (i.e., ci,t+1 ≤ cit for all i and t) isstill an open question; this in
ludes the interesting spe
ial 
ase for whi
h the 
osts are 
onstantover time (i.e., cit = ci and dt = d for all i and t), as originally studied in [21℄ and [4℄.5 Spe
ial properties of optimal solutionsWe here present some spe
ial properties of the opportunisti
 repla
ement model (1). First weshow that the integrality 
onstraints on the variables xit 
an be relaxed. Then we review a resultfrom [21℄ and show that for instan
es of the model where 
osts are monotone with time therepla
ement a
tivities will only o

ur at times that are sums of positive integer multiples of lifelimits. Finally, we show that, again for monotone 
osts and given �xed binary values of the ztvariables, the optimal xit values 
an be obtained by a greedy algorithm.5.1 Integrality propertyThe following proposition 
on
erns integrality properties of the polyhedron in R

N×T de�ned by(1b)�(1d), when the variables zt, t ∈ T , are �xed to binary values. A

ordingly, we let z̃t ∈ {0, 1},
t ∈ T , and de�ne T̃ = {t ∈ T | z̃t = 1}.Proposition 1 (integral polyhedron). The polyhedron de�ned by (1b) and

xit ≤ 1, t ∈ T̃ , (5a)
xit ≤ 0, t ∈ T \ T̃ , (5b)for i ∈ N , is integral.Proof. Observe that the 
onstraint matrix A 
orresponding to the system of inequalities de�nedby (1b) and (5) has the 
onse
utive ones property (that is, for all rows i, if aik = aij = 1 then

ail = 1 for all k < l < j). Hen
e, [42, p. 544, Cor. 2.10℄ implies that the transpose of the
onstraint matrix AT is TU, and [42, p. 540, Prop. 2.1℄ in turn implies that the 
onstraintmatrix A is TU. Sin
e the right-hand sides of (1b) and (5) are all integral it follows from [42, p.541, Prop. 2.2℄ that the 
orresponding polyhedron is integral.The result of Proposition 1 implies that the binary requirements (1f) on the variables xit 
anbe relaxed, provided that the model (1) is to be solved using an algorithm that dete
ts extremeoptimal solutions to linear programming subproblems.7



5.2 Monotone 
ostsThe results presented in this se
tion are derived for instan
es of the model (1) for whi
h the 
ostsare non-in
reasing with time (that is, ci,t+1 ≤ cit and dt+1 ≤ dt for all i and t). For any problemwith 
osts that are non-de
reasing with time (that is, ci,t+1 ≥ cit and dt+1 ≥ dt for all i and t)the variable transformation x̂it = xi,T+1−t and ẑt = zT+1−t for all t ∈ T and i ∈ N results in anequivalent problem with 
osts being non-in
reasing with time. Therefore, analogous propertieshold for the latter 
ase.The next proposition extends the statement of [21, Thm. 2℄ from three to N 
omponents. Itstates that we may a priori set zt = 0 in (1) for ea
h t not being a non-negative sum of lives.Proposition 2 (a priori variable elimination for non-in
reasing 
osts). For all instan
es of (1) with
osts ful�lling ci,t+1 ≤ cit and dt+1 ≤ dt for all i and t, an optimal solution exists with zt = 0 forevery t ∈ T whi
h is not a sum of non-negative integer multiples of the life limits (that is, forevery t ∈ T su
h that {ℓ ∈ Z
N
+ |
∑

i∈N ℓiTi = t
}

= ∅).Proof. Consider a feasible solution to (1) with zt = 1 for some t that is not a positive sum oflives Ti, i ∈ N , and with obje
tive value f . Assume, without loss of generality, that t is theearliest time with su
h a property (i.e., all previous repla
ement times are positive sums of lives).This implies that all parts have remaining lives τi > 0 at time t. We 
an therefore postpone allrepla
ements made at t to t̃ = t + mini∈N τi. The time t̃ equals a positive sum of lives Ti. Theadjusted solution, with zt = 0 and zt̃ = 1, is feasible in (1) and its 
orresponding obje
tive value
f̃ ful�lls f̃ ≤ f . Apply this pro
edure to all t that are not positive sums of lives and for whi
h
zt = 1. The result follows.If the variables zt, t ∈ T , are assigned binary values, z̃t ∈ {0, 1}, the remaining optimizationmodel separates over the 
omponents i ∈ N and the 
orresponding 
onstraint matrix is TU. Forea
h 
omponent i ∈ N this model is thus given by

minimize
xi

{
∑

t∈T

citxit

∣∣∣∣∣

ℓ+Ti∑

t=ℓ+1

xit ≥ 1, ℓ = 0, . . . , T − Ti; 0 ≤ xit ≤ z̃t, t ∈ T

}
. (6)Using Algorithm 1 
omponent i is repla
ed as late as possible within its life and among the timepoints t ∈ T with z̃t = 1.Algorithm 1 (non-in
reasing 
ost greedy rule for 
omponent i ∈ N )

T̃ ←
{
t ∈ T

∣∣ z̃t = 1
}
∪ {T + 1}; x̃it ← 0 ∀t ∈ T ; t̃← min

{
t
∣∣ t ∈ T̃

}; s← 0; T̃ ← T̃ \ {t̃};while T̃ 6= ∅ do
t̂← min

{
t
∣∣ t ∈ T̃

};if Ti < t̂− s then x̃it̃ ← 1; s = t̃ end if
t̃← t̂; T̃ ← T̃ \ {t̃}end whilereturn x̃it ∀t ∈ TThe next proposition shows that for non-in
reasing 
osts and binary values for zt, t ∈ T ,Algorithm 1 yields an optimal solution to (6).Proposition 3 (non-in
reasing greedy rule yields optimum). Assume that ci,t+1 ≤ cit holds, i ∈ N ,

t ∈ T \ {T}. Let z̃t ∈ {0, 1}, t ∈ T , and assume that the set T̃ = {t ∈ T | z̃t = 1} is su
h thatfor ea
h t ∈ T̃ ∪ {0} there is an s ∈ T̃ ∪ {T + 1} with 1 ≤ s− t ≤ mini∈N Ti. Then, Algorithm 1produ
es an optimal solution to the model (6).8



Proof. By assumption, x̃i is feasible in (6). Let x̄i 6= x̃i be feasible in (6). Postpone, wherepossible, repla
ements 
orresponding to x̄i to the next time point in T̃ ∪ {T + 1}. This willtransform x̄i to x̃i without introdu
ing any additional repla
ements and at a non-in
reasing 
ost.Hen
e, ∑t∈T cit(x̃it − x̄it) ≤ 0 holds; the result follows.6 The repla
ement polytopeWe let the set S ⊂ R
N×T × {0, 1}T be de�ned by the values of the variables (x, z) that ful�lthe 
onstraints (1b)�(1e), (1g). The 
onvex hull of S, denoted conv S, is 
alled the repla
ementpolytope. By studying the fa
ial stru
ture of conv S and thereby des
ribing it by a �nite setof linear inequalities, it is possible to solve the problem using linear programming te
hniques.Our ambition here is to take the �rst steps towards su
h a 
omplete linear des
ription of therepla
ement polytope.We 
ompute the dimension of the repla
ement polytope and show, under weak and naturalassumptions, that all the ne
essary inequalities in (1b)�(1e) de�ne fa
ets of the same. However,by an example we show that these basi
 inequalities do not 
ompletely de�ne conv S.Proposition 4 (dimension of the repla
ement polytope). If Ti ≥ 2 for all i ∈ N , then thedimension of conv S is (N + 1)T , that is, conv S is full-dimensional.Proof. First note that sin
e S ⊆ R

(N+1)T it holds that dim(conv S) ≤ (N +1)T . Let the ve
tors
(xk, zk) ∈ B

(N+1)T , k ∈
{
0, . . . , (N + 1)T

}, be given by the following. For i ∈ N and t ∈ T , let
xk

it = 0 if k ∈
{
(N + 1)(t − 1) + i, (N + 1)t

} and xk
it = 1 otherwise. For t ∈ T , let zk

t = 0 if
k = (N + 1)t and zk

t = 1 otherwise. Sin
e Ti ≥ 2 for i ∈ N it holds that ∑ℓ+Ti

t=ℓ+1 xk
it ≥ 1 for all

i ∈ N , all ℓ ∈ {0, . . . , T − Ti}, and all k ∈
{
0, . . . , (N + 1)T

}.Moreover, for all t ∈ T and k ∈
{
0, . . . , (N + 1)T

} su
h that zk
t = 0 it holds that xk

it = 0,
i ∈ N ; it follows that (xk, zk) ∈ S. It 
an be veri�ed that the only solution to the system

(N+1)T∑

k=0

xk
itαk = 0, i ∈ N ,

(N+1)T∑

k=0

zk
t αk = 0, t ∈ T ,

(N+1)T∑

k=0

αk = 0,is αk = 0, k ∈
{
0, . . . , (N +1)T

}, whi
h implies that the ve
tors (xk, zk), k ∈
{
0, . . . , (N +1)T

},are a�nely independent. Hen
e, it holds that dim(conv S) ≥ (N + 1)T , thus implying that
dim(conv S) = (N + 1)T . The proposition follows.The repla
ement polytope is not full-dimensional if Ti = 1 for some i ∈ N , sin
e it thenholds that xit = zt = 1, t ∈ T , for all (x, z) ∈ conv S. Letting A= denote the matrix 
orre-sponding to the equality subsystem of conv S, this would yield that rankA= ≥ 2T and thus that
dim(conv S) ≤ (N − 1)T . However, the 
ase that Ti = 1 is not interesting in pra
ti
e sin
e itwould mean that 
omponent i must be repla
ed�and thus maintenan
e must be performed�atevery time step.The following result from polyhedral 
ombinatori
s ([42, Thm. 3.6 of Ch. I.4℄) is utilized todetermine fa
ets of conv S.Theorem 2 (
hara
terization of fa
ets). Let P be a full-dimensional polyhedron and let F ={
x ∈ P | πTx = π0

} be a proper fa
e of P (i.e., ∅ 6= F ⊂ P ). The following two statements areequivalent:1. F is a fa
et of P .2. If λTx = λ0 for all x ∈ F then (λ, λ0) = α(π, π0) for some α ∈ R.9



Proposition 5 (the inequalities (1b) de�ne fa
ets). If Ti ≥ 2 for all i ∈ N , then ea
h of theinequalities ∑ℓ+Ti

t=ℓ+1 xit ≥ 1, ℓ = 0, . . . , T − Ti, i ∈ N , de�nes a fa
et of conv S.Proof. Sin
e Ti ≥ 2 for i ∈ N , conv S is full-dimensional (
f. Proposition 4). Hen
e, we 
an usethe uniqueness 
hara
terization of the fa
et des
ription from Theorem 2 to show the proposition.For ea
h r ∈ N and ea
h ℓ ∈ {0, . . . , T − Tr}, let F̂rℓ =
{

(x, z) ∈ conv S |
∑ℓ+Tr

t=ℓ+1 xrt = 1
}.Further, let x0

it = z0
t = 1, i ∈ N , t ∈ T . Sin
e Ti ≥ 2 it follows that (x0, z0) ∈ S \ F̂rℓ. Then,de�ning the ve
tor (xA, zA) as xA

it = 0 if i = r and t ∈ {ℓ + 2, . . . , ℓ + Tr}, xA
it = 1 otherwise,and zA

t = 1, t ∈ T , it follows that (xA, zA
)
∈ F̂rℓ and hen
e that F̂rℓ is a proper fa
e of conv S.Moreover, there exist values of λ ∈ R

N×T , µ ∈ R
T , and ρ ∈ R su
h that the equation

∑

t∈T

(
∑

i∈N

λitxit + µtzt

)
= ρ (7)is satis�ed for all (x, z) ∈ F̂rℓ. We will show that for any value of α ∈ R, in a solution to (7) itholds that λit = α if i = r and t ∈ {ℓ + 1, . . . , ℓ + Tr}, λit = 0 otherwise, µt = 0, t ∈ T , and

ρ = α.Choose any i ∈ N \ {r} and any t ∈ T . Let, for j ∈ N and k ∈ T , x1
jk = 0 if j = i and

k = t, x1
jk = xA

jk otherwise, and let z1 = zA. It follows that (x1, z1) ∈ F̂rℓ. The ve
tors (xA, zA
)and (x1, z1

), respe
tively, inserted in (7) then yield that λit = 0. It follows that λit = 0 for all
i ∈ N \ {r} and all t ∈ T .For ea
h t ∈ T \ {ℓ + 1, . . . , ℓ + Tr + 1}, let, for i ∈ N and k ∈ T , x2

ik = 0 if i = r and k = t,
x2

ik = xA
ik otherwise, and let z2 = zA. It follows that (x2, z2

)
∈ F̂rℓ. The ve
tors (xA, zA

) and(
x2, z2

), respe
tively, inserted in (7) then yield that λrt = 0 for all t ∈ T \{ℓ+1, . . . , ℓ+Tr +1}.Further, let, for i ∈ N , xB
it = 0 if i = r and t = ℓ + 1, xB

it = 1 if i = r and t = ℓ + Tr,
xB

it = xA
it otherwise, and let zB = zA. Moreover, let, for i ∈ N , x3

it = 0 if i = r and t = ℓ+Tr +1,
x3

it = xB
it otherwise, and let z3 = zB. It follows that (x3, z3

)
∈ F̂rℓ. The ve
tors (xB, zB

) and(
x3, z3

), respe
tively, inserted in (7) then yield that λr,ℓ+Tr+1 = 0. The equation (7) 
an thenbe rewritten as
∑

t∈T

µtzt +

ℓ+Tr∑

t=ℓ+1

λrtxrt = ρ. (8)For ea
h t ∈ T \ {ℓ + 1, ℓ + Tr + 1}, let, for i ∈ N , x4
ik = 0 if k = t, x4

ik = xA
ik otherwise, andlet z4

k = 0 if k = t, and z4
k = zA

k otherwise. It follows that (x4, z4) ∈ F̂rℓ. The ve
tors (xA, zA
)and (x4, z4

), respe
tively, inserted in (8) then yield that µt = 0 for all t ∈ T \ {ℓ+ 1, ℓ+ Tr + 1}.Further, for ea
h t ∈ {ℓ + 1, ℓ + Tr + 1}, let, for i ∈ N , x5
ik = 0 if k = t, x5

ik = xB
ikotherwise, and let z5

k = 0 if k = t, and z5
k = zB

k otherwise. It follows that (x5, z5
)
∈ F̂rℓ. Theve
tors (xB, zB

) and (x5, z5
), respe
tively, inserted in (8) then yield that µℓ+1 = µℓ+Tr+1 = 0.Equation (8) 
an then be rewritten as

ℓ+Tr∑

t=ℓ+1

λrtxrt = ρ. (9)For ea
h t ∈ {ℓ+2, . . . , ℓ+Tr}, let for i ∈ N and k ∈ T , x6
ik = 0 if i = r and k = ℓ+1, x6

ik = 1if i = r and k = t, and x6
ik = xA

ik otherwise, and let z6 = zA. It follows that (x6, z6
)
∈ F̂rℓ. Theve
tors (xA, zA

) and (x6, z6
), respe
tively, inserted in (9) then yield that λr,ℓ+1 = λrt. Hen
e,

λrt is 
onstant over t ∈ {ℓ + 1, . . . , ℓ + Tr} and we de�ne λrt = λ, t ∈ {ℓ + 1, . . . , ℓ + Tr}.Sin
e (xA, zA
)
∈ F̂rℓ it follows that λ = ρ. Letting α = ρ, the equation (9) 
an be written as10



∑ℓ+Tr

t=ℓ+1 αxrt = α. From [42, pp. 91�92℄ then follows that the inequality ∑ℓ+Tr

t=ℓ+1 xrt ≥ 1 de�nesa fa
et of conv S.The te
hnique used to prove Proposition 5 
an be applied to Propositions 6�8 below, whoseproofs are given in Appendix A.Proposition 6 (the inequalities (1
) de�ne fa
ets). If Ti ≥ 2 for all i ∈ N , then ea
h of theinequalities xit ≤ zt, i ∈ N , t ∈ T , de�nes a fa
et of conv S.Proposition 7 (the inequalities (1d) de�ne fa
ets). If Ti ≥ 2 for all i ∈ N , then ea
h of theinequalities xkt ≥ 0, k ∈ N : Tk ≥ 3, t ∈ T , de�nes a fa
et of conv S.The inequalities xkt ≥ 0, t ∈ T (
f. Proposition 7) do not de�ne fa
ets for any k ∈ Nsu
h that Tk = 2 sin
e the 
onstraints (1d) are then implied by (1b)�(1
), (1e) a

ording to
xk,t+1 ≥ 1−xkt ≥ 1−zt ≥ 0, t ∈ T \{T}, and xk1 ≥ 1−xk2 ≥ 1−z2 ≥ 0. Hen
e, the 
onstraints(1d) need to be de�ned only for i ∈ N su
h that Ti ≥ 3.Proposition 8 (the inequalities (1e) de�ne fa
ets). If Ti ≥ 2 for all i ∈ N , then ea
h of theinequalities zt ≤ 1, t ∈ T , de�nes a fa
et of conv S.It follows from Propositions 5�8 that all of the inequalities ne
essary in the des
ription ofthe set S de�ne fa
ets of its 
onvex hull. A natural question then arises: Is conv S 
ompletelydes
ribed by the system (1b)�(1e)? The answer to this question is �no�, whi
h be
omes apparentby the following example.Example 1 (
ontinuous relaxation). Consider a system with N = 2, T1 = 2, T2 = 3 and T = 8.Let the 
osts be cit = 1 and dt = 1 for all i ∈ N and t ∈ T . An optimal solution to model (1) is

t 1 2 3 4 5 6 7 8
x1t 0 1 0 1 0 1 1 0
x2t 0 1 0 1 0 1 0 0
zt 0 1 0 1 0 1 1 0with the obje
tive value of 11. After relaxing the integrality 
onstratints (1f) and (1g) an optimalsolution is

t 1 2 3 4 5 6 7 8
x1t 1/2 1/2 1/2 1/2 1/2 1/2 1 0
x2t 0 1/2 1/2 0 1/2 1/2 1/2 0
zt 1/2 1/2 1/2 1/2 1/2 1/2 1 0with the obje
tive value of 10.5. Hen
e the 
onvex hull of the set of feasible solutions to thesystem (1b)�(1g) is not 
ompletely de�ned by the inequalities therein.A

ording to the Propositions 5�8, all of the ne
essary inequalities de�ne fa
ets of conv S.Sin
e, by Proposition 4, conv S is full-dimensional (under reasonable assumptions) the minimaldes
ription of conv S is unique. Therefore, all of these fa
ets are ne
essary in the des
ription of

conv S.Example 1 shows that the inequalities (1b)�(1e) are not su�
ient to des
ribe conv S. To
ompletely des
ribe conv S we hen
e need also other fa
ets; fa
et-generating pro
edures will bepresented in forth
oming work. 11



7 Case studiesIn this se
tion we present results from numeri
al 
ase studies of repla
ement problems with bothsto
hasti
 and deterministi
 
omponent lives. These problems originate from the air
raft engineand wind power industries. Here, all 
osts are time-independent, i.e., cit = ci, i ∈ N , and dt = d,
t ∈ T . We 
ompare the results from using solutions to the opportunisti
 repla
ement problemto that of two maintenan
e poli
ies and of performing no opportunisti
 maintenan
e. We alsoinvestigate how the maintenan
e o

asion 
ost d a�e
ts the relative performan
e of the methods.7.1 Deterministi
 and sto
hasti
 opportunisti
 repla
ement problemsFor the 
ases in whi
h the lives of all the 
omponents are deterministi
, an optimal maintenan
es
hedule is found by solving the opportunisti
 repla
ement problem (see Def. 1). Many main-tenan
e problems, however, in
lude 
omponents with sto
hasti
 lives, and we wish to apply ourmodel to these problems as well. When dealing with sto
hasti
 lives, an optimal maintenan
es
hedule for the entire planning period 
an not be determined; the a
tual failure of 
omponentswill provide new information, whi
h in turn will a�e
t the de
isions to be taken in the future.Therefore, we aim at �nding a maintenan
e poli
y, being a fun
tion that is 
alled upon failureof some 
omponent of the system in order to determine whi
h 
omponents to repla
e.De�nition 2 (maintenan
e poli
y). Given the 
ost d of a maintenan
e o

asion, the repla
ement
ost ci, the age ai and the life Ti (or life distribution) of ea
h 
omponent i ∈ N , and the remainingplanning horizon T ; de
ide whi
h 
omponent(s) to repla
e at the 
urrent maintenan
e o

asion.We use the following de�nition of a sto
hasti
 opportunisti
 repla
ement problem.De�nition 3 (sto
hasti
 opportunisti
 repla
ement problem). Given the 
ost d of a maintenan
eo

asion, the repla
ement 
ost ci, the age and the life distribution of ea
h 
omponent i ∈ N ;�nd a poli
y that minimizes the expe
ted 
ost for maintenan
e over the planning period from 0to T .The mean maintenan
e 
ost resulting from using a 
ertain poli
y over a large number of lifes
enarios re�e
ts how well the poli
y solves the sto
hasti
 opportunisti
 repla
ement problem.A s
enario for a sto
hasti
 opportunisti
 repla
ement problem is de�ned as a sequen
e {T k

i }
K
k=1(where K ∈ Z+ is large enough) of lives for ea
h 
omponent i ∈ N . These sequen
es are drawnfrom the 
omponents' life distributions; for 
omponents with deterministi
 lives, T k

i = Ti for all
k. We 
al
ulate the performan
e of a maintenan
e poli
y for a spe
i�
 s
enario a

ording to Alg.2; the parameters τi and ai denote the remaining life and age, respe
tively, of 
omponent i ∈ N .Algorithm 2 (total maintenan
e 
ost from using a poli
y for a given s
enario)

t← 0; cost← 0for i ∈ N do τi ← T 0
i ; ai ← 0; ki ← 1 end forrepeat

τ̄ ← min{ τi | i ∈ N }; t← t + τ̄ ; cost← cost+ dfor i ∈ N do τi ← τi − τ̄ ; ai ← ai + τ̄ end forApply a maintenan
e poli
y to de
ide whi
h 
omponents to repla
e, say R ⊆ Nfor i ∈ R do τi ← T ki

i ; ai ← 0; ki ← ki + 1; cost← cost+ ci end foruntil t ≥ Treturn costIn all the tests des
ribed in Se
tions 7.3 and 7.4, every sto
hasti
 
omponent has a Weibull12



distributed life with the probability density fun
tion f de�ned by
f(x;α, β) =

{
β
α

(
x
α

)β−1
exp

((
− x

α

)β)
, if x ≥ 0,

0, otherwise, (10)with the s
ale parameter α > 0 and the shape parameter β > 0 varying over the 
omponents.Weibull distributions are 
ommon for modeling lives of 
omponents (see e.g. [8, Ch. 2℄ and [55℄).The methodology developed for this 
ase study 
an, however, be applied to systems with arbitrarydistributions for the 
omponents' lives.7.2 The maintenan
e poli
ies 
ompared in this studyWe next des
ribe the spe
i�
 maintenan
e poli
ies 
onsidered in the 
ase study. These poli
iesare applied to both deterministi
 and sto
hasti
 problems. The simplest poli
y is to make no
oordination of 
omponent repla
ements.De�nition 4 (non-opportunisti
 maintenan
e poli
y). Repla
e failed 
omponents only.In the maintenan
e literature age repla
ement poli
ies are 
ommon; see e.g. [8, Ch. 3℄.De�nition 5 (age poli
y). Given age limits âi for all 
omponents i ∈ N , a 
omponent i ∈ N isrepla
ed if its age ai ≥ âi.Finding optimal values for the age limits âi in an age poli
y is 
omputationally demanding;we have implemented the heuristi
 pro
edure of Alg. 3; the value of the parameter ∆ > 0 is
hosen su
h that the 
al
ulations be
ome manageable. For all 
omponents i ∈ N let T̂i = Ti ifthe problem is deterministi
 and T̂i = mean(Ti) if the problem is sto
hasti
.Algorithm 3 (heuristi
 for 
omputing age limits âi, i ∈ N )
mincost←

∑
i∈N ⌊T/T̂i⌋(d + ci)for r ∈

{
0, 1, . . . ,

⌊
∆−1T

⌋} dofor i ∈ N do ai ← max(0, T̂i − r∆) end forApply Alg. 2 with the age poli
y of De�nition 5 and T k
i = T̂i, i ∈ N , k = 1, . . . ,K.if cost < mincost then δ ← r∆; mincost← cost end ifend forreturn max(0, T̂i − δ), i ∈ N .We have 
onstru
ted a value poli
y to resemble the behavior of the de
ision methodology usedat Volvo Aero Corporation (VAC), and whi
h is there 
ombined with some manual adjustments.De�nition 6 (value poli
y). Ea
h 
omponent i ∈ N with ci > d is assigned the value vi =

ci · τi/T̂i, where τi is the (expe
ted) remaining life of the 
omponent. An age limit Tmin ≤ T isgiven. A 
omponent i ∈ N is repla
ed if either ci > d ≥ vi holds or ci ≤ d holds and ai ≥ Tmin.For the air
raft engines at VAC the age limit Tmin is set to 150 �ight hours, whi
h is around20% of the shortest 
omponent life. Also for the wind turbine study we set Tmin to 20% of theshortest 
omponent life. Noti
e that the value poli
y 
an be interpreted as an age poli
y, forwhi
h âi = Ti(1− d/ci) if ci ≥ d and âi = Tmin otherwise.The deterministi
 optimization model (1) 
annot be dire
tly applied to a sto
hasti
 problem.Instead, we introdu
e the optimization poli
y that utilizes the following extension of the model(1): Introdu
e the time step 0 and the binary variables xi0, i ∈ N , representing opportunisti
repla
ements of the respe
tive 
omponents at the 
urrent maintenan
e o

asion, whi
h is trig-gered by the failure of some 
omponent. Hen
e, an opportunisti
 repla
ement of 
omponent i at13



time 0 generates the repla
ement 
ost ci but not the maintenan
e o

asion 
ost d. The obje
tive(1a) is thus modi�ed to minimize
(x,z)

T∑

t=0

∑

i∈N

cixit +
T∑

t=1

dzt. (11a)Sin
e, typi
ally, the 
omponents are not new, their (expe
ted) remaining lives τi ful�l τi ≤ T̂i,
i ∈ N , whi
h is a

ommodated by the 
onstraints

τi∑

t=0

xit ≥ 1, i ∈ N , (11b)
xi0 ∈ {0, 1}, i ∈ N . (11
)We refer to the model 
omposed by the variables xit, i ∈ N , zt, t ∈ T , the additional variables

xi0, i ∈ N , the obje
tive fun
tion (11a), and the 
onstraints (1b)�(1g), (11b)�(11
), as theextended opportunisti
 repla
ement model.De�nition 7 (optimization poli
y). Solve the extended opportunisti
 repla
ement model with Tibeing the (expe
ted) value of the life of 
omponent i ∈ N . Repla
e 
omponents a

ording to theoptimal solution at time 0, i.e. the optimal values of xi0, i ∈ N .The optimization models are implemented in the modelling language AMPL (version 11.1)and solved by the mixed integer programming solver CPLEX (version 11.1). The poli
ies and thes
enario generation are implemented in MATLAB (version 7.5). All the tests are performed on aLinux double pro
essor unit; ea
h integer programming problem in this 
ase study was solved inbetween 0.2 and 1 CPU-se
onds.7.3 Air
raft enginesWhen an air
raft engine is removed for overhaul it needs to be repla
ed by a spare engine sothat the air
raft 
an stay in servi
e during the maintenan
e period. This generates a large main-tenan
e o

asion 
ost whi
h is independent of the a
tual maintenan
e that is to be performed.The sour
es of the maintenan
e o

asion 
ost d are the 
ost for hiring a spare engine and thework, transportation, inspe
tion, and administration 
osts asso
iated with the engine ex
hange.The 
ost for pur
hasing a 
omponent i ∈ N and the work 
ost asso
iated with its repla
ement
onstitute the 
ost ci. An air
raft engine 
onsists of 
omponents with sto
hasti
 and/or deter-ministi
 lives. Some 
omponents are safety 
riti
al, whi
h means that their failure may lead to a
atastrophi
 out
ome. Su
h 
omponents are therefore assigned age limits�in terms of numbersof �ight hours�before whi
h they must be repla
ed. The probability that a failure o

urs beforethis limit is very low. We may therefore 
onsider the lives of these 
omponents as deterministi
.The non-safety 
riti
al 
omponents are repla
ed �on 
ondition�, i.e., if they fail during operationor if�at an inspe
tion�they are found to be (almost) failed. We 
all these 
omponents sto
has-ti
, and assume that they possess Weibull distributed lives, as suggested in [55℄. (Non-safety
riti
al 
omponents are repla
ed when 
ra
k lengths above 
ertain limits are observed; the 
asestudy in [55℄ on survival estimation models for an appli
ation to the 
ra
k growth in the noz-zle 
omponent of a low pressure turbine indi
ated that a non-stationary renewal pro
ess withWeibull distributed lives is a good model for the 
onditional life distribution.)The RM12 engine of the military air
raft JAS39 Gripen 
onsists of modules whi
h are 
om-posed by 
omponents; a module must be removed before any of its 
omponents 
an be repla
ed.Sin
e this stru
ture is more 
omplex than the system 
onsidered in the model (1) it 
annot beapplied to the whole engine. Thus, we here 
onsider one engine module at a time, namely thehigh and low pressure turbines; a mathemati
al model 
omprising the entire RM12 engine is thesubje
t of a forth
oming arti
le. 14



The data used for our tests originate from VAC; sin
e the RM12 data are 
on�dential the truevalues of the 
osts and lives of 
omponents are not revealed. We let the maintenan
e o

asion
ost d in
lude the 
ost of removing the module; the true value of d is denoted d0. When theparameter d is varied, all resulting total maintenan
e 
osts are divided by (the mean value of) the
ost of non-opportunisti
 maintenan
e obtained at d = d0; this value is denoted Cdet,d
nop (d0) and

Csto,d
nop (d0), respe
tively. When the parameter β is varied, all resulting total maintenan
e 
ostsare divided by the mean value of the 
ost of non-opportunisti
 maintenan
e obtained at β = 4(denoted Csto,β

nop (4)). The planning horizon T 
orresponds to 5000 �ight hours. The optimizationmodel (1) and the optimization poli
y employ time steps of 50 �ight hours. For the value poli
y,the parameter Tmin 
orresponds to 150 �ight hours.We evaluate the poli
ies for both deterministi
 and sto
hasti
 opportunisti
 repla
ementproblems. The expe
ted lives of the sto
hasti
 (on 
ondition) 
omponents are known but notthe 
orresponding distributions. The deterministi
 problems use the expe
ted values for thesto
hasti
 
omponents' lives. For the sto
hasti
 problems, simulations are performed with dif-ferent values of the shape parameter β in (10); for ea
h 
omponent and ea
h value of β, theparameter α is 
hosen su
h that the expe
ted life equals the known value.7.3.1 The low pressure turbineThe low pressure turbine (LPT) 
onsists of 10 
omponents, of whi
h six are on 
ondition andfour are safety 
riti
al. For the age poli
y, the parameter δ 
orresponds to 1050 �ight hours; thisvalue was 
hosen by Alg. 3 with ∆ = 50 �ight hours and d = d0.Figure 2 shows the results from the tests on the deterministi
 problem. Figure 2(a) showsthat, for d = d0 the total maintenan
e 
ost of using the optimization model is 34% lower thanthat of using the non-opportunisti
 poli
y. Furthermore, as the maintenan
e o

asion 
ost din
reases, all the poli
ies improve 
ompared to the non-opportunisti
 poli
y. Figure 2(b) showsthat, although the number of maintenan
e o

asions resulting from the optimization model isabout a third 
ompared to the non-opportunisti
 poli
y, the number of repla
ements of ea
h ofthe 
omponents is equal. The value and age poli
ies result in even fewer maintenan
e o

asions,but at the pri
e of repla
ing more 
omponents.
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(b)Figure 2: LPT�the deterministi
 problem solved by the optimization model and the threepoli
ies: (a) Resulting total maintenan
e 
osts for di�erent values of d. The box 
orrespondsto the a
tual maintenan
e o

asion 
ost d0 at VAC. (b) The number of repla
ements of therespe
tive 
omponents for d = d0. The rightmost set of bars shows the number of maintenan
eo

asions. 15



The tests on the sto
hasti
 opportunisti
 repla
ement problems are reported in Figure 3.Figure 3(a) shows the mean of the resulting total 
ost for maintenan
e when d is varied. Duringthese tests the sto
hasti
 
omponent lives were assigned Weibull distributions a

ording to:
β = 2 for 
omponents 1 and 5, β = 4 for 
omponents 4 and 9, and β = 6 for 
omponents 6and 10. Observe that the optimization poli
y performs well for all values of d. For d = d0 themean total maintenan
e 
ost of using the optimization poli
y is 17% lower than that of usingthe non-opportunisti
 poli
y. For the lowest values of d the optimization poli
y is, however,slightly worse than the non-opportunisti
 poli
y. The results illustrated in Figure 3(b) resemblethose of Figure 2(b). However, for the sto
hasti
 problem the optimization poli
y yields slightlymore 
omponent repla
ements than the non-opportunisti
 poli
y. In Figure 3(
) the sto
hasti

omponents' life distribution parameter β is varied (equally over the six 
omponents havingsto
hasti
 lives). Clearly, the optimization poli
y performs better than all the other poli
ies.Moreover, the di�eren
e between the optimization and non-opportunisti
 poli
ies grows as theun
ertainty de
reases (i.e., the value of β in
reases). Note that the value β = 1 
orrespondsto the exponential distribution; sin
e this means that the sto
hasti
 
omponents do not age,the optimal poli
y for these 
omponents would be non-opportunisti
. Nonetheless, sin
e some
omponents in the LPT have deterministi
 lives, the optimization poli
y may yield a lower 
ostalso for this 
ase.7.3.2 The high pressure turbineThe high pressure turbine (HPT) 
onsists of 9 
omponents, of whi
h �ve are on 
ondition andfour are safety 
riti
al. For the age poli
y, the parameter value δ is set to 250 �ight hours; thisvalue was 
hosen by Alg. 3 with ∆ = 50 �ight hours and d = d0.Figure 4 shows results from our tests on the deterministi
 problem. Figure 4(a) reveals trendsfor the age poli
y and the optimization model similar to those for the LPT. The di�eren
e betweenthe optimization model and the non-opportunisti
 poli
y is, however, smaller. For d = d0 thetotal maintenan
e 
ost of using the optimization model is 9% lower than that of using the non-opportunisti
 poli
y. Figure 4(b) shows that the number of maintenan
e o

asions is equal forthe optimization model and the age poli
y; this is 40% lower than that of the non-opportunisti
poli
y. The number of 
omponent repla
ements are equal for using the optimization modeland the non-opportunisti
 and age poli
ies, ex
ept that the age poli
y employs one additionalrepla
ement of 
omponent 2.Figure 5 shows results from the tests on the sto
hasti
 problem. Figure 5(a) shows themean of the resulting total maintenan
e 
ost when d is varied. For these tests the sto
hasti

omponent lives were assigned Weibull distributions a

ording to: β = 2 for 
omponents 4and 6, β = 4 for 
omponents 5 and 9, and β = 6 for 
omponent 7. For d = d0 the meantotal maintenan
e 
ost of using the optimization poli
y is 4% lower than that of using the non-opportunisti
 poli
y. Observe that the optimization poli
y performs the best for high values of
d; for low values of d, however, it performs slightly worse than all the other poli
ies. Figure 5(b)shows that the optimization poli
y produ
es slightly more 
omponent repla
ements than thenon-opportunisti
 poli
y. In Figure 5(
) the sto
hasti
 
omponents' life distributions are varied.Here, the optimization poli
y performs slightly worse than the age poli
y, but better than thevalue and non-opportunisti
 poli
ies. As for the LPT, the di�eren
e between the optimizationand non-opportunisti
 poli
ies grows when the un
ertainty de
reases (i.e., when in
reasing thevalue of β).7.4 Wind turbinesThe data used for the wind turbine 
ase study is based on the report [48, pp. D-18�D-20℄ andoriginates from a land based 2.5 MW wind turbine unit. We only 
onsider types of maintenan
e16
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(
)Figure 3: LPT�the sto
hasti
 problem (
omponents 1, 4, 5, 6, 9, and 10 having sto
hasti
 lives)solved by the four poli
ies: (a) Mean values of the resulting total maintenan
e 
osts for di�erentvalues of d. The box 
orresponds to the a
tual maintenan
e o

asion 
ost d0 at VAC. (b) Meannumber of repla
ements of the respe
tive 
omponents when β = 4 for all sto
hasti
 
omponentsand d = d0. The rightmost set of bars shows the mean of the number of maintenan
e o

asions.(
) Mean values of the resulting total maintenan
e 
osts for di�erent values of β.that require the use of a large 
onstru
tion 
rane. The mobilization 
ost during three days of this
onstru
tion 
rane is the main bulk of the maintenan
e o

asion 
ost. The report only provides atotal 
rane 
ost for a set of maintenan
e a
tivities that varies between $39 000 and $84 000, whi
himplies that the mobilization 
ost is at most $39 000. After 
onsulting wind power experts thevalue d0 = $30 000 was 
hosen. The maintenan
e o

asion 
ost for a wind turbine does, however,depend on the distan
e between the wind farm and the 
rane depot, whether the wind turbine island based or o�shore, and whether 
osts 
onne
ted with produ
tion losses are in
luded or not;this 
ost may therefore very well vary by a 
ouple of orders of magnitude.The wind turbine in
ludes �ve 
omponents that require a 
onstru
tion 
rane for maintenan
e:blades, pit
h bearing, main bearing, gearbox, and generator. The maintenan
e a
tivities onthese 
omponents are listed in Table 1 and ea
h a
tivity is regarded as a 
omponent i ∈ N(in the remainder of this se
tion, these terms will also be used inter
hangeably). Note thatsome 
omponents are identi
al, for instan
e 
omponents i ∈ {5, 6, 7} are all pit
h bearings. Therepla
ement 
ost ci for ea
h a
tivity i ∈ N was 
al
ulated a

ording to: ci = (material 
ost) +(total 
rane 
ost) − d0 + (labour hours)×(labour hour 
ost), where the labour hour 
ost wasset to $50. Most wind turbines are 
urrently at the beginning of their life span, whi
h impliesthat reliable failure data is s
ar
e. Therefore, many wind power farms employ non-opportunisti
17
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(b)Figure 4: HPT�the deterministi
 problem solved by the optimization model and the threepoli
ies: (a) Resulting total maintenan
e 
osts for di�erent values of d. The box 
orrespondsto the a
tual maintenan
e o

asion 
ost d0 at VAC. (b) The number of repla
ements of therespe
tive 
omponents at d = d0. The rightmost set of bars shows the number of maintenan
eo

asions.maintenan
e planning. We 
onsider one wind turbine1 and assume that reliable distributionsof 
omponent lives are available. The 
omponent lives are assigned Weibull distributions; therespe
tive values of the parameters α and β are shown in Table 1. Note that most 
omponentshave exponential life distributions (i.e., β = 1).no. 
omponent mate- total labour repla
e- α βrial 
rane need ment
ost 
ost 
ost, ci(k$) (k$) (hours) (k$) (years)1�3 blades: stru
tural maint. 89 39 49 101 400 1.04 blades: non-stru
tural maint. 27 39 246 48 20 1.05�7 pit
h bearing 31 39 69 43 400 1.08 main bearing 30 84 147 91 400 1.09 gearbox: gear 122 30 0 122 400 1.010 gearbox: regular bearings 81 30 71 85 20 3.511 gearbox: high speed bearings 81 84 46 137 20 3.512 generator: rotor 95 30 14 96 400 1.013�14 generator: bearings 6 60 10 36 17 3.5Table 1: The 
omponents/maintenan
e a
tivities of the wind turbine problem. The total 
rane
ost is the 
ost of mobilization and use of 
rane during the maintenan
e a
tivity. Labour hoursis the number of working hours of external personal required for the maintenan
e a
tivity.A

ording to [48, p. A-3℄, non-stru
tural repair of blades is always performed simultaneouslyon all three blades; it is hen
e 
onsidered as one a
tivity. On some 
omponents, more thanone maintenan
e a
tivity 
an be performed: stru
tural and non-stru
tural maintenan
e of the1It would be more bene�
ial to 
onsider maintenan
e planning for an entire wind farm and also to in
ludeprodu
tion planning and 
osts in the mathemati
al model. As for a 
omplete air
raft engine, this would, however,require a more 
omplex model and is a topi
 for future resear
h.18
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(
)Figure 5: HPT�the sto
hasti
 problem (the 
omponents 4, 5, 6, 7, and 9 having sto
hasti
 lives)solved by the four poli
ies: (a) Mean values of the resulting total maintenan
e 
osts for di�erentvalues of d. The box 
orresponds to the a
tual maintenan
e o

asion 
ost d0 at VAC. (b) Meannumber of repla
ements of the respe
tive 
omponents for β = 4 and d = d0. The rightmost setof bars shows the mean value of the number of maintenan
e o

asions. (
) Mean values of theresulting total maintenan
e 
osts for di�erent values of β.blades, the repla
ement of the gear, the high speed bearings, and the regular bearings of thegearbox, and the repla
ement of the rotor and the bearings of the generator. Unfortunately, notall possible maintenan
e a
tivities are listed in the report; some are only listed together withother maintenan
e a
tivities.2 In order to adapt3 the problem to the form used in model (1) weneed data for ea
h individual maintenan
e a
tivity. The data was transformed a

ording to thefollowing: Let A1 and A2 be two maintenan
e a
tivities and assume that data for A1 and A1∪A2is available. Let kA be the 
ost of the 
omponent (or the number of labour hours asso
iatedto the performan
e of the maintenan
e a
tivity) A; then, kA2
= kA1∪A2

− kA1
. Let k̂A be thetotal 
rane 
ost for a
tivity A. Sin
e this in
ludes a mobilization 
ost d0, we instead obtain

k̂A2
= k̂A1∪A2

− k̂A1
+d0. The distribution of failures demanding the a
tivity A2 to be performedis assumed to equal that of failures demanding the performan
e of a
tivity A1 ∪ A2. We haveused the original data for the stru
tural and non-stru
tural repair of blades, sin
e the risk of afailure that demands these maintenan
e a
tivities is not a�e
ted by the age of the blades (sin
e2For instan
e, for the gearbox the repla
ement of both the gear and the bearings and that of the bearings onlyare listed, but not the repla
ement of the gear only.3We 
ould easily adapt the model (1) to in
lude su
h dependen
ies by introdu
ing additional variables and
onstraints, but sin
e the topi
 of the arti
le is the model itself we 
hoose to adapt the problem data.19



the time points for these types of failures are exponentially distributed).The deterministi
 problem is obtained by repla
ing the lives of all 
omponents by theirrespe
tive expe
ted values. The time horizon is set to 25 years, whi
h 
orresponds to the expe
tedte
hni
al life of a wind turbine. For the extended opportunisti
 repla
ement model we use timesteps of 0.25 years. For the value poli
y the parameter Tmin represents three years. For the agepoli
y the parameter δ represents 5 years; this value was 
hosen by Alg. 3 with ∆ = 0.25 yearsand d = d0.Figure 6 shows the results of the test on the deterministi
 problem. The problem is rathertrivial, sin
e it 
omprises nine 
omponents whose lives are longer than the time horizon and �ve
omponents whi
h will all fail exa
tly on
e during the life of the turbine. The optimal solutionis to repla
e all of these �ve 
omponents at the o

asion of the �rst failure; the remaining nine
omponents do not require any repla
ement. Figure 6(b) shows that for d = d0 all the poli
iesex
ept the non-opportunisti
 poli
y �nd the optimal solution. Figure 6(a) shows that the valueof the optimal solution at d = d0 is 13% lower than that produ
ed by the non-opportunisti
poli
y. The age poli
y always �nds the optimal solution; the value poli
y, however, fails to do sofor values of d > d0.
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(b)Figure 6: Wind turbine�the deterministi
 problem solved by the optimization model and thethree poli
ies: (a) Resulting total maintenan
e 
osts for di�erent values of d (in $). The box
orresponds to the a
tual value d0 = $30 000. (b) The number of repla
ements of the 
omponentswith lives shorter than the time horizon at d = d0. The rightmost set of bars shows the numberof maintenan
e o

asions.Figure 7 shows results from the tests on the sto
hasti
 problem. Note that only 
omponents
i ∈ {4, 10, 11, 13, 14} have expe
ted lives shorter than the planning horizon.4 Figure 7(a) showsthe results from varying the maintenan
e o

asion 
ost d. The optimization and age poli
iesperform better than the non-opportunisti
 poli
y for d ∈ {$60000, $120000}. For the lowervalues of d the non-opportunisti
 poli
y is better than or at least as good as the other poli
ies.For d = d0 the mean total maintenan
e 
ost of using the optimization poli
y is 4% higher thanthat of using the non-opportunisti
 poli
y. Figure 7(b) reveals that the number of maintenan
eo

asions resulting from using the optimization poli
y is lower than those of the age and non-opportunisti
 poli
ies. The number of individual 
omponent repla
ements is, however, higher forsome 
omponents. The number of maintenan
e o

asions is lowest for the value poli
y, but the
orresponding numbers of repla
ements of 
omponents 13 and 14 are mu
h higher than those4The remaining nine 
omponents have exponentially distributed lives with expe
ted values mu
h larger thanthe horizon. These 
omponents have only a marginal e�e
t on the mean value of the total repla
ement 
ost.20



resulting from using the other poli
ies. In Figure 7(
) the parameter β is varied equally for thenon-exponentially distributed lives of 
omponents 10, 11, 13, and 14, while the lives of the otherten 
omponents stay exponentially distributed (i.e., β = 1). Observe that for higher values of βthe optimization and age poli
ies outperform the non-opportunisti
 and value poli
ies. This isexpe
ted, sin
e the life distributions then tend to deterministi
 ones. Note that, for β = 1 noneof the 
omponents age, when
e the non-opportunisti
 poli
y is optimal.This 
ase study shows that a simple deterministi
 problem may be
ome mu
h more di�
ultwhen the 
omponent lives are sto
hasti
; it motivates the development of a repla
ement modelbased on sto
hasti
 programming (see [46℄).8 Con
lusions and future resear
hThe opportunisti
 repla
ement model is shown to have a ni
e inherent stru
ture, in that whilethe problem is NP-hard, the model redu
es to a linear program on
e the maintenan
e o

asionsare �xed; the latter 
an in some 
ases even be solved through a greedy pro
edure. Also, all thene
essary linear 
onstraints de�ne fa
ets of the 
onvex hull of the set of feasible s
hedules. Wehave re
ently identi�ed new 
lasses of fa
ets; their appli
ation will be reported in the near future.The numeri
al 
ase studies performed on appli
ations from the wind power and air
raftengine industries show that the optimization model 
an be utilized to redu
e 
osts in 
omparisonto using simpler maintenan
e poli
ies. The study also shows that the model 
an be used formaintenan
e s
heduling of 
omponents with non-deterministi
 lives; the 
ost redu
tion tends toin
rease with the maintenan
e o

asion 
ost and lower levels of un
ertainty regarding 
omponentlives.Work in progress in
lude the optimization of maintenan
e de
isions when 
omponent livesare non-deterministi
 through the use of a sto
hasti
 programming model. Even in the 
asewhen 
osts are independent of time, we have already shown that su
h a sto
hasti
 extensionof the 
urrent problem is NP-hard. In order to provide a 
omputationally feasible model wewill therefore also investigate how to best de�ne an a

urate enough s
enario representation ofthe 
omponent lives. Further, we intend to study models 
omprising su

essive improvementsof life distribution estimates through the addition of measurement-based information about the
ondition of the system.The opportunisti
 repla
ement model (1) is utilized in further studies of maintenan
e plan-ning optimization at Volvo Aero as well as in the nu
lear and wind power industries. In orderto in
orporate requirements spe
i�
 to the appli
ation (su
h as spare 
omponent repla
ementand redundan
ies within the system) extensions of the model are made. In the near future,experien
es from these a
tivities will be reported.A
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(
)Figure 7: Wind turbine�the sto
hasti
 problem solved by the four poli
ies: (a) Mean valuesof the resulting total maintenan
e 
osts for di�erent values of d (in $). The box 
orresponds tothe a
tual maintenan
e o

asion 
ost d0 = $30 000. (b) Mean number of repla
ements of the
omponents with expe
ted lives shorter than the horizon for d = d0; β = 3.5 for 
omponents10, 11, 13, and 14; β = 1 for the remaining ten 
omponents. The rightmost set of bars showsthe mean value of the number of maintenan
e o

asions. (
) Mean values of the resulting totalmaintenan
e 
osts for di�erent values of the parameter β (for 
omponents 10, 11, 13, and 14).
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A ProofsProof of Proposition 6Sin
e Ti ≥ 2 for i ∈ N , conv S is full-dimensional (
f. Proposition 4). Hen
e, we 
an use theuniqueness 
hara
terization of the fa
et des
ription from Theorem 2 to show the proposition.For ea
h r ∈ N and ea
h s ∈ T , let Frs = { (x, z) ∈ conv S | xrs = zs }. Further, let, for
i ∈ N and t ∈ T , x0

it = 0 if (i, t) = (r, s), x0
it = 1 otherwise, and let z0

t = 1, t ∈ T . It followsthat (x0, z0) ∈ S \ Frs. Then, letting xA
it = zA

t = 1, i ∈ N , t ∈ T , it follows that (xA, zA) ∈ Frsand hen
e that Frs is a proper fa
e of conv S.Moreover, there exists values of λ ∈ R
N×T , µ ∈ R

T , and ρ ∈ R su
h that the equation (7) issatis�ed for all (x, z) ∈ Frs. We will show that for any value of µs ∈ R, in a solution to (7) thefollowing hold: λit = −µs if (i, t) = (r, s), λit = 0 otherwise; µt = 0 for t ∈ T \ {s}; ρ = 0.For ea
h ℓ ∈ T \ {s}, let, for j ∈ N and t ∈ T , x1
jt = 0 if (j, t) = (r, ℓ), x1

jt = xA
jt otherwise,and let z1 = zA. It follows that (x1, z1) ∈ Frs. The ve
tors (xA, zA) and (x1, z1), respe
tively,inserted in (7) then yield that λrℓ = 0 for ℓ ∈ T \ {s}.Similarly, for ea
h k ∈ N \ {r} and ea
h ℓ ∈ T , let for j ∈ N and t ∈ T , x2

jt = 0 if
(j, t) = (k, ℓ), x2

jt = xA
jt otherwise, and let z2 = zA. It follows that (x2, z2) ∈ Frs. The ve
tors

(xA, zA) and (x2, z2), respe
tively, inserted in (7) then yield that λkℓ = 0 for k ∈ N \ {r} and
ℓ ∈ T ; hen
e, the equation (7) 
an be rewritten as

λrsxrs +
∑

t∈T

µtzt = ρ. (12)For ea
h ℓ ∈ T \ {s}, let, for j ∈ N and t ∈ T , x3
jt = z3

t = 0 if t = ℓ, x3
jt = z3

t = 1 otherwise.It follows that (x3, z3) ∈ Frs. The ve
tors (xA, zA) and (x3, z3), respe
tively, inserted in (12)then yields that µℓ = 0 for ℓ ∈ T \ {s}. Equation (12) 
an now be rewritten as
λrsxrs + µszs = ρ. (13)Let, for j ∈ N and t ∈ T , x4

jt = z4
t = 0 if t = s, x4

jt = z4
t = 1 otherwise. It follows that

(x4, z4) ∈ Frs. The ve
tors (x4, z4) and (xA, zA), respe
tively, inserted in (13) then yield that
0 = ρ = λrs + µs. The equation (13) 
an thus be rewritten as µsxrs = µszs, and from [42, pp.91�92℄ follows that the inequality xrs ≤ zs de�nes a fa
et of conv S.Proof of Proposition 7Sin
e Ti ≥ 2 for i ∈ N , conv S is full-dimensional (
f. Proposition 4). Hen
e, we 
an use theuniqueness 
hara
terization of the fa
et des
ription from Theorem 2 to show the proposition.For ea
h r ∈ N su
h that Tr ≥ 3 and ea
h s ∈ T , let F̃rs = { (x, z) ∈ conv S | xrs = 0 }.Further, let x0

it = z0
t = 1, i ∈ N , t ∈ T . It follows that (x0, z0) ∈ S \ F̃rs. Then letting, for

j ∈ N and t ∈ T , xA
jt = 0 if (j, t) = (r, s), xA

jt = 1 otherwise, and letting zA
t = 1, t ∈ T , it followsthat (xA, zA) ∈ F̃rs and hen
e that F̃rs is a proper fa
e of conv S.Moreover, there exists values of λ ∈ R

N×T , µ ∈ R
T , and ρ ∈ R su
h that the equation (7) issatis�ed for all (x, z) ∈ F̃rs. We will show that for any value of λrs ∈ R, in a solution to (7) thefollowing hold: λit = 0 if (i, t) ∈ {N × T } \ {(r, s)}; µt = 0 for t ∈ T ; ρ = 0.For ea
h i ∈ N and ea
h t ∈ T , let for j ∈ N and k ∈ T , x1

jk = 0 if (j, k) = (i, t), x1
jk = xA

jkotherwise, and let z1 = zA. Sin
e Tr ≥ 3, it follows that (x1, z1) ∈ F̃rs. The ve
tors (xA, zA)and (x1, z1), respe
tively, inserted in (7) then yield that λit = 0 for all (i, t) ∈ {N ×T }\{(r, s)}.The equation (7) 
an then be rewritten as (12).For ea
h t ∈ T , let, for j ∈ N and k ∈ T , x2
jk = z2

k = 0 if k = t, x2
jk = xA

jk and z2
k = zA

kotherwise. Sin
e Tr ≥ 3, it follows that (x2, z2) ∈ F̃rs. The ve
tors (xA, zA) and (x2, z2),respe
tively, inserted in (12) then yield that µt = 0 for t ∈ T .27



Sin
e xrs = 0 for all (x, z) ∈ F̃rs it follows that ρ = 0. Equation (12) 
an then be rewrittenas λrsxrs = 0, and from [42, pp. 91�92℄ follows that the inequality xrs ≥ 0 de�nes a fa
et of
conv S.Proof of Proposition 8Sin
e Ti ≥ 2 for i ∈ N , conv S is full-dimensional (
f. Proposition 4). Hen
e, we 
an use theuniqueness 
hara
terization of the fa
et des
ription from Theorem 2 to show the proposition.For ea
h s ∈ T , let Fs = { (x, z) ∈ conv S | zs = 1 }. Further, let, for j ∈ N and t ∈ T ,
x0

jt = z0
t = 0 if t = s, x0

jt = z0
t = 1, otherwise. It follows that (x0, z0) ∈ S \ Fs. Then, letting

xA
it = zA

t = 1, i ∈ N , t ∈ T , it follows that (xA, zA) ∈ Fs and that Fs is a proper fa
e of conv S.Moreover, there exists values of λ ∈ R
N×T , µ ∈ R

T , and ρ ∈ R su
h that the equation (7)is satis�ed for all (x, z) ∈ Fs. We will show that for any value of ρ ∈ R, in a solution to (7) thefollowing hold: λit = 0 for i ∈ N and t ∈ T ; µs = ρ, µt = 0 for t ∈ T \ {s}.For ea
h r ∈ N and ea
h ℓ ∈ T , let, for j ∈ N and t ∈ T , x1
jt = 0 if (j, t) = (r, ℓ), x1

jt = 1otherwise, and let z1 = zA. It follows that (x1, z1) ∈ Fs. The ve
tors (xA, zA) and (x1, z1),respe
tively, inserted in (7) then yield that λrℓ = 0 for r ∈ N and ℓ ∈ T . Equation (7) 
an thenbe rewritten as
∑

t∈T

µtzt = ρ. (14)For ea
h ℓ ∈ T \ {s}, let, for j ∈ N and t ∈ T , x2
jt = z2

t = 0 if t = ℓ, x2
jt = z2

t = 1 otherwise.It follows that (x2, z2) ∈ Fs. The ve
tors (xA, zA) and (x2, z2), respe
tively, inserted in (14) thenyield that µℓ = 0 for ℓ ∈ T \ {s}. Equation (14) 
an then be rewritten as µszs = ρ. Sin
e zs = 1for all (x, z) ∈ Fs it follows that µs = ρ, whi
h yields the equation ρzs = ρ. From [42, pp. 91�92℄then follows that the inequality zs ≤ 1 de�nes a fa
et of conv S.
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