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DOMAIN DECOMPOSITION FINITE ELEMENT/FINITE DIFFERENCE APPROACH
FOR THE MAXWELL’S SYSTEM IN TIME DOMAIN

LARISA BEILINA ∗

Abstract.

We present a new efficient fully explicit domain decomposition finite element/finite difference method for the numerical
solution of Maxwell equations in the time domain. We also derive rigorously energy estimates for the second order vector wave
equation with gauge condition for the electric field with non-constant electric permittivity function inside the domain where
finite elements are used. Numerical experiments illustrate efficiency of the new scheme when it is applied to the solution of
coefficient inverse problems.

1. Introduction. The goal of this paper is to present the new efficient domain decomposition FEM/FDM
method which can be applied to the solution of the coefficient inverse problems (CIPs), for example, to re-
construct dielectric permittivity function ε(x) of the medium under investigation with the condition that
the electric permeability µ(x) = 1 in the whole domain. Applications of the proposed domain decomposition
FEM/FDM method for solutions of CIPs are broad - from the airport security to the imaging of land mines.
In all such applications we reconstruct dielectric constant of explosives, and they are 3-5 times higher than
ones of regular materials, see http : //www.clippercontrols.com.

In many algorithms for the solution of electromagnetic CIPs we need accurately generate backscattered
data at the boundary of the computational domain in order to reconstruct coefficient ε(x) inside the medium.
In this case the forward problems for PDEs are considered in the entire space R3, see for example [4, 5, 6, 16].
It is efficient to approximate the solution of these Cauchy problems via the solution of a boundary value
problem in a bounded domain with ε(x) = µ(x) = 1 in a neighborhood of the boundary of the computational
domain, and with ε(x) 6= const., ε(x) ≥ 0 in the rest of the domain. In this case the time-dependent Maxwell
equations reduces to the system of independent wave equations in the neighborhood of the computational
domain, and usage of the hybrid technique is preferable for the efficient solution of CIPs with coefficients
which have properties described above.

Analytical part of this work presents proof of the energy estimate for the second order time-dependent
Maxwell’s system. We adopt the technique of [17] where the energy estimates was derived for a single
hyperbolic equation. The main new element in our analysis is that we proof energy estimate for the time
dependent Maxwell equation for the electric field with the Coulomb-type gauge condition in the presence of
the first order absorbing boundary conditions [10].

The main idea of the proposed domain decomposition FEM/FDM method is following: we decompose
the computational domain Ω into two subregions such that Ω = ΩFEM ∪ ΩFDM , where in ΩFEM are used
finite elements, and in ΩFDM are used finite differences. We also note that in our algorithm ΩFEM lies
strictly inside ΩFDM and thus corner singularities of the computational solution for the Maxwell’s system
in ΩFEM are excluded. We assume that µ(x) = 1 in the whole domain Ω. Next, in ΩFDM we assume that
ε(x) = 1 and we solve the usual system of wave equations with the first order absorbing boundary conditions
[10] at the exterior boundary of the ΩFDM . In ΩFEM , however, the coefficient ε ≥ 0, and we use the finite
element method to solve Maxwell’s system there. We also assume that both domains, ΩFEM and ΩFDM ,
overlaps in two layers of structured nodes, and in these nodes ε(x) = 1 as well. However, in ΩFEM the mesh
can be purely unstructured, and thus, adaptive algorithms can be applied there.

Efficiency of the proposed method is evident. It is well known, that the Finite Difference scheme is
simple, but can be applied only on the structured (Cartesian) grids. From other side, Finite Element
Methods (FEMs) can handle complex boundaries and unstructured grids. They also provide rigorous a
posteriori error estimates which are useful for local adaptivity and error control. However, FEMs are more
expensive than the Finite Difference method, both in computer time and in memory requirement. The
proposed domain decomposition scheme combines the advantages of the two methods.

∗ Department of Mathematical Sciences, Chalmers University of Technology and Gothenburg University, SE-42196 Gothen-
burg, Sweden, (larisa@chalmers.se)
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The numerical implementation of the proposed domain decomposition method is following. We use the
explicit finite difference method in ΩFDM similar to one used in [2]. For the finite element discretization
of Maxwell equations in ΩFEM , however, we use the node-based curl-curl formulation with the divergence
free condition which is similar to [3]. The proposed domain decomposition method of this paper is free from
instabilities which can occur when the two methods are hybridized since our Maxwell’s system overcame to
the system of wave equations at the overlapping nodes between ΩFEM and ΩFDM .

It is known that edge elements are the most satisfactory from a theoretical point of view [18] since they
automatically satisfy the divergence free condition. However, they are less attractive for time dependent
computations, since the solution of a linear system is required at every time iteration. In addition, in the
case of triangular or tetrahedral edge elements, the entries of the diagonal matrix resulting from mass-
lumping are not necessarily strictly positive [9]; therefore, explicit time stepping cannot be used in general.
In contrast, nodal elements naturally lead to a fully explicit scheme when mass-lumping is applied [9, 15].
However, numerical solutions of Maxwell equations using nodal finite elements may contain spurious solutions
[19, 22], and various techniques are available to remove them [12, 13, 14, 21, 22]. We eliminate the spurious
solutions by adding the divergence condition to the time dependent equation for the electric field, which
removes spurious solutions when local mesh refinement is applied and material discontinuities are not too
big [3]. Our numerical tests of section 7 show that in the case of CIPs similar to ones of [6, 16], these spurious
solutions will not appear.

Now we explain the meaning of numerical tests performed in section 7.2, where we present numerical
verification of the proposed domain decomposition method for the solution of the Maxwell’s system in
time domain with initialized plane wave which is similar to one used in tests of [6, 16]. The reason to
do it is following. In [6, 16] we have presented the reconstruction of refractive indexes of abnormalities
from experimental data. In these works for solution of the electromagnetic CIP was used the simplified
mathematical model of the single wave equation instead of the full Maxwell’s system. Despite of this
discrepancy, in [6] was obtained excellent accuracy of the reconstruction of both locations and refractive
indices of dielectrics. In addition, using the adaptivity technique the shape of the dielectric abnormalities
was also reconstructed accurately. This can be explained by the fact that the data immersing procedure of
[6, 16] smoothed out the data, and thus, enforced them to be good for the considered model of the wave
equation.

Our conclusion from the numerical test of section 7.2 with a plane wave is that all meaningful reflections
from the abnormalities inside the ΩFEM are only from the one component of the electric field while the
reflections from the other component are negligible. This test explains results of experiments performed in
[6, 16] when physicists could measure only one component of the electric field. Because of that in [6, 16] we
have approximated our model problem of Maxwells equations with the single wave equation. Tests of section
7 illustrate results of [16, 6] when in some experiments with the plane wave it is reasonable approximate the
full Maxwell’s system with the single wave equation. However, in our future work we plan apply the method
developed in this paper for the solution of CIPs similar to ones in [6, 16], but for the full Maxwell’s system,
and compare results.

The outline of the work is as follows. In section 2 we briefly recall Maxwell equations and in section
3 we present the mathematical model which we consider in this work. In section 4 we derive the energy
estimate. Then in section 5 we present the finite element method and in section 5.1 - the explicit scheme
for the electric field. The finite difference scheme is summarized in section 5.2, and the first order absorbing
boundary conditions for this sheme is presented in section 5.3. Next, we formulate the hybrid FEM/FDM
method in section 6. Finally, in section 7 we present numerical examples which demonstrate the efficiency
of our adaptive hybrid FEM/FDM solver.

2. Maxwell equations. Let Ω ⊂ R3 be a bounded domain with a piecewise smooth boundary ∂Ω,
T = const. > 0. Let L2(Ω) will be the space of square integrable functions in Ω. Let’s define ΩT := Ω×(0, T ),
∂ΩT := ∂Ω × (0, T ).
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We consider Maxwell equations in an inhomogeneous isotropic medium in a bounded domain ΩT :

∂D

∂t
−∇×H = −J, in ΩT ,

∂B

∂t
+ ∇× E = 0, in ΩT ,

D = εE,

B = µH,

E(x, 0) = E0(x),

H(x, 0) = H0(x).

(2.1)

Here E(x, t) and H(x, t) are the electric and magnetic fields, whereas D(x, t) and B(x, t) are the electric and
magnetic inductions, respectively. The dielectric permittivity, ε(x) > 0, and magnetic permeability, µ(x) > 0,
together with the current density, J(x, t) ∈ R3, are given and assumed piecewise smooth. Moreover, the
electric and magnetic inductions satisfy the relations

∇ ·D = ρ, ∇ ·B = 0 in ΩT , (2.2)

where ρ(x, t) is a given charge density.

Traditionally perfectly conducting boundary conditions for (2.1), (2.2) are the most popular ones

n× E = 0, on ∂ΩT

H · n = 0, on ∂ΩT .
(2.3)

Here n denotes the outward normal on ∂Ω.

However, our goal is to construct an efficient solver for the forward problem (2.1) in order to generate
the data at ∂Ω to solve then Coefficient Inverse Problems (CIPs). As we have mentioned above, in the case
of CIPs forward problems are usually Cauchy problems. Therefore, we need to approximate the solution of
the Cauchy problem via the solution of a boundary value problem in a bounded domain. On the other hand,
if ε (x) , µ (x) = const. > 0 in a neighborhood Ω′ of ∂Ω, as it is often the case in CIPs, then it is well known
that for (x, t) ∈ Ω′ × (0, T ) from (2.1) one obtains independent vector wave equations

εµ∂2
tE − ∆E = −j

εµ∂2
tH − ∆H =

1

ε
∇× J,

(2.4)

where j = ∂J
∂t

. When solving the CIPs in real-life applications such as in subsurface imaging or in detecting of
explosives, it is efficient bound the domain of interest by artificial boundary and impose absorbing boundary
conditions. First order absorbing boundary conditions [10] work quite well for the case of a single hyperbolic
PDE [4, 5] in the case when the plane wave is initialized in orthogonal direction to the some part of the
boundary ∂Ω. Hence, by analogy, in this work we consider first order absorbing boundary conditions at ∂ΩT

for the Maxwell equations.

By eliminating B and D from (2.1) we obtain the two independent second order systems of partial
differential equations

ε
∂2E

∂t2
+ ∇× (µ−1∇× E) = −j, (2.5)

µ
∂2H

∂t2
+ ∇× (ε−1∇×H) = ∇× (ε−1J), (2.6)
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D ◦ × ∗ ∗ ∗ ∗ × ◦ D

Fig. 3.1: Domain decomposition between ΩF EM and ΩF DM in one dimension. The interior nodes of the unstructured
finite element grid are denoted by stars, while circles and crosses denote nodes, which are shared between meshes in
ΩF EM and ΩF DM . The circles are interior nodes ω0 of the grid in ΩF DM , while the crosses are interior nodes ωx of
the grid in ΩF EM . At each time iteration, solution obtained in ΩF DM at ω0 is copied to the corresponding nodes in
ΩF EM , while simultaneously the solution obtained in ΩF EM at ωx is copied to the corresponding nodes in ΩF DM .

The initial conditions are

E(x, 0) = E0(x), (2.7)

H(x, 0) = H0(x), (2.8)

∂E

∂t
(x, 0) = (∇×H0(x) − J(x, 0))/ε(x), (2.9)

∂H

∂t
(x, 0) = −∇× E0/µ(x). (2.10)

3. Mathematical models. We are interesting in solution of the equation (2.5) for the electric field
with first order absorbing boundary conditions and appropriate initial conditions. For the above described
setting of the problem it is convenient to use domain decomposition finite element/finite difference method.
In doing so we decompose Ω into two subregions, ΩFEM and ΩFDM such that Ω = ΩFEM ∪ ΩFDM , see
Figure 3.1. ΩFEM corresponds to the domain, where finite elements are used, and lies strictly inside ΩFDM .
In ΩFDM we will use finite difference method with first order absorbing boundary conditions.

We also assume that we are working in nonconducting medium, what means that the charge density
ρ = 0. Our next assumption is that the magnetic permeability µ(x) = 1 ∀x ∈ Ω, and we let the electric
permittivity ε(x) to be such that

ε(x) ≥ 1, for x ∈ ΩFEM , ε (x) ∈ C2(Ω̄),

ε(x) = 1, for x ∈ ΩFDM .
(3.1)

Let us formulate the model problem for the electric field E with the first order absorbing boundary
conditions [10] at the boundary ∂Ω

ε
∂2E

∂t2
+ ∇× (∇× E) = −j, in ΩT , (3.2)

∇ · (εE) = 0, in ΩT , (3.3)

E(x, 0) = f0(x), Et(x, 0) = f1(x) in Ω, (3.4)

∂nE(x, t) = −∂tE(x, t) on ∂ΩT . (3.5)

Here we assume that

j ∈ L2(ΩT ), f0 ∈ H1(Ω), f1 ∈ L2(Ω). (3.6)

As we have mentioned above, we will use domain decomposition finite element/finite difference method
for the numerical solution of (3.2)-(3.5). This means that for solution (3.2)-(3.5) in ΩFDM we shall use the
finite difference method on a structured mesh with constant coefficients ε = µ = 1. As we have pointed out
in section 2 in this case the problem (3.2)-(3.5) transforms to the system of vector wave equations (2.4).
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In ΩFEM , however, we shall use finite elements on a sequence of non-degenerate unstructured meshes
Kh = {K}, with elements K consisting of triangles in R2 and tetrahedra in R3 [7]. Efficiency of the resulting
domain decomposition FEM/FDM scheme in Ω is obtained by using mass lumping in both space and time
in ΩFEM , which makes the scheme fully explicit [11]. In ΩFEM we associate with Kh a (continuous) mesh
function h = h(x), which represents the diameter of the elementK that contains x. For the time discretization
we let Jτ = {J} be a partition of the time interval I = [0, T ], where 0 = t0 < t1 < ... < tN = T is a sequence
of discrete time steps with associated time intervals J = (tk−1, tk] of constant length τ = tk − tk−1.

Below for any vector function u ∈ R3 our notations u ∈ L2(Ω) or u ∈ Hk(Ω), k = 1, 2 mean that every
component of the vector function u belongs to this space.

Keeping above remark in mind, it is well known that when using standard, piecewise continuous H1(Ω)-
conforming FE for the numerical solution of Maxwell equations, we have following difficulties. First, in
general the solution of (2.5) lies in the space H0(curl,Ω) ∩H(div,Ω) with

H0(curl,Ω) := {u ∈ L2(Ω) : ∇× u ∈ L2(Ω), u× n = 0}, (3.7)

and

H(div,Ω) := {u ∈ L2(Ω) : ∇ · u ∈ L2(Ω)}, (3.8)

here n is the unit outward normal to ∂Ω. The space H0(curl,Ω) ∩H(div,Ω) is strictly larger than [H1(Ω)]3

when Ω has re-entrant corners ([18], p.191). However, this restriction is of no concern in our method, because
we will use finite elements only in ΩFEM , which lies strictly inside Ω; hence, in our case corner singularities
are excluded. Second, because the bilinear form a(u, v) = (∇ × u,∇ × v) is not coercive without some
(at least weak) restriction to divergence-free functions, direct application of the finite element method to
the numerical solution of Maxwell equations using H1(Ω)-conforming nodal finite elements can result in
spurious solutions (the finite element solution does not satisfy the divergence condition (3.3)). To remove
these spurious solutions from the finite element solution, we shall add a Coulomb-type gauge condition to
enforce the divergence condition [1, 21, 22].

Thus, we modify equations (3.2) - (3.5) with s ≥ 1 as

ε
∂2E

∂t2
+ ∇× (∇× E) − s∇(∇ · (εE)) = −j, in ΩT , (3.9)

E(x, 0) = f0(x), Et(x, 0) = f1(x) in Ω, (3.10)

∂nE(x, t) = −∂tE(x, t), ∇ · E = 0 on ∂ΩT . (3.11)

∇ ·E = 0 in Ω′ ⊂ ΩFDM , ε (x) = 1 in ΩFDM , (3.12)

where the subdomain Ω′ is a small neighborhood of the outer boundary ∂Ω. We note that as soon as the
term −s∇(∇ · (εE)) is incorporated in equation (3.9), equation ∇ · E = 0 in Ω′ ⊂ ΩFDM in (3.12) is an
over-determination. On the other hand, this over-determination takes place only in a small neighborhood
of the boundary ∂Ω rather than in the entire domain Ω. Likewise, we do not use (3.12) in our numerical
experiments.

Since the modified bilinear form a(u, v) = (∇ × u,∇ × v) + s(∇ · u,∇ · v) is now coercive on H1(Ω)
[23], the problem (3.9)-(3.11) is now well-posed. The addition of the term s(∇ · u,∇ · v) does not change
either solution of (3.9)-(3.11), but only provides a stabilization of the variational formulation - see also ([18],
p.191).

Using the transformation (2.2) problem (3.9)-(3.11) can be rewritten as

ε
∂2E

∂t2
+ ∇(∇ ·E) −∇ · (∇E) − s∇(∇ · (εE)) = −j, in ΩT , (3.13)

E(x, 0) = f0(x), Et(x, 0) = f1(x) in Ω, (3.14)

∂nE(x, t) = −∂tE(x, t), ∇ ·E = 0 on ∂ΩT . (3.15)

∇ · E = 0 in Ω′ ⊂ ΩFDM , ε (x) = 1 in ΩFDM . (3.16)
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4. Energy estimate for the problem (3.13)-(3.16). In this section we proof the uniqueness the-
orem, or energy estimate, for the vector E ∈ H2 (ΩT ) of the equation (3.13)-(3.16), using the technique of
[17] where the energy error estimates was derived for a single hyperbolic equation.

Theorem
Assume that condition (3.1) on the coefficient ε(x) hold. Let Ω ⊂ R3 be a bounded domain with the

piecewise smooth boundary ∂Ω. For any t ∈ (0, T ) let Ωt = Ω × (0, t) . Suppose that there exists a
solution E ∈ H2 (ΩT ) of the equation (3.13)-(3.16). Then the vector E is unique and there exists a constant
B = B(||ε||Ω, t, s) depending only on the ||ε||Ω, t and s such that the following energy estimate is true for all
s such that sε ≥ 1 in (3.13)-(3.16)

∥

∥

√
ε∂tE (x, t)

∥

∥

2

L2(Ω)
+ ‖∇E (x, t)‖2

L2(Ω) +
∥

∥

√
sε− 1∇ ·E (x, t)

∥

∥

2

L2(Ω)

≤ B
[

‖j‖2
L2(Ωt)

+
∥

∥

√
εf1

∥

∥

2

L2(Ω)
+ ‖∇f0‖2

L2(Ω) + ‖f0‖2
L2(Ω) +

∥

∥

√
sε− 1 ∇ · f0

∥

∥

2

L2(Ω)

]

.
(4.1)

Proof.
First we multiply (3.13) by 2∂tE and integrate over Ω × (0, t) to get

t
∫

0

∫

Ω

2 ε∂ttE ∂tE dxdτ +

t
∫

0

∫

Ω

2∇(∇ ·E) ∂tE dxdτ −
t

∫

0

∫

Ω

2∇ · (∇E) ∂tE dxdτ

− s

t
∫

0

∫

Ω

2∇(∇ · (εE)) ∂tE dxdτ = −2

t
∫

0

∫

Ω

j ∂tE dxdτ.

(4.2)

Integrating in time the first term of (4.2) we get

t
∫

0

∫

Ω

∂t(ε∂tE
2)dxdτ =

∫

Ω

(

ε∂tE
2
)

(x, t) dx−
∫

Ω

εf2
1 (x, t) dx. (4.3)

Integrating by parts in space the second term of (4.2), which corresponds to the divergence, we have

2

t
∫

0

∫

Ω

∇ (∇ ·E) ∂tEdxdτ

= 2

t
∫

0

∫

∂Ω

∂tE n · (∇ ·E)dSdτ − 2

t
∫

0

∫

Ω

(∇ ·E) (∇ · ∂tE) dxdτ

= 2

t
∫

0

∫

∂Ω

∂tE n · (∇ ·E)dSdτ −
t

∫

0

∫

Ω

∂t(∇ ·E)
2
dxdτ.

(4.4)

The term 2
t
∫

0

∫

∂Ω

∂tEn · (∇ · E)dSdτ = 0 since by (3.16) ∇ ·E = 0 in a small neighbourhood of the ∂Ω.

Next, integrating the last term of (4.4) in time and using (3.14) we have

−
t

∫

0

∫

Ω

∂t (∇ ·E)
2
dxdτ = −

∫

Ω

(∇ · E)
2
(x, t) dx+

∫

Ω

(∇ ·E)
2
(x, 0) dx

= −
∫

Ω

(∇ · E)
2
(x, t) dx+

∫

Ω

(∇ · f0)2 (x) dx.

(4.5)
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Integrating by parts in space the third term of (4.2) corresponding to the gradient, and using (3.14) we
get

2

t
∫

0

∫

Ω

∇ · (∇E) ∂tEdxdτ

= 2

t
∫

0

∫

∂Ω

(∂tE) ∂nEdSdτ − 2

t
∫

0

∫

Ω

(∇E) (∇∂tE) dxdτ

= −2

t
∫

0

∫

∂Ω

(∂tE)
2
dSdτ −

t
∫

0

∫

Ω

∂t|∇E|2dxdτ,

(4.6)

Integrating last term of (4.6) in time and using (3.14) we obtain

−
t

∫

0

∫

Ω

∂t|∇E|2dxdτ = −
∫

Ω

|∇E|2 (x, t) dx+

∫

Ω

|∇E|2 (x, 0) dx

= −
∫

Ω

|∇E|2 (x, t) dx+

∫

Ω

|∇f0|2 (x) dx.

(4.7)

Integrating in space the augmented term of (4.2) we have

2s

t
∫

0

∫

Ω

∇ (∇ · (εE)) ∂tEdxdτ

= 2s

t
∫

0

∫

∂Ω

∂tE n · (∇ · (εE))dSdτ − 2s

t
∫

0

∫

Ω

(∇ · (εE)) (∇ · ∂tE) dxdτ

= 2s

t
∫

0

∫

∂Ω

∂tE n · (∇ · (εE))dSdτ − 2s

t
∫

0

∫

Ω

(∇ε · E)∇ · (∂tE)dxdτ − s

t
∫

0

∫

Ω

ε∂t(∇ · E)
2
dxdτ.

(4.8)

The term 2s
t
∫

0

∫

∂Ω

∂tE n · (∇ · (εE))dSdτ = 0 since ε = 1 on the boundary ∂Ω, and by (3.16) ∇ · E = 0

on a small neighbourhood of the ∂Ω.

Next, integrating in space one more time the term 2s
t
∫

0

∫

Ω

(∇ε · E)∇ · (∂tE)dxdτ in (4.8) we have

− 2s

t
∫

0

∫

Ω

(∇ε ·E)∇ · (∂tE)dxdτ

= −2s

t
∫

0

∫

∂Ω

(∇ε ·E)n · (∂tE)dxdτ + 2s

t
∫

0

∫

Ω

∇(∇ε · E)(∂tE)dxdτ = 2s

t
∫

0

∫

Ω

∇(∇ε · E)∂tE dxdτ.

(4.9)

Here, the integral −2s
t
∫

0

∫

∂Ω

(∇ε · E)n · (∂tE)dxdτ = 0 since ε = 1 in a small neighbourhood of the ∂Ω and

hence ∇ε = 0 in this neighbourhood.
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Next, collecting estimates (4.3), (4.4) (4.5), (4.6), (4.7), (4.8), (4.20), using the fact that 2
t
∫

0

∫

∂Ω

(∂tE)
2
dSdτ ≥

0 and substituting them in (4.2) we have
∫

Ω

(

ε∂tE
2
)

(x, t) dx−
∫

Ω

(∇ · E)
2
(x, t) dx+

∫

Ω

|∇E|2 (x, t) dx

+ s

t
∫

0

∫

Ω

ε∂t(∇ ·E)
2
dxdτ ≤ 2

t
∫

0

∫

Ω

|j| |∂tE| dxdτ +

∫

Ω

εf2
1 (x, t) dx−

∫

Ω

(∇ · f0)2 (x) dx

+

∫

Ω

|∇f0|2 (x) dx+ 2s

t
∫

0

∫

Ω

|∇(∇ε · E)||∂tE| dxdτ.

(4.10)

Let A = A(||ε||C2(Ω), s) > 0 denotes the constant depending only on the ||ε||Ω and t, s. Now we can
write estimate

|∇(∇ε · E)| ≤ A(|E| + |∇E|).

Using the estimate above and the inequality 2ab ≤ a2 + b2 we estimate the last term in the equation (4.10)
as

2s

t
∫

0

∫

Ω

|∇(∇ε ·E)||∂tE| dxdτ ≤ 2sA

t
∫

0

∫

Ω

|∂tE| · (|E| + |∇E|) dxdτ. (4.11)

With another constant A we have

2s

t
∫

0

∫

Ω

|∇(∇ε ·E)||∂tE| dxdτ ≤ A

t
∫

0

∫

Ω

|∂tE|2 dxdτ +A

t
∫

0

∫

Ω

(|E| + |∇E|)2 dxdτ. (4.12)

The second integral in the right hand side of (4.11) can be estimated as

A

t
∫

0

∫

Ω

(|E| + |∇E|)2 dxdτ ≤ 2A

t
∫

0

∫

Ω

|E|2 dxdτ + 2A

t
∫

0

∫

Ω

|∇E|2 dxdτ. (4.13)

Let us estimate the term
t
∫

0

∫

Ω

|E|2 dxdτ in (4.13). First we make the transformation

E(x, t) = E(x, 0) +

t
∫

0

∂tE dxdτ. (4.14)

Taking square of (4.14), integrating result in space and using the estimate (a+ b)2 ≤ 2a2 + 2b2 we get

∫

Ω

|E|2 dx ≤ 2

∫

Ω

|E|2(x, 0) dx+ 2

∫

Ω

(

t
∫

0

|∂tE| dτ
)2
dx ≤ 2

∫

Ω

|E|2(x, 0) dx+ 2t

t
∫

0

∫

Ω

|∂tE|2 dτdx. (4.15)

Using the initial condition (3.14) we have

∫

Ω

|E|2 dx ≤ 2||f0||2L2(Ω) + 2t

t
∫

0

∫

Ω

|∂tE|2 dτdx. (4.16)
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Integrating the above equation in the time (0, t) we get

t
∫

0

∫

Ω

|E|2 dxdτ ≤ 2t||f0||2L2(Ω) + 2t2
t

∫

0

∫

Ω

|∂tE|2 dτdx. (4.17)

Substituting the above expression in (4.11) and using (4.13) with the constant B = B(||ε||C2(Ω), t, s) > 0
we get

A

t
∫

0

∫

Ω

(|∂tE|2 + |∇E|2) dxdτ ≤ 2A(2t||f0||2L2(Ω) + 2t2
t

∫

0

∫

Ω

|∂tE|2 dτdx) + 2A

t
∫

0

∫

Ω

|∇E|2dxdτ

≤ B

t
∫

0

∫

Ω

(|∂tE|2 + |∇E|2) dxdτ + B

∫

Ω

f2
0dx,

(4.18)

and thus we get the following estimate for the augmented term in (4.10)

2s

t
∫

0

∫

Ω

|∇(∇ε · E)||∂tE| dxdτ ≤ A

t
∫

0

∫

Ω

(|∂tE|2 + |∇E|2) dxdτ +A

∫

Ω

f2
0dx. (4.19)

Now we estimate the rest of terms in (4.10). Integrating the fourth term of (4.10) in time we get

s

t
∫

0

∫

Ω

ε∂t (∇ ·E)
2
dxdτ = s

∫

Ω

ε (∇ ·E)
2
(x, t) dx− s

∫

Ω

ε (∇ ·E)
2
(x, 0) dx

= s

∫

Ω

ε (∇ · E)2 (x, t) dx− s

∫

Ω

ε (∇ · f0)2 (x) dx.

(4.20)

Finally, to estimate the first term in the right hand side of (4.10) we use the arithmetic-geometric mean
inequality 2ab ≤ a2 + b2 to obtain

2

t
∫

0

∫

Ω

|j| · |∂tE| dxdτ ≤
t

∫

0

∫

Ω

|j|2dxdτ +

t
∫

0

∫

Ω

|∂tE|2dxdτ. (4.21)

Noting that by (3.1) ∀ε : sε ≥ 1 we have

B

t
∫

0

∫

Ω

(|∂tE|2 + |∇E|2) dxdτ ≤ B

t
∫

0

∫

Ω

(ε|∂tE|2 + (sε− 1)(∇ · E)2 + |∇E|2) dxdτ,

and substituting (4.19), (4.20), (4.21) into (4.10), we have the following estimate ∀sε− 1 ≥ 0
∫

Ω

(ε∂tE
2 + |∇E|2 + (sε− 1)(∇ · E)2) (x, t) dx

≤
t

∫

0

∫

Ω

|j|2dxdτ +B

t
∫

0

∫

Ω

(ε|∂tE|2 + (sε− 1)(∇ · E)2 + |∇E|2) dxdτ

+

∫

Ω

(

εf2
1 + |∇f0|2 + (sε− 1)(∇ · f0)2 +Bf2

0

)

(x, t) dx.

(4.22)
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Let us denote

F (t) :=

∫

Ω

(ε∂tE
2 + |∇E|2 + (sε− 1)(∇ · E)2)) (x, t) dx. (4.23)

Then we can rewrite estimate (4.22) in the form

F (t) ≤ B

∫ t

0

F (τ)dτ + g(t), (4.24)

where g(t) :=
t
∫

0

∫

Ω

|j|2dxdτ +
∫

Ω

(

εf2
1 + |∇f0|2 + (sε− 1)(∇ · f0)2 +Af2

0

)

(x, t) dx.

Applying Gronwall’s inequality to (4.24) with a different constant B we get desired estimate ∀sε ≥ 1

∫

Ω

(ε∂tE
2 + |∇E|2 + (sε− 1)(∇ ·E)2) (x, t) dx

≤ B
(

t
∫

0

∫

Ω

|j|2dxdτ +

∫

Ω

(

εf2
1 + |∇f0|2 + (sε− 1)(∇ · f0)2 + f2

0

)

(x, t) dx
)

.

(4.25)

�

5. The finite element method . We will formulate the finite element method for the problem (3.9)-
(3.11) with f0 = f1 = 0, which can be written as

ε
∂2E

∂t2
+ ∇(∇ · E) −∇ · (∇E) − s∇(∇ · (εE)) = −j, in ΩT , (5.1)

E(x, 0) = 0, Et(x, 0) = 0 in Ω, (5.2)

∂nE(x, t) = −∂tE(x, t) on ∂ΩT , (5.3)

∇ ·E = 0, on ∂ΩT , (5.4)

∇ ·E = 0 in Ω′ ⊂ ΩFDM , ε (x) = 1 in ΩFDM . (5.5)

First we introduce the finite element trial space WE
h , defined by

WE
h := {w ∈WE : w|K×J ∈ [P1(K)]3 × P1(J), ∀K ∈ Kh, ∀J ∈ Jτ},

where P1(K) and P1(J) denote the set of linear functions on K and J , respectively, and

WE := {w ∈ [H1(Ω)]3 × I) : w(·, 0) = 0, ∂nw|∂Ω = −∂tw}.

We also introduce the finite element test space Wϕ
h defined by

Wϕ
h := {w ∈Wϕ : w|K×J ∈ [P1(K)]3 × P1(J), ∀K ∈ Kh, ∀J ∈ Jτ},

where

Wϕ := {w ∈ [H1(Ω)]3 × I) : w(·, T ) = 0, ∂nw|∂Ω = −∂tw}.

Hence, the finite element spaces WE
h and Wϕ

h consist of continuous piecewise linear functions in space
and time, which satisfy certain homogeneous initial and first order absorbing boundary conditions. We also
define the following L2 inner products and norms

((p, q)) =

∫

Ω

∫ T

0

pq dx dt, ‖p‖2 = ((p, p)),
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(α, β) =

∫

Ω

αβ dx, |α|2 = (α, α).

The finite element method for (3.13)- (3.16) reads: Find Eh ∈ WE
h such that ∀ϕ̄ ∈ Wϕ

h ,

− ((ε
∂Ek

h

∂t
,
∂ϕ̄

∂t
)) − ((∇ ·Ek

h ,∇ · ϕ̄)) + ((∂tE
k
h , ϕ̄))∂Ω

+ ((∇Ek
h ,∇ϕ̄)) + s((∇ · (εEk

h),∇ · ϕ̄)) + ((jk, ϕ̄)) = 0.

(5.6)

Here, the initial condition ∂E
∂t

(x, 0) = 0 is imposed weakly through the variational formulation.

5.1. The explicit scheme for the electric field. We expand E(x, t) in terms of the standard contin-

uous piecewise linear functions {ϕi}M
i=1 in space and {ψk}N

k=1 in time as E(x, t) =
∑N

k=1

∑M
i=1Ehϕi(x)ψk(t),

where Eh := Ehi,k
denote unknown coefficients, substitute this expantion in variational formulation (5.6)

with v(x, t) = ϕj(x)ψl(t) and obtain following system of discrete equations

−
N

∑

k,l=1

M
∑

i,j=1

Eh

∫

ΩF EM

ε(x)ϕi(x)ϕj(x)

∫ tk+1

tk−1

∂tψk(t)∂tψl(t) dxdt

−
N

∑

k,l=1

M
∑

i,j=1

Eh

∫

ΩF EM

∇ · ϕi(x)∇ · ϕj(x)

∫ tk+1

tk−1

ψk(t)ψl(t) dxdt

+

N
∑

k,l=1

M
∑

i,j=1

Eh

∫

∂Ω

ϕi(x)ϕj(x)

∫ tk+1

tk−1

∂tψk(t)ψl(t) dSdt

+

N
∑

k,l=1

M
∑

i,j=1

Eh

∫

ΩF EM

∇ϕi(x)∇ϕj(x)

∫ tk+1

tk−1

ψk(t)ψl(t) dxdt

+ s

N
∑

k,l=1

M
∑

i,j=1

Eh

∫

ΩF EM

∇ · (εϕi(x))∇ · ϕj(x)

∫ tk+1

tk−1

ψk(t)ψl(t) dxdt

+

N
∑

l=1

M
∑

j=1

∫

ΩF EM

∫ tk+1

tk−1

j(x)ϕj(x)ψl(t) dxdt = I1 + I2 + I3 + I4 + I5 + I6 = 0.

(5.7)

Next, we compute explicitly time integrals of (5.7) using the definition of piecewise linear functions in
space and time, and get the linear system of equations:

M(Ek+1 − 2Ek + Ek−1) = −τ2F k + τ2D(
1

6
Ek−1 +

2

3
Ek +

1

6
Ek+1) − τ2G(

1

6
Ek−1 +

2

3
Ek +

1

6
Ek+1)

− sτ2C(
1

6
Ek−1 +

2

3
Ek +

1

6
Ek+1) +

1

2
τM∂Ω(Ek+1 − Ek−1),

(5.8)

with initial conditions E0 and E1 set to zero because of (5.2). Here, M and M∂Ω are the block mass matrices
in space, D and C are the block stiffness matrix corresponding to the divergence terms, G is the stiffness
matrix corresponding to the gradient term, F k is the load vector at time level tk corresponding to j(·, ·),
whereas Ek denote the nodal values of E(·, tk).

For example, to compute explicitly time integrals
∑N

k,l=1

∫ tk+1

tk−1
∂tψk(t)ψl(t)dt in the term I3, we use the

definition of piecewise linear functions in time and observe that all terms in
∑N

k,l=1

∫ tk+1

tk−1
∂tψk(t)ψl(t)dt are

zeros unless l = k − 1, l = k, l = k + 1. Thus we have to compute only integrals

∫ tk+1

tk−1

∂tψk−1ψkdt,

∫ tk+1

tk−1

∂tψk+1ψkdt,

∫ tk+1

tk−1

∂tψkψkdt.
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To do that we have

∫ tk+1

tk−1

∂tψk−1ψkdt =

∫ tk

tk−1

∂tψk−1ψkdt+

∫ tk+1

tk

∂tψk−1ψkdt =

∫ tk

tk−1

∂tψk−1ψkdt

= −1

τ

∫ tk

tk−1

t− tk−1

tk − tk−1
dt = −1

2
,

∫ tk+1

tk−1

∂tψk+1ψldt =

∫ tk

tk−1

∂tψk+1ψkdt+

∫ tk+1

tk

∂tψk+1ψkdt =

∫ tk+1

tk

∂tψk+1ψkdt

= −1

τ

∫ tk+1

tk

tk+1 − t

tk+1 − tk
dt =

1

2
,

∫ tk+1

tk−1

∂tψkψkdt =

∫ tk

tk−1

∂tψkψkdt+

∫ tk+1

tk

∂tψkψkdt

=
1

τ

∫ tk

tk−1

t− tk−1

tk − tk−1
dt− 1

τ

∫ tk

tk−1

tk+1 − t

tk+1 − tk
dt = 0.

(5.9)

By replacing in I3 integrals
∑N

k,l=1

∫ tk+1

tk−1
∂tψk(t)ψl(t)dt with their explicit expression through (5.9) we get

the term 1
2 (Ek+1 − Ek−1) in the last term of (5.8). In a similar way we obtain the term τ(1

6E
k−1 +

2
3E

k + 1
6E

k+1) in (5.8) which corresponds to the the explicitly computed terms of the mass matrix in time
∑N

k,l=1

∫ tk+1

tk−1
ψk(t)ψl(t)dt. Additional τ at the right hand side of (5.8) appears after the explicit computing

of the time integrals
∑N

k,l=1

∫ tk+1

tk−1
∂tψk(t)∂tψl(t)dt. This gives also terms Ek+1−2Ek +Ek−1 at the left hand

side of (5.8).

At the element level the matrix entries in (5.8) are explicitly given by:

M e
i,j = (ε ϕi, ϕj)e, (5.10)

M∂Ω
i,j = (ϕi, ϕj)∂Ωij

, (5.11)

De
i,j = ( ∇ · ϕi,∇ · ϕj)e, (5.12)

Ge
i,j = ( ∇ϕi,∇ϕj)e, (5.13)

Ce
i,j = ( ∇ · (εϕi),∇ · ϕj)e, (5.14)

F e
j,m = (j, ϕj)e. (5.15)

To obtain an explicit scheme we approximate M by the lumped mass matrix ML in space, i.e., the
diagonal approximation obtained by taking the row sum of M [11, 15], as well as we use mass lumping in
time by replacing terms corresponding to mass matrix in time 1

6E
k−1 + 2

3E
k + 1

6E
k+1 by Ek.

Next, by multiplying (5.8) with (ML)−1, we obtain the following fully explicit time stepping method to
solve (3.13)-(3.16):

Ek+1(1 − 1

2
τM∂Ω(ML)−1) = −τ2(ML)−1F k + 2Ek + τ2(ML)−1DEk − τ2(ML)−1GEk

− sτ2(ML)−1CEk − (1 +
1

2
τM∂Ω(ML)−1)Ek−1.

(5.16)

In the case when (5.16) is used only in ΩFEM in the hybrid FEM/FDM method, it reduces to the following
scheme

Ek+1 = −τ2(ML)−1F k + 2Ek + τ2(ML)−1DEk − τ2(ML)−1GEk

− sτ2(ML)−1CEk − Ek−1.
(5.17)
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5.2. Finite difference formulation. We recall (see section 3) that in ΩFDM we have ε (x) = µ (x) = 1.
Thus in ΩFDM we have to solve system of vector wave equations for the vector field E = (E1, E2, E3)

∂2
tE − ∆E = −j (5.18)

E(x, 0) = 0, Et(x, 0) = 0 in Ω, (5.19)

∂nE(x, t) = −∂tE(x, t) on ∂ΩT . (5.20)

Using standard finite difference discretization of the equation (5.18) in ΩFDM we obtain following explicit
scheme

Ek+1
i,j,m = −τ2jk

i,j,m + τ2∆Ek
i,j,m + 2Ek

i,j,m − Ek−1
i,j,m, (5.21)

where Ek
i,j,m is the solution on the time iteration k at the discrete point (i, j,m), jk

i,j,m is the discrete

analog of the function j, τ is the time step, and ∆Ek
i,j,m is the discrete Laplacian. In three dimensions, to

approximate ∆Ek
i,j,m we get the standard seven-point stencil:

∆Ek
i,j,m =

Ek
i+1,j,m − 2Ek

i,j,m + Ek
i−1,j,m

dx2
+
Ek

i,j+1,m − 2Ek
i,j,m + Ek

i,j−1,m

dy2
+

Ek
i,j,m+1 − 2Ek

i,j,m + Ek
i,j,m−1

dz2
, (5.22)

where dx, dy, and dz are the steps of the discrete finite difference meshes in the directions x, y, z, respectively.

5.3. Absorbing boundary conditions. To discretize absorbing boundary condition (5.20) in ΩFDM

we use forward finite difference approximation in the middle point, which gives a numerical approximation
of higher order than ordinary (backward or forward) finite difference approximation. For example, for the
left boundary of ΩFDM we have following variant of the condition (5.20)

∂E(x, t)

∂x
=
∂E(x, t)

∂t

Then we use the following finite difference discretization of the above equation

Ek+1
i,j,m − Ek

i,j,m

dt
+
Ek+1

i+1,j,m − Ek
i+1,j,m

dt
−
Ek

i+1,j,m − Ek
i,j,m

dx
−
Ek+1

i+1,j,m − Ek+1
i,j,m

dx
= 0, (5.23)

which can be transformed to

Ek+1
i,j,m = Ek

i+1,j,m + Ek
i,j,m

dx− dt

dx+ dt
− Ek+1

i+1,j,m

dx− dt

dx+ dt
. (5.24)

For other boundaries of the ΩFDM boundary condition (5.20) can be written similarly.

6. The domain decomposition FEM/FDM method. We now describe the data communication
for solution of the problem (3.13)-(3.14) between the finite element method on the unstructured part of
the mesh, ΩFEM , and the finite difference method on the structured part, ΩFDM . This communication is
achieved by mesh overlapping across a two-element thick layer around ΩFEM - see Figure 3.1.

First, using the Figure 3.1 we observe that the interior nodes of the computational domain Ω belong to
either of the following sets:

ωo Nodes ’o’ interior to ΩFDM that lie on the boundary of ΩFEM ,
ω× Nodes ’×’ interior to ΩFEM that lie on the boundary of ΩFDM ,
ω∗ Nodes ’∗’ interior to ΩFEM that are not contained in ΩFDM ,
ωD Nodes ’D’ interior to ΩFDM that are not contained in ΩFEM .
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(a) ΩFDM (b) Ω = ΩFEM ∪ ΩFDM (c) ΩFEM

Fig. 7.1: The hybrid mesh (b) is a combinations of a structured mesh (a), where FDM is applied, and a mesh (c),
where we use FEM, with a two layers overlapping of structured elements. The coefficient ε(x) in (5.1) is given as
follows: ε(x) = 1 in ΩF DM and ε(x) ≥ 1 for x ∈ Ω�ΩF DM .

We also note that because of using explicit domain decomposition FEM/FDM method we need to choose
time step τ such that the whole scheme remains stable. We use the stability analysis on the structured meshes
and choose the largest time step in our computations accordingly to the stability condition

τ ≤
√
εµ

√

1
dx2 + 1

dy2 + 1
dz2

. (6.1)

Usually, we have dx = dy = dz = h, and the condition (6.1) can be rewritten as

τ ≤ h

√

εµ

3
. (6.2)

Algorithm.
At every time step we perform the following operations:
1. On the structured part of the mesh ΩFDM compute Ek+1 from (5.21) with absorbing boundary

condition (5.20) at ∂Ω, with Ek and Ek−1 known.
2. On the unstructured part of the mesh ΩFEM compute Ek+1 by using the explicit finite element

scheme (5.17) with Ek and Ek−1 known.
3. Use the values of the electric field Ek+1 at nodes ω×, which are computed using the finite element

scheme (5.17), as a boundary condition for the finite difference method in ΩFDM .
4. Use the values of the electric field Ek+1 at nodes ωo, which are computed using the finite difference

scheme (5.21), as a boundary condition for the finite element method in ΩFEM .
5. Apply swap of the solutions for the electric field to be able perform algorithm on a new time level k.

7. Numerical Studies. In all our tests we choose the computational domain Ω = [−8.0, 8.0] ×
[−8.0, 8.0]. This domain is split into a finite element subdomain ΩFEM = [−3.5, 3.5] × [−3.5, 3.5] and a
surrounding region ΩFDM with a structured mesh, Ω = ΩFEM ∪ ΩFDM , see Figure 7.1.

The spatial mesh in Ω consists of triangles and in ΩFDM - of squares. The boundary of the domain Ω
is ∂Ω = ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3. Here, ∂Ω1 and ∂Ω2 are the top and the bottom sides of the Ω, and ∂Ω3 is the
union of the left and right sides of this domain, see Figure 7.1. Let us define ΩFEMT

:= ΩFEM × (0, T ),
ΩFDMT

:= ΩFDM × (0, T ).
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We also denote different boundaries in the domain decomposition method (see section (6) for details) as
follows: boundary of the ΩFEM we define by ∂ΩFEM , outer boundary of the ΩFDM we define by ∂Ω, inner
boundary of the ΩFDM we define by ∂ΩFDM , nodes corresponding to ∂ΩFEM but which lies in ΩFDM , we
define by ∂Ωω0 , and nodes corresponding to ∂ΩFDM but which lies in ΩFEM , we define by ∂Ωωx

. Next, let
∂ΩFDMT

:= ∂ΩFDM ×(0, T ), ∂ΩFEMT
:= ∂ΩFEM ×(0, T ), ∂ΩωxT

:= ∂Ωωx
×(0, T ), ∂Ωω0T

:= ∂Ωω0×(0, T ).

7.1. Numerical studies with exact smooth solution. In the tests of this section we solve the
problem (5.1)-(5.3) in Ω in time T = [0, 20] in two dimensions with the known smooth solution

E1(x, y, t) =
t2

2.0
cos(πx) · sin(πy),

E2(x, y, t) = − t2

2.0
sin(πx) · cos(πy).

(7.1)

In this case the problem (5.1)-(5.3) for the electric field in ΩFEM reduces to the following problem in two
dimensions

ε
∂2E1

∂t2
+

∂

∂y

(∂E2

∂x
− ∂E1

∂y

)

= cos(πx) · sin(πy)(ε+ t2π2), in in ΩFEMT
, (7.2)

ε
∂2E2

∂t2
− ∂

∂x

(∂E2

∂x
− ∂E1

∂y

)

= sin(πx) · cos(πy)(−ε− t2π2), in ΩFEMT
, (7.3)

E(x, 0) = 0, Et(x, 0) = 0 in ΩFEM , (7.4)

E(x, t)∂ΩF EMT
= E(x, t)∂Ωω0T

. (7.5)

In ΩFDM our coefficients are ε = µ = 1, and in this domain we have to solve the following problem

∂ttE1 −△E1 = cos(πx) · sin(πy)(ε+ t2π2), in ΩFDMT
,

∂ttE2 −△E2 = sin(πx) · cos(πy)(−ε− t2π2) in ΩFDMT
,

E(x, 0) = 0, Et(x, 0) = 0, in ΩFDM ,

E(x, t)∂ΩF DMT
= E(x, t)∂ΩωxT

,

∂nE
∣

∣

∂Ω
= −∂tu on ∂ΩT .

(7.6)

We choose the time step τ = 0.02 correspondingly to the CFL condition (6.2), while the penalty factor
is always set to s = 1.

7.1.1. Test 1. In this test we use the domain decomposition method with the coefficient ε defined as
a function inside ΩFEM such that

ε(x) =

{

1 +A(sin(π
3x))

2 · (sin(π/3)y)2, 0 ≤ x ≤ 3, and −3 ≤ y ≤ 0;
1, at all other points ,

(7.7)

with values of the amplitude A = 3, 12, 26, 37, 51, see Figure 7.2-a) for this function in the case when
amplitude A = 3 in (7.7).

First we perform computations on the mesh with the mesh size h = 0.125. Figures 7.3 demonstrate
the continuity of the computed components of the vector field (E1, E2) across the Finite Difference/Finite
Element mesh in the domain decomposition method with A = 3 in (7.7) at different times. We observe that
the components of the vector field (E1, E2) remains smooth across the FE/FD interface at all times. We
also observe that the exact components of the vector field looks very similar to the computed one - compare
Figures 7.3.

Figures 7.4 show the vector field (E1, E2) of the computed solution in the domain decomposition method
compared with the exact one at different times. We observe the smoothness of the vector field when com-
puting with A = 3 in (7.7). Figure 7.9 show the time evolution of the intensity of the exact electric field

15



a) max ε = 4 in Test 1 b) ε = 4 in Test 2

Fig. 7.2: Coefficient ε in different tests.

|E| =
√

E2
1 + E2

2 compared with the simulated solution |Eh| =
√

Eh
2
1 + Eh

2
2. The solution is presented

at different points of the computational domain ΩFEM . The Figure 7.10-a) shows corresponding to the
Figure 7.9 computed relative L2-norms in ΩFEM in the time T = (0, 20). Relative L2 norms are defined as
||E−Eh||L2(ΩF EM )

||E||L2(ΩF EM )
, where E and Eh are the exact and the computed intensities of the electric fields, corre-

spondingly. Figure 7.10-b) shows the computed L2-norms of E − Eh in ΩFEM in time T = (0, 20). From
the Figures 7.3-7.7,7.10 we can conclude that the computed solution Eh is very close to the exact one E as
soon as values of the coefficient ε are not too big (A < 26 in (7.7)), and the final time T is also not very
large (T < 10).

Let us compare Figure 7.8 with the Figure 7.7. On the Figure 7.7 we observe appearance of the spurious
modes when computing the domain decomposition method on the mesh with the mesh size h = 0.125, with
large times (T > 8) and with big values of the amplitude A > 12 in (7.7). However, these spurious solutions
are removed as mesh is refined, see Figure 7.8.

7.1.2. Test 2. In this test we use the domain decomposition method when ε = 1 in Ω except one small
square in ΩFEM , where ε = A with A = 3, 12, 26, 37, 51, see Figure 7.2-b) for example of this coefficient in
the case when ε = 4 inside the small square. In other words, the coefficient ε is defined inside ΩFEM as

ε(x) =

{

1 +A, 0 ≤ x ≤ 3, and −3 ≤ y ≤ 0;
1, at all other points ,

(7.8)

with values of the amplitude A = 3, 12, 26, 37, 51.

In this case we have similar behaviour of the electric field as in the Test 1 even in the presence of the
discontinuity of the coefficient ε in the model equations. In all cases of this test we have continuity of
the computed solution across FEM/FDM mesh, and behaviour of it is very similar to the behaviour of the
solution presented at all Figures related to the Test 1, and thus, we do not present these solutions again.
From this test we can conclude that the computed solution Eh on the mesh with the mesh size h = 0.125 is
very close to the exact one solution E as soon as discontinuity in the coefficient ε is not big (ε < 26) and the
computational time T is not very large (T < 10). However, when mesh is refined these spurious solutions
disappear even when computing the model problem with big values of the amplitude A in small square in
ΩFEM .
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a) E1 in Ω b) E2 in Ω

c) E1 in ΩF EM d) E2 in ΩF EM

e) E1 analytic in ΩF EM f) E2 analytic in ΩF EM

Fig. 7.3: Test 1. Comparison of the components (E1, E2) in the analytic and the computed solution for A = 3 in
the domain decomposition FEM/FDM method at time moment t = 8.0. We present at (a), (b) components E1, E2 in
Ω; at (c), (d) components E1, E2 of the finite element solution in ΩF EM ; and at (e), (f) components E1, E2 of the
analytic solution in ΩF EM .
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t = 4 t = 8

a) Eh in Ω b) Eh in Ω

c) Eh in ΩF EM d) Eh in ΩF EM

e) analytical E in ΩF EM f) analytical E in ΩF EM

Fig. 7.4: Test 1. Behaviour of the computed vector electrical field Eh = (E1h, E2h) and analytical one in the domain
decomposition FEM/FDM method at time moments t = 4.0 and t = 8. We show the electrical vector field on:
a),b) in the domain decomposition FEM/FDM method in Ω; on c),d) in ΩF EM and on e),f) analytical vector field
E = (E1, E2) in ΩF EM .
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a) A = 12, E1 in Ω b) A = 12, E2 in Ω

c) A = 26, E1 in Ω d) A = 26, E2 in Ω

e) A = 51, E1 in ΩF EM f) A = 51, E2 in ΩF EM

Fig. 7.5: Test 1. Computed solutions in the domain decomposition FEM/FDM method at time moment t = 4.0 in
Ω. We show comparison of the computed solutions with different values of the coefficient ε inside ΩF EM in Maxwell
equations. On a),b) the amplitude A = 26 for coefficient ε in (7.7), and on c),d) A = 51 in (7.7).19



a) A = 12, E1 in Ω b) A = 12, E2 in Ω

c) A = 26, E1 in Ω d) A = 26, E2 in Ω

e) A = 51, E1 in ΩF EM f) A = 51, E2 in ΩF EM

Fig. 7.6: Test 1. Computed solutions in the domain decomposition FEM/FDM method at time moment t = 8.0 in
Ω. We show comparison of the computed solutions with different values of the coefficient ε inside ΩF EM in Maxwell
equations. On a),b) the amplitude A = 26 for coefficient ε in (7.7), and on c),d) A = 51 in (7.7).
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a) A = 26, T = 4 b)A = 51, T = 4

c) A = 26, T = 8 d) A = 51, T = 8

e) A = 26, T = 20 f) A = 51, T = 20

Fig. 7.7: Test 1. Behaviour of the computed vector electrical field Eh = (E1h, E2h) in the domain decomposition
FEM/FDM method in Ω at different time moments. We show the electrical vector field for different values of the
amplitude A in (7.7) in Ω.
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a) A = 26, T = 20

b)A = 37, T = 20

c)A = 51, T = 20

Fig. 7.8: Test 1.Removable of spurious solutions on the finer mesh with the mesh size h = 0.05. We show behaviour
of the computed vector electrical field Eh = (E1h, E2h) in the domain decomposition FEM/FDM method in ΩF EM at
T = 20. We present the electrical vector field for different values of the amplitude A in (7.7) in Ω. Compare with the
Fig.7.7 where spurious modes appeared already at the time T = 8 where computations was performed on the coarser
mesh with the mesh size h = 0.125.
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|E| exact
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|E|  max eps=4

|E|   max eps=12
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|E|  max eps=37
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c) point (0.5, 1.0) d) point (0.5,−3.0)

Fig. 7.9: Test 1. Behaviour of E =
p

E2
1

+ E2
2

in time T = (0, 20) of the exact and computed solutions of equation
(7.11)-(7.14): a) at the point (0.0, 0.5), which is located in the center of the computational domain ΩF EM ; b) at the
point (0.0,−3.5), which is located at the bottom boundary of the ΩF EM ; c) at the point (0.5, 1.0), which is located
close to the center of the ΩF EM ; d) at the point (0.5,−3.0), which is located at the lower part of the ΩF EM . We show
comparison of solutions with values of the amplitude A = 4, 12, 26, 37, 51 in (7.7). Here the horizontal axis denotes
the computational time.

7.2. Numerical studies with a plane wave. In the tests of this section we solve the problem (5.1)-
(5.3) in Ω in time T = [0, 20] in two dimensions with the plane wave f(t) defined as

f (t) =

{

sin (ωt) , if t ∈
(

0, 2π
ω

)

,
0, if t > 2π

ω
.

(7.9)
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Fig. 7.10: Test 1. a) Relative errors
||E−Eh||L2ΩF EM

||E||L2ΩF EM

in time T = (0, 20); b) Norms ||E − Eh||L2ΩF EM in time

T = (0, 20).

a) A = 4 b) A = 12 c) A = 26

Fig. 7.11: Different coefficients ε defined by (7.17) used in tests with plane wave.

In ΩFDM our coefficients are ε = µ = 1, and in this domain we have to solve the following problem

Ett −△E = 0, in G× (0, T ),
E(x, 0) = 0, in G,
Et(x, 0) = 0, in G,

E1 = 0, E2(x, t) = f (t) , on ∂Ω1 × (0, t1],
∂nE(x, t) = −∂tu(x, t), on ∂Ω1 × (t1, T ),
∂nE(x, t) = −∂tu(x, t), on ∂Ω2 × (0, T ),
∂nu(x, t) = 0, on ∂G3 × (0, T ),

(7.10)
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a) h = 0.125 b) h = 0.05

Fig. 7.12: a) Test 3: numerical comparison of the computed L2-norms for ||E|| and ||Eh|| on different meshes with
mesh sizes h = 0.05 and h = 0.125 in time T = (0, 20) in ΩF EM . Here the horizontal axis denotes the the number of
time steps in time T = (0, 20).

and in ΩFEM we have to solve

ε
∂2E1

∂t2
+

∂

∂y

(∂E2

∂x
− ∂E1

∂y

)

= 0, in in ΩFEMT
, (7.11)

ε
∂2E2

∂t2
− ∂

∂x

(∂E2

∂x
− ∂E1

∂y

)

= 0, in ΩFEMT
, (7.12)

E(x, 0) = 0, Et(x, 0) = 0 in ΩFEM , (7.13)

E(x, t)∂ΩF EMT
= E(x, t)∂Ωω0T

. (7.14)

We choose the time step τ = 0.02 in all tests correspondingly to the CFL condition (6.2). The penalty
factor s is always choosen to be 1. In the initialized plane wave (7.9) we take ω = 7 in all tests.

First, in the Test 3 we demonstrate that our computed solution Eh in the domain decomposition method
approximates very good the exact solution E in the case when ε = µ = 1 in Ω. Next, in the Test 4 we
demonstrate the validity of our method on simulation of the problem (7.10), (7.11)- (7.14) in the presence
of the function ε(x) 6= 0 in ΩFEM .

7.2.1. Test 3. In this test we compare our computational solution obtained in the domain decompo-
sition method with the analytical solution. We compute the problem (7.10), (7.11)-(7.14) on two different
meshes with different mesh sizes h, with h = 0.125 and with h = 0.05. The plane wave is defined as in (7.9).

The analytical solution of the problem (7.10), (7.11)-(7.14) with ε = µ = 1 reduces to the solution of
the homogeneous wave equation and is given by the following formula, see [8]:

E2 (y, t) =







0, if t ∈ (0, a− y) .
sinω (t− a+ y) , if t ∈

(

a− y, a− y + 2π
ω

)

,
0, if t > a− y + 2π

ω
.

(7.15)

where y is the vertical coordinate and we consider the problem (7.10), (7.11)- (7.14) in the domain Ra =
{y < a}, a = const. ≥ 0, while E1 = 0.

Figure 7.13 presents comparison between the exact solution given by (7.15) and the computed solutions
for the problem (7.10), (7.11)-(7.14), at different points of the computational domain Ω. We show the
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c) point (0.5, 3.0), h = 0.05 d) point (0.5, −3.0), h = 0.05

Fig. 7.13: Test 3. Comparison of the analytic and the computed solution in the domain decomposition FEM/FDM
method in time T = (0, 20) with ε = µ = 1. We show computed domain decomposition solution on different meshes
with mesh sizes h : a) on the mesh with h = 0.125 at the point (0.5, 3.0), which is located at the upper part of the
computational domain ΩF EM ; b) on the mesh with h = 0.125 at the point (0.5,−3.0), which is located at the lower of
the ΩF EM ; c) for the mesh size h = 0.05 at the point (0.5, 3.0); c) for the mesh size h = 0.05 at the point (0.5,−3.0);

computed domain decomposition solution on different meshes with mesh sizes h = 0.125 and h = 0.05. We
observe that the exact and the computed solutions have main difference at the bottom of the computational
domain ΩFEM . This can be explained by the fact that the computational error grows with the computational
time. Comparing 7.13-a),b) with 7.13-c),d) we observe that the computed solution Eh on the mesh with the
mesh size h = 0.125 has approximately twice smaller amplitude than the exact solution E, but the computed
solution on the mesh size h = 0.05 approximates more accurately the exact solution. The same observation
confirms the Figure (7.12)-a) which shows the comparison of the exact norm ||E||ΩF EM

and the computed
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norm ||Eh||ΩF EM
on different meshes with mesh sizes h = 0.125 and h = 0.05 in the time T = (0, 20).

This test shows that the used FEM scheme in the domain decomposition method is the second order
convergent in space and time, and the underlaying a posteriori error analysis for (7.11)-(7.14) is similar to
the one developed in [3].

7.2.2. Test 4. The goal of this test is to explain why in some real-life experiments with the electromag-
netic plane wave which propagates in the medium with the coefficient ε 6= 0 it is still possible approximate
the Maxwell’s system with the wave equation

ε
∂2E

∂t2
+ △E = 0, in ΩT ,

E(x, 0) = f0(x), Et(x, 0) = 0 in Ω,

E(x, t) = f (t) , on ∂Ω1 × (0, t1],

∂nE(x, t) = −∂tu(x, t), on ∂Ω1 × (t1, T ),

∂nE(x, t) = −∂tu(x, t), on ∂Ω2 × (0, T ),

∂nu(x, t) = 0, on ∂G3 × (0, T ).

(7.16)

Such model is considered in our recent publications [6, 16] where the spatially distributed dielectric constant
was reconstructed from experimental data via a hybrid globally convergent/adaptive algorithm. In [6, 16]
was pointed out that some discrepancies in the computational model and the reality was used: instead of
the considering of the globally convergent method for the Maxwell’s system (3.2)- (3.5) was used the model
of the single wave equation (7.16). Moreover, it was not known which one of the components of the electric
field was measured in experiments. The fact that in [6, 16] still was obtained very accurate reconstruction
of the dielectric constant demonstrates validity of the approximated model. Our test below demonstrates
explanation of the experiment in [6, 16].

We initialize a plane wave f as in (7.9) which is similar to the time-resolved electromagnetic signal used
in experiments of [6, 16]. Next, we solve the problem (7.10), (7.11)- (7.14) with the coefficient ε in ΩFEM

defined as

ε =







1 + 0.5(sin(π
3x))

2 · (sin(π/3)y)2, −3 ≤ x < 0, and −3 ≤ y < 3;
1 + 0.5(sin(π

3x))
2 · (sin(π/3)y)2, 0 ≤ x ≤ 3, and 0 ≤ y ≤ 3;

1 +A(sin(π
3x))

2 · (sin(π/3)y)2, 0 ≤ x ≤ 3, and −3 ≤ y ≤ 0;
(7.17)

where A = 4.0, 12.0, 26.0, see Figure 7.11.
Figures 7.16-7.17 show how the plane wave propagates in Ω with ε in ΩFEM given by (7.17) with A = 4.0,

see Fig. 7.11-a). We observe that the plane wave f is initialized at the top boundary ∂Ω1 and propagates
into Ω for t ∈ (0, t1]. First order absorbing boundary conditions [10] are used on the top ∂Ω1 × (t1, T ] and
the bottom ∂Ω2 × (0, T ] boundaries, and Neumann or mirror boundary condition is used on ∂Ω3 × (0, T ].
Figures 7.16-7.17 demonstrate also the continuity of the numerical solution in the domain decomposition
method across the FD/FE mesh. We observe that the electric field E = (E1, E2) as also the intensity of the

electric field |Eh| =
√

E1
2
h + E2

2
h remains smooth across the FE/FD interface.

Using the Figures 7.16-7.16 we can conclude that the maximum of the component E2, where the plane
wave was initialized, is about three times higher than the maximum of the component E1 at all times. Figure
(7.12)-b) shows comparison of the computed norms ||E1h|| and ||E2h|| in the time T = (0, 20) in ΩFEM . In
these computations we have used amplitudes A = 4, 12, 26 in the definition (7.17) of the coefficient ε inside
ΩFEM . From the Figure (7.12)-b) we can conclude that the computed solution Eh does not contain spurious
solutions as soon as values of the coefficient ε are not too big ( the amplitude A < 12 in (7.17)), and the
final time T is also not very large (T < 12).

Thus, all meaningful reflections from the coefficient ε are from the component E2 while the reflections
from the another component E1 are negligible compared with the reflections from the component E2. This
fact explains why in experiments of [6, 16] was possible to measure only the single time-resolved signal and
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Fig. 7.14: Test 4: Behaviour of the computed solution Eh = (E1h, E2h) in time T = (0, 20) for the equation (7.11)-
(7.14) on the mesh with the mesh size h = 0.125 at different points at the FEM/FDM boundary : a) at the point
(1.0,−3.5); b) at the point (1.5,−3.5). Here the horizontal axis denotes the the number of time steps in time T = (0, 20)
and E1 = E2, E2 = E1.
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Fig. 7.15: Test 4: comparison of the computed L2-norms for ||E1h|| and for ||E2h|| on different meshes with mesh
sizes h = 0.05 and h = 0.125 in time T = (0, 20) in ΩF EM . Computations are performed with different amplitudes
A in the definition (7.17) of the coefficient ε inside ΩF EM . Here the horizontal axis denotes the the number of time
steps in time T = (0, 20).

why the another two components of the 3D test could not be measured - these remaining components was
negligible compared to the first one component.
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a) T = 14, E1 b) T = 14, E2

a) T = 16.0, E1, t = 16.0 b) T = 16.0, E2

a) T = 18.0, E1 b) T = 18.0, E2

a) T = 20.0, E1 b) T = 20.0, E2

Fig. 7.16: Test 4: Computed components of the electric field Eh = (E1h, E2h) with h = 0.125 at different times in Ω
using the domain decomposition FEM/FDM method. The coefficient ε in ΩF EM is defined by (7.17).

29



a) t = 4.0 b) t = 8.0

a) t = 10.0 b) t = 12.0

a) t = 14.0 b) t = 16.0

a) t = 18.0 b) t = 20.0

Fig. 7.17: Test 4: Intensity of the electric field |Eh| =
p

E1
2

h + E2
2

h on the mesh with the mesh size h = 0.125 at
different times in Ω. The coefficient ε in ΩF EM is defined by (7.17).
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