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Abstract

We consider an optimization model for determining optimal opportunistic maintenance (that
is, component replacement) schedules when data is deterministic. This problem generalizes
that of Dickman, Epstein, and Wilamowsky [21] and is a natural starting point for the
modelling of replacement schedules when component lives are non-deterministic. We show
that this basic opportunistic replacement problem is NP-hard. We show that the convex
hull of the set of feasible replacement schedules is full-dimensional, and that all the necessary
inequalities also are facet-inducing. We show that when maintenance occasions are fixed, the
remaining problem can be stated as a linear program; when maintenance costs are monotone
with time, the latter is solvable through a greedy procedure. Results from a series of case
studies performed in the areas of aircraft engine and wind turbine maintenance are also
reported. These illustrate the advantages of utilizing opportunistic maintenance activities
based on a complete optimization model, as compared to simpler policies.

1 Introduction

The importance of performing maintenance operations well—and of improving the state of the
art seems to be impossible to overestimate: according to [39, Ch. 1|, maintenance costs in
plants in the US alone accounted for more than $600 billion ($600-10%) in 1981, more than $800
billion in 1991, and were then projected to increase to become more than $1200 billion by the
year 2000. Tt is stated that these evaluations indicate that on average one third, or $250 billion,
of all maintenance dollars are wasted through ineffective maintenance management methods.
According to a recent study (made by Forum Vision Instandhaltung, Germany), maintenance
costs in the manufacturing industry within the EU amount to roughly $2000 billion per year.
Studies over the last 20 years have indicated that around Europe, the direct cost of maintenance
is equivalent to between 4% and 8% of total sales turnover. Also in these cases, it is quite
natural to assume that not all the money spent is spent well: according to information gathered
by the Swedish Center for Maintenance Management, maintenance is often performed in an un-
coordinated and/or corrective only (that is, after failure has occured) fashion, resulting in too
frequently needing to shut down production; surprisingly often equipment failure is triggered
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by inspections and the condition monitoring itself. According to a study on fossil power plants
(|16]) 56% of the forced outages occured within one week from an intrusive maintenance task.
One objective with constructing and studying mathematical models for the optimization of the
scheduling of maintenance and inspection activities is to mitigate some of these problems, and
to thereby contribute to a shift of focus from considering maintenance as mainly a cost-inducing
activity to that of an investment in availability improvement.

One strategy for planning maintenance activities is so called opportunistic maintenance, in
which a mathematical model is utilized to decide whether, at a (possibly already planned) main-
tenance occasion, more than the necessary maintenance activities should be performed; we may
refer to this as preventive maintenance activities at an opportunity. According to Dickman et al.
[21], Jorgenson and Radner [36] introduced the original opportunistic replacement /maintenance
problem. They considered a system of stochastically failing components, which incur extensive
maintenance costs upon failure, that is, for shutting down and disassembling the system. When
the system is down for whatever reason, components may be replaced at no additional mainte-
nance cost. Thereby, opportunities arise to trade off remaining life of components in order to
avoid maintenance costs associated with component failure, perhaps already in the near future.
This is their main motive for studying the problem.

Our original motivation for studying the replacement problem was a project concerning the
optimization of jet engine maintenance schedules at Volvo Aero Corporation (VAC). An aircraft
engine consists of thousands of parts. Some of the parts are safety-critical, which means that if
they fail there will be an engine breakdown, possibly with catastrophic consequences. Therefore,
the safety-critical parts have fixed life limits (before which the probability of failure is effectively
zero), and must be replaced before they are reached. Hence, we consider, as does VAC, the
safety-critical parts as having deterministic lives. (The corresponding situation is present, for
example, in nuclear power plants; see [30, 17].) All other parts of the engine are considered
to have stochastic lives; therefore, their life limits need to be estimated, which in turn makes
it much more difficult to compute a reliable replacement schedule. For some of these parts
failure distributions may be computed from historical data and monitoring observations. This
information could then be discretized and used as an input into optimization models. This was
the subject of two PhD projects (see [4, 55|).

Taking into account parts that are either deterministic or stochastic in a unified model is
quite a lot more complex than what has been studied in the past; even stochastic models found
in the literature typically do not incorporate failure distributions but failure intensities only,
and solution approaches provide simple maintenance policies for infinite horizon problems; see
further the survey in Section 3.

The purpose of the present paper is to initiate a detailed mathematical study of a model
of the opportunistic replacement problem, to be defined below. In the near future we will
consider several extensions thereof. In a recent case study at VAC, the structure of the jet
engine, and in particular the disassembly of its parts, has been taken better into account through
detailed cost dependencies between components. Further, recent applications of opportunistic
maintenance optimization to the generation of wind and nuclear power (e.g., [10]) have resulted
in the study of stochastic programming models, properly incorporating stochastic information
about the remaining lives of components.

2 The opportunistic replacement model

Consider a set A/ of components; let N = |N/|. Consider also a set 7 = {1,...,T} of times, with
T > 2. Suppose a new component i € N has a (deterministic) life of T; time steps. (Without
loss of generality, 2 < T; < T.) The purchase cost at time t € 7 for component i is ¢;; > 0.
There is a fixed cost of d; > 0 associated with a maintenance occasion at time ¢, independent of



the number of parts replaced.
The objective is to minimize the cost of having a working system between times 1 and 7.
Formally, we define the opportunistic replacement problem as follows.

Definition 1 (opportunistic replacement problem). Given a fixed cost d; for a maintenance occa-
sion and a cost ¢;; for replacing a component i € A at time ¢ € 7, find a maintenance schedule
over the period 7 that minimizes the total maintenance cost and in which, for each component
1 € N, no period without replacement longer than the component’s life T; exist. ]

Letting

1, if maintenance shall occur at time ¢,
2t = teT,

0, otherwise,

ieN, teT,

1, if component ¢ shall be replaced at time ¢,
Lig = .
! 0, otherwise,

the opportunistic replacement model is defined as that to

minimize Z < Z CitTit + dt2t> ; (1a)

(2,2)

teT MieN
+T;
subject to Y wy > 1, (=0,....,.T—T;, ieN, (1b)
t=0+1
it < 2z, tGT, Z.GNv (1(’)
2t > 0, teT, ieN, (1d)
Zt < 1, te T, (16)
zip €{0,1}, t€T, ieN. (1f)
z €40,1}, teT. (1g)

The constraints (1b) ensure that each part is replaced before the end of its life; the constraints
(1c) enforce the payment of the fixed maintenance cost d; whenever any part is replaced at time
t, and, once this cost is paid, induces maintenance opportunities at no extra maintenance cost.
The remaining constraints are definitional; the removal of (1f) (1g) amounts to a continuous
relaxation of the problem.

This model stems from [21]; the model in [4] replaces the original constraints D, v 2 < Nz,
t € T, in [21] with the equivalent but stronger constraints (1c); the model (1), in turn, generalizes
the cost function in [4] to allow for time dependency.

As a numerical illustration, we consider an instance of (1) with "= 60, N = 4, T} = 13,
T2 = 19, T3 = 341 T4 = 18, Cit = 801 Cot = 185/ C3t = 160/ and Cqt = 125 for all t € 7. The
data is chosen so that the relations between the lives and the costs are similar to those for the
fan module of the RM12 engine, maintained at VAC. The model is solved for d; = 0, 10, and
1000 for all ¢ (where d; = 10 represents the most reasonable value in the maintenance situation
at VAC). For d; = 0, the optimal total number of replacement occasions is 11 and there is no
advantage with replacing a component before its life limit is reached. Increasing the value of d;
from 0 to 10 decreases the optimal total number of replacement occasions from 11 to five. It
is now beneficial to replace the components in larger groups and they are often replaced before
their respective life limits are reached. (Notice that the optimal solution obtained for d; = 10
is, in fact, optimal also for the case of d; = 0.) For d; = 1000 it is very important to utilize
the opportunity to replace several components at the same time. The optimal total number of
replacement occasions is four (which is the minimum number of replacement occasions for this
instance).



Figure 1 shows optimal maintenance schedules for each of the three cases. The horizontal
axis represents the 60 time steps and each maintenance occasion is represented by a vertical
bar, where a dot at a certain height represents a component of the corresponding type being
replaced. The figure clearly illustrates how opportunistic replacement becomes more beneficial
with an increasing fixed maintenance cost.

CELU S N S R .
G S S T S

Figure 1: Optimal maintenance schedules for d; = 0, 10, and 1000 for all t. When d; increases
from 0 to 10 the replacement occasions 1-3, 5—7, and 9-11, are grouped into one occasion each.
When d; is increased from 10 to 1000, the last four maintenance occasions are rearranged into
three occasions, also resulting in several more component replacements.

The remainder of the paper is organized as follows. Section 3 contains a survey of the most
relevant literature on maintenance optimization. In Section 4, we establish that the opportunistic
replacement problem is NP-hard, based on a reduction from the set covering problem. Section 5
presents some properties characterizing an optimal maintenance schedule. We show that if
the variables z; are fixed to binary values, then the polyhedron arising from the continuous
relaxation of the variables x;; is integral (i.e., possesses integral extreme points); in other words,
the integrality restrictions (1f) may be dropped. Moreover, we provide results, in part reached
in |21], on the possibility to a priori remove some maintenance occasions from consideration. In
Section 6 we perform a polyhedral study of the convex hull of the set of feasible solutions to the
model (1), referred to as the replacement polytope. We show that the replacement polytope is
full-dimensional under natural assumptions and that the necessary inequality constraints (1b)
(le) in the original formulation (1) are facet-defining. Further, we show that they are not
sufficient to completely describe the replacement polytope. In Section 7 we present results from
numerical case studies of problems with stochastic and deterministic lives, originating from the
aircraft and wind power industries. We conclude with remarks on current and planned research
endeavours.

3 Literature overview

Major research efforts on the mathematical modelling of, and methods for, maintenance and
replacement scheduling were initiated during WWII at the military institute RAND at Santa
Monica, CA, USA. (Prior to this effort isolated research can be traced back at least to the
1930s; see the historical review in [8].) The group at RAND included Richard Bellman, whose
invention dynamic programming was also the first efficient solution method applied in the area
(I3, 53, 9, 23]). A later development took place at Stanford University, where H. M. Wagner and
co-workers developed preventive maintenance and replacement models, starting from their integer
programming work on scheduling (e.g., [59]). Maintenance planning models and methods also
found a central place in OR text books around this time; cf. |1, 58|. (The perhaps first mention
of maintenance planning in text book form is found in the OR text by Morse and Kimball [41].)



Several of these models can be found as applications of dynamic programming in Wagner’s OR
text book ([58]). In this early development, manpower planning was as an important part of the
problem as was the replacement part, as is evidenced in [41, p. 78], [58] as well as in the book
by Morse [40, Ch. 11].

Common themes in this development are a focus on an infinite planning horizon, few parts
(often only one or two), and a quest for obtaining a simple maintenance/replacement policy.
Perhaps more than anything, it reflects the fact that (mixed) integer and combinatorial opti-
mization was not yet well developed. It also reflects the fact that all problems were stochastic,
and the modelling and methodology development took place in true OR fashion in a world where
mathematical statistics and mathematical programming are joint research fields. A good exam-
ple of this interplay is the work of Morse, Barlow, Hunter, and others: Morse [40]| analyzed a
preventive maintenance model based on queueing theory; Barlow and Hunter [7] later provided
a policy based on this work, focusing on ‘reliability”. Further developments later lead to the
classic mathematical statistics book on reliability by Barlow and Proschan [8].

Opportunistic maintenance models are less frequently found in the literature, compared to
the preventive case. Sasieni [53]| presents a policy that includes opportunities, for a Markov
based problem concerning two parts. Campbell [13] is an exceptional, early paper from 1941.
It concerns the replacement of lamps, e.g. along a city street. Two policies can be utilized,
where the first is to replace each lamp when it breaks, and the other is to replace all lamps
as soon as one breaks. (The latter therefore constitutes an early opportunistic maintenance
policy.) The research question is when to go from the first policy to the second. The paper is
also exceptional in that it discusses not only the infinite horizon case, but also a finite planning
horizon. The first major developments on opportunistic maintenance following the work by
Sasieni were made at the beginning of the 1960s by RAND researchers (e.g., [36, 49, 50, 38]),
in particular characterizations of optimal policies for certain problems. (See [60] for a thorough
account on policies, and [35] for the early work done at RAND.)

In many ways, later development has followed a similar path, incorporating more parts, more
advanced failure models and system states (e.g., [57]), and also in combination with, for example,
production planning (see, e.g., [11]). As stated in the surveys [47, 44], the infinite horizon case
is still the one mainly treated, operations research methods are still not well developed, and test
cases are also usually few and seldom realistic. The development of finite horizon models is in [44]
deemed essential for the maintenance of multi-component systems to become operational. Our
ambition is to contribute to an improvement in the analysis as well as utilization of maintenance
models, starting from the deterministic model studied here.

The basic model (1) is developed from the one in [21]|, and it is therefore instrumental
to investigate the relation of the latter reference to the existing literature. We first trace its
history. Epstein and Wilamowsky provide in [24] a simple policy for the maintenance of one
life-limited part (a jet engine compressor unit) and an exponentially failing system (disks in the
engine compressor); they extend this policy to multiple life limited components in [25]. In [27]
they establish the optimality of their policy wrt. the utilization of individual disks. In [26] they
isolate the life limited part of the problem, and study the deterministic problem for the case of two
parts. Without providing an optimization model for their problem, they establish the special
case of Proposition 2 below to the case of time-independent costs, namely that maintenance
need only to be considered at points of failure of at least one of the parts. They are also able to
further limit the number of interesting maintenance occasions, and show that the time interval
between optimal replacements for a given part is non-increasing. (Discussions on the difficulties
in extending policies to more than two parts can be found, for example, in [19, 61].) The
above references concern the infinite time horizon case. Dickman et al. [22]| consider also the
finite horizon case of the deterministic problem with two parts, and extend the results in |26]
concerning patterns in optimal maintenance schedules. Their problem formulation has integer



variables that correspond to the actual maintenance times, and it is limited to the two-part case.
The conference proceedings paper [20| presents a 0/1 integer formulation, which, however, is
nonlinear. The paper by Dickman et al. [21], finally, reaches a linear 0/1 formulation for the
general N-component case; it is a special case of the problem (1), as discussed in Section 2.
They also establish a version of Proposition 2, and that the integrality of the z; variables can be
relaxed; the latter is done using a greedy argument, similar to that utilized in Proposition 3.

A citation search on these papers in February 2010 resulted in the following: The paper |25]
is cited in [26], in three surveys on maintenance scheduling ([15, 18, 19]), and in a 1990 paper
on group policies. The paper [26] is cited by four papers on policies, none published later than
1995, and the surveys [19, 56, 45]. Our main source, the paper [21], is cited only once, in [54] as
a general reference to deterministic maintenance models. The very limited number of citations
shows that although the authors tackle a quite interesting problem, they have found no followers
prior to this work.

Also references to the theoretical complexity of maintenance optimization problems are
scarce. In [54], maintenance optimization is described as being possible to state as a partitioning
problem; it is then erroneously concluded that optimal replacement therefore is an NP-hard prob-
lem. In [31] a maintenance problem is studied where it is to be decided upon an optimal cyclic
(periodic) maintenance scheduling pattern; the cycle length itself is assumed fixed. Referring to
the periodic maintenance problem in [5|, where the cycle length is free, and the NP-hardness
proof of that problem in [6], they conclude that their problem is also NP-hard. (The proof is
not complete, however, and, indeed, in the survey [44] the authors state that the problem in [54]
“appears to be NP-hard.”) Their analysis cannot be utilized in our setting, as we do not seek
periodic scheduling patterns. In [12] the preventive maintenance of a railway system is studied.
Both (short) routine activities and (long) unique projects must be scheduled in a certain period.
Two versions of the problem are studied, one with fixed intervals between two consecutive exe-
cutions of the same routine work, and one with only a maximum interval; the problem resembles
in this sense that in [31], and the reduction from graph colouring utilized in [12]| can not be used
for our problem.

For recent accounts of maintenance modelling in engineering and industry, see [32, 2, 43, 52|
(plants), [33, 28] (infrastructure), [34] (electrical networks), and [51, 14, 37| (production systems).

4 Complexity analysis

Theorem 1 (problem reduction). The set covering problem is polynomially reducible to the
opportunistic replacement problem.

Proof. Let {A:}]%; be a given collection of nonempty subsets of the finite set {1,...,n} such
that U” Ay = {1,...,n}. Letting a;; = 1 if i € A; and 0 otherwise, the set covering problem is
represented as the following optimization model:

m

minimize Z Yt, (2a)
t=1
m

subject to Zaityt >1, i=1,...,n, (2b)
t=1

ytE{O,l}, t=1,...,m. (QC)

Consider then an instance of the program (1) such that N =n, T =m, d; = 1, T; = m, and
cit =2(1—ay) foralli=1,...,nand t =1,...,m. Since T; = T = m, each component must be
replaced once between the times 1 and 7', and one replacement is always enough (for feasibility).
Furthermore, in every optimal solution and for each ¢ and ¢ such that a;; = 0, x;; = 0 holds since



¢it = 2 > d and there exists a t € 7 with a;7 = 1, which implies that c¢;; = 0. Hence, this specific
instance of (1) can be reformulated as the problem to

m
minimize E 2t
t=1

An optimal solution (z*,2*) to (3) is given by

m
Zaitztzl,izl,...,n} (4)
t=1

and z}, = apzf, i = 1,...,n, t = 1,...,m. The result then follows, since the program (4) is

m
Zaz‘tJTz‘t >1,i=1,...,n, and (1c) (1g) hold } . (3)
t=1

m
z* € argmin E 2
ze{0,1}™ | 1=

equivalent to (2). O

Since the set covering decision problem is an NP-complete problem (see [29]), it follows
that the set covering optimization problem is an NP-hard problem and thus the opportunistic
replacement problem is NP-hard.

It should be mentioned that the complexity of the instance of the opportunistic replacement
problem for which the costs ¢;; are non-increasing with time (i.e., ¢; 141 < ¢ for all ¢ and t) is
still an open question; this includes the interesting special case for which the costs are constant
over time (i.e., ¢;; = ¢; and d; = d for all ¢ and t), as originally studied in [21] and [4].

5 Special properties of optimal solutions

We here present some special properties of the opportunistic replacement model (1). First we
show that the integrality constraints on the variables x; can be relaxed. Then we review a result
from [21] and show that for instances of the model where costs are monotone with time the
replacement activities will only occur at times that are sums of positive integer multiples of life
limits. Finally, we show that, again for monotone costs and given fixed binary values of the z
variables, the optimal x;; values can be obtained by a greedy algorithm.

5.1 Integrality property

The following proposition concerns integrality properties of the polyhedron in RV*7 defined by
(1b) (1d), when the variables 2, ¢ € 7, are fixed to binary values. Accordingly, we let Z; € {0, 1},
te7T,and define T ={teT |z =1}.

Proposition 1 (integral polyhedron). The polyhedron defined by (1b) and
T < 1, t e %, (53‘)
Ty <0, teT\T, (5b)

for i € N, is integral.

Proof. Observe that the constraint matrix A corresponding to the system of inequalities defined
by (1b) and (5) has the consecutive ones property (that is, for all rows i, if a;; = a;; = 1 then
aj; = 1 for all k < [ < j). Hence, [42, p. 544, Cor. 2.10| implies that the transpose of the
constraint matrix A7 is TU, and [42, p. 540, Prop. 2.1] in turn implies that the constraint
matrix A is TU. Since the right-hand sides of (1b) and (5) are all integral it follows from [42, p.
541, Prop. 2.2] that the corresponding polyhedron is integral. ]

The result of Proposition 1 implies that the binary requirements (1f) on the variables x;; can
be relaxed, provided that the model (1) is to be solved using an algorithm that detects extreme
optimal solutions to linear programming subproblems.



5.2 Monotone costs

The results presented in this section are derived for instances of the model (1) for which the costs
are non-increasing with time (that is, ¢; ++1 < ¢ and dipq < d¢ for all 4 and ¢). For any problem
with costs that are non-decreasing with time (that is, ¢; 111 > ¢ and dy41 > dy for all 4 and ¢)
the variable transformation &4 = ; 711—¢ and 2 = 2y for all t € 7 and ¢ € A results in an
equivalent problem with costs being non-increasing with time. Therefore, analogous properties
hold for the latter case.

The next proposition extends the statement of [21, Thm. 2| from three to N components. It
states that we may a priori set z; = 0 in (1) for each ¢ not being a non-negative sum of lives.

Proposition 2 (a priori variable elimination for non-increasing costs). For all instances of (1) with
costs fulfilling ¢; 111 < ¢y and dyg1 < d; for all i and t, an optimal solution exists with z; = 0 for
every t € 7 which is not a sum of non-negative integer multiples of the life limits (that is, for
every t € T such that {{ € ZY | >, .\ 4Ty =t} = 0).

Proof. Consider a feasible solution to (1) with z; = 1 for some ¢ that is not a positive sum of
lives T;, ¢ € N, and with objective value f. Assume, without loss of generality, that ¢ is the
earliest time with such a property (i.e., all previous replacement times are positive sums of lives).
This implies that all parts have remaining lives 7; > 0 at time ¢t. We can therefore postpone all
replacements made at ¢ to £ = ¢t + min;en 7;. The time £ equals a positive sum of lives 7. The
adjusted solution, with z; = 0 and z; = 1, is feasible in (1) and its corresponding objective value
f fulfills f < f. Apply this procedure to all ¢ that are not positive sums of lives and for which
zt = 1. The result follows. O

If the variables z;, t € 7, are assigned binary values, z; € {0, 1}, the remaining optimization
model separates over the components i € N and the corresponding constraint matrix is TU. For
each component ¢ € A this model is thus given by

0+T;
mingnize{z;citxit %: xit>1,€:0,...,T—Ti;0<xit<,€t,te’]'}. (6)
te t=0+1

Using Algorithm 1 component i is replaced as late as possible within its life and among the time
points t € T with z; = 1.

Algorithm 1 (non-increasing cost greedy rule for component i € \)
T — {teT!thl}U{T—l-l}; Ty — 0Vt € T; t~<—min{t|t€’j’}; 5« 0; ’j'<—’j'\{t~},
while 7 # 0 do
f<—min{t|t€’f};
if T; <t—s then 7,;+1; s=1t end if
Pt T T\ ()
end while
return 7; Vt € T

The next proposition shows that for non-increasing costs and binary values for z;, t € 7,
Algorithm 1 yields an optimal solution to (6).

Proposition 3 (non-increasing greedy rule yields optimum). Assume that ¢; ;11 < ¢ holds, i € N,
t e T\{T}. Let 3 € {0,1}, t € T, and assume that the set T = {t € T | % = 1} is such that
for each t € T U{0} there is an s € T U{T + 1} with 1 < s —t < minen T;. Then, Algorithm 1
produces an optimal solution to the model (6).



Proof. By assumption, Z; is feasible in (6). Let Z; # &; be feasible in (6). Postpone, where
possible, replacements corresponding to Z; to the next time point in TU {T + 1}. This will
transform Z; to Z; without introducing any additional replacements and at a non-increasing cost.
Hence, ), ¢it(Tit — i¢) < 0 holds; the result follows. O

6 The replacement polytope

We let the set S € R¥XT x {0,1}7 be defined by the values of the variables (x,z) that fulfil
the constraints (1b) (1e), (1g). The convex hull of S, denoted conv S, is called the replacement
polytope. By studying the facial structure of conv.S and thereby describing it by a finite set
of linear inequalities, it is possible to solve the problem using linear programming techniques.
Our ambition here is to take the first steps towards such a complete linear description of the
replacement polytope.

We compute the dimension of the replacement polytope and show, under weak and natural
assumptions, that all the necessary inequalities in (1b)—(1e) define facets of the same. However,
by an example we show that these basic inequalities do not completely define conv S.

Proposition 4 (dimension of the replacement polytope). If T; > 2 for all i € N, then the
dimension of conv S is (N + 1)T', that is, conv S is full-dimensional.

Proof. First note that since § € RWHDT it holds that dim(conv S) < (N 4 1)T. Let the vectors
(zF,2F) e BINHDT | ¢ {0,...,(N +1)T}, be given by the following. For ¢ € A/ and ¢ 6 T, let
ah = 0if k€ {( N+ (t—l) i,(N + 1)t} and 2%, = 1 otherwise. For t € 7, let zf = 0 if
k= (N + 1)t and 2} = 1 otherwise. Since T; > 2 for i € N it holds that Zf+€T+1 zk > 1 for all
ieN,all £€{0,....,T—T;},and all k € {0,..., (N + 1)T}.

Moreover, for all t 6 7 and k € {0,.. N + 1)T'} such that 2 = 0 it holds that zf, = 0,

i € N it follows that (z¥,2*) € S. Tt can be verlﬁed that the only solution to the system
(N+1)T (N+1)T (N+1)T
Z abap, =0, ieN, Z Fap =0, teT, Z ag =0,
k=0

isar=0,k¢€ {0 ,(N+1) T} which implies that the vectors (z*, 2%), k € {0 ,(N+1) T}
are affinely 1ndependent Hence, it holds that dim(convS) > (N + 1)T thus 1mply1ng that
dim(conv S) = (N + 1)T". The proposition follows. O

The replacement polytope is not full-dimensional if T; = 1 for some ¢ € N, since it then
holds that z;; = 2z = 1, t € T, for all (z,2) € convS. Letting A= denote the matrix corre-
sponding to the equality subsystem of conv S, this would yield that rank A= > 27T and thus that
dim(conv S) < (N — 1)T. However, the case that 7; = 1 is not interesting in practice since it
would mean that component ¢ must be replaced—and thus maintenance must be performed—at
every time step.

The following result from polyhedral combinatorics ([42, Thm. 3.6 of Ch. I1.4]) is utilized to
determine facets of conv S.

Theorem 2 (characterization of facets). Let P be a full-dimensional polyhedron and let F =
{33 cP|rte= 7r0} be a proper face of P (i.e., ) # F C P). The following two statements are
equivalent:

1. F is a facet of P.

2. If \Vx = )¢ for all z € F then (), \g) = a(m, mg) for some o € R. O



Proposition 5 (the inequalities (1b) define facets). If T; > 2 for all i« € N, then each of the
inequalities Zfi;fjrl iy >1,0=0,...,T —T;, i € N, defines a facet of conv S.

Proof. Since T; > 2 for i € N, conv S is full-dimensional (cf. Proposition 4). Hence, we can use
the uniqueness characterization of the facet description from Theorem 2 to show the proposition.

For each r € N and each £ € {0,...,T — T}, let B, = {(z,2) € conv S | ZereTJ:l T =1}

Further, let 2%, = 20 = 1,i € N, t € T. Since T; > 2 it follows that (z9,2°) e S\ F,. Then,
defining the vector (z4,2%) as xff = 0if i = r and t € {{+2,...,0+ T}, zi} = 1 otherwise,
and ZgA =1,t € T, it follows that (ajA ) € FM and hence that Frg is a proper face of conv S.
Moreover, there exist values of A\ € RVXT ;€ RT, and p € R such that the equation

Z (Z AitTi¢ + ,thzt> =p (7)

teT \ieN

is satisfied for all (z,z2) € F,y. We will show that for any value of a € R, in a solution to (7) it
holds that Ay = aif i =rand ¢t € {{+1,...,0+ T}, \it = 0 otherwise, u; = 0, t € 7, and
p=a.

Choose any i € N'\ {r} and any ¢t € 7. Let, for j € N and k € T, x}k:()ifj:iand
k=t, x}k = x?k otherwise, and let 2! = z*. Tt follows that (z!,2') € E,y. The vectors (a:A, ZA)
and (;1: zl), respectively, inserted in (7) then yield that A; = 0. It follows that A\;; = 0 for all
ZEN\{’F} and all t € 7.

For eachteT\{E—i—l A+T, 41}, let, fori e N and k € T, 2%, =0if i =r and k = ¢,
;1:2 = zh i otherwise, and let 22 = 22 Tt follows that (332,,22) € ﬁM. The vectors (ajA,zA) and
( ) respectively, inserted in (7) then yield that A,y = 0forallt € T\ {{+1,...,0+T,+1}.

Further, let, for i € N, 28 = 0ifi =randt =(+ 1,28 = 1ifi=r and t = £+ T,,
x?t = xé} otherwise, and let zB = 2. Moreover, let, for i € N, x?t =0ifi=randt=4+T,+1,

x?t = xiBt otherwise, and let 23 = 2B. Tt follows that (a:3,z3) € ﬁrg. The vectors (mB,zB) and

(22, 2%), respectively, inserted in (7) then yield that A, ¢y7,41 = 0. The equation (7) can then

be rewritten as

4T
Z ueze + Z ArtTrt = . (8)
teT t=0+1

For each t € T\ {{+ 1,0+ T, + 1}, let, for i € NV, xfk =0ifk=t, xfk = xﬁg otherwise, and
let z{ = 0if k = ¢, and z} = 2§* otherwise. It follows that (z%,2%) € E,,. The vectors (a:A, ZA)
and ($4, z4), respectively, inserted in (8) then yield that pu; =0 forallt € T\ {{+1,(+ T, +1}.

Further, for each t € {{ + 1,0 + T, + 1}, let, for i € N, 25, = 0if k = ¢, 20, = 335C
otherwise, and let Zk =0if k =t, and zl‘:’ = ZE otherwise. It follows that (;1:5,,25) € ﬁM. The
vectors (xB,zB) and (x 25), respectively, inserted in (8) then yield that pp1 = perr+1 = 0.
Equation (8) can then be rewritten as

0+Ty

Z ArtTre = p. (9)

t=0+1

For each t € {E—I—Q,...,E—i—TT}, let fori € Nand k € 7, w?k =0ifi =rand k = (+1, a:?k =1
if i =r and k =t, and 8 k= xﬁ: otherwise, and let 26 = 24, Tt follows that (mﬁ, z6) € I?’Tg. The
vectors ( A A) and (33 zﬁ), respectively, inserted in (9) then yield that A, ,41 = Ay Hence,
Apt 18 constant over t € {{+1,...,0+T,} and we define \py = N\, t € {{+1,...,0+T,}.
Since (a:A ) IS FTg it follows that A = p. Letting o = p, the equation (9) can be Written as

10



Zfiﬁl azy = . From [42, pp. 91-92] then follows that the inequality Zfiﬁl Tr¢ > 1 defines

a facet of conv S.

O

The technique used to prove Proposition 5 can be applied to Propositions 6—8 below, whose
proofs are given in Appendix A.

Proposition 6 (the inequalities (1c) define facets). If T; > 2 for all i € N, then each of the
inequalities xy < 2z, 1 € N, t € T, defines a facet of conv S. ]

Proposition 7 (the inequalities (1d) define facets). If T; > 2 for all i € N, then each of the
inequalities xp; > 0, k € N : T}, > 3, t € T, defines a facet of conv S. ]

The inequalities x; > 0, t € 7 (cf. Proposition 7) do not define facets for any k € N
such that T, = 2 since the constraints (1d) are then implied by (1b) (1c), (le) according to
Tpppr > 1—ape > 1—2>0,t € T\{T}, and 21 > 1 —x42 > 1 — 2 > 0. Hence, the constraints
(1d) need to be defined only for i € A such that T; > 3.

Proposition 8 (the inequalities (1e) define facets). If T; > 2 for all i € N, then each of the
inequalities z; < 1, t € T, defines a facet of conv S. ]

It follows from Propositions 58 that all of the inequalities necessary in the description of
the set S define facets of its convex hull. A natural question then arises: Is conv .S completely
described by the system (1b)—(1e)? The answer to this question is “no”, which becomes apparent
by the following example.

Example 1 (continuous relaxation). Consider a system with N =2, T} =2, T, =3 and T = 8.
Let the costs be ¢;; =1 and dy = 1 for all i € A and ¢t € 7. An optimal solution to model (1) is

t|1 2 3 45 6 7 8
z [0 1 0 1 0 1 1 0
0 |0 1 0 1 0 1 0 0

%[0 1.0 1 0 1 1 0

with the objective value of 11. After relaxing the integrality constratints (1f) and (1g) an optimal
solution is

tl 1 2 3 4 5 6 7
Ty | 1/2 1/2 1/2 1/2 172 1/2 1
o | 0 1/2 1/2 0 1/2 1/2 1/2

2| 1/2 1/2 1/2 1/2 1/2 1/2 1

o O O

with the objective value of 10.5. Hence the convex hull of the set of feasible solutions to the
system (1b)—(1g) is not completely defined by the inequalities therein. O

According to the Propositions 5-8, all of the necessary inequalities define facets of conv S.
Since, by Proposition 4, conv S is full-dimensional (under reasonable assumptions) the minimal
description of conv .S is unique. Therefore, all of these facets are necessary in the description of
conv S.

Example 1 shows that the inequalities (1b)—(1e) are not sufficient to describe conv S. To
completely describe conv S we hence need also other facets; facet-generating procedures will be
presented in forthcoming work.

11



7 Case studies

In this section we present results from numerical case studies of replacement problems with both
stochastic and deterministic component lives. These problems originate from the aircraft engine
and wind power industries. Here, all costs are time-independent, i.e., ¢;; = ¢;, i € N, and d; = d,
t € T. We compare the results from using solutions to the opportunistic replacement problem
to that of two maintenance policies and of performing no opportunistic maintenance. We also
investigate how the maintenance occasion cost d affects the relative performance of the methods.

7.1 Deterministic and stochastic opportunistic replacement problems

For the cases in which the lives of all the components are deterministic, an optimal maintenance
schedule is found by solving the opportunistic replacement problem (see Def. 1). Many main-
tenance problems, however, include components with stochastic lives, and we wish to apply our
model to these problems as well. When dealing with stochastic lives, an optimal maintenance
schedule for the entire planning period can not be determined; the actual failure of components
will provide new information, which in turn will affect the decisions to be taken in the future.
Therefore, we aim at finding a maintenance policy, being a function that is called upon failure
of some component of the system in order to determine which components to replace.

Definition 2 (maintenance policy). Given the cost d of a maintenance occasion, the replacement
cost ¢;, the age a; and the life T; (or life distribution) of each component 7 € A/, and the remaining
planning horizon T'; decide which component(s) to replace at the current maintenance occasion.

We use the following definition of a stochastic opportunistic replacement problem.

Definition 3 (stochastic opportunistic replacement problem). Given the cost d of a maintenance
occasion, the replacement cost ¢;, the age and the life distribution of each component i € N;
find a policy that minimizes the expected cost for maintenance over the planning period from 0
to T

The mean maintenance cost resulting from using a certain policy over a large number of life
scenarios reflects how well the policy solves the stochastic opportunistic replacement problem.
A scenario for a stochastic opportunistic replacement problem is defined as a sequence {Tf}sz1
(where K € Z is large enough) of lives for each component 7 € A/. These sequences are drawn
from the components’ life distributions; for components with deterministic lives, Tf = T; for all
k. We calculate the performance of a maintenance policy for a specific scenario according to Alg.
2; the parameters 7; and a; denote the remaining life and age, respectively, of component i € N.

Algorithm 2 (total maintenance cost from using a policy for a given scenario)

t«—0; cost«—0
for ie N do 7, < T a; < 0; k; — 1 end for
repeat
T—min{r | i€ N}; t—t+7; cost— cost+d
for ic¢ N dor, <7 —7, a; «— a; +7 end for
Apply a maintenance policy to decide which components to replace, say R C N
for ie R do T «— Tzkl a; — 0; k;j «— k;+ 1, cost «— cost+¢; end for
until ¢ > T
return cost

In all the tests described in Sections 7.3 and 7.4, every stochastic component has a Weibull
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distributed life with the probability density function f defined by

flzio, ) = {g (%)ﬂ_lexp ((—%)ﬁ> , ifz >0,

0, otherwise,

(10)

with the scale parameter o > 0 and the shape parameter § > 0 varying over the components.
Weibull distributions are common for modeling lives of components (see e.g. [8, Ch. 2] and [55]).
The methodology developed for this case study can, however, be applied to systems with arbitrary
distributions for the components’ lives.

7.2 The maintenance policies compared in this study

We next describe the specific maintenance policies considered in the case study. These policies
are applied to both deterministic and stochastic problems. The simplest policy is to make no
coordination of component replacements.

Definition 4 (non-opportunistic maintenance policy). Replace failed components only.
In the maintenance literature age replacement policies are common; see e.g. [8, Ch. 3].

Definition 5 (age policy). Given age limits a; for all components i € A/, a component ¢ € N is
replaced if its age a; > a;.

Finding optimal values for the age limits a; in an age policy is computationally demanding;
we have implemented the heuristic procedure of Alg. 3; the value of the parameter A > 0 is
chosen such that the calculations become manageable. For all components i € N let TZ =T if
the problem is deterministic and 7j = mean(T}) if the problem is stochastic.

Algorithm 3 (heuristic for computing age limits a;, i € N)

mincost « Zz’eNLT/TiJ (d+ ci)

for r € {O, 1,..., LA‘lTJ} do
for i € N do a; — max(0,T; — rA) end for
Apply Alg. 2 with the age policy of Definition 5 and Tik = Ti, 1eN,k=1,..., K.
if cost < mincost then § < rA; mincost < cost end if

end for

return max(0,T; — 0), i € N

We have constructed a value policy to resemble the behavior of the decision methodology used
at Volvo Aero Corporation (VAC), and which is there combined with some manual adjustments.

Definition 6 (value policy). Each component i € N with ¢; > d is assigned the value v; =
¢; - 7i/T;, where 7; is the (expected) remaining life of the component. An age limit Ty < T is
given. A component ¢ € N is replaced if either ¢; > d > v; holds or ¢; < d holds and a; > Tin.

For the aircraft engines at VAC the age limit T, is set to 150 flight hours, which is around
20% of the shortest component life. Also for the wind turbine study we set Ty, to 20% of the
shortest component life. Notice that the value policy can be interpreted as an age policy, for
which a; = T;(1 — d/¢;) if ¢; > d and a; = Typin otherwise.

The deterministic optimization model (1) cannot be directly applied to a stochastic problem.
Instead, we introduce the optimization policy that utilizes the following extension of the model
(1): Introduce the time step 0 and the binary variables x;9, i € A, representing opportunistic
replacements of the respective components at the current maintenance occasion, which is trig-
gered by the failure of some component. Hence, an opportunistic replacement of component ¢ at
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time O generates the replacement cost ¢; but not the maintenance occasion cost d. The objective
(1a) is thus modified to

T T
mi?irr;ize Z Z CiTi + Z dz. (11a)
ez t=1

t=0 ieN

Since, typically, the components are not new, their (expected) remaining lives 7; fulfil ; < 77,
1 € N, which is accommodated by the constraints

daw > 1, ieN, (11b)
t=0
zio € {0,1}, ieN. (11c)

We refer to the model composed by the variables z;;, i € N, 2z, t € 7, the additional variables
x;0, 1 € N, the objective function (11a), and the constraints (1b)—(1g), (11b)—(11c), as the
extended opportunistic replacement model.

Definition 7 (optimization policy). Solve the extended opportunistic replacement model with T;
being the (expected) value of the life of component ¢ € . Replace components according to the
optimal solution at time 0, i.e. the optimal values of z;9, i € N.

The optimization models are implemented in the modelling language AMPL (version 11.1)
and solved by the mixed integer programming solver CPLEX (version 11.1). The policies and the
scenario generation are implemented in MATLAB (version 7.5). All the tests are performed on a
Linux double processor unit; each integer programming problem in this case study was solved in
between 0.2 and 1 CPU-seconds.

7.3 Aircraft engines

When an aircraft engine is removed for overhaul it needs to be replaced by a spare engine so
that the aircraft can stay in service during the maintenance period. This generates a large main-
tenance occasion cost which is independent of the actual maintenance that is to be performed.
The sources of the maintenance occasion cost d are the cost for hiring a spare engine and the
work, transportation, inspection, and administration costs associated with the engine exchange.
The cost for purchasing a component i € N and the work cost associated with its replacement
constitute the cost ¢;. An aircraft engine consists of components with stochastic and/or deter-
ministic lives. Some components are safety critical, which means that their failure may lead to a
catastrophic outcome. Such components are therefore assigned age limits—in terms of numbers
of flight hours before which they must be replaced. The probability that a failure occurs before
this limit is very low. We may therefore consider the lives of these components as deterministic.
The non-safety critical components are replaced “on condition”, i.e., if they fail during operation
or if at an inspection they are found to be (almost) failed. We call these components stochas-
tic, and assume that they possess Weibull distributed lives, as suggested in [55]. (Non-safety
critical components are replaced when crack lengths above certain limits are observed; the case
study in [55] on survival estimation models for an application to the crack growth in the noz-
zle component of a low pressure turbine indicated that a non-stationary renewal process with
Weibull distributed lives is a good model for the conditional life distribution.)

The RM12 engine of the military aircraft JAS39 Gripen consists of modules which are com-
posed by components; a module must be removed before any of its components can be replaced.
Since this structure is more complex than the system considered in the model (1) it cannot be
applied to the whole engine. Thus, we here consider one engine module at a time, namely the
high and low pressure turbines; a mathematical model comprising the entire RM12 engine is the
subject of a forthcoming article.
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The data used for our tests originate from VAC; since the RM12 data are confidential the true
values of the costs and lives of components are not revealed. We let the maintenance occasion
cost d include the cost of removing the module; the true value of d is denoted dy. When the
parameter d is varied, all resulting total maintenance costs are divided by (the mean value of) the
cost of non-opportunistic maintenance obtained at d = dp; this value is denoted ngf;d(do) and
Cﬁﬁ,‘;;d(do), respectively. When the parameter ( is varied, all resulting total maintenance costs
are divided by the mean value of the cost of non-opportunistic maintenance obtained at 8 = 4
(denoted C5:%7(4)). The planning horizon T corresponds to 5000 flight hours. The optimization
model (1) and the optimization policy employ time steps of 50 flight hours. For the value policy,
the parameter Ty, corresponds to 150 flight hours.

We evaluate the policies for both deterministic and stochastic opportunistic replacement
problems. The expected lives of the stochastic (on condition) components are known but not
the corresponding distributions. The deterministic problems use the expected values for the
stochastic components’ lives. For the stochastic problems, simulations are performed with dif-
ferent values of the shape parameter [ in (10); for each component and each value of 3, the
parameter « is chosen such that the expected life equals the known value.

7.3.1 The low pressure turbine

The low pressure turbine (LPT) consists of 10 components, of which six are on condition and
four are safety critical. For the age policy, the parameter § corresponds to 1050 flight hours; this
value was chosen by Alg. 3 with A = 50 flight hours and d = dj.

Figure 2 shows the results from the tests on the deterministic problem. Figure 2(a) shows
that, for d = dy the total maintenance cost of using the optimization model is 34% lower than
that of using the non-opportunistic policy. Furthermore, as the maintenance occasion cost d
increases, all the policies improve compared to the non-opportunistic policy. Figure 2(b) shows
that, although the number of maintenance occasions resulting from the optimization model is
about a third compared to the non-opportunistic policy, the number of replacements of each of
the components is equal. The value and age policies result in even fewer maintenance occasions,
but at the price of replacing more components.
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Figure 2: LPT the deterministic problem solved by the optimization model and the three
policies: (a) Resulting total maintenance costs for different values of d. The box corresponds
to the actual maintenance occasion cost dp at VAC. (b) The number of replacements of the
respective components for d = dy. The rightmost set of bars shows the number of maintenance
occasions.
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The tests on the stochastic opportunistic replacement problems are reported in Figure 3.
Figure 3(a) shows the mean of the resulting total cost for maintenance when d is varied. During
these tests the stochastic component lives were assigned Weibull distributions according to:
B = 2 for components 1 and 5, 8 = 4 for components 4 and 9, and § = 6 for components 6
and 10. Observe that the optimization policy performs well for all values of d. For d = dy the
mean total maintenance cost of using the optimization policy is 17% lower than that of using
the non-opportunistic policy. For the lowest values of d the optimization policy is, however,
slightly worse than the non-opportunistic policy. The results illustrated in Figure 3(b) resemble
those of Figure 2(b). However, for the stochastic problem the optimization policy yields slightly
more component replacements than the non-opportunistic policy. In Figure 3(c) the stochastic
components’ life distribution parameter [ is varied (equally over the six components having
stochastic lives). Clearly, the optimization policy performs better than all the other policies.
Moreover, the difference between the optimization and non-opportunistic policies grows as the
uncertainty decreases (i.e., the value of 3 increases). Note that the value = 1 corresponds
to the exponential distribution; since this means that the stochastic components do not age,
the optimal policy for these components would be non-opportunistic. Nonetheless, since some
components in the LPT have deterministic lives, the optimization policy may yield a lower cost
also for this case.

7.3.2 The high pressure turbine

The high pressure turbine (HPT) consists of 9 components, of which five are on condition and
four are safety critical. For the age policy, the parameter value ¢ is set to 250 flight hours; this
value was chosen by Alg. 3 with A = 50 flight hours and d = dj.

Figure 4 shows results from our tests on the deterministic problem. Figure 4(a) reveals trends
for the age policy and the optimization model similar to those for the LPT. The difference between
the optimization model and the non-opportunistic policy is, however, smaller. For d = dj the
total maintenance cost of using the optimization model is 9% lower than that of using the non-
opportunistic policy. Figure 4(b) shows that the number of maintenance occasions is equal for
the optimization model and the age policy; this is 40% lower than that of the non-opportunistic
policy. The number of component replacements are equal for using the optimization model
and the non-opportunistic and age policies, except that the age policy employs one additional
replacement of component 2.

Figure 5 shows results from the tests on the stochastic problem. Figure 5(a) shows the
mean of the resulting total maintenance cost when d is varied. For these tests the stochastic
component lives were assigned Weibull distributions according to: S = 2 for components 4
and 6, 8 = 4 for components 5 and 9, and 3 = 6 for component 7. For d = dy the mean
total maintenance cost of using the optimization policy is 4% lower than that of using the non-
opportunistic policy. Observe that the optimization policy performs the best for high values of
d; for low values of d, however, it performs slightly worse than all the other policies. Figure 5(b)
shows that the optimization policy produces slightly more component replacements than the
non-opportunistic policy. In Figure 5(c) the stochastic components’ life distributions are varied.
Here, the optimization policy performs slightly worse than the age policy, but better than the
value and non-opportunistic policies. As for the LPT, the difference between the optimization
and non-opportunistic policies grows when the uncertainty decreases (i.e., when increasing the
value of ().

7.4 Wind turbines

The data used for the wind turbine case study is based on the report [48, pp. D-18 D-20] and
originates from a land based 2.5 MW wind turbine unit. We only consider types of maintenance
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Figure 3: LPT—the stochastic problem (components 1, 4, 5, 6, 9, and 10 having stochastic lives)
solved by the four policies: (a) Mean values of the resulting total maintenance costs for different
values of d. The box corresponds to the actual maintenance occasion cost dy at VAC. (b) Mean
number of replacements of the respective components when 8 = 4 for all stochastic components
and d = dg. The rightmost set of bars shows the mean of the number of maintenance occasions.
(¢) Mean values of the resulting total maintenance costs for different values of 3.

that require the use of a large construction crane. The mobilization cost during three days of this
construction crane is the main bulk of the maintenance occasion cost. The report only provides a
total crane cost for a set of maintenance activities that varies between $39 000 and $84 000, which
implies that the mobilization cost is at most $39 000. After consulting wind power experts the
value dg = $30 000 was chosen. The maintenance occasion cost for a wind turbine does, however,
depend on the distance between the wind farm and the crane depot, whether the wind turbine is
land based or offshore, and whether costs connected with production losses are included or not;
this cost may therefore very well vary by a couple of orders of magnitude.

The wind turbine includes five components that require a construction crane for maintenance:
blades, pitch bearing, main bearing, gearbox, and generator. The maintenance activities on
these components are listed in Table 1 and each activity is regarded as a component i € N
(in the remainder of this section, these terms will also be used interchangeably). Note that
some components are identical, for instance components ¢ € {5,6, 7} are all pitch bearings. The
replacement cost ¢; for each activity ¢ € N was calculated according to: ¢; = (material cost) +
(total crane cost) — dp + (labour hours)x (labour hour cost), where the labour hour cost was
set to $50. Most wind turbines are currently at the beginning of their life span, which implies
that reliable failure data is scarce. Therefore, many wind power farms employ non-opportunistic
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Figure 4: HPT the deterministic problem solved by the optimization model and the three
policies: (a) Resulting total maintenance costs for different values of d. The box corresponds
to the actual maintenance occasion cost dp at VAC. (b) The number of replacements of the
respective components at d = dy. The rightmost set of bars shows the number of maintenance
occasions.

maintenance planning. We consider one wind turbine! and assume that reliable distributions
of component lives are available. The component lives are assigned Weibull distributions; the
respective values of the parameters o and 3 are shown in Table 1. Note that most components
have exponential life distributions (i.e., = 1).

no. component mate- total labour replace- « J6]
rial  crane  need ment
cost cost cost, ¢;
(k$)  (k$) (hours) (k$) (years)
1 3 blades: structural maint. 89 39 49 101 400 1.0
4 blades: non-structural maint. 27 39 246 48 20 1.0
5 7 pitch bearing 31 39 69 43 400 1.0
8 main bearing 30 84 147 91 400 1.0
9 gearbox: gear 122 30 0 122 400 1.0
10 gearbox: regular bearings 81 30 71 85 20 3.5
11 gearbox: high speed bearings 81 84 46 137 20 3.5
12 generator: rotor 95 30 14 96 400 1.0
13-14 generator: bearings 6 60 10 36 17 3.5

Table 1: The components/maintenance activities of the wind turbine problem. The total crane
cost is the cost of mobilization and use of crane during the maintenance activity. Labour hours
is the number of working hours of external personal required for the maintenance activity.

According to [48, p. A-3|, non-structural repair of blades is always performed simultaneously
on all three blades; it is hence considered as one activity. On some components, more than
one maintenance activity can be performed: structural and non-structural maintenance of the

'It. would be more beneficial to consider maintenance planning for an entire wind farm and also to include
production planning and costs in the mathematical model. As for a complete aircraft engine, this would, however,
require a more complex model and is a topic for future research.
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Figure 5: HPT—the stochastic problem (the components 4, 5, 6, 7, and 9 having stochastic lives)
solved by the four policies: (a) Mean values of the resulting total maintenance costs for different
values of d. The box corresponds to the actual maintenance occasion cost dy at VAC. (b) Mean
number of replacements of the respective components for § = 4 and d = dy. The rightmost set
of bars shows the mean value of the number of maintenance occasions. (c¢) Mean values of the
resulting total maintenance costs for different values of S.

blades, the replacement of the gear, the high speed bearings, and the regular bearings of the
gearbox, and the replacement of the rotor and the bearings of the generator. Unfortunately, not
all possible maintenance activities are listed in the report; some are only listed together with
other maintenance activities.? In order to adapt® the problem to the form used in model (1) we
need data for each individual maintenance activity. The data was transformed according to the
following: Let A; and A5 be two maintenance activities and assume that data for A; and A; U A,
is available. Let k4 be the cost of the component (or the number of labour hours associated
to the performance of the maintenance activity) A; then, ka4, = ka,ua, — ka,. Let l%A be the
total crane cost for activity A. Since this includes a mobilization cost dy, we instead obtain
k: = k?AluAQ k:Al +dp. The distribution of failures demanding the activity A, to be performed
is assumed to equal that of failures demanding the performance of activity A1 U As. We have
used the original data for the structural and non-structural repair of blades, since the risk of a
failure that demands these maintenance activities is not affected by the age of the blades (since

2For instance, for the gearbox the replacement of both the gear and the bearings and that of the bearings only
are listed, but not the replacement of the gear only.

#We could easily adapt the model (1) to include such dependencies by introducing additional variables and
constraints, but since the topic of the article is the model itself we choose to adapt the problem data.
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the time points for these types of failures are exponentially distributed).

The deterministic problem is obtained by replacing the lives of all components by their
respective expected values. The time horizon is set to 25 years, which corresponds to the expected
technical life of a wind turbine. For the extended opportunistic replacement model we use time
steps of 0.25 years. For the value policy the parameter Ti,;, represents three years. For the age
policy the parameter ¢ represents 5 years; this value was chosen by Alg. 3 with A = 0.25 years
and d = dp.

Figure 6 shows the results of the test on the deterministic problem. The problem is rather
trivial, since it comprises nine components whose lives are longer than the time horizon and five
components which will all fail exactly once during the life of the turbine. The optimal solution
is to replace all of these five components at the occasion of the first failure; the remaining nine
components do not require any replacement. Figure 6(b) shows that for d = dj all the policies
except the non-opportunistic policy find the optimal solution. Figure 6(a) shows that the value
of the optimal solution at d = dy is 13% lower than that produced by the non-opportunistic
policy. The age policy always finds the optimal solution; the value policy, however, fails to do so
for values of d > dy.

5
14X 10
—
Optimization n?ot.jel Il Optimization model
12| - % - Non—opportunistic O I Non-opportunistic
O Value policy [lvalue policy
107 |. -3 Age policy )l [__JAge policy

Total maintenance cost
[e0]
# replacements/occasions

0 2 4 e 8 10 12 4 10 11 13 14  Maintenance
d x 10* Component number occasions

(a) (b)

Figure 6: Wind turbine—the deterministic problem solved by the optimization model and the
three policies: (a) Resulting total maintenance costs for different values of d (in §). The box
corresponds to the actual value dy = $30 000. (b) The number of replacements of the components
with lives shorter than the time horizon at d = dy. The rightmost set of bars shows the number
of maintenance occasions.

Figure 7 shows results from the tests on the stochastic problem. Note that only components
i € {4,10,11,13,14} have expected lives shorter than the planning horizon.* Figure 7(a) shows
the results from varying the maintenance occasion cost d. The optimization and age policies
perform better than the non-opportunistic policy for d € {$60000,$120000}. For the lower
values of d the non-opportunistic policy is better than or at least as good as the other policies.
For d = dy the mean total maintenance cost of using the optimization policy is 4% higher than
that of using the non-opportunistic policy. Figure 7(b) reveals that the number of maintenance
occasions resulting from using the optimization policy is lower than those of the age and non-
opportunistic policies. The number of individual component replacements is, however, higher for
some components. The number of maintenance occasions is lowest for the value policy, but the
corresponding numbers of replacements of components 13 and 14 are much higher than those

“The remaining nine components have exponentially distributed lives with expected values much larger than
the horizon. These components have only a marginal effect on the mean value of the total replacement cost.
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resulting from using the other policies. In Figure 7(c) the parameter 3 is varied equally for the
non-exponentially distributed lives of components 10, 11, 13, and 14, while the lives of the other
ten components stay exponentially distributed (i.e., 3 = 1). Observe that for higher values of
the optimization and age policies outperform the non-opportunistic and value policies. This is
expected, since the life distributions then tend to deterministic ones. Note that, for § = 1 none
of the components age, whence the non-opportunistic policy is optimal.

This case study shows that a simple deterministic problem may become much more difficult
when the component lives are stochastic; it motivates the development of a replacement model
based on stochastic programming (see [46]).

8 Conclusions and future research

The opportunistic replacement model is shown to have a nice inherent structure, in that while
the problem is NP-hard, the model reduces to a linear program once the maintenance occasions
are fixed; the latter can in some cases even be solved through a greedy procedure. Also, all the
necessary linear constraints define facets of the convex hull of the set of feasible schedules. We
have recently identified new classes of facets; their application will be reported in the near future.

The numerical case studies performed on applications from the wind power and aircraft
engine industries show that the optimization model can be utilized to reduce costs in comparison
to using simpler maintenance policies. The study also shows that the model can be used for
maintenance scheduling of components with non-deterministic lives; the cost reduction tends to
increase with the maintenance occasion cost and lower levels of uncertainty regarding component
lives.

Work in progress include the optimization of maintenance decisions when component lives
are non-deterministic through the use of a stochastic programming model. Even in the case
when costs are independent of time, we have already shown that such a stochastic extension
of the current problem is NP-hard. In order to provide a computationally feasible model we
will therefore also investigate how to best define an accurate enough scenario representation of
the component lives. Further, we intend to study models comprising successive improvements
of life distribution estimates through the addition of measurement-based information about the
condition of the system.

The opportunistic replacement model (1) is utilized in further studies of maintenance plan-
ning optimization at Volvo Aero as well as in the nuclear and wind power industries. In order
to incorporate requirements specific to the application (such as spare component replacement
and redundancies within the system) extensions of the model are made. In the near future,
experiences from these activities will be reported.
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A Proofs

Proof of Proposition 6
Since T; > 2 for i € N, conv S is full-dimensional (cf. Proposition 4). Hence, we can use the
uniqueness characterization of the facet description from Theorem 2 to show the proposition.

For each r € N and each s € 7, let F,.s = {(z,2) € convS | x5 = z5 }. Further, let, for
i€ NandteT, 2l =0if (i,t) = (r, s) 29, = 1 otherwise, and let z{ = 1, t € 7. It follows
that (2°,20) € S\ Fys. Then, letting 25} = 2* = 1,4 € N, t € 7, it follows that (z*,2%) € Fy4
and hence that F¢ is a proper face of conv S.

Moreover, there exists values of A € RV*T ;€ RT, and p € R such that the equation (7) is
satisfied for all (z,z) € F,s. We will show that for any value of us € R, in a solution to (7) the
following hold: \jy = —pus if (4,t) = (7, s), Air = 0 otherwise; py = 0 for ¢ € T\ {s}; p = 0.

For each £ € T\ {s}, let, for j e N and t € T, zj, = 0if (j,t) = (r,{), x}, = = af 4t otherwise,
and let z! = 27, Tt follows that (z',2!) € F,,. The vectors (z*,2%) and (z!, z!), respectively,
inserted in (7) then yield that A\, =0 for £ € 7 \ {s}.

Similarly, for each k¥ € N\ {r} and each £ € T, let for j € N and t € T, :z?t = 0 if
(,t) = (k,0), x5, = ajﬁ otherwise, and let 22 = z*. Tt follows that (22, 2%) € F,,. The vectors
(2™, 2%) and (22, 2?), respectively, inserted in (7) then yield that Ay = 0 for k € '\ {r} and
¢ € T; hence, the equation (7) can be rewritten as

ArsTrs + Zﬂtzt = p. (12)
teT

For each £ € T \ {s}, let, for j e Nand t € T, a3, = 2} = 0if t = {, 23, = 2z} = 1 otherwise.

It follows that (2%, 2%) € F.s. The vectors (z*,2%) and (2%, 2%), respectively, inserted in (12)
then yields that py, =0 for £ € 7 \ {s}. Equation (12) can now be rewritten as

ArsTrs + flsZs = p. (13)

Let, for j € N and t € T, $]t =zt =0ift = s, $§t = z} = 1 otherwise. It follows that

(z*,2*) € Frs. The vectors (z*,2%) and (z?,2%), respectively, inserted in (13) then yield that

0= p = As+ ps. The equation (13) can thus be rewritten as psz,s = ps2s, and from [42, pp.

91 92| follows that the inequality z,s < zg defines a facet of conv S. ]

Proof of Proposition 7
Since T; > 2 for i € N, conv S is full-dimensional (cf. Proposition 4). Hence, we can use the
uniqueness characterization of the facet description from Theorem 2 to show the proposition.

For each r € A such that T, > 3 and each s € T, let Fj, = {(z,2) € convS | 25 = 0}
Further, let 2% = z) = 1,7 € N, t € T. It follows that (z%,2°) € S\ F,,. Then letting, for
jeENandteT, mf‘t =0if (j,t) = (r s), x ft = 1 otherwise, and letting z* = 1, t € T, it follows
that (z4,2%) € F,, and hence that F,, is a proper face of conv S.

Moreover, there exists values of A € RV*T ;€ RT, and p € R such that the equation (7) is
satisfied for all (z,z) € F,,. We will show that for any value of A,s € R, in a solution to (7) the
following hold: Ay = 0if (4,¢t) € {N x T} \ {(r,s)}; pe =0for t € T; p = 0.

For each ¢ € N and each t € 7, let for j e N and k € T, x}k =0if (j, k) = (i,¢), ajjlk = x?k
otherwise, and let 2! = 2%, Since T, > 3, it follows that (z!,2') € F,,. The vectors (z*,2*)
and (a1, zl), respectively, inserted in (7) then yield that Ay = 0 for all (¢,¢) € {N x T} \{(r,s)}.
The equation (7) can then be rewritten as (12).

For each t € 7T, let, for j € N and k € T, ajjk:zkzolfk‘—t xjk:azjkandzk— z

otherwise. Since T, > 3, it follows that (22,22) € Fy,. The vectors (z2,2z%) and (22, 22),
respectively, inserted in (12) then yield that p; = 0 for t € 7.
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Since 2, = 0 for all (,z) € F it follows that p = 0. Equation (12) can then be rewritten
as \psrs = 0, and from [42, pp. 91-92] follows that the inequality z,s > 0 defines a facet of
conv S. 0

Proof of Proposition 8
Since T; > 2 for i € N, conv S is full-dimensional (cf. Proposition 4). Hence, we can use the
uniqueness characterization of the facet description from Theorem 2 to show the proposition.
For each s € T, let Fs = {(x,2) € conv S | z, = 1}. Further, let, for j € N and t € 7T,
x(;t =20 =0ift =s, m?t = 20 = 1, otherwise. It follows that (z°,2°) € S\ Fs. Then, letting
zh =20 =1,i€ N, t €T, it follows that (z*,2%) € F; and that Fj is a proper face of conv S.
Moreover, there exists values of A € RV*T 1, € RT, and p € R such that the equation (7)
is satisfied for all (z,z) € Fy5. We will show that for any value of p € R, in a solution to (7) the
following hold: Ay =0fori e N andt € T; us = p, ug =0 for t € T \ {s}.
For each r € N and each £ € T, let, for j e N and t € T, x}t =0if (5,t) = (r, ), x}t =1
otherwise, and let z! = 2. Tt follows that (z',2') € F,. The vectors (z®,2%) and (z', 2'),
respectively, inserted in (7) then yield that A\, = 0 for r € N and ¢ € 7. Equation (7) can then

be rewritten as

Zﬂtzt = p- (14)

teT

For each £ € T \ {s}, let, for j e N and t € T, a:?t =2=0ift=1¢, x?t = 27 = 1 otherwise.
It follows that (22, 22) € F,. The vectors (2, 2%) and (22, 22), respectively, inserted in (14) then
yield that py = 0 for £ € 7 \ {s}. Equation (14) can then be rewritten as pszs = p. Since z; = 1
for all (z, z) € F; it follows that us = p, which yields the equation pzs = p. From [42, pp. 91-92]
then follows that the inequality z; < 1 defines a facet of conv S. U
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