
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PREPRINT 2011:17 
 

The opportunistic replacement 
problem: analysis and case studies 
 
 
 

TORGNY ALMGREN 
NICLAS ANDRÉASSON 
MICHAEL PATRIKSSON  
ANN-BRITH STRÖMBERG  
ADAM WOJCIECHOWSKI 
 
 
 
 
 
Department of Mathematical Sciences 
Division of Mathematics 

CHALMERS UNIVERSITY OF TECHNOLOGY 
UNIVERSITY OF GOTHENBURG 
Gothenburg Sweden 2011 





 
 
 

Preprint 2011:17 
 
 
 
 
 

The opportunistic replacement problem:  
analysis and case studies 

 
Torgny Almgren, Niclas Andréasson,  

Michael Patriksson, Ann-Brith Strömberg,  
Adam Wojciechowski 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Department of Mathematical Sciences 
Division of Mathematics 

Chalmers University of Technology and University of Gothenburg 
SE-412 96  Gothenburg, Sweden 

Gothenburg, June 2011 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Preprint 2011:17 
ISSN 1652-9715 

 
 

Matematiska vetenskaper 
Göteborg 2011 



The opportunisti replaement problem: analysis and asestudiesTorgny Almgren∗ Nilas Andréasson† Mihael Patriksson‡Ann-Brith Strömberg§ Adam Wojiehowski¶May 2011AbstratWe onsider an optimization model for determining optimal opportunisti maintenane (thatis, omponent replaement) shedules when data is deterministi. This problem generalizesthat of Dikman, Epstein, and Wilamowsky [21℄ and is a natural starting point for themodelling of replaement shedules when omponent lives are non-deterministi. We showthat this basi opportunisti replaement problem is NP-hard. We show that the onvexhull of the set of feasible replaement shedules is full-dimensional, and that all the neessaryinequalities also are faet-induing. We show that when maintenane oasions are �xed, theremaining problem an be stated as a linear program; when maintenane osts are monotonewith time, the latter is solvable through a greedy proedure. Results from a series of asestudies performed in the areas of airraft engine and wind turbine maintenane are alsoreported. These illustrate the advantages of utilizing opportunisti maintenane ativitiesbased on a omplete optimization model, as ompared to simpler poliies.1 IntrodutionThe importane of performing maintenane operations well�and of improving the state of theart�seems to be impossible to overestimate: aording to [39, Ch. 1℄, maintenane osts inplants in the US alone aounted for more than $600 billion ($600 · 109) in 1981, more than $800billion in 1991, and were then projeted to inrease to beome more than $1200 billion by theyear 2000. It is stated that these evaluations indiate that on average one third, or $250 billion,of all maintenane dollars are wasted through ine�etive maintenane management methods.Aording to a reent study (made by Forum Vision Instandhaltung, Germany), maintenaneosts in the manufaturing industry within the EU amount to roughly $2000 billion per year.Studies over the last 20 years have indiated that around Europe, the diret ost of maintenaneis equivalent to between 4% and 8% of total sales turnover. Also in these ases, it is quitenatural to assume that not all the money spent is spent well: aording to information gatheredby the Swedish Center for Maintenane Management, maintenane is often performed in an un-oordinated and/or orretive only (that is, after failure has oured) fashion, resulting in toofrequently needing to shut down prodution; surprisingly often equipment failure is triggered
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by inspetions and the ondition monitoring itself. Aording to a study on fossil power plants([16℄) 56% of the fored outages oured within one week from an intrusive maintenane task.One objetive with onstruting and studying mathematial models for the optimization of thesheduling of maintenane and inspetion ativities is to mitigate some of these problems, andto thereby ontribute to a shift of fous from onsidering maintenane as mainly a ost-induingativity to that of an investment in availability improvement.One strategy for planning maintenane ativities is so alled opportunisti maintenane, inwhih a mathematial model is utilized to deide whether, at a (possibly already planned) main-tenane oasion, more than the neessary maintenane ativities should be performed; we mayrefer to this as preventive maintenane ativities at an opportunity. Aording to Dikman et al.[21℄, Jorgenson and Radner [36℄ introdued the original opportunisti replaement/maintenaneproblem. They onsidered a system of stohastially failing omponents, whih inur extensivemaintenane osts upon failure, that is, for shutting down and disassembling the system. Whenthe system is down for whatever reason, omponents may be replaed at no additional mainte-nane ost. Thereby, opportunities arise to trade o� remaining life of omponents in order toavoid maintenane osts assoiated with omponent failure, perhaps already in the near future.This is their main motive for studying the problem.Our original motivation for studying the replaement problem was a projet onerning theoptimization of jet engine maintenane shedules at Volvo Aero Corporation (VAC). An airraftengine onsists of thousands of parts. Some of the parts are safety-ritial, whih means that ifthey fail there will be an engine breakdown, possibly with atastrophi onsequenes. Therefore,the safety-ritial parts have �xed life limits (before whih the probability of failure is e�etivelyzero), and must be replaed before they are reahed. Hene, we onsider, as does VAC, thesafety-ritial parts as having deterministi lives. (The orresponding situation is present, forexample, in nulear power plants; see [30, 17℄.) All other parts of the engine are onsideredto have stohasti lives; therefore, their life limits need to be estimated, whih in turn makesit muh more di�ult to ompute a reliable replaement shedule. For some of these partsfailure distributions may be omputed from historial data and monitoring observations. Thisinformation ould then be disretized and used as an input into optimization models. This wasthe subjet of two PhD projets (see [4, 55℄).Taking into aount parts that are either deterministi or stohasti in a uni�ed model isquite a lot more omplex than what has been studied in the past; even stohasti models foundin the literature typially do not inorporate failure distributions but failure intensities only,and solution approahes provide simple maintenane poliies for in�nite horizon problems; seefurther the survey in Setion 3.The purpose of the present paper is to initiate a detailed mathematial study of a modelof the opportunisti replaement problem, to be de�ned below. In the near future we willonsider several extensions thereof. In a reent ase study at VAC, the struture of the jetengine, and in partiular the disassembly of its parts, has been taken better into aount throughdetailed ost dependenies between omponents. Further, reent appliations of opportunistimaintenane optimization to the generation of wind and nulear power (e.g., [10℄) have resultedin the study of stohasti programming models, properly inorporating stohasti informationabout the remaining lives of omponents.2 The opportunisti replaement modelConsider a set N of omponents; let N = |N |. Consider also a set T = {1, . . . , T} of times, with
T ≥ 2. Suppose a new omponent i ∈ N has a (deterministi) life of Ti time steps. (Withoutloss of generality, 2 ≤ Ti ≤ T .) The purhase ost at time t ∈ T for omponent i is cit > 0.There is a �xed ost of dt > 0 assoiated with a maintenane oasion at time t, independent of2



the number of parts replaed.The objetive is to minimize the ost of having a working system between times 1 and T .Formally, we de�ne the opportunisti replaement problem as follows.De�nition 1 (opportunisti replaement problem). Given a �xed ost dt for a maintenane oa-sion and a ost cit for replaing a omponent i ∈ N at time t ∈ T , �nd a maintenane sheduleover the period T that minimizes the total maintenane ost and in whih, for eah omponent
i ∈ N , no period without replaement longer than the omponent's life Ti exist.Letting

zt =

{
1, if maintenane shall our at time t,

0, otherwise, t ∈ T ,

xit =

{
1, if omponent i shall be replaed at time t,

0, otherwise, i ∈ N , t ∈ T ,the opportunisti replaement model is de�ned as that to
minimize

(x,z)

∑

t∈T

(∑

i∈N

citxit + dtzt

)
, (1a)

subject to

ℓ+Ti∑

t=ℓ+1

xit ≥ 1, ℓ = 0, . . . , T − Ti, i ∈ N , (1b)
xit ≤ zt, t ∈ T , i ∈ N , (1)
xit ≥ 0, t ∈ T , i ∈ N , (1d)
zt ≤ 1, t ∈ T , (1e)

xit ∈ {0, 1}, t ∈ T , i ∈ N . (1f)
zt ∈ {0, 1}, t ∈ T . (1g)The onstraints (1b) ensure that eah part is replaed before the end of its life; the onstraints(1) enfore the payment of the �xed maintenane ost dt whenever any part is replaed at time

t, and, one this ost is paid, indues maintenane opportunities at no extra maintenane ost.The remaining onstraints are de�nitional; the removal of (1f)�(1g) amounts to a ontinuousrelaxation of the problem.This model stems from [21℄; the model in [4℄ replaes the original onstraints∑i∈N xit ≤ Nzt,
t ∈ T , in [21℄ with the equivalent but stronger onstraints (1); the model (1), in turn, generalizesthe ost funtion in [4℄ to allow for time dependeny.As a numerial illustration, we onsider an instane of (1) with T = 60, N = 4, T1 = 13,
T2 = 19, T3 = 34, T4 = 18, c1t = 80, c2t = 185, c3t = 160, and c4t = 125 for all t ∈ T . Thedata is hosen so that the relations between the lives and the osts are similar to those for thefan module of the RM12 engine, maintained at VAC. The model is solved for dt = 0, 10, and
1000 for all t (where dt = 10 represents the most reasonable value in the maintenane situationat VAC). For dt = 0, the optimal total number of replaement oasions is 11 and there is noadvantage with replaing a omponent before its life limit is reahed. Inreasing the value of dtfrom 0 to 10 dereases the optimal total number of replaement oasions from 11 to �ve. Itis now bene�ial to replae the omponents in larger groups and they are often replaed beforetheir respetive life limits are reahed. (Notie that the optimal solution obtained for dt = 10is, in fat, optimal also for the ase of dt = 0.) For dt = 1000 it is very important to utilizethe opportunity to replae several omponents at the same time. The optimal total number ofreplaement oasions is four (whih is the minimum number of replaement oasions for thisinstane). 3



Figure 1 shows optimal maintenane shedules for eah of the three ases. The horizontalaxis represents the 60 time steps and eah maintenane oasion is represented by a vertialbar, where a dot at a ertain height represents a omponent of the orresponding type beingreplaed. The �gure learly illustrates how opportunisti replaement beomes more bene�ialwith an inreasing �xed maintenane ost.
PSfrag replaements dt = 0

dt = 10

dt = 1000 timetimetime
Figure 1: Optimal maintenane shedules for dt = 0, 10, and 1000 for all t. When dt inreasesfrom 0 to 10 the replaement oasions 1�3, 5�7, and 9�11, are grouped into one oasion eah.When dt is inreased from 10 to 1000, the last four maintenane oasions are rearranged intothree oasions, also resulting in several more omponent replaements.The remainder of the paper is organized as follows. Setion 3 ontains a survey of the mostrelevant literature on maintenane optimization. In Setion 4, we establish that the opportunistireplaement problem is NP-hard, based on a redution from the set overing problem. Setion 5presents some properties haraterizing an optimal maintenane shedule. We show that ifthe variables zt are �xed to binary values, then the polyhedron arising from the ontinuousrelaxation of the variables xit is integral (i.e., possesses integral extreme points); in other words,the integrality restritions (1f) may be dropped. Moreover, we provide results, in part reahedin [21℄, on the possibility to a priori remove some maintenane oasions from onsideration. InSetion 6 we perform a polyhedral study of the onvex hull of the set of feasible solutions to themodel (1), referred to as the replaement polytope. We show that the replaement polytope isfull-dimensional under natural assumptions and that the neessary inequality onstraints (1b)�(1e) in the original formulation (1) are faet-de�ning. Further, we show that they are notsu�ient to ompletely desribe the replaement polytope. In Setion 7 we present results fromnumerial ase studies of problems with stohasti and deterministi lives, originating from theairraft and wind power industries. We onlude with remarks on urrent and planned researhendeavours.3 Literature overviewMajor researh e�orts on the mathematial modelling of, and methods for, maintenane andreplaement sheduling were initiated during WWII at the military institute RAND at SantaMonia, CA, USA. (Prior to this e�ort isolated researh an be traed bak at least to the1930s; see the historial review in [8℄.) The group at RAND inluded Rihard Bellman, whoseinvention dynami programming was also the �rst e�ient solution method applied in the area([3, 53, 9, 23℄). A later development took plae at Stanford University, where H. M. Wagner ando-workers developed preventive maintenane and replaement models, starting from their integerprogramming work on sheduling (e.g., [59℄). Maintenane planning models and methods alsofound a entral plae in OR text books around this time; f. [1, 58℄. (The perhaps �rst mentionof maintenane planning in text book form is found in the OR text by Morse and Kimball [41℄.)4



Several of these models an be found as appliations of dynami programming in Wagner's ORtext book ([58℄). In this early development, manpower planning was as an important part of theproblem as was the replaement part, as is evidened in [41, p. 78℄, [58℄ as well as in the bookby Morse [40, Ch. 11℄.Common themes in this development are a fous on an in�nite planning horizon, few parts(often only one or two), and a quest for obtaining a simple maintenane/replaement poliy.Perhaps more than anything, it re�ets the fat that (mixed) integer and ombinatorial opti-mization was not yet well developed. It also re�ets the fat that all problems were stohasti,and the modelling and methodology development took plae in true OR fashion in a world wheremathematial statistis and mathematial programming are joint researh �elds. A good exam-ple of this interplay is the work of Morse, Barlow, Hunter, and others: Morse [40℄ analyzed apreventive maintenane model based on queueing theory; Barlow and Hunter [7℄ later provideda poliy based on this work, fousing on �reliability�. Further developments later lead to thelassi mathematial statistis book on reliability by Barlow and Proshan [8℄.Opportunisti maintenane models are less frequently found in the literature, ompared tothe preventive ase. Sasieni [53℄ presents a poliy that inludes opportunities, for a Markovbased problem onerning two parts. Campbell [13℄ is an exeptional, early paper from 1941.It onerns the replaement of lamps, e.g. along a ity street. Two poliies an be utilized,where the �rst is to replae eah lamp when it breaks, and the other is to replae all lampsas soon as one breaks. (The latter therefore onstitutes an early opportunisti maintenanepoliy.) The researh question is when to go from the �rst poliy to the seond. The paper isalso exeptional in that it disusses not only the in�nite horizon ase, but also a �nite planninghorizon. The �rst major developments on opportunisti maintenane following the work bySasieni were made at the beginning of the 1960s by RAND researhers (e.g., [36, 49, 50, 38℄),in partiular haraterizations of optimal poliies for ertain problems. (See [60℄ for a thoroughaount on poliies, and [35℄ for the early work done at RAND.)In many ways, later development has followed a similar path, inorporating more parts, moreadvaned failure models and system states (e.g., [57℄), and also in ombination with, for example,prodution planning (see, e.g., [11℄). As stated in the surveys [47, 44℄, the in�nite horizon aseis still the one mainly treated, operations researh methods are still not well developed, and testases are also usually few and seldom realisti. The development of �nite horizon models is in [44℄deemed essential for the maintenane of multi-omponent systems to beome operational. Ourambition is to ontribute to an improvement in the analysis as well as utilization of maintenanemodels, starting from the deterministi model studied here.The basi model (1) is developed from the one in [21℄, and it is therefore instrumentalto investigate the relation of the latter referene to the existing literature. We �rst trae itshistory. Epstein and Wilamowsky provide in [24℄ a simple poliy for the maintenane of onelife-limited part (a jet engine ompressor unit) and an exponentially failing system (disks in theengine ompressor); they extend this poliy to multiple life limited omponents in [25℄. In [27℄they establish the optimality of their poliy wrt. the utilization of individual disks. In [26℄ theyisolate the life limited part of the problem, and study the deterministi problem for the ase of twoparts. Without providing an optimization model for their problem, they establish the speialase of Proposition 2 below to the ase of time-independent osts, namely that maintenaneneed only to be onsidered at points of failure of at least one of the parts. They are also able tofurther limit the number of interesting maintenane oasions, and show that the time intervalbetween optimal replaements for a given part is non-inreasing. (Disussions on the di�ultiesin extending poliies to more than two parts an be found, for example, in [19, 61℄.) Theabove referenes onern the in�nite time horizon ase. Dikman et al. [22℄ onsider also the�nite horizon ase of the deterministi problem with two parts, and extend the results in [26℄onerning patterns in optimal maintenane shedules. Their problem formulation has integer5



variables that orrespond to the atual maintenane times, and it is limited to the two-part ase.The onferene proeedings paper [20℄ presents a 0/1 integer formulation, whih, however, isnonlinear. The paper by Dikman et al. [21℄, �nally, reahes a linear 0/1 formulation for thegeneral N -omponent ase; it is a speial ase of the problem (1), as disussed in Setion 2.They also establish a version of Proposition 2, and that the integrality of the zt variables an berelaxed; the latter is done using a greedy argument, similar to that utilized in Proposition 3.A itation searh on these papers in February 2010 resulted in the following: The paper [25℄is ited in [26℄, in three surveys on maintenane sheduling ([15, 18, 19℄), and in a 1990 paperon group poliies. The paper [26℄ is ited by four papers on poliies, none published later than1995, and the surveys [19, 56, 45℄. Our main soure, the paper [21℄, is ited only one, in [54℄ asa general referene to deterministi maintenane models. The very limited number of itationsshows that although the authors takle a quite interesting problem, they have found no followersprior to this work.Also referenes to the theoretial omplexity of maintenane optimization problems aresare. In [54℄, maintenane optimization is desribed as being possible to state as a partitioningproblem; it is then erroneously onluded that optimal replaement therefore is an NP-hard prob-lem. In [31℄ a maintenane problem is studied where it is to be deided upon an optimal yli(periodi) maintenane sheduling pattern; the yle length itself is assumed �xed. Referring tothe periodi maintenane problem in [5℄, where the yle length is free, and the NP-hardnessproof of that problem in [6℄, they onlude that their problem is also NP-hard. (The proof isnot omplete, however, and, indeed, in the survey [44℄ the authors state that the problem in [54℄�appears to be NP-hard.�) Their analysis annot be utilized in our setting, as we do not seekperiodi sheduling patterns. In [12℄ the preventive maintenane of a railway system is studied.Both (short) routine ativities and (long) unique projets must be sheduled in a ertain period.Two versions of the problem are studied, one with �xed intervals between two onseutive exe-utions of the same routine work, and one with only a maximum interval; the problem resemblesin this sense that in [31℄, and the redution from graph olouring utilized in [12℄ an not be usedfor our problem.For reent aounts of maintenane modelling in engineering and industry, see [32, 2, 43, 52℄(plants), [33, 28℄ (infrastruture), [34℄ (eletrial networks), and [51, 14, 37℄ (prodution systems).4 Complexity analysisTheorem 1 (problem redution). The set overing problem is polynomially reduible to theopportunisti replaement problem.Proof. Let {At}
m
t=1 be a given olletion of nonempty subsets of the �nite set {1, . . . , n} suhthat ∪m

t=1At = {1, . . . , n}. Letting ait = 1 if i ∈ At and 0 otherwise, the set overing problem isrepresented as the following optimization model:minimize m∑

t=1

yt, (2a)subjet to m∑

t=1

aityt ≥ 1, i = 1, . . . , n, (2b)
yt ∈ {0, 1}, t = 1, . . . ,m. (2)Consider then an instane of the program (1) suh that N = n, T = m, dt = 1, Ti = m, and

cit = 2(1−ait) for all i = 1, . . . , n and t = 1, . . . ,m. Sine Ti = T = m, eah omponent must bereplaed one between the times 1 and T , and one replaement is always enough (for feasibility).Furthermore, in every optimal solution and for eah i and t suh that ait = 0, xit = 0 holds sine6



cit = 2 > d and there exists a t̃ ∈ T with ait̃ = 1, whih implies that cit̃ = 0. Hene, this spei�instane of (1) an be reformulated as the problem tominimize{ m∑

t=1

zt

∣∣∣∣∣

m∑

t=1

aitxit ≥ 1, i = 1, . . . , n, and (1)�(1g) hold } . (3)An optimal solution (x∗, z∗) to (3) is given by
z∗ ∈ argmin

z∈{0,1}m

{
m∑

t=1

zt

∣∣∣∣∣

m∑

t=1

aitzt ≥ 1, i = 1, . . . , n

} (4)and x∗
it = aitz

∗
t , i = 1, . . . , n, t = 1, . . . ,m. The result then follows, sine the program (4) isequivalent to (2).Sine the set overing deision problem is an NP-omplete problem (see [29℄), it followsthat the set overing optimization problem is an NP-hard problem and thus the opportunistireplaement problem is NP-hard.It should be mentioned that the omplexity of the instane of the opportunisti replaementproblem for whih the osts cit are non-inreasing with time (i.e., ci,t+1 ≤ cit for all i and t) isstill an open question; this inludes the interesting speial ase for whih the osts are onstantover time (i.e., cit = ci and dt = d for all i and t), as originally studied in [21℄ and [4℄.5 Speial properties of optimal solutionsWe here present some speial properties of the opportunisti replaement model (1). First weshow that the integrality onstraints on the variables xit an be relaxed. Then we review a resultfrom [21℄ and show that for instanes of the model where osts are monotone with time thereplaement ativities will only our at times that are sums of positive integer multiples of lifelimits. Finally, we show that, again for monotone osts and given �xed binary values of the ztvariables, the optimal xit values an be obtained by a greedy algorithm.5.1 Integrality propertyThe following proposition onerns integrality properties of the polyhedron in R

N×T de�ned by(1b)�(1d), when the variables zt, t ∈ T , are �xed to binary values. Aordingly, we let z̃t ∈ {0, 1},
t ∈ T , and de�ne T̃ = {t ∈ T | z̃t = 1}.Proposition 1 (integral polyhedron). The polyhedron de�ned by (1b) and

xit ≤ 1, t ∈ T̃ , (5a)
xit ≤ 0, t ∈ T \ T̃ , (5b)for i ∈ N , is integral.Proof. Observe that the onstraint matrix A orresponding to the system of inequalities de�nedby (1b) and (5) has the onseutive ones property (that is, for all rows i, if aik = aij = 1 then

ail = 1 for all k < l < j). Hene, [42, p. 544, Cor. 2.10℄ implies that the transpose of theonstraint matrix AT is TU, and [42, p. 540, Prop. 2.1℄ in turn implies that the onstraintmatrix A is TU. Sine the right-hand sides of (1b) and (5) are all integral it follows from [42, p.541, Prop. 2.2℄ that the orresponding polyhedron is integral.The result of Proposition 1 implies that the binary requirements (1f) on the variables xit anbe relaxed, provided that the model (1) is to be solved using an algorithm that detets extremeoptimal solutions to linear programming subproblems.7



5.2 Monotone ostsThe results presented in this setion are derived for instanes of the model (1) for whih the ostsare non-inreasing with time (that is, ci,t+1 ≤ cit and dt+1 ≤ dt for all i and t). For any problemwith osts that are non-dereasing with time (that is, ci,t+1 ≥ cit and dt+1 ≥ dt for all i and t)the variable transformation x̂it = xi,T+1−t and ẑt = zT+1−t for all t ∈ T and i ∈ N results in anequivalent problem with osts being non-inreasing with time. Therefore, analogous propertieshold for the latter ase.The next proposition extends the statement of [21, Thm. 2℄ from three to N omponents. Itstates that we may a priori set zt = 0 in (1) for eah t not being a non-negative sum of lives.Proposition 2 (a priori variable elimination for non-inreasing osts). For all instanes of (1) withosts ful�lling ci,t+1 ≤ cit and dt+1 ≤ dt for all i and t, an optimal solution exists with zt = 0 forevery t ∈ T whih is not a sum of non-negative integer multiples of the life limits (that is, forevery t ∈ T suh that {ℓ ∈ Z
N
+ |
∑

i∈N ℓiTi = t
}

= ∅).Proof. Consider a feasible solution to (1) with zt = 1 for some t that is not a positive sum oflives Ti, i ∈ N , and with objetive value f . Assume, without loss of generality, that t is theearliest time with suh a property (i.e., all previous replaement times are positive sums of lives).This implies that all parts have remaining lives τi > 0 at time t. We an therefore postpone allreplaements made at t to t̃ = t + mini∈N τi. The time t̃ equals a positive sum of lives Ti. Theadjusted solution, with zt = 0 and zt̃ = 1, is feasible in (1) and its orresponding objetive value
f̃ ful�lls f̃ ≤ f . Apply this proedure to all t that are not positive sums of lives and for whih
zt = 1. The result follows.If the variables zt, t ∈ T , are assigned binary values, z̃t ∈ {0, 1}, the remaining optimizationmodel separates over the omponents i ∈ N and the orresponding onstraint matrix is TU. Foreah omponent i ∈ N this model is thus given by

minimize
xi

{
∑

t∈T

citxit

∣∣∣∣∣

ℓ+Ti∑

t=ℓ+1

xit ≥ 1, ℓ = 0, . . . , T − Ti; 0 ≤ xit ≤ z̃t, t ∈ T

}
. (6)Using Algorithm 1 omponent i is replaed as late as possible within its life and among the timepoints t ∈ T with z̃t = 1.Algorithm 1 (non-inreasing ost greedy rule for omponent i ∈ N )

T̃ ←
{
t ∈ T

∣∣ z̃t = 1
}
∪ {T + 1}; x̃it ← 0 ∀t ∈ T ; t̃← min

{
t
∣∣ t ∈ T̃

}; s← 0; T̃ ← T̃ \ {t̃};while T̃ 6= ∅ do
t̂← min

{
t
∣∣ t ∈ T̃

};if Ti < t̂− s then x̃it̃ ← 1; s = t̃ end if
t̃← t̂; T̃ ← T̃ \ {t̃}end whilereturn x̃it ∀t ∈ TThe next proposition shows that for non-inreasing osts and binary values for zt, t ∈ T ,Algorithm 1 yields an optimal solution to (6).Proposition 3 (non-inreasing greedy rule yields optimum). Assume that ci,t+1 ≤ cit holds, i ∈ N ,

t ∈ T \ {T}. Let z̃t ∈ {0, 1}, t ∈ T , and assume that the set T̃ = {t ∈ T | z̃t = 1} is suh thatfor eah t ∈ T̃ ∪ {0} there is an s ∈ T̃ ∪ {T + 1} with 1 ≤ s− t ≤ mini∈N Ti. Then, Algorithm 1produes an optimal solution to the model (6).8



Proof. By assumption, x̃i is feasible in (6). Let x̄i 6= x̃i be feasible in (6). Postpone, wherepossible, replaements orresponding to x̄i to the next time point in T̃ ∪ {T + 1}. This willtransform x̄i to x̃i without introduing any additional replaements and at a non-inreasing ost.Hene, ∑t∈T cit(x̃it − x̄it) ≤ 0 holds; the result follows.6 The replaement polytopeWe let the set S ⊂ R
N×T × {0, 1}T be de�ned by the values of the variables (x, z) that ful�lthe onstraints (1b)�(1e), (1g). The onvex hull of S, denoted conv S, is alled the replaementpolytope. By studying the faial struture of conv S and thereby desribing it by a �nite setof linear inequalities, it is possible to solve the problem using linear programming tehniques.Our ambition here is to take the �rst steps towards suh a omplete linear desription of thereplaement polytope.We ompute the dimension of the replaement polytope and show, under weak and naturalassumptions, that all the neessary inequalities in (1b)�(1e) de�ne faets of the same. However,by an example we show that these basi inequalities do not ompletely de�ne conv S.Proposition 4 (dimension of the replaement polytope). If Ti ≥ 2 for all i ∈ N , then thedimension of conv S is (N + 1)T , that is, conv S is full-dimensional.Proof. First note that sine S ⊆ R

(N+1)T it holds that dim(conv S) ≤ (N +1)T . Let the vetors
(xk, zk) ∈ B

(N+1)T , k ∈
{
0, . . . , (N + 1)T

}, be given by the following. For i ∈ N and t ∈ T , let
xk

it = 0 if k ∈
{
(N + 1)(t − 1) + i, (N + 1)t

} and xk
it = 1 otherwise. For t ∈ T , let zk

t = 0 if
k = (N + 1)t and zk

t = 1 otherwise. Sine Ti ≥ 2 for i ∈ N it holds that ∑ℓ+Ti

t=ℓ+1 xk
it ≥ 1 for all

i ∈ N , all ℓ ∈ {0, . . . , T − Ti}, and all k ∈
{
0, . . . , (N + 1)T

}.Moreover, for all t ∈ T and k ∈
{
0, . . . , (N + 1)T

} suh that zk
t = 0 it holds that xk

it = 0,
i ∈ N ; it follows that (xk, zk) ∈ S. It an be veri�ed that the only solution to the system

(N+1)T∑

k=0

xk
itαk = 0, i ∈ N ,

(N+1)T∑

k=0

zk
t αk = 0, t ∈ T ,

(N+1)T∑

k=0

αk = 0,is αk = 0, k ∈
{
0, . . . , (N +1)T

}, whih implies that the vetors (xk, zk), k ∈
{
0, . . . , (N +1)T

},are a�nely independent. Hene, it holds that dim(conv S) ≥ (N + 1)T , thus implying that
dim(conv S) = (N + 1)T . The proposition follows.The replaement polytope is not full-dimensional if Ti = 1 for some i ∈ N , sine it thenholds that xit = zt = 1, t ∈ T , for all (x, z) ∈ conv S. Letting A= denote the matrix orre-sponding to the equality subsystem of conv S, this would yield that rankA= ≥ 2T and thus that
dim(conv S) ≤ (N − 1)T . However, the ase that Ti = 1 is not interesting in pratie sine itwould mean that omponent i must be replaed�and thus maintenane must be performed�atevery time step.The following result from polyhedral ombinatoris ([42, Thm. 3.6 of Ch. I.4℄) is utilized todetermine faets of conv S.Theorem 2 (haraterization of faets). Let P be a full-dimensional polyhedron and let F ={
x ∈ P | πTx = π0

} be a proper fae of P (i.e., ∅ 6= F ⊂ P ). The following two statements areequivalent:1. F is a faet of P .2. If λTx = λ0 for all x ∈ F then (λ, λ0) = α(π, π0) for some α ∈ R.9



Proposition 5 (the inequalities (1b) de�ne faets). If Ti ≥ 2 for all i ∈ N , then eah of theinequalities ∑ℓ+Ti

t=ℓ+1 xit ≥ 1, ℓ = 0, . . . , T − Ti, i ∈ N , de�nes a faet of conv S.Proof. Sine Ti ≥ 2 for i ∈ N , conv S is full-dimensional (f. Proposition 4). Hene, we an usethe uniqueness haraterization of the faet desription from Theorem 2 to show the proposition.For eah r ∈ N and eah ℓ ∈ {0, . . . , T − Tr}, let F̂rℓ =
{

(x, z) ∈ conv S |
∑ℓ+Tr

t=ℓ+1 xrt = 1
}.Further, let x0

it = z0
t = 1, i ∈ N , t ∈ T . Sine Ti ≥ 2 it follows that (x0, z0) ∈ S \ F̂rℓ. Then,de�ning the vetor (xA, zA) as xA

it = 0 if i = r and t ∈ {ℓ + 2, . . . , ℓ + Tr}, xA
it = 1 otherwise,and zA

t = 1, t ∈ T , it follows that (xA, zA
)
∈ F̂rℓ and hene that F̂rℓ is a proper fae of conv S.Moreover, there exist values of λ ∈ R

N×T , µ ∈ R
T , and ρ ∈ R suh that the equation

∑

t∈T

(
∑

i∈N

λitxit + µtzt

)
= ρ (7)is satis�ed for all (x, z) ∈ F̂rℓ. We will show that for any value of α ∈ R, in a solution to (7) itholds that λit = α if i = r and t ∈ {ℓ + 1, . . . , ℓ + Tr}, λit = 0 otherwise, µt = 0, t ∈ T , and

ρ = α.Choose any i ∈ N \ {r} and any t ∈ T . Let, for j ∈ N and k ∈ T , x1
jk = 0 if j = i and

k = t, x1
jk = xA

jk otherwise, and let z1 = zA. It follows that (x1, z1) ∈ F̂rℓ. The vetors (xA, zA
)and (x1, z1

), respetively, inserted in (7) then yield that λit = 0. It follows that λit = 0 for all
i ∈ N \ {r} and all t ∈ T .For eah t ∈ T \ {ℓ + 1, . . . , ℓ + Tr + 1}, let, for i ∈ N and k ∈ T , x2

ik = 0 if i = r and k = t,
x2

ik = xA
ik otherwise, and let z2 = zA. It follows that (x2, z2

)
∈ F̂rℓ. The vetors (xA, zA

) and(
x2, z2

), respetively, inserted in (7) then yield that λrt = 0 for all t ∈ T \{ℓ+1, . . . , ℓ+Tr +1}.Further, let, for i ∈ N , xB
it = 0 if i = r and t = ℓ + 1, xB

it = 1 if i = r and t = ℓ + Tr,
xB

it = xA
it otherwise, and let zB = zA. Moreover, let, for i ∈ N , x3

it = 0 if i = r and t = ℓ+Tr +1,
x3

it = xB
it otherwise, and let z3 = zB. It follows that (x3, z3

)
∈ F̂rℓ. The vetors (xB, zB

) and(
x3, z3

), respetively, inserted in (7) then yield that λr,ℓ+Tr+1 = 0. The equation (7) an thenbe rewritten as
∑

t∈T

µtzt +

ℓ+Tr∑

t=ℓ+1

λrtxrt = ρ. (8)For eah t ∈ T \ {ℓ + 1, ℓ + Tr + 1}, let, for i ∈ N , x4
ik = 0 if k = t, x4

ik = xA
ik otherwise, andlet z4

k = 0 if k = t, and z4
k = zA

k otherwise. It follows that (x4, z4) ∈ F̂rℓ. The vetors (xA, zA
)and (x4, z4

), respetively, inserted in (8) then yield that µt = 0 for all t ∈ T \ {ℓ+ 1, ℓ+ Tr + 1}.Further, for eah t ∈ {ℓ + 1, ℓ + Tr + 1}, let, for i ∈ N , x5
ik = 0 if k = t, x5

ik = xB
ikotherwise, and let z5

k = 0 if k = t, and z5
k = zB

k otherwise. It follows that (x5, z5
)
∈ F̂rℓ. Thevetors (xB, zB

) and (x5, z5
), respetively, inserted in (8) then yield that µℓ+1 = µℓ+Tr+1 = 0.Equation (8) an then be rewritten as

ℓ+Tr∑

t=ℓ+1

λrtxrt = ρ. (9)For eah t ∈ {ℓ+2, . . . , ℓ+Tr}, let for i ∈ N and k ∈ T , x6
ik = 0 if i = r and k = ℓ+1, x6

ik = 1if i = r and k = t, and x6
ik = xA

ik otherwise, and let z6 = zA. It follows that (x6, z6
)
∈ F̂rℓ. Thevetors (xA, zA

) and (x6, z6
), respetively, inserted in (9) then yield that λr,ℓ+1 = λrt. Hene,

λrt is onstant over t ∈ {ℓ + 1, . . . , ℓ + Tr} and we de�ne λrt = λ, t ∈ {ℓ + 1, . . . , ℓ + Tr}.Sine (xA, zA
)
∈ F̂rℓ it follows that λ = ρ. Letting α = ρ, the equation (9) an be written as10



∑ℓ+Tr

t=ℓ+1 αxrt = α. From [42, pp. 91�92℄ then follows that the inequality ∑ℓ+Tr

t=ℓ+1 xrt ≥ 1 de�nesa faet of conv S.The tehnique used to prove Proposition 5 an be applied to Propositions 6�8 below, whoseproofs are given in Appendix A.Proposition 6 (the inequalities (1) de�ne faets). If Ti ≥ 2 for all i ∈ N , then eah of theinequalities xit ≤ zt, i ∈ N , t ∈ T , de�nes a faet of conv S.Proposition 7 (the inequalities (1d) de�ne faets). If Ti ≥ 2 for all i ∈ N , then eah of theinequalities xkt ≥ 0, k ∈ N : Tk ≥ 3, t ∈ T , de�nes a faet of conv S.The inequalities xkt ≥ 0, t ∈ T (f. Proposition 7) do not de�ne faets for any k ∈ Nsuh that Tk = 2 sine the onstraints (1d) are then implied by (1b)�(1), (1e) aording to
xk,t+1 ≥ 1−xkt ≥ 1−zt ≥ 0, t ∈ T \{T}, and xk1 ≥ 1−xk2 ≥ 1−z2 ≥ 0. Hene, the onstraints(1d) need to be de�ned only for i ∈ N suh that Ti ≥ 3.Proposition 8 (the inequalities (1e) de�ne faets). If Ti ≥ 2 for all i ∈ N , then eah of theinequalities zt ≤ 1, t ∈ T , de�nes a faet of conv S.It follows from Propositions 5�8 that all of the inequalities neessary in the desription ofthe set S de�ne faets of its onvex hull. A natural question then arises: Is conv S ompletelydesribed by the system (1b)�(1e)? The answer to this question is �no�, whih beomes apparentby the following example.Example 1 (ontinuous relaxation). Consider a system with N = 2, T1 = 2, T2 = 3 and T = 8.Let the osts be cit = 1 and dt = 1 for all i ∈ N and t ∈ T . An optimal solution to model (1) is

t 1 2 3 4 5 6 7 8
x1t 0 1 0 1 0 1 1 0
x2t 0 1 0 1 0 1 0 0
zt 0 1 0 1 0 1 1 0with the objetive value of 11. After relaxing the integrality onstratints (1f) and (1g) an optimalsolution is

t 1 2 3 4 5 6 7 8
x1t 1/2 1/2 1/2 1/2 1/2 1/2 1 0
x2t 0 1/2 1/2 0 1/2 1/2 1/2 0
zt 1/2 1/2 1/2 1/2 1/2 1/2 1 0with the objetive value of 10.5. Hene the onvex hull of the set of feasible solutions to thesystem (1b)�(1g) is not ompletely de�ned by the inequalities therein.Aording to the Propositions 5�8, all of the neessary inequalities de�ne faets of conv S.Sine, by Proposition 4, conv S is full-dimensional (under reasonable assumptions) the minimaldesription of conv S is unique. Therefore, all of these faets are neessary in the desription of

conv S.Example 1 shows that the inequalities (1b)�(1e) are not su�ient to desribe conv S. Toompletely desribe conv S we hene need also other faets; faet-generating proedures will bepresented in forthoming work. 11



7 Case studiesIn this setion we present results from numerial ase studies of replaement problems with bothstohasti and deterministi omponent lives. These problems originate from the airraft engineand wind power industries. Here, all osts are time-independent, i.e., cit = ci, i ∈ N , and dt = d,
t ∈ T . We ompare the results from using solutions to the opportunisti replaement problemto that of two maintenane poliies and of performing no opportunisti maintenane. We alsoinvestigate how the maintenane oasion ost d a�ets the relative performane of the methods.7.1 Deterministi and stohasti opportunisti replaement problemsFor the ases in whih the lives of all the omponents are deterministi, an optimal maintenaneshedule is found by solving the opportunisti replaement problem (see Def. 1). Many main-tenane problems, however, inlude omponents with stohasti lives, and we wish to apply ourmodel to these problems as well. When dealing with stohasti lives, an optimal maintenaneshedule for the entire planning period an not be determined; the atual failure of omponentswill provide new information, whih in turn will a�et the deisions to be taken in the future.Therefore, we aim at �nding a maintenane poliy, being a funtion that is alled upon failureof some omponent of the system in order to determine whih omponents to replae.De�nition 2 (maintenane poliy). Given the ost d of a maintenane oasion, the replaementost ci, the age ai and the life Ti (or life distribution) of eah omponent i ∈ N , and the remainingplanning horizon T ; deide whih omponent(s) to replae at the urrent maintenane oasion.We use the following de�nition of a stohasti opportunisti replaement problem.De�nition 3 (stohasti opportunisti replaement problem). Given the ost d of a maintenaneoasion, the replaement ost ci, the age and the life distribution of eah omponent i ∈ N ;�nd a poliy that minimizes the expeted ost for maintenane over the planning period from 0to T .The mean maintenane ost resulting from using a ertain poliy over a large number of lifesenarios re�ets how well the poliy solves the stohasti opportunisti replaement problem.A senario for a stohasti opportunisti replaement problem is de�ned as a sequene {T k

i }
K
k=1(where K ∈ Z+ is large enough) of lives for eah omponent i ∈ N . These sequenes are drawnfrom the omponents' life distributions; for omponents with deterministi lives, T k

i = Ti for all
k. We alulate the performane of a maintenane poliy for a spei� senario aording to Alg.2; the parameters τi and ai denote the remaining life and age, respetively, of omponent i ∈ N .Algorithm 2 (total maintenane ost from using a poliy for a given senario)

t← 0; cost← 0for i ∈ N do τi ← T 0
i ; ai ← 0; ki ← 1 end forrepeat

τ̄ ← min{ τi | i ∈ N }; t← t + τ̄ ; cost← cost+ dfor i ∈ N do τi ← τi − τ̄ ; ai ← ai + τ̄ end forApply a maintenane poliy to deide whih omponents to replae, say R ⊆ Nfor i ∈ R do τi ← T ki

i ; ai ← 0; ki ← ki + 1; cost← cost+ ci end foruntil t ≥ Treturn costIn all the tests desribed in Setions 7.3 and 7.4, every stohasti omponent has a Weibull12



distributed life with the probability density funtion f de�ned by
f(x;α, β) =

{
β
α

(
x
α

)β−1
exp

((
− x

α

)β)
, if x ≥ 0,

0, otherwise, (10)with the sale parameter α > 0 and the shape parameter β > 0 varying over the omponents.Weibull distributions are ommon for modeling lives of omponents (see e.g. [8, Ch. 2℄ and [55℄).The methodology developed for this ase study an, however, be applied to systems with arbitrarydistributions for the omponents' lives.7.2 The maintenane poliies ompared in this studyWe next desribe the spei� maintenane poliies onsidered in the ase study. These poliiesare applied to both deterministi and stohasti problems. The simplest poliy is to make nooordination of omponent replaements.De�nition 4 (non-opportunisti maintenane poliy). Replae failed omponents only.In the maintenane literature age replaement poliies are ommon; see e.g. [8, Ch. 3℄.De�nition 5 (age poliy). Given age limits âi for all omponents i ∈ N , a omponent i ∈ N isreplaed if its age ai ≥ âi.Finding optimal values for the age limits âi in an age poliy is omputationally demanding;we have implemented the heuristi proedure of Alg. 3; the value of the parameter ∆ > 0 ishosen suh that the alulations beome manageable. For all omponents i ∈ N let T̂i = Ti ifthe problem is deterministi and T̂i = mean(Ti) if the problem is stohasti.Algorithm 3 (heuristi for omputing age limits âi, i ∈ N )
mincost←

∑
i∈N ⌊T/T̂i⌋(d + ci)for r ∈

{
0, 1, . . . ,

⌊
∆−1T

⌋} dofor i ∈ N do ai ← max(0, T̂i − r∆) end forApply Alg. 2 with the age poliy of De�nition 5 and T k
i = T̂i, i ∈ N , k = 1, . . . ,K.if cost < mincost then δ ← r∆; mincost← cost end ifend forreturn max(0, T̂i − δ), i ∈ N .We have onstruted a value poliy to resemble the behavior of the deision methodology usedat Volvo Aero Corporation (VAC), and whih is there ombined with some manual adjustments.De�nition 6 (value poliy). Eah omponent i ∈ N with ci > d is assigned the value vi =

ci · τi/T̂i, where τi is the (expeted) remaining life of the omponent. An age limit Tmin ≤ T isgiven. A omponent i ∈ N is replaed if either ci > d ≥ vi holds or ci ≤ d holds and ai ≥ Tmin.For the airraft engines at VAC the age limit Tmin is set to 150 �ight hours, whih is around20% of the shortest omponent life. Also for the wind turbine study we set Tmin to 20% of theshortest omponent life. Notie that the value poliy an be interpreted as an age poliy, forwhih âi = Ti(1− d/ci) if ci ≥ d and âi = Tmin otherwise.The deterministi optimization model (1) annot be diretly applied to a stohasti problem.Instead, we introdue the optimization poliy that utilizes the following extension of the model(1): Introdue the time step 0 and the binary variables xi0, i ∈ N , representing opportunistireplaements of the respetive omponents at the urrent maintenane oasion, whih is trig-gered by the failure of some omponent. Hene, an opportunisti replaement of omponent i at13



time 0 generates the replaement ost ci but not the maintenane oasion ost d. The objetive(1a) is thus modi�ed to minimize
(x,z)

T∑

t=0

∑

i∈N

cixit +
T∑

t=1

dzt. (11a)Sine, typially, the omponents are not new, their (expeted) remaining lives τi ful�l τi ≤ T̂i,
i ∈ N , whih is aommodated by the onstraints

τi∑

t=0

xit ≥ 1, i ∈ N , (11b)
xi0 ∈ {0, 1}, i ∈ N . (11)We refer to the model omposed by the variables xit, i ∈ N , zt, t ∈ T , the additional variables

xi0, i ∈ N , the objetive funtion (11a), and the onstraints (1b)�(1g), (11b)�(11), as theextended opportunisti replaement model.De�nition 7 (optimization poliy). Solve the extended opportunisti replaement model with Tibeing the (expeted) value of the life of omponent i ∈ N . Replae omponents aording to theoptimal solution at time 0, i.e. the optimal values of xi0, i ∈ N .The optimization models are implemented in the modelling language AMPL (version 11.1)and solved by the mixed integer programming solver CPLEX (version 11.1). The poliies and thesenario generation are implemented in MATLAB (version 7.5). All the tests are performed on aLinux double proessor unit; eah integer programming problem in this ase study was solved inbetween 0.2 and 1 CPU-seonds.7.3 Airraft enginesWhen an airraft engine is removed for overhaul it needs to be replaed by a spare engine sothat the airraft an stay in servie during the maintenane period. This generates a large main-tenane oasion ost whih is independent of the atual maintenane that is to be performed.The soures of the maintenane oasion ost d are the ost for hiring a spare engine and thework, transportation, inspetion, and administration osts assoiated with the engine exhange.The ost for purhasing a omponent i ∈ N and the work ost assoiated with its replaementonstitute the ost ci. An airraft engine onsists of omponents with stohasti and/or deter-ministi lives. Some omponents are safety ritial, whih means that their failure may lead to aatastrophi outome. Suh omponents are therefore assigned age limits�in terms of numbersof �ight hours�before whih they must be replaed. The probability that a failure ours beforethis limit is very low. We may therefore onsider the lives of these omponents as deterministi.The non-safety ritial omponents are replaed �on ondition�, i.e., if they fail during operationor if�at an inspetion�they are found to be (almost) failed. We all these omponents stohas-ti, and assume that they possess Weibull distributed lives, as suggested in [55℄. (Non-safetyritial omponents are replaed when rak lengths above ertain limits are observed; the asestudy in [55℄ on survival estimation models for an appliation to the rak growth in the noz-zle omponent of a low pressure turbine indiated that a non-stationary renewal proess withWeibull distributed lives is a good model for the onditional life distribution.)The RM12 engine of the military airraft JAS39 Gripen onsists of modules whih are om-posed by omponents; a module must be removed before any of its omponents an be replaed.Sine this struture is more omplex than the system onsidered in the model (1) it annot beapplied to the whole engine. Thus, we here onsider one engine module at a time, namely thehigh and low pressure turbines; a mathematial model omprising the entire RM12 engine is thesubjet of a forthoming artile. 14



The data used for our tests originate from VAC; sine the RM12 data are on�dential the truevalues of the osts and lives of omponents are not revealed. We let the maintenane oasionost d inlude the ost of removing the module; the true value of d is denoted d0. When theparameter d is varied, all resulting total maintenane osts are divided by (the mean value of) theost of non-opportunisti maintenane obtained at d = d0; this value is denoted Cdet,d
nop (d0) and

Csto,d
nop (d0), respetively. When the parameter β is varied, all resulting total maintenane ostsare divided by the mean value of the ost of non-opportunisti maintenane obtained at β = 4(denoted Csto,β

nop (4)). The planning horizon T orresponds to 5000 �ight hours. The optimizationmodel (1) and the optimization poliy employ time steps of 50 �ight hours. For the value poliy,the parameter Tmin orresponds to 150 �ight hours.We evaluate the poliies for both deterministi and stohasti opportunisti replaementproblems. The expeted lives of the stohasti (on ondition) omponents are known but notthe orresponding distributions. The deterministi problems use the expeted values for thestohasti omponents' lives. For the stohasti problems, simulations are performed with dif-ferent values of the shape parameter β in (10); for eah omponent and eah value of β, theparameter α is hosen suh that the expeted life equals the known value.7.3.1 The low pressure turbineThe low pressure turbine (LPT) onsists of 10 omponents, of whih six are on ondition andfour are safety ritial. For the age poliy, the parameter δ orresponds to 1050 �ight hours; thisvalue was hosen by Alg. 3 with ∆ = 50 �ight hours and d = d0.Figure 2 shows the results from the tests on the deterministi problem. Figure 2(a) showsthat, for d = d0 the total maintenane ost of using the optimization model is 34% lower thanthat of using the non-opportunisti poliy. Furthermore, as the maintenane oasion ost dinreases, all the poliies improve ompared to the non-opportunisti poliy. Figure 2(b) showsthat, although the number of maintenane oasions resulting from the optimization model isabout a third ompared to the non-opportunisti poliy, the number of replaements of eah ofthe omponents is equal. The value and age poliies result in even fewer maintenane oasions,but at the prie of replaing more omponents.
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(b)Figure 2: LPT�the deterministi problem solved by the optimization model and the threepoliies: (a) Resulting total maintenane osts for di�erent values of d. The box orrespondsto the atual maintenane oasion ost d0 at VAC. (b) The number of replaements of therespetive omponents for d = d0. The rightmost set of bars shows the number of maintenaneoasions. 15



The tests on the stohasti opportunisti replaement problems are reported in Figure 3.Figure 3(a) shows the mean of the resulting total ost for maintenane when d is varied. Duringthese tests the stohasti omponent lives were assigned Weibull distributions aording to:
β = 2 for omponents 1 and 5, β = 4 for omponents 4 and 9, and β = 6 for omponents 6and 10. Observe that the optimization poliy performs well for all values of d. For d = d0 themean total maintenane ost of using the optimization poliy is 17% lower than that of usingthe non-opportunisti poliy. For the lowest values of d the optimization poliy is, however,slightly worse than the non-opportunisti poliy. The results illustrated in Figure 3(b) resemblethose of Figure 2(b). However, for the stohasti problem the optimization poliy yields slightlymore omponent replaements than the non-opportunisti poliy. In Figure 3() the stohastiomponents' life distribution parameter β is varied (equally over the six omponents havingstohasti lives). Clearly, the optimization poliy performs better than all the other poliies.Moreover, the di�erene between the optimization and non-opportunisti poliies grows as theunertainty dereases (i.e., the value of β inreases). Note that the value β = 1 orrespondsto the exponential distribution; sine this means that the stohasti omponents do not age,the optimal poliy for these omponents would be non-opportunisti. Nonetheless, sine someomponents in the LPT have deterministi lives, the optimization poliy may yield a lower ostalso for this ase.7.3.2 The high pressure turbineThe high pressure turbine (HPT) onsists of 9 omponents, of whih �ve are on ondition andfour are safety ritial. For the age poliy, the parameter value δ is set to 250 �ight hours; thisvalue was hosen by Alg. 3 with ∆ = 50 �ight hours and d = d0.Figure 4 shows results from our tests on the deterministi problem. Figure 4(a) reveals trendsfor the age poliy and the optimization model similar to those for the LPT. The di�erene betweenthe optimization model and the non-opportunisti poliy is, however, smaller. For d = d0 thetotal maintenane ost of using the optimization model is 9% lower than that of using the non-opportunisti poliy. Figure 4(b) shows that the number of maintenane oasions is equal forthe optimization model and the age poliy; this is 40% lower than that of the non-opportunistipoliy. The number of omponent replaements are equal for using the optimization modeland the non-opportunisti and age poliies, exept that the age poliy employs one additionalreplaement of omponent 2.Figure 5 shows results from the tests on the stohasti problem. Figure 5(a) shows themean of the resulting total maintenane ost when d is varied. For these tests the stohastiomponent lives were assigned Weibull distributions aording to: β = 2 for omponents 4and 6, β = 4 for omponents 5 and 9, and β = 6 for omponent 7. For d = d0 the meantotal maintenane ost of using the optimization poliy is 4% lower than that of using the non-opportunisti poliy. Observe that the optimization poliy performs the best for high values of
d; for low values of d, however, it performs slightly worse than all the other poliies. Figure 5(b)shows that the optimization poliy produes slightly more omponent replaements than thenon-opportunisti poliy. In Figure 5() the stohasti omponents' life distributions are varied.Here, the optimization poliy performs slightly worse than the age poliy, but better than thevalue and non-opportunisti poliies. As for the LPT, the di�erene between the optimizationand non-opportunisti poliies grows when the unertainty dereases (i.e., when inreasing thevalue of β).7.4 Wind turbinesThe data used for the wind turbine ase study is based on the report [48, pp. D-18�D-20℄ andoriginates from a land based 2.5 MW wind turbine unit. We only onsider types of maintenane16
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()Figure 3: LPT�the stohasti problem (omponents 1, 4, 5, 6, 9, and 10 having stohasti lives)solved by the four poliies: (a) Mean values of the resulting total maintenane osts for di�erentvalues of d. The box orresponds to the atual maintenane oasion ost d0 at VAC. (b) Meannumber of replaements of the respetive omponents when β = 4 for all stohasti omponentsand d = d0. The rightmost set of bars shows the mean of the number of maintenane oasions.() Mean values of the resulting total maintenane osts for di�erent values of β.that require the use of a large onstrution rane. The mobilization ost during three days of thisonstrution rane is the main bulk of the maintenane oasion ost. The report only provides atotal rane ost for a set of maintenane ativities that varies between $39 000 and $84 000, whihimplies that the mobilization ost is at most $39 000. After onsulting wind power experts thevalue d0 = $30 000 was hosen. The maintenane oasion ost for a wind turbine does, however,depend on the distane between the wind farm and the rane depot, whether the wind turbine island based or o�shore, and whether osts onneted with prodution losses are inluded or not;this ost may therefore very well vary by a ouple of orders of magnitude.The wind turbine inludes �ve omponents that require a onstrution rane for maintenane:blades, pith bearing, main bearing, gearbox, and generator. The maintenane ativities onthese omponents are listed in Table 1 and eah ativity is regarded as a omponent i ∈ N(in the remainder of this setion, these terms will also be used interhangeably). Note thatsome omponents are idential, for instane omponents i ∈ {5, 6, 7} are all pith bearings. Thereplaement ost ci for eah ativity i ∈ N was alulated aording to: ci = (material ost) +(total rane ost) − d0 + (labour hours)×(labour hour ost), where the labour hour ost wasset to $50. Most wind turbines are urrently at the beginning of their life span, whih impliesthat reliable failure data is sare. Therefore, many wind power farms employ non-opportunisti17
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(b)Figure 4: HPT�the deterministi problem solved by the optimization model and the threepoliies: (a) Resulting total maintenane osts for di�erent values of d. The box orrespondsto the atual maintenane oasion ost d0 at VAC. (b) The number of replaements of therespetive omponents at d = d0. The rightmost set of bars shows the number of maintenaneoasions.maintenane planning. We onsider one wind turbine1 and assume that reliable distributionsof omponent lives are available. The omponent lives are assigned Weibull distributions; therespetive values of the parameters α and β are shown in Table 1. Note that most omponentshave exponential life distributions (i.e., β = 1).no. omponent mate- total labour replae- α βrial rane need mentost ost ost, ci(k$) (k$) (hours) (k$) (years)1�3 blades: strutural maint. 89 39 49 101 400 1.04 blades: non-strutural maint. 27 39 246 48 20 1.05�7 pith bearing 31 39 69 43 400 1.08 main bearing 30 84 147 91 400 1.09 gearbox: gear 122 30 0 122 400 1.010 gearbox: regular bearings 81 30 71 85 20 3.511 gearbox: high speed bearings 81 84 46 137 20 3.512 generator: rotor 95 30 14 96 400 1.013�14 generator: bearings 6 60 10 36 17 3.5Table 1: The omponents/maintenane ativities of the wind turbine problem. The total raneost is the ost of mobilization and use of rane during the maintenane ativity. Labour hoursis the number of working hours of external personal required for the maintenane ativity.Aording to [48, p. A-3℄, non-strutural repair of blades is always performed simultaneouslyon all three blades; it is hene onsidered as one ativity. On some omponents, more thanone maintenane ativity an be performed: strutural and non-strutural maintenane of the1It would be more bene�ial to onsider maintenane planning for an entire wind farm and also to inludeprodution planning and osts in the mathematial model. As for a omplete airraft engine, this would, however,require a more omplex model and is a topi for future researh.18



0 1 2 3 4

1

1.5

2

2.5

d/d
0

(M
ea

n 
to

ta
l m

ai
nt

en
an

ce
 c

os
t)

/C
no

p
st

o,
d (d

0)

 

 

Optimization policy
Non−opportunistic
Value Policy
Age Policy

(a) 1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

Component number

M
ea

n 
# 

re
pl

ac
em

en
ts

/o
cc

as
io

ns

 

 

Maintenance
occasions

Optimization policy
Non−opportunistic
Value policy
Age policy

(b)
0 2 4 6 8 10

0.8

0.9

1

1.1

1.2

1.3

β

(M
ea

n 
to

ta
l m

ai
nt

en
an

ce
 c

os
t)

/C
no

p
st

o,
β (4

)

 

 

Optimization policy
Non−opportunistic
Value policy
Age policy

()Figure 5: HPT�the stohasti problem (the omponents 4, 5, 6, 7, and 9 having stohasti lives)solved by the four poliies: (a) Mean values of the resulting total maintenane osts for di�erentvalues of d. The box orresponds to the atual maintenane oasion ost d0 at VAC. (b) Meannumber of replaements of the respetive omponents for β = 4 and d = d0. The rightmost setof bars shows the mean value of the number of maintenane oasions. () Mean values of theresulting total maintenane osts for di�erent values of β.blades, the replaement of the gear, the high speed bearings, and the regular bearings of thegearbox, and the replaement of the rotor and the bearings of the generator. Unfortunately, notall possible maintenane ativities are listed in the report; some are only listed together withother maintenane ativities.2 In order to adapt3 the problem to the form used in model (1) weneed data for eah individual maintenane ativity. The data was transformed aording to thefollowing: Let A1 and A2 be two maintenane ativities and assume that data for A1 and A1∪A2is available. Let kA be the ost of the omponent (or the number of labour hours assoiatedto the performane of the maintenane ativity) A; then, kA2
= kA1∪A2

− kA1
. Let k̂A be thetotal rane ost for ativity A. Sine this inludes a mobilization ost d0, we instead obtain

k̂A2
= k̂A1∪A2

− k̂A1
+d0. The distribution of failures demanding the ativity A2 to be performedis assumed to equal that of failures demanding the performane of ativity A1 ∪ A2. We haveused the original data for the strutural and non-strutural repair of blades, sine the risk of afailure that demands these maintenane ativities is not a�eted by the age of the blades (sine2For instane, for the gearbox the replaement of both the gear and the bearings and that of the bearings onlyare listed, but not the replaement of the gear only.3We ould easily adapt the model (1) to inlude suh dependenies by introduing additional variables andonstraints, but sine the topi of the artile is the model itself we hoose to adapt the problem data.19



the time points for these types of failures are exponentially distributed).The deterministi problem is obtained by replaing the lives of all omponents by theirrespetive expeted values. The time horizon is set to 25 years, whih orresponds to the expetedtehnial life of a wind turbine. For the extended opportunisti replaement model we use timesteps of 0.25 years. For the value poliy the parameter Tmin represents three years. For the agepoliy the parameter δ represents 5 years; this value was hosen by Alg. 3 with ∆ = 0.25 yearsand d = d0.Figure 6 shows the results of the test on the deterministi problem. The problem is rathertrivial, sine it omprises nine omponents whose lives are longer than the time horizon and �veomponents whih will all fail exatly one during the life of the turbine. The optimal solutionis to replae all of these �ve omponents at the oasion of the �rst failure; the remaining nineomponents do not require any replaement. Figure 6(b) shows that for d = d0 all the poliiesexept the non-opportunisti poliy �nd the optimal solution. Figure 6(a) shows that the valueof the optimal solution at d = d0 is 13% lower than that produed by the non-opportunistipoliy. The age poliy always �nds the optimal solution; the value poliy, however, fails to do sofor values of d > d0.
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(b)Figure 6: Wind turbine�the deterministi problem solved by the optimization model and thethree poliies: (a) Resulting total maintenane osts for di�erent values of d (in $). The boxorresponds to the atual value d0 = $30 000. (b) The number of replaements of the omponentswith lives shorter than the time horizon at d = d0. The rightmost set of bars shows the numberof maintenane oasions.Figure 7 shows results from the tests on the stohasti problem. Note that only omponents
i ∈ {4, 10, 11, 13, 14} have expeted lives shorter than the planning horizon.4 Figure 7(a) showsthe results from varying the maintenane oasion ost d. The optimization and age poliiesperform better than the non-opportunisti poliy for d ∈ {$60000, $120000}. For the lowervalues of d the non-opportunisti poliy is better than or at least as good as the other poliies.For d = d0 the mean total maintenane ost of using the optimization poliy is 4% higher thanthat of using the non-opportunisti poliy. Figure 7(b) reveals that the number of maintenaneoasions resulting from using the optimization poliy is lower than those of the age and non-opportunisti poliies. The number of individual omponent replaements is, however, higher forsome omponents. The number of maintenane oasions is lowest for the value poliy, but theorresponding numbers of replaements of omponents 13 and 14 are muh higher than those4The remaining nine omponents have exponentially distributed lives with expeted values muh larger thanthe horizon. These omponents have only a marginal e�et on the mean value of the total replaement ost.20



resulting from using the other poliies. In Figure 7() the parameter β is varied equally for thenon-exponentially distributed lives of omponents 10, 11, 13, and 14, while the lives of the otherten omponents stay exponentially distributed (i.e., β = 1). Observe that for higher values of βthe optimization and age poliies outperform the non-opportunisti and value poliies. This isexpeted, sine the life distributions then tend to deterministi ones. Note that, for β = 1 noneof the omponents age, whene the non-opportunisti poliy is optimal.This ase study shows that a simple deterministi problem may beome muh more di�ultwhen the omponent lives are stohasti; it motivates the development of a replaement modelbased on stohasti programming (see [46℄).8 Conlusions and future researhThe opportunisti replaement model is shown to have a nie inherent struture, in that whilethe problem is NP-hard, the model redues to a linear program one the maintenane oasionsare �xed; the latter an in some ases even be solved through a greedy proedure. Also, all theneessary linear onstraints de�ne faets of the onvex hull of the set of feasible shedules. Wehave reently identi�ed new lasses of faets; their appliation will be reported in the near future.The numerial ase studies performed on appliations from the wind power and airraftengine industries show that the optimization model an be utilized to redue osts in omparisonto using simpler maintenane poliies. The study also shows that the model an be used formaintenane sheduling of omponents with non-deterministi lives; the ost redution tends toinrease with the maintenane oasion ost and lower levels of unertainty regarding omponentlives.Work in progress inlude the optimization of maintenane deisions when omponent livesare non-deterministi through the use of a stohasti programming model. Even in the asewhen osts are independent of time, we have already shown that suh a stohasti extensionof the urrent problem is NP-hard. In order to provide a omputationally feasible model wewill therefore also investigate how to best de�ne an aurate enough senario representation ofthe omponent lives. Further, we intend to study models omprising suessive improvementsof life distribution estimates through the addition of measurement-based information about theondition of the system.The opportunisti replaement model (1) is utilized in further studies of maintenane plan-ning optimization at Volvo Aero as well as in the nulear and wind power industries. In orderto inorporate requirements spei� to the appliation (suh as spare omponent replaementand redundanies within the system) extensions of the model are made. In the near future,experienes from these ativities will be reported.AknowledgementsThe authors wish to thank assoiate professor Peter Damashke, Chalmers, for valuable disus-sions on omplexity analysis, and lientiate of tehnology Fran�ois Besnard, Chalmers, for hisassistane on the wind turbine ase study. We greatfully aknowledge the moral support fromthe Swedish Centre for Maintenane Management, espeially from CEO Bo Hägg; his enthu-siasm was also instrumental in the proess that lead to the Volvo Aero projet winning TheSandinavian First Maintenane Servie Award in 2010.The researh leading to this paper was supported by NFFP (The Swedish National AviationEngineering Researh Programme), by The Swedish Energy Ageny, and by the Swedish Foun-dation for Strategi Researh through the strategi entre GMMC (Gothenburg MathematialModelling Centre). 21
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()Figure 7: Wind turbine�the stohasti problem solved by the four poliies: (a) Mean valuesof the resulting total maintenane osts for di�erent values of d (in $). The box orresponds tothe atual maintenane oasion ost d0 = $30 000. (b) Mean number of replaements of theomponents with expeted lives shorter than the horizon for d = d0; β = 3.5 for omponents10, 11, 13, and 14; β = 1 for the remaining ten omponents. The rightmost set of bars showsthe mean value of the number of maintenane oasions. () Mean values of the resulting totalmaintenane osts for di�erent values of the parameter β (for omponents 10, 11, 13, and 14).
22
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A ProofsProof of Proposition 6Sine Ti ≥ 2 for i ∈ N , conv S is full-dimensional (f. Proposition 4). Hene, we an use theuniqueness haraterization of the faet desription from Theorem 2 to show the proposition.For eah r ∈ N and eah s ∈ T , let Frs = { (x, z) ∈ conv S | xrs = zs }. Further, let, for
i ∈ N and t ∈ T , x0

it = 0 if (i, t) = (r, s), x0
it = 1 otherwise, and let z0

t = 1, t ∈ T . It followsthat (x0, z0) ∈ S \ Frs. Then, letting xA
it = zA

t = 1, i ∈ N , t ∈ T , it follows that (xA, zA) ∈ Frsand hene that Frs is a proper fae of conv S.Moreover, there exists values of λ ∈ R
N×T , µ ∈ R

T , and ρ ∈ R suh that the equation (7) issatis�ed for all (x, z) ∈ Frs. We will show that for any value of µs ∈ R, in a solution to (7) thefollowing hold: λit = −µs if (i, t) = (r, s), λit = 0 otherwise; µt = 0 for t ∈ T \ {s}; ρ = 0.For eah ℓ ∈ T \ {s}, let, for j ∈ N and t ∈ T , x1
jt = 0 if (j, t) = (r, ℓ), x1

jt = xA
jt otherwise,and let z1 = zA. It follows that (x1, z1) ∈ Frs. The vetors (xA, zA) and (x1, z1), respetively,inserted in (7) then yield that λrℓ = 0 for ℓ ∈ T \ {s}.Similarly, for eah k ∈ N \ {r} and eah ℓ ∈ T , let for j ∈ N and t ∈ T , x2

jt = 0 if
(j, t) = (k, ℓ), x2

jt = xA
jt otherwise, and let z2 = zA. It follows that (x2, z2) ∈ Frs. The vetors

(xA, zA) and (x2, z2), respetively, inserted in (7) then yield that λkℓ = 0 for k ∈ N \ {r} and
ℓ ∈ T ; hene, the equation (7) an be rewritten as

λrsxrs +
∑

t∈T

µtzt = ρ. (12)For eah ℓ ∈ T \ {s}, let, for j ∈ N and t ∈ T , x3
jt = z3

t = 0 if t = ℓ, x3
jt = z3

t = 1 otherwise.It follows that (x3, z3) ∈ Frs. The vetors (xA, zA) and (x3, z3), respetively, inserted in (12)then yields that µℓ = 0 for ℓ ∈ T \ {s}. Equation (12) an now be rewritten as
λrsxrs + µszs = ρ. (13)Let, for j ∈ N and t ∈ T , x4

jt = z4
t = 0 if t = s, x4

jt = z4
t = 1 otherwise. It follows that

(x4, z4) ∈ Frs. The vetors (x4, z4) and (xA, zA), respetively, inserted in (13) then yield that
0 = ρ = λrs + µs. The equation (13) an thus be rewritten as µsxrs = µszs, and from [42, pp.91�92℄ follows that the inequality xrs ≤ zs de�nes a faet of conv S.Proof of Proposition 7Sine Ti ≥ 2 for i ∈ N , conv S is full-dimensional (f. Proposition 4). Hene, we an use theuniqueness haraterization of the faet desription from Theorem 2 to show the proposition.For eah r ∈ N suh that Tr ≥ 3 and eah s ∈ T , let F̃rs = { (x, z) ∈ conv S | xrs = 0 }.Further, let x0

it = z0
t = 1, i ∈ N , t ∈ T . It follows that (x0, z0) ∈ S \ F̃rs. Then letting, for

j ∈ N and t ∈ T , xA
jt = 0 if (j, t) = (r, s), xA

jt = 1 otherwise, and letting zA
t = 1, t ∈ T , it followsthat (xA, zA) ∈ F̃rs and hene that F̃rs is a proper fae of conv S.Moreover, there exists values of λ ∈ R

N×T , µ ∈ R
T , and ρ ∈ R suh that the equation (7) issatis�ed for all (x, z) ∈ F̃rs. We will show that for any value of λrs ∈ R, in a solution to (7) thefollowing hold: λit = 0 if (i, t) ∈ {N × T } \ {(r, s)}; µt = 0 for t ∈ T ; ρ = 0.For eah i ∈ N and eah t ∈ T , let for j ∈ N and k ∈ T , x1

jk = 0 if (j, k) = (i, t), x1
jk = xA

jkotherwise, and let z1 = zA. Sine Tr ≥ 3, it follows that (x1, z1) ∈ F̃rs. The vetors (xA, zA)and (x1, z1), respetively, inserted in (7) then yield that λit = 0 for all (i, t) ∈ {N ×T }\{(r, s)}.The equation (7) an then be rewritten as (12).For eah t ∈ T , let, for j ∈ N and k ∈ T , x2
jk = z2

k = 0 if k = t, x2
jk = xA

jk and z2
k = zA

kotherwise. Sine Tr ≥ 3, it follows that (x2, z2) ∈ F̃rs. The vetors (xA, zA) and (x2, z2),respetively, inserted in (12) then yield that µt = 0 for t ∈ T .27



Sine xrs = 0 for all (x, z) ∈ F̃rs it follows that ρ = 0. Equation (12) an then be rewrittenas λrsxrs = 0, and from [42, pp. 91�92℄ follows that the inequality xrs ≥ 0 de�nes a faet of
conv S.Proof of Proposition 8Sine Ti ≥ 2 for i ∈ N , conv S is full-dimensional (f. Proposition 4). Hene, we an use theuniqueness haraterization of the faet desription from Theorem 2 to show the proposition.For eah s ∈ T , let Fs = { (x, z) ∈ conv S | zs = 1 }. Further, let, for j ∈ N and t ∈ T ,
x0

jt = z0
t = 0 if t = s, x0

jt = z0
t = 1, otherwise. It follows that (x0, z0) ∈ S \ Fs. Then, letting

xA
it = zA

t = 1, i ∈ N , t ∈ T , it follows that (xA, zA) ∈ Fs and that Fs is a proper fae of conv S.Moreover, there exists values of λ ∈ R
N×T , µ ∈ R

T , and ρ ∈ R suh that the equation (7)is satis�ed for all (x, z) ∈ Fs. We will show that for any value of ρ ∈ R, in a solution to (7) thefollowing hold: λit = 0 for i ∈ N and t ∈ T ; µs = ρ, µt = 0 for t ∈ T \ {s}.For eah r ∈ N and eah ℓ ∈ T , let, for j ∈ N and t ∈ T , x1
jt = 0 if (j, t) = (r, ℓ), x1

jt = 1otherwise, and let z1 = zA. It follows that (x1, z1) ∈ Fs. The vetors (xA, zA) and (x1, z1),respetively, inserted in (7) then yield that λrℓ = 0 for r ∈ N and ℓ ∈ T . Equation (7) an thenbe rewritten as
∑

t∈T

µtzt = ρ. (14)For eah ℓ ∈ T \ {s}, let, for j ∈ N and t ∈ T , x2
jt = z2

t = 0 if t = ℓ, x2
jt = z2

t = 1 otherwise.It follows that (x2, z2) ∈ Fs. The vetors (xA, zA) and (x2, z2), respetively, inserted in (14) thenyield that µℓ = 0 for ℓ ∈ T \ {s}. Equation (14) an then be rewritten as µszs = ρ. Sine zs = 1for all (x, z) ∈ Fs it follows that µs = ρ, whih yields the equation ρzs = ρ. From [42, pp. 91�92℄then follows that the inequality zs ≤ 1 de�nes a faet of conv S.
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