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Abstract

* The main purpose of this article is to establish the CKN-type inequalities for all
a € R and to study the relating matters systematically. Roughly speaking, we shall
discuss about the characterizations of the CKN-type inequalities for all a € R as the
variational problems, the existence and nonexistence of the extremal solutions to these
variational problems in proper spaces, the exact values and the assymptotic behaviors of
the best constants in both the noncritical case and the critical case.

In the study of the CKN-type inequalities, the presence of weight functions in the both
sides prevents us from employing effectively the so-called spherically symmetric rearrange-
ment. Further the invariance of R™ by the group of dilatations creates some possible loss
of compactness. As a result we will see that the existence of extremals and the values of
best constants and their asymptotic behaviors essentially depend upon the relations among
parameters in the inequality.
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1 Introduction and Histrical remarks

1.1 Introduction

We shall begin with recalling the classical weighted Sobolev inequalities (1.1), which are often
called the Caffarelli-Kohn-Nirenberg type inequalities (the CKN-type inequalities).

There is a positive number S depending only on p, q, «, 8 and n such that we have
p/q
/ [VulP|z|*P de > S(/ |u|?| x| dx) , for any u € C§°(R"), (1.1)
" Rn

where Vi = (2% 0w A2w) and |Vu| = (Xhes |ﬂ|2)1/2-

Ox1’ Oxa? """ Oxy Oxy

Here n > 1,1 < p < +00 and ¢, o, 8 are real numbers satisfying

04>1—%7
(1—a+pP)p <n,
0<1/p—1/g=(1~a+pB)/n,

B < a.

(1.2)

The main purpose of this article is not only to establish the CKN-type inequalities for all
a € R but also to study the relating matters systematically. Roughly speaking, we shall discuss
about the characterizations of the imbeddings as the variational problems, the existence and
nonexistence of the extremal solutions to these variational problems in proper spaces, the exact
values and the asymptotic behaviors of the best constants.

Now we introduce a crucial parameter v as follows.

Definition 1.1 For 1 <p < +o0, in (1.2) let us set
v=a—1+2 =+ (1.3)
p q

Under the condition (1.2), we have 0 < « as well. By noting that ap = p(1++v)—n,8 = y¢—n,
after all we can rewrite (1.1) and (1.2 ) to obtain the followings:

r/q
/ |Vu|P|z[PO+) =" dg > S(/R |u] 9|7 d:c) , for any u € Cg°(R"), (1.4)

where n > 1, 1 < p < 400 and g,y are real numbers satisfying

v >0,
q < +o0, (1.5)
0<1/p—1/¢<1/n.

Throughout the present article we shall work with a parameter v € R instead of a and g,
so that most of our results become symmetric in v with repect to v = 0.

Furthermore we classify the CKN-type inequalities according to the range of the parameter
7 into the three cases. Namely

Definition 1.2 The parameter vy is said to be subcritical, critical and supercritical if v satisfies
v >0, v=0 and v < 0 respectively.
Remark 1.1 1. Here we note that the conditions v > 0, v = 0 and v < 0 are equaivalent

t0a>1—%,a:1—% andoe<1—%respectively.

2. In the classical CKN-type inequalities (1.1), it follows from the subcritical condition v > 0
that we have Bq > —n, hence the weight functions in the both sides are locally integrable
on R™. By this reason these inequalities (1.1) are classified into the subcritical case of
the CKN-type inequalities in this article.



1.2 Histrical remarks

Before we go further into our main results on the CKN-type inequalities involving critical
and supercritical cases, we give a brief historical review here. As we have already mentioned,
the inequality (1.1) for v = a—1 + % > 0is often called the Caffarelli-Kohn-Nirenberg type (the
CKN-type inequalities). In fact in [CKN] they established general multiplicative inequalities
including these types. In [Hol] we have also studied these inequalities among more general
imbedding theorems on the weighted Sobolev spaces, where the weights are powers of distance
from a given closed set F'.

It was also very interesting for us to study further the properties of the imbedding operators
obtained there. But for a general F' it seemed not easy to study these problems in a detailed
way. By this reason, in [Ho2] we restricted ourselves on the simplest case that F' consists of a
single point, namely, the origin. In this particular case we have studied the relating problems in
a various aspect and obtained interesting results such as the exact values of the best constant
S = S(p,q,a) in certain cases, the existence and nonexistence of the extremals and so on.

Recently we have revisited the weighted Hardy-Sobolev inequality in [AH2]. It is easy to see
that the classical CKN-type inequality coincides with the weighted Hardy-Sobolev inequality
if B = a — 1, or equivalently p = ¢q. To our surprise it was shown that the weighted Hardy-
Sobolev inequalities themselves hold for all v € R ( or equivalently all &« € R) with some
modifications. In fact, even if v = o« — 1 + 2 = 0 holds, the sharp inequality of the Hardy
type remains valid as long as the whole space R™ is replaced by a bounded domain containing
the origin and the weight functions in the right hand side are replaced by the logarismic ones.
Moreover we have successfully improved those weighted Hardy-Sobolev inequalities by finding
out sharp missing terms, as a result they turned out to be very useful in many aspects. For the
improved inequalities, see Propositionl.2 below. ( For the complete argument and the related
applications see [AH2].)

On the other hand, the counterpart in the CKN-type inequalities to the weighted Hardy-
Sobolev inequalities in [AH2] seems to be unknown so far. But it seems reasonable for us to
expect that the CKN-type inequalities should remain valid for all v € R ( @« € R ) with a similar
modification as was performed in the weighted Hardy-Sobolev inequalities. In this spirit we
shall establish the CKN type inequalities for all ¥ € R ( @ € R ) and we shall further study
them systematically in the present paper.

In order to emphasize the meaning of this classification of the CKN-type inequalities and
our motivation in this paper, let us recall the results on the weighed Hardy-Sobolev inequalities
as the necessary background.

We first review as Proposition 1.1 the classical weighted Hardy-Sobolev inequalities in the
noncritical case, and then we also recall as Proposition 1.2 the improved weighted Hardy-Sobolev
inequalities with sharp missing terms in [AH2]. It follows from these results that the weighted
Hardy-Sobolev inequalities are valid for all v € R and Definitionl.2 should be natural for us to
study the CKN-type inequalities based on the (improved) weighted Hardy-Sobolev inequalities.

Proposition 1.1 Letn > 1, 0 € Q and Q is a domain of R™. Assume that 1 < p < +00 and
v # 0. Then we have

/Q V2] P g > |y /Q ()Pl de (1.6)

for any u € Cg°(2\ {0}).

In this inequalities (1.6), the domain £ may be unbounded and the best constant |y|P is appar-
ently independent of the shape of domains. In particular we can put 2 = R™.

Proposition 1.2 Letn > 1,0 € Q and 2 is a bounded domain of R™.



1. Subcritical case (y >0, 1 < p < +00),
There exist K = K(n) > 1 and C = C(n) > 0 such that if R > K supg |z| then

[ vulrlal G do 2 [ )i de
Q Q

+ C/Q |u(z)[? (@%)—2 — (1.7)

for any u € C§°(Q).
2. Critical case (y =0, 1< p < 400),
Then there exist K = K(n) > 1 and C = C(n) > 0 such that if R > K supgq |z| then

-p
/|vu|P|x|P*ndxz L[ @l (log£> dz
Q PP Jo |z |z|

.
w0 [ () (oo (o))

for any u € C§°(Q). Here p' = ;L5

3. Supercritical case (v <0, 1 < p < +00),
Then there exist K = K(n) > 0 and C = C(n) > 0 such that if R > K supgq |z| then

[ vullal G do 2 [ )il de
Q Q

+ C/Q lu(z)|? (@%)—2 — (1.9)

for any u € C§°(Q2\ {0}).

Remark 1.2 1. If we replace a bounded domain 2 by the whole space R™, then in general
we can not expect any improved weighted Hardy-Sobolev inequalities with a missing term.

2. If v = 0 (the critical case) and Q = R™, then one can show from a capacitary argument
that for any compact set K C R™
inf [/ [VulP|lz|P™" dz :uw e C°(R™),u>1 on K| =0.

Therefore we can not expect the weighted Hardy inequality in the whole space R™.

2 Main results

2.1 The CKN-type inequalities

In the subsequent we employ the following notations:

/ p x
Here we set t, = max{0,t} and 1/0 = oo.
As we have already mentioned in §1, for fixed p, ¢, instead of parameters «, 8 in the CKN-
type inequalities we work with a new parameter

np
n—p)+

for 1 < p < oc. (2.1)

y=a—1+= =8+ (2.2)
p q



Then the range for p, ¢,y becomes

1 1 1
1<p<qg<oo, (0)7,,=———<—, veR. 2.3
(0<)py=7-c%7 (23)
From these conditions we obtain for a fixed p
p<g<p= np fl<p<n; p<g<p'=oc0 ifn<p<oo. (2.4)
n—p

We recall that the subcritical condition, the critical condition and the subcritical condition
simply correspond to v > 0, v = 0 and v < 0 respectively.
We prepare more notations below.

Definition 2.1 For « € R and R > 1 we set

I(z)=1,z]) = b for x € R"\ {0}, (2.5)

- |:L-|n—o¢

R _
1ogm for z € B;\{0},

Ay p(2) = Ay p(l2]) = (2.6)
log(R|x|) for x € R*\ B,
When 0 < o < n holds, I, is called a Riesz kernel of order o
Under these notations the CKN-type inequalities have the following forms:
If v # 0, then
p/q
VU@ Ty (@)da = S( / [u(@)| Iy (@) do) (2.7)
R" R"
If v =0, then for R >1
Iy(x) p/q
|[Vu(z)]PL (z)de > C / Ju(x)|! —2L—dx) . (2.8)
/B1 P ( B, Al)R(a:)lﬂ/P )

Now we introduce function spaces and relating norms below.

Definition 2.2 Let 1 <p < qg< oo,y € R and R > 1. Let {2 be a domain of R" and let
u:2—-R.

1. For w: {2 — R satisfying w >0 a.e. on {2, we set

o = ( [ ) tueydz) ™ 29)

2. Under the above notation we set
lllzscoy = lallas, s (¥l @ = 1¥0llsp, o (2.10)
HU‘HLZ:R(Q) = ||u||Lq(Q;IO/Ai;q/pl)'

3. Li(2) ={u: 2 = R |lullpgq) < oo}, Lpp(?) ={u: 2 =R||uly o <oo}

4. By Wy%bp(!?) we denote the completion of C°(£2\{0}) with respect to the norm

U HVU”L’I’H(Q) .



5. Let 2 be a radially symmetric domain. For any function space V(£2) on £2, we set

V(2)0a = {u e V(02) | u is radial }. (2.11)

Here we remark the following fundamental properties concerning with the density of smooth
functions. ( The proof is given in §8. )

Proposition 2.1 Assume that 1 < p < oo and v € R.
1. If v > 0, then C*(R") C Wy{bp(R") and C2°(R™) is densely contained in le%bp(R").

2. Ify <0, then C®(R") ¢ W,/ P(R™).
3. If y=0, then C>(B,) C VVOT’Op(Bl) and C°(By) is densely contained in % P(B,).

Then the CKN-type inequalities are simply represented as follows:

If v #£ 0, then
1, n
||VuHLp (R > SH“HLpg(Rn) for u € W, 7 (R"). (2.12)
Ify=0, then for R >1
IVull 7oy = CH”HLPZ;ABJ for u € Wyt (By). (2.13)

Remark 2.1 1. When p = q holds, these two inequalities are called the Hardy-Sobolev in-
equalities. It is known that the best constants S of (2.12) and C of (2.13) coincide with the
ones restricted in the radial functional spaces V[/Wl)’op(R")rad and VVOT’OP(Bl)rad respectively,

and hence we have .
S =8PPT =~P (= PRt — 0 (2.14)

2. It follows from the Hardy-Sobolev inequalities that if v > 0, then the space W{Y%bp(R")
coincides with the completion of C°(R"™\{0}) with respect to the norm

el ey = IVUllzr, ey + llull Lo reny (2.15)

and if v = 0, then the space VVO P(By) coincides with the completion of C°(B\{0}) with
respect to the norm

HUHWlp iy = IWVullprp) + lull e (5 with B> 1. (2.16)

Here we note that if v = 0, then the weight function in the right-hand side of the CKN-type
inequality (2.13) is sharp in the following sense. ( The proof is given in §8. )

Proposition 2.2 Let 1 < p < ¢ < o0, 7,, < 1/n and R > 1. Assume that w € C(B,\{0})

: pg =
satisfies

1 /
1,3(55) +a/p

Iy(x)

IVull o5\
inf § (o ) w e WEIF(B\{0} | =
el o550

In the subsequent we study the validity of the CKN-type inequalities and the behavior of the
best constants precisely when the parameters enjoy 1 <p < ¢ < o0, 7,, < 1/n, and in addition
the cases that v < 0 and R = 1 are considered. Moreover when v = 0, we also establish the
CKN-type inequality in the exterior domain R™\ B, such that

IVull/, > Cllul f for uw € Wy (R™\ By). (2.17)

w(z) >0 forz € B\ {0}, w(z) - 00 asz — 0,

then we have

LY(R"\B,) — Lq;R(R"\El)



2.2 Main results in the noncritical case
In this subsection we describe the results when ~ # 0.
Definition 2.3 Let 1 <p<g< oo andy#0.

1.
p
IVulp, ey

EPGT[y] = < ) foru € W'V{’OP(RH)\{O}' (2.18)

HUHLZ(R")

SPEY = inf{ EPT ] | u € I/Vvl,)Op(Rn)\{O}} (2.19)
=inf{ BP9 [u] | u € C*(R™\{0})\{0}}

SHAT = mf{ BP9 u] [ w € W (R")a\{0}} (2.20)
= inf{ EP*7[u] | u € CZ(R"\{0}),.4\{0}}.
First of all we state the CKN-type inequalities in the noncritical case.

Theorem 2.1 Assume that 1 < p < ¢ < oo, 7,, < 1/n and v # 0. Then, we have SE” >
SPEY > 0 and the following inequalities.

IVull gy = S22y gy Sor w € WAZ(RY) (2.21)
\q; 1, n
IVulfy e = SNl fyey Jor 0 € WA (R (222)

This follows from the assertions 1-4 of Theorem 2.2. Let us introduce more notations.

Definition 2.4 For1 <p <q < oo, we set

1 1 1-p/q
n—1 (p)p2wlagrle (325B ( )) ifp<gq,
— = 7 (2.23)

[
b,q pT;q pTP#Z

1 fr=q
Here B(+, -) is a beta function.

Remark 2.2 1. It holds that

o1y 1
B <p_7" ]TT) — DT as T — 0. (2.24)

In fact for 0 < 7 < min{1/p,1/p'}, we see that

, 1 1 1/p—7 1 1/p'—1
tl/p_T(l—t)l/p T < m (5—7-) (—/—T> for0<t <1, (2.25)

hence we have

L1y L1 Up—ry g
B —,T = (t p T(l—t) P T) Tdt
pT pT 0

1 1 1/1’*7' 1 1/20,*7' 1
= U~—2TF‘2’<5__T) (57_T> Ty e



T

T 1
B(i,%> > (/ (t”ﬁ(l—t)”?’)”fdt)
pT pT 0

/ 1
— max tl/p(l—t)l/p =

0<i<1 _pl/p(p/)l/p/ as T — 0.

2. Since 1,, — 0 as q— p, it follows from the argument of 1 that we have

\p—1—pT, . 1 1 PTpq
(X v) I—pr (w_nB <—’ / )) —1=5,, asq—p. (2.26)
(1/p—1,4) FTra \7, PTpq PTpq

P,g
Under these preparation we can compute the best constant S7%7 of the CKN-type inequality in
the radial function space to obtain the exact representation. In the next we describe important
relations among the best constants S?%7 and SP%7.

Theorem 2.2 Assume that 1 <p < q<oc and 7,, < 1/n. Then it holds that:

1. PO = §PBY, Sggw — Sf;g*” for v #0.

2. PO — Sp7q|,y|p(1*7'p,q) for v #£0.

5. SPUT = LAY = 8, P07 for 0 <1 < -

4 ‘% T gy < gran < !3\””3%? for 0.<Jy] < 7l.

5o P <SP <SP = SEE e for | 2, = L ifp<n.
G R

*, «, ., n—2 .
6. 3N = §22 e = 2F T for|y| 2 yyp = = ifp=2<n.

7. SPET > (|y|PTea(SPTY)a) /Tea  for 4 £ 0.
In particular,

SPEY > |y [PA=mTd) (SPPS) 0 for 4 40 if p <.

Remark 2.3 1. The assertionsI-4 are proved in §83 and 4, and the assertions 5-7 are es-
tablised in §6.

2. It follows from Remark (2.1) and Proposition 3.1 that we have
SPPY = SPEY = || for v # 0. (2.27)

3. For 1 < p < n, the number;

_o\Pp-1 p/n
SPP Yy = SPE oy =y (n P ) <W—7B <n n>> (2.28)

p—1 [N
coincides with the classical best constant of the Sobolev inequality;
P — P P — P Lp n
IVull Foery = ||vu||L,%*(Rn) > S||u||L2;p*(Rn) = Sllull y gn, Jor w € WP o(RY).

In particular for n > 3 and p = 2, we see that

2/n
2,200 — Q225Ya0e _ Loy (W (T N2/ _ B I'(n/2)
S 522 n(n — 2) ( B (2, 2)) nn=2) (i) T @229)

Here, T'(+) is a gamma function.



Moreover the best constant S”"?°7 is a continuous function of the parameters ¢ and v. Namely
we have the following that is established in §6.

Theorem 2.3 For 1 < p < oo, the maps
([p, P\ {oo}) x (R\{0})  (q;7) — SP*7, SEET € R (2.30)
are continuous. In particular, it holds that

SPOT 5 SPPIT = |y[P s q — p. (2.31)

In the next we describe results on the existence and non-existence of extremal functions
which attain the best constants of the CKN-type inequalities. Shortly speaking, the best
constant SP%7 ig attained by some element in V[Ql)’op(R") \ {0} provided that p < ¢ < p*
is satisfied. On the other hand if ¢ = p, then the corresponding CKN-type inequalities are
reduced to the Hardy-Sobolev inequalities and therefore no extremal function exists. When
q = p* holds, then SPP"7 is attained provided that 0 < |y| < (n—p)/p = Yp,p» DUt in the

case that |y| > (n — p)/p, it is unkown in general except for the case p = 2, whether SPPSY g
achieved by some element or not. If p = 2 is assumed, then it is shown that no extremal exists
provided that |y| > (n — 2)/2 holds.

Theorem 2.4 Assum that1 <p<gq < oo, 7,, <1/nandy#0. Then we have the followings:

1. If p < q, then SP'%7 is achieved in V[Ql)’op(R”)rad\{O}.

rad
2. If p < q < p*, then SP47 s achieved in le%bp(R”)\{O}.
8. Ifp <mn, q=p and|y| < (n—p)/p = v, then SRS = Sgg*w is achieved in
Wyl,bp(Rn)rad\{O}'

4. Ifp=2<mn,q=2"=2n/(n—2) and |y| > (n —2)/2 = 7455, then §2257 = Sféﬁ*?%x?*
holds and S*>*%7 is not achieved in VV,&’;(R")\{O}.

Remark 2.4 The assertions 1 and 8 is proved in §4. On the other hand the assertions 2 and
4 are established in §7 and §8 respectively.

Proposition 2.3 If 1 < p = ¢ < oo, v # 0, then SPP7 and STE7 are not achieved in
Wy%bp(R")\{O} and Wy%bp(R”)rad\{O} respectively.

This is proved in §8.

2.3 Main results in the critical case

In this subsection we state the results in the case of v = 0. Let us begin with defining various
functionals and best constants.

Definition 2.5 Let 1 <p<g< o and R>1.
1.

»q;R I uHLf(Bl) ’ Lp
FPaty] = Tale s for uw e W5y’ (B;)\{0}. (2.32)
L2 . (B,)
;R 1



CPER = inf{ FPER[y) | u € Wi(By)\{0}} (2.33)
= inf{ FP9 8 [u] | u € C2(B,\{0})\{0}},

CPER = inf{ FPUR[u] | uw € Wy (By)raa\{0}} (2.34)
= inf{ FPCE[u] [ w € OX(B;\{0}),00\ {0} }.

3.
P
| [ —
—p,q;R L7(R"\ B n\
Frof = (o ) forw e WRMBNO). (239
L (R™\B))
4.
CP = it F™ " u] | w € Wy (R"\ B;)\{0}} (2.36)

= inf{ F"""[u] | w € C(R"\ B))\{0}},

CPA™ = it { FP " u] | u € W (R™\ B )1aa\ {0}} (2.37)
= inf{ F"""[u) | w € C°(R™\ B )1aq\ {0} }.

When R > 1, we have the next.

Theorem 2.5 Assume that 1 <p <q<oo, 7,, <1/nand R>1. Then, we have crat >

. —p,q;R —p,q;R . . L,
CPGR 5 0, TPV > TP > 0 and the following inequalities:

IVl Zyyy = CP5 Rl for w € Wod (By), (2:38)
IVull Zyy = CRERNull 2y s, for w € W' (By)aa. (2.39)
190l oy 2 C Nl gy Sor € Wi (RME), (2.40)
190l o ) = Tt Nl gy o € Woid (RM\ B (241)

Remark 2.5 If p > n, these imbedding inequalities follow from the assertions 3 and 4 of
Theorem 2.7. On the other hand if 1 < p < n, then these are established in §5 by using the
so-called nonlinear potential theory.

When R =1 holds, we have the next result which is established in §4 and partly in §8.

Theorem 2.6 Assume that 1 < p < q < 00, Tpg < 1/n and R = 1. Then we have the
followings:

1. If n =1, then C’fi;g;l > Pl >0 and Uf%;g;l > TP S 0 hold. Further the inequalities
in Theorem 2.5 are valid with R =1.

2. If n > 2, then CPt 5 0 and 5p’q;1 > 0 hold. Further the inequalities in Theorem 2.5

rad rad

are valid with R =1, and CP%! = TP — 0 holds.

Now we introduce more notations.

10



Definition 2.6 For1l <p<qg < oo we set

_ l+gq/p . _ Spq
Rp7q = exp m Zf n > 2, Cp,q = W. (242)

. : ;R ~pa;:R .
By virtue of these we can represent in a concrete way C4™ and C,,4" which are the best

constants in the radial function spaces.

Theorem 2.7 Assume that 1 <p < q < oo and 7,, < 1/n. Then we have the followings:

. =p:q;R ; =D.q;R
1. cpwlt — gPtopaR _ ol for R>1.
pa:R _ APGE _
2. Crad - Crad - CP#Z fOT Rz1.
. ; ~pa: R =pg;R 1 fn=1
e e e . TR L=
pg YDZM =2

‘R —p,q;R ‘R —p,q;:R IOgR P ‘R log]_% p—p,q;R
4o oralt =P s oraR =g < (B ) ot = ({5 ) ©

fOT1<R§R.

Remark 2.6 1. The assertions 1 and 4 are established in §3 and the rests are done in §4.
1
2. Cpy— W =C,, asq— p. Namely we have the next which is established in §06.

3. From Remark 2.1 and Proposition 3.1 we obtain

‘ 1
Pl 5 = o Jor R>1. (2.43)

Further the best constant CP%% is a continuous function of the parameters g, R.

; iR AppiR S
oppiR — ng, =C -C

Theorem 2.8 1. For 1l < p < oo, the maps

(I, 2]\ {oo)x(1,00) 3 (g5 R) == CP0R = T craif —OPE" e R (2.44)

are continuous.

2. Forn=1and 1 < p < oo, the maps
[p,00)x[1,00) 3 (q; R) = CPOE = opGil — gPal _ GPaift o g (2.45)
are continuous.

On the existence of extremal functions we have the next theorem which is proved in §4. When

n>2,p<qgand R > 1 hold, we do not know so far if CP%% and TP are achieved by any
extremals or not.

Theorem 2.9 Assume that 1 < p < q < 00, Tpg < 1/n and R > 1. Then we have the
followings.

1. ForR=1,CP%" and (_Jf;g;l are achieved in Wbl)’op(Bl)rad\{O} and VV(J%’(JP(R"\E)md\{O}
respectively.
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2. Forn=1, R=1, OP%! = CP%! 4nd cPht = Cfa’fjl are achieved in V[/O%bp((—l,l))rad\{O}
and Wbl)’op(R\[—l,l])md\{O} respectively.

3. ForR > 1, CQZ;R and 65;3;3 are not achieved in VVO%’OP(Bl)rad\{O} and VVO%’OP(R"\E)wd\{O}
respectively.

We also have the next which will be proved in §8.2 together with the assertion 4 of Theorem
2.4.

Proposition 2.4 Let 1 < p = q < o0 and 7,, < 1/n. If R > 1 is sufficiently large,

then CPPR C’gg;R, PP and Cf’;fi’;R are not achieved in VVO%’OP(Bl)\{O}, V[/O%bp(Bl)rad\{O},

Wkt R\ B\ {0} and Wi (R™\ By )\ {0} respectively.

3 Change of variables and the best constants

Here we see the relations among the best constants by the method of change of variables.

Definition 3.1 For 8> 0 and R > 1, we set the followings:

V(y) = ﬁ for y € R™\{0}.
2. Yy(y) =yl° 'y fory € R™.

~ 1
3. Yi(y) = Rexp (— m) % fory e R".

Remark 3.1 For 8 >0 and R > 1, we have the inverse maps as follows:
1 = x

1. Y “(2)=Y(z) = e for x € R"\{0}.

2. }/671(17) = }E/B(x) = |I|1/ﬁ71:17 fOT’ T € R'n,

r—1 1 X

3. Yy (I):Wm for x € Bp.

In the next we define various operators which are fundamental in the present paper.

Definition 3.2 Let >0 and R > 1. Let {2 be a domain of R" and u: {2 — R.

1 Tuly) = ul¥0) = (1) fory € VU (2\{0)).
2. Tyu(y) = u(Ys(y) = u(lyl”'y) for y € Yy 5(92).
3. For {2 C By,

TRu(y) = u(f’R(y)) = (Rexp (— |?1|) %) forye 17}{1((2).

We begin with studying the operator T. By a direct calculation we have
det(0;; + am;z;)1 <4 j<n = 1+ alz]* forz € R", a € R. (3.1)

Since the Jacobi determinant of the change of variables defined by = = Y(y) = y/|y|? is

~ 1 Yiys 1
et DY(y) =det (05\% =27 5)) e = " .

we have the next.
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Lemma 3.1 Assume that 1 <p<qg<oo,v#0 and R>1. Then we have the followings:
L ||U||L3(R") = ”TUHL‘Q(R") Joru e L%(R"),
||VUHL’1’+,Y(R") = ||V[TU]||L7;77(R") Joru e M/»yl,bp(Rn)-

2. ||u||Lg;R(Bl) = ||TU||L;R(RTL\§1) Joru € LZ;R(Bl)a

IVull iz s,y = V1Tl for u € Wy (B,).

”L’f(R"\B_l)

For the proof of this, it suffice to note that for x = # we have

7 ()

As a direct consequence of this we have the next proposition which proves the assertion 1 of
Theorem 2.2 and the assertion 1 of Theorem 2.7. Further we see that in the proofs of Theorems
2.1-2.4, it suffices to assume that v > 0, and it suffices to establish the proofs of Theorems
2.5-2.9 in a unit ball B; instead of a general domain.

2

= |y[*|V,(Tuy)|*,  foryeR\ {0}

Proposition 3.1 Assumethat1l <p < q<oo,vy#0and R > 1. Then we have the followings:

»,q:Y — QP95 —° pa;y _ QP95 —Y
1. SPOY = GPaiTY GG — GhaiT

p;R _ APGR ~pq;R _ APGR
2. C =C ’ Orad - Orad .

Proof: From Lemma 3.1 we see that

EPGY[y] = EPSY[Tu] for u € V[/Wl)’op(R")\{O}, (3.3)
FPafiy] = FP [ Tu]  for u € Wy¥(B,)\{0}, (3.4)
hence the assertions follow. (I

In the next we consider the operators T, TR. By A gn-1 We denote the Laplace-Beltrami
operator on a unit sphere S™ !, Then a gradient operator A on S™" ! is defined by

/ (—Agau)vdS = / Au-AvdS  for u,v € C*(S™71). (3.5)
Snfl Sn71
Here we note that
1 07 ,.,0u 1 o [Ou?2 1 9
A= rn=1lor [T 87“} + T2Asnflu’ Vul” = }37“} + T2|/1u| ’ (3.6)
where 9
(@) = lal, o) = V(@) (3.7)

The Jacobi determinant of the change of variables x = Yﬁ(y) = |y|ﬁ ~ly is given by

YiY;
ly[?

det DYy (y) = det (Jyl* (6, + (B -1 pg)) = Blul"C. (3.8)

Hence by calculations we have the next lemma.

Lemma 3.2 Assume that 1 < p < g < oo, v >0, R>1and 6 > 0. Then we have the
followings:

13



L ull g gy = | TBU‘”L%W(R") for uw e LI (R"),

1 0 2 B2 2\1/2 Lpion
IVuley, ey = g | (I Tl + zMALTsP) 7, ) forwe W),
1
2 Nullpa 5y = W”TﬁuHLZ:RI/L,(BJ forue Ly n(By),
1 o 2 32 1/2
1Vl oy = o | ([, Tod| + 2 A1Ted?) 7], dorwe W B,
1 1

As a consequence we have the next proposition which assures the assertion 4 of Theorem 2.2
and the assertion 4 of Theorem 2.7 as well.

Proposition 3.2 Assume that 1 < p < q < oco. Then we have the followings:

p(l—m, P, 5 . p(l—m,
1. (%) SP#Z»’Y < §PEY < (;:) "GP SPaT — (Z) S’gg” for 0 <y <A.

In particular, there is a constant S’p)q > 0 such that we have

SPAT = Spqu(l*%) for v > 0.

2. Oqu<Cqu<GOgg) craB cPER — oPGR g < R<R.
og

In particular, there is a constant C'pﬁq > 0 such that we have

cPel — qu for R > 1.

rad

Proof: Let us note that by Remark 3.1, u = T%v holds for v = Tu. Then it follows from the

assertion 1 of Lemma 3.2 with g = l that we have
v

Y P(1=7p) Py . Y\P Tpa .5 1
J GY[T_ 4] < EPOV[y] < (L PEGA[T. PR
(7) EPTIT,, u] < EPT 7] < (7) EPTITL, u]  for uwe W, 7 (R")\{0},

(A=7,)
Eravfu] = (1) " prad(ry, ) for u € WAL (R™),,\ {0}
Y
log R
From the assertion 2 with § = ﬁ, we have
log R
;R na;R log R ;R Lp

PO, o] < PP < (o =) FPORIT ] for w € WAE(B)\ {0},
FPofiu] = FPORIT, o] for u € WP (By) g\ {0}.
Thus the desired assertions follow. (I

Further from Proposition 3.2 we have the next one.

Proposition 3.3 Assumethat1l <p <q<oo,5>0and R > 1. Then we have the followings:

1. If SP47 =SP4 holds, then

SPaGY — Sﬁ;g;’y _ gpyq,yp(l—rp,q) for0<~<#7.

14



2. If OP4E = CPUE polds, then

CPaR _ Crz;g;R =0 for R> R.

pa

Lastly we have the next lemma, noting that the Jacobi determinant of the change of variables
z = Yp(y) = Rexp(=1/lyl)y/ly| is given by

det DYy (y) = det (|?R| exp (— ﬁ) (51';' + (ﬁ - 1) T/;%)) il (3.9)
= R" exp (— %) M%_H

Lemma 3.3 Assume that 1 <p < q<oo, R>1. Then we have the followings:

—IT q
HUHL;};R(BI) = HTRuHL(ll/p’(Bl/logR) Joru e Lp;R(Bl)v

o - 2 1 B 2\1/2 Lp
IV ullgmy = || (|5 Taul| + A1 Tpull?) | for u € Wi (By).

L? (B

1+1/p/V71/logR

Conbining this with the assertion 2 of Proposition 3.2 we have the next.

Proposition 3.4 For 1 <p < g < oo we have

.q;R a5 1/p’ )
CRgft = gratr = W for R> 1. (3.10)

Proof: It follows from Lemma 3.3 that we have
FPafly] = EPYY (Tpu] for u€ Wy (By)ma\ {0} (3.11)

Here we note that the operator TRu is an extension of Txu to the whole R" by setting TRu =
0 on R"\B,,j,,z- Then we immediately have Ccrat = Sf:;g;l/p

Proposition 3.2 we also have

. Form the assertion 2 of

Cpq = jnf CRE" = inf inf{ FP[u] | u € C2(B;\{0});a0\ {0}}

L S |

= jnf inf{ EPEY [ Thu] [ u € CF(B\{0])aa\ {0}}

— if{ BP0 [o] | 0 € C2F (R \{0})aa\ {0}} = SE™

rad

The assertion follows from this together with the assertions 1 and 2 of Proposition 3.2. (]

: pay  pGR pa; pa;:R
4 Relations among S./', C 0" , S and C

SPv‘ﬁ'Y

In this section we exactly determine the best constant S7%7, szg;R in the radial function

spaces, and we study when S7%7 and Cfgg;R should coincide with SP%7 and CP% % respectively.

15



4.1 Variational problems in radially symmetric spaces

In this subsection we determine the best constants SP%7 and Cfa’g;R for p < ¢ by solving
corresponding variational problems in radially symmetric spaces employing Talenti’s result in
an essential way. We begin with introducing variational problems and solutions.

Definition 4.1 Let1 <p < g < oo and a,b> 0.

1. Cpl,q((oaoo)) = {U € C((0,00)) ‘ /Ooo|u'(r)|pr1/TM_1dr < oo, u(r) =0 asr— oo}.

1/
(et ypr7aar)

oo 1/
(5 et/ tar)
1
a + blx|r")p/(a=p)

(In the subsequent ¢, is also regarded as a function of r = |z| on (0,00). )

2. JPUu] = Jor u € Gy ((0,00))\ {0}.

3. po(z) = po(l2]) = ( for z € R"\{0}.

The next lemma is essentially due to G. Talenti.

Lemma 4.1 Forl <p < g < oo, we have

TP[u] > JPpg]  for u € G, 4((0,00)\{0}. (4.1)
Noting that
[ee] tafl
/0 mdt:B(a,ﬁ—a) for 0 < a < f3, (4.2)

we have

o 1 1 1 1
| el = L (— ) , (4.3)
0

(al/p bl/pl)l/Tp"’ Y pr,q, Py

o 1 /Pt 1 1
/O |(PO/(T)|pT1/Tp,q_1d7’ = (p) B ( — 17 7 + 1) (44)

(at/P bl/pl)p/(%‘q) (qu,q)p DPTpq P Tpq

_ 1 (p)r—? 1 1
- (al/pbl/p,)p/(%’q) qP il P, ,q7 P'Thg '

Hence we have

p/ 1/P,*Tp,q 1 1 Tpa
Jp7q[S00] = ( )1/;0’ B > . (45)
q Tp-,q pr7q p Tp;q

First of all, for v > 0, we have the next proposition and then the assertion 1 of Theorem 2.4
follows. Moreover combining it with Proposition 3.2, the assertion 2 of Theorem 2.2 follows.

Proposition 4.1 Assume that 1 <p < g < oo and v > 0. Then we have the followings:

1. The infimum of SLEY in W, P (R™),0q\{0} is attained by uP*7 =T, .

2. In the assertion 1 of Proposoition 3.2,

_ T, 11— A _
Sp,q - (wnp’q (qu,q) p’quq[SDO])p - Sp,q'
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Proof: 1. It follows from Lemma 3.2 that we have for v € C°(R"™\{0})

rad»

”uHL%(Rﬂ):(qT 7)1/q” /ar,, ¥ H 1/<q >(Rn)7

”quLp SR’ T (qu,lﬂ)l/p Hv[Tl/(qu,ﬂ) ]||L1+1/<qr 2B

Then we have

EPGT[u] = (wypa (anq)l_Tp’q Jp7q[T1/(qT v)“])pr(l_Tp’q) for u € C°(R"\{0}).a\{0},
hence the assertion follows from Lemma 4.1.

2. This is clear from the previous result 1, (2.23) and the assertion 1 of Proposition 3.2. O

Let us proceed to the case v = 0. In this case we have the next proposition, from which
Theorem 2.6 and the assertions 1 and 3 of Theorem 2.9 follow. Moreover combining it with the
assertion 2 of Proposition 3.2, the assertion 2 of Theorem 2.7 follows.

Proposition 4.2 Assume that1l <p < q<oo,y7=0and R > 1. Then we have the followings:
1. If R =1, the infimum of C?%" in Wbl)’Op(Bl)md\{O} is attained by uPTt = T[T, ool

rad ATy q
2. In the assertion of Proposition 3.2, it holds that
A - (AT \' " Tpa P
Cpq = (wnm( pz: q) Jpﬂq[@O]) = Coyg
3. If R > 1, then the infimum of szg;R is not attained in M/ol.,bp(Bl)rad\{O}-
Proof: 1. From Lemmas 3.2 and 3.3, we have for u € C3°(B;\{0}),aq
P \l/4
lullgs o = I Tl ey = (qT—M) HTp//(qu,q)[ ulleg, (48)
_ a _ (9pq
IVullizioy = 19 Fr g, e = (222 19T, Tl ey (49)

and we have

. - q7-7 1=, ~ p 0o
Frotfu) = (wfps (S50 TP Ty, [ Taul]) - for w e O (BI\{0])0d\ (0.

Hence from Lemma 4.1 the desired assertion follows.
2. This is clear from the assertion 2 of Propositions 3.2 and Proposition 3.4.

3. Ifue VVO%’OP (B));aq\ {0} for R > 1 achieves the infimum of C»%"  then from the previous
result we have

; iR
F:DJL [] CrI;g _Op,q-

But we have FP4E[y] > FPaFR[y] > C,, for any 1 < R’ < R, and this is a contradiction. [

4.2 A generalized rearrangement of functions

We introduce a rearrangement of functions with respect to general weight functions instead of
Lebesugue measure to eatablish the validities of SP%7 = P47 and CP4H = ng;R under
additional conditions. First we begin with studying a theory of generalized rearrangement of
functions.
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Definition 4.2 1. For f € L}, (R") and f > 0 a.e. on R", let us set for a (Lebesgue)
measurable set A

py(A) z/Aduf :/Af(ac)dx. (4.10)

Then py is said to be the measure determined by f.

2. f is said to be admissible, if and only if f € L (R™) N C(R™\{0}),.q» f >0 onR™\{0}
and f is non-increasing with respect to r = |z|. For v : R" - R and u > 0 a.e. on
R", we set

wlil) = wtu =)= [ g jorezo (4.11)
Ryful(x) = sup{t > 0| pylu)(t) > pp(B)} forw € R} (412)

Then pglu] and R;[u] are said to be the distribution function of u and the rearrangement
Sfunction of u with respect to f respectively.

Direct from this definition we see the next proposition.

Proposition 4.3 Let 1 < p < oo and assume that f is admissible. Then, for u: R" — R and
u >0 a.e. on R", we have the followings:

1. pplul(t) = sy [ Ry[] (8) for t = 0.
2. ReluPl(z) = Ry[u](x)?  for x € R"\{0}.
3. If u is radially symmetric and nonincreasing with respect to r = |x|, then

Rylu](z) = u(z) for x € R™"\{0}.

Further we have

Proposition 4.4 Let 1 < p < oo and assume that f is admissible. Then, for u,v: R" - R
and u,v >0 a.e. on R", we have the followings:

1. /nu(:b)pf(x)d:v = Ran[u](x)pf(x)d:v.
2. /nu(;v)v(x)f(x)d:v < an[u](x)Rf[v](x)f(x)d:C
R

Proof: 1. Since u(z)? = / x{u>t}(:1c) tP~1dt for a.e. x € R™, we see that
0

/nu(x)pf(x)da: - p/n(/ooox{u>t}(x)tp_1dt>f(:z)da: (4.13)
- p/ooo(/{wt}f(x)da:) tPldt = p/ooouf[u](t) tP1at,

and in a similar way

n@wwwwmzdﬁm@wwwwt (4.14)
R 0

Then the assertion follows from the assertion 1 of Proposition 4.3.
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2. (a) First we show that
pr{u >t} n{v>s}) <p({Ry[u] >t} N{R;[v] > s}) fors,t>0. (4.15)

If e ({u > t}) < pp({v > s}), then we have {R;[u] >t} C {R;[v] > s}. So it follows from the
assertion 1 of Proposition 4.3 that we have

pr(u> 30 (0> 1) < Q> 11) = sy (R ] > 1) = i ({Ryfu] > 1} 0 {Rylo] > ).

If py({v > s}) < pp({u>t}), then we see {R;[v] > s} C {R;[u] >t}, hence in a similar way
the desired assertion holds.
(b) In a similar way we see that

/R u(z)o(z) f(x)de = /R { /O @) ( /O Xy @) @)l (010
B /OOO/OM(/{u>t}m{u>s}f(I>d$) dedt = Am/omﬂf({u > N iv > shdsdt

o0

[ Ry @) R lo)@) ) o = /0 OO/O 1y (R[] > £} 0 {Ry o] > s})dsdt. (4.17)

and

The assertion therefore follows from (a). O
Lastly we show the next. Here by H" ! we denote the (n — 1)—dimensional Hausdorff

measure.

Proposition 4.5 Let 1 < p < oo and assume that f is admissible. Then for u € C°(R") we
have the followings:

1. / dH™ 1 g/ dH™ T
{R[|ul] =t} {lul=t}

p# T u(x pil T
2 [ VIR S gmrde < [ Vo) 5o

For the proof we prepare two lemmas below.

Lemma 4.2 (The coarea formula) Let1 < p < oo. For u € C}(R"™) and g € L*(R") N L°(R™),
it holds that

Pg(x)dr = h u(x) [P tg(x "(x)ds .
Jvura@az= [ [ vu@pg@an @ (4.13)

Remark 4.1 We note that the boundedness of g is not essential, in fact by a usual approrima-
tion argument we see that the formula remains valid if the left-hand side is finite. This is also
valid under the assumption that w is Lipschitz continuous and Vu is integrable. For the proof
of this formula, see [Ma; Theorem in §1.2.4] for example.

In this formula, assuming that for an admissible f, g = f, u € C§°(R™) is nonnegative and

oo ] SREDI@, Ve,
0 if Vu =0,

we have

prlul(t) = pr({u >t} N{Vu =0}) + /tOO ds/{ L % dH™ L. (4.19)
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By Sard’s lemma the set of critical values of u € C§°(R"™) has a vanishing measure, hence we
have
/ _ f(.I) n—1
—prlu]’(t) = ——=dH"", for almost all ¢ € (0, 00). (4.20)
(u=t}y |Vl
Now we replace u by its rearrangement R, [u] in (4.19). We recall that both u and R [u] share
the same distribution function, and R;[u] is at least Lipschitz continuous as a rearrangement
of a smooth w. If we admit the property (4.21);

%,uf({Rf[u] >t} N {VRs[u] =0}) =0, for almost all ¢ € (0,00), (4.21)

then we see that

Jer =y fAH
"t) = — S fi 1 tallt e (0 . 4.22
,Uf[u] ( ) |VRf [u]||{Rf[u]:t} B or almost a. ( 700) ( )

When f = 1, the proof of (4.21) is seen in [CF;Lemma 2.4, Lemma 2.6]. By the same argument
it is easy to see the validity of the property (4.21) for a general f. Here we shall give a
brief explanation of (4.21) for the reader’s convenience. Since R;[u] and f are radial, we may
assume that n = 1 without loss of the generality. Then the property (4.21) follows from the
next elementaly lemma due to [CF; p.12, lemma 2.4].

Lemma 4.3 Let f be an admissible weight function on R. Let I = (a,b) be a bounded open
interval of R and let v be a cmpactly supported and Lipschitz continuous function in I. Then
we have

1. There is a Borel set N in I with |[N| =0 such that v(s) is differentiable for all s € I\ N.
Moreover we have
[v({s €I\ N :v'(s) =0})| =0.

Here by v(A) with A C I we denote the set defined by v(A) = {t € R : t = v(s), for some s €
A}

2. The function h : R — [0,00), defined as
h(t)=pr({s€ I\N:vV'(s)=0}N{sel:v(s)>t}) (4.23)
is non-increasing, right-continuous and h'(t) =0 for a.e. t € R.
A sketch of the proof: Let us set

M—-1

[v/|((a,b)) =sup{ > [v(sjq1) —v(s;)|: M >2,a < sy < sy <spy <b
j=1

This is called the total variation of v in I = (a, b). Since v is compactly supported and Lipschitz
continuous, this quantity is finite. Then we see that |[v(I)| < |v'|((a,b)) = f: [v'(s)|ds. By a
similar argument we have

[o({s € T\ N :/(s) = 0})] < [v'|(4)

for any Borel set A containing {s € I\ N : v/(s) = 0}. By taking a infimum with respect to A,
we have

o({s € T\ N : v/(s) = 0})| g/ 1W/(s)|ds = 0

{s€I\N:v'(s)=0}
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This proves the assertion 1.

From the definition of h(t) we easily see that h is non-increasing and right-continuous. Hence

we have h(ta) — h(t1) = h'((t1,t2]) for any t1,¢1 € R with ¢; < t5. Then for any FF C R

i) = [ f(s)ds.
{s€I\N:v'(s)=0}Nv—1(F)

It follows from the assertion 1 that there is a Borel set Fyy such that
v({s€I\N:v'(s)=0}) C Fy, and [|Fy|=0.

Then we see that

mevm=/ F(s)ds =0,

{s€I\N:v'(s)=0}nv—1(R\Fp)

This means |h/| is concentrated in Fy, and hence h'(t) = 0 for a.e. t € R.

Now we give a proof to Proposition 4.5.

Proof of Proposition 4.5 :

1. Let A be any Borel set such as 0 < [A] < co. By R;[A] we denote the rearrangement of A
with respect to an admissible weight f, namely, Ry [A] ia a ball centered at the origin satisfying

pp(A) = py(Re[A]).

Let r be a positive number such that

|Br(0)| = |A].
Since
/T(O)f(x) dx > /Af(ac) dx,
we see that
R[A] C B.(0).

Therefore we conclude that

/ dH" 1 > / dH" 1 > / dH™ 1.
oA 9B,.(0) OR;[A]

Since A is an arbitrary Borel set, the assertion follows immediately.
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2. Since Ry [u] is Lipschitz continuous, we can employ the coarea formula. Then we have

/ VR [ull? f(x)'~ de—/ dt/ |v7g [w][P~ f ()P dE

p—1

/ f{n )=t} dHn*l)
0

f{R oy R dH” *1)

(the property (4.22))

[ ol )
0 U] (t)"

o (f{u:t} dH"‘l)p .
S/o dt (—uﬂu]’(t))pil (Assertion 1)

o (fyuy dr
= / dt ( fu=t) - ) — ( the property (4.20))
0 n—
(f{u t} \Vu\ dH 1)

< / dt/ |VulP~t f(z) P dH™ ! ( Holder inequality )
0 {u=t}

— [ Ivuls) .
Rn

Clearly this proves the assertion. This proves the assertion. (I

4.3 Application of the theory on rearrangement of functions

In this subsection we establish SP47 = SP%7 and CP7F = P ¢ # under certain assumption
using the theory of the generalized rearrangement of functions which was developed in the
previous subsection.

First let us consider the case that v > 0. Then we have the next proposition which proves
the assertion 3 of Theorem 2.2. Further, making use of the assertion 4 of Theorem 2.2 at the
same time, we see that the assertion 1 of Theorem 2.1 follows as well. Here we note that I, is

admissible if 0 < o < n.

Proposition 4.6 For 1 <p < ¢ < o0, 7,, < 1/n and 0 < v < Vpg- it holds that SPTY =

p,q;Y
Srad

Proof: By virtue of the assertion 1 of Proposition 3.3, it suffices to consider the case that
Y= = (n=1)/(1 +q/p). Since 0 < ¢7,, < n, by using the assertions 2 of Proposition
4.3, 1 of Proposition 4.4 and 2 of Proposition 4.5, we have for v € C°(R™\{0})

Hunfgp,q(mf /R Sy, @do = [ Ry [Jul@) T, (0)ds
Ry, [ull@) Ty, @z = IRy, [ulll s
’ ».q y2re]

RrR®

p — p — p
IV, ey = VTl ey = [ 9P gy

> [ VIR, )l

d - R pp ny .
q,yp,q( ) X Hv[ qup,q[lu”]HLpr,q(R)

Therefore
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IVallzy, @\” _ (IVIR,, Dellllzy, e\

BP9 (1) = > Bt > SPghe (4.29)
Ml e R Tllr e .
g P,q
for u € CZ(R™\{0})\{0}.
This proves the assertion. ([

Now we consider the case v = 0. Noting that the above argument works only when p > n,
we have the following which assures the assertion 3 of Theorem 2.7.

Proposition 4.7 Letn > 2. Assume that n <p<qg< o and R > R then it holds that

CoP% ;R CP;IL

p,q’

Proof: When R > R, , = exp((1+¢/p’)/((n —1)p)) holds, |x|_("_1)p//A1}q/pl : B\{0} - R
is positive and decreasing with respect to 7 = |z|. Then, noting that 0 < (n —1)p’ < n and

Iy = I(n_l)p/|:c|*("’1)p,, it follows from the assertion 2 of Proposition 4.4, the assertions 2 and
3 of Proposition 4.3 that we have for u € C°(B;\{0})

lollfy 5, = / u(
/R(n Dy’ |u| ( )Rl(nfl)p’

= [ R e

Since (n — (n — 1)p’)(p — 1) = p — n, we have, using the assertion 2 of Proposition 4.5,

|I| (n=1)p’

1+q/p ] (I)I(n—l)p' (.I)dll?

|I|,(n,1)pz

W‘| (.I)I(n_l)p/ (I) dCC
LR

||~ (=12’

@) Ty @i = 1Ry [l sy

1+q/p’
Al,R

1
190l 2oy = Il oy = / |vnu|]<w>|z—(x),ﬂdw
(n—1)p’
/ VIR, @) (x)p dr = |VIRy [l s
Therefore we see that
» p

Fp’q;R(u): ||VUHL117(BI) S ”v[Rf(n,l)p/HUH]HL’f(Bﬁ Cp’g’
HUHLS;R(BI) h HRI(nfl)p/[|U|]||LZ;R(BI) o

for w € CF(B,\{0})\{0},

and this proves the assertion.
O

We remark that I (n-1)p = 1, is not admissible if n = 1. Hence we can not apply the same

method direct, but the assertion 2 of Theorem 2.9 follows from the next proposition.
Proposition 4.8 Letn=1. If 1 < p < q < 0o and R > 1, then it holds that CP%E = Cfa’g;R

Proof:  (a) Admitting that (14 ¢P)'/? > (14+t%)/7 for t > 0, it holds that for any u €

CE(=1L1\{0})

1
(HUHI%)Z;R((*LO)) + ||U||5Z:R((011))) /» > (|

1/q _
|u||LqZ:R((71,O)) + HUHI?Z;R((OJ))) /1 = ||u||Lg;R((—1,1))'
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Then we also have

1l g —aay o Il pn0y 1% 1lzp oy
T Vep 1) 5 iy § b0 T g for u € C2*((—1,1)\ {0})\ {0},
HUHLg:R((—l,l)) ||u||LZ;R((_1)0)) ||u||LZ;R((071))

In fact, if ”u/”L’f((—l,O))/HUHL,‘LR((—LO)) > Hu/”Lff((o,l))/HUHL;R((OJ)) holds, then we have

o'l ay Ul oy 10 o)™
HUHLZ;R((—M)) B HUHLZ;R((—Ll))
1 <|U/||Lp?;((o71)) Il 7 N ||u/|| ) >1/P
N HUHL,‘;R((—Ll)) HUH[%:R((O,I)) Lyn(=1.0) Lo
B H“I”L{'((o,n) (”u”g)zﬁ((flyo))*_ ”u”Lp]‘;;R((O-,l)))l/p H“IHL{((O,1))
B HuHLZ;R((O,l)) HUHLZ.TR((le)) - ”u”Lz;R((O,l)).

If ||u/HL?((O,I))/HUHLZ;R((O’l)) > Hu/HLf((_l,O))/H“HL,‘LR((—LO))’ then in a similar way we see

1y 11y o Il ee-10)

HUHLZ;R((—LU) - HUJHLg:R((—LO)) '
(b) Since we have

Cng = inf {(M) |ue 03°<<—1,1>\{0}>wd\{0}}

el -1.0y

- nf{<w> ue c:°<<—171>\{0}>\{0}}
)

”u”L;;R((fLo)
A 01y Y o
= inf | ) e (- L)\OPN{0) ¢,
Ulize (o1
it follows fromt (a) that we have
! p / p / p
FRaiR(y) = <|” |Lf<<—1,1>>> S mm{<”u |Lf<<—1,o>>> (”“ ||u;<<o,1>)> } > oPaR
= = ) = “rad
HUHLZ;R((—M)) HUHLZ;R((—LO)) HUHL;R((O,l))
for uw € € ((—1,1)\{0})\ {0}

Thus the assertion follows. O

5 Application of Nonlinear potential theory

It follow from Proposition 4.7 and Proposition 4.8 that we have the assertion 3 of Theorem 2.7.
Then, combining it with the assertion 4 of Theorem 2.7, Theorem 2.5 clearly follows provided
that p > n. Therefore, it suffices to assume that 1 < p < n in the rest of the proof of Theorem
2.5. We finish this aim by employing the so-called nonlinear potential theory.

Definition 5.1 (Muckenhoupt A, class) Let 1 <p < co. w € C(R"\{0}) is said to belong to
A, class, if and only if w >0 on R"\{0} and

su

p—1
n n 1
p / w(y)dy / —dy < o0 (5.1)
wERr>0 WnT"JB, (x) W™, () w(y) /P
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is satisfied.

When w belongs to A, class, simply we describe w € A, (R ™). Let us define

*f( n 1 1
J = d dt R" 0. 5.2
P[w](xvr) ‘/T <wntn/Bt(m)w(y)l/(p_l) y) 1y, Jor z € , 7> (5.2)

Here, v, = (n—p)/(p—1).

Under these notations we have the next lemma which is due to R. Adams [Ad].

Lemma 5.1 Let 1 <p < q < oo. Assume that w € A (R"), g € L},.(R") and g >0 a.c. on
R"™. Then, the following two assertions are equivalent to each other.

(a) sup 1, (B, (x)), [w] (@, 1) """ < oc.
zeR"\r>0

(b) There is a positive number C > 0 such that we have
”Il*fHLq(R";g) < C”f”LP(R",w) fOT any f € Lp(Rn7w)

Using this we establish the next Proposition. Then, combining it with the assertion 4 of
Theorem 2.7, we see that Theorem 2.5 is valid even when 1 < p < n holds.

Proposition 5.1 Assume that 1 <p <gq <oo,p<mn, 7,, < 1/n and R > 3, then we have
cref g,

Introducing more notations, we verify this using Lemma 5.1.

Definition 5.2 For 1 <p<gqg<oo,p<n,7,,<1/nand R> 1, we set

wy(w) = wy(|w]) = max{1,(x), 1} for z € R"\ {0}, (5.3)
& or x € B,

gp’q?R(I) - gp,q;R(|x|) = Al,R(x)lJ“I/P’ f € B, \{0}, 5.
0 for x € R™\ By.

In order to apply Lemma 5.1 to these weight functions, let us prepare more lemmas.
Lemma 5.2 For 1 <p <mn, it holds that w, € A,(R").

Proof: Let us set

p—1
n n 1
7)) = d d forz e R, r>0 (5.5
oplw,](z,7) wnTn/BT(m)wp(y) Y <Wn7"”/BT(m) o (D y) or z r (5.5)

and show it to be bounded.

(i) First we asssume that 0 < |z| < 1.

(a) If 0 <7 <min{|z|/2,1— |z|}, then we see B.(z) C B \B , C By, hence

|+

IN

p—1
n n 1
—md d
% lepl () wnr"/BAz)wp('x' i (“’nr"/BT(x) wp(|2] + 7)1/ =D y)
n—p n—p
_ (|:C|+T> < (|x|+|$|/2> —gn—>p
|| —r |z — |z|/2
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(b) If1—|z| <r <|z|/2, we see |z| > 2/3, hence

p—1
n n 1
l1pl(@7) < wnf“"/BT(z)prx' r)dy (wnT"/BT(z) y) (Jo| —r)n—p

1 2\" P
<— (= <3np,
(lz] = [=[/2)"—P (IafI)

(c) If [z|/2<r <1-|af , then we see B,(x) C By, C By, and hence

p—1
n n 1
o, [wy](@,r) < wnT”/B ) wy(y)dy <wnrn/3 wp(y)l/(p1>dy>

fol +7
_n <z’>p‘1 <|x| +> <™ <£’)p‘1 <2r+r)"p _n (z) T
p\p r “p \» r p \p '

(d) Ifr = max{[x[/2,1— ||}, then r > 1/3 and B,(z) C B, . Hence

Up[wp](x,r) nr/ wp(y)dy< ”T/ Wdy)

2] +r || +

Z<x+> 2 ;1) (e () Tin)pl
<<2T+T) (—_1) )(27"—1-7’)”(10 1)_23%'

(ii) Secondly we assume that |z| > 1.

IN

(a) f0<r<|z|/2, thenB,(x) C B\z\+r\B|x| ,.» hence
p—1 1
n n
< —r)d d =
ey R L (w L. y> (e
S ;_ = (i)n—p S Qn=p.
(el =172~ \ll

(b) Ifr > |2|/2, then r > 1/2 and B,(z) C By, ., hence

p—1
n n 1
< - -
a,[w,|(z,r) < wnTn/B w, (y)dy < nTn/B wp(y)l/(p—l)dy>

_ <<|x|:) N (g 1; %) <<|x|r+> ) (1_ %> ,%)pl
o @ o o)

Lemma 5.3 For 1 <p <n and R > 3, there exist positive numbers c, and c,.p > 0 such that
we have the followings:

O

1. Jw)(x,r) < —— forz e R", r>0

26



1 T\% )
2. Jlw,l(z,r) <¢, <1+1og;+ (%) p) if o]+ < 1.

8. L[w)(e.r) < cpon (A17R(min{1,|:c|}) + (M)) if0<r< %

Proof: Let us note that

n

1
wntn/Bt (z) Wp (y)l/(p—l)

dy <min{l,(t + |z[)’»} <1 forxz € R", ¢t > 0. (5.6)

Then

<( n 1 1 °
8 J”[wp](x’T):/r (wnt"/Btu)wp(y)l/(Pl)dy) t”“pdtS/T i &

11
= —— fOI'.IERn,T>O.
l/p'f'T’

2. If |x| + 7 < 1, then we see < 1, and hence

o0 1 > 1 ! 1
Jp[wp](z,7r) < / min{1, (¢ + ISCI)”P}tHV dt < / o dt +/ (t + |z[)? ey dt
r P 1 P r P

1 ! "1 1 ! "\ 1
:—+/ (1+M> —dt§—+2<”f1>+/ <1+(@) )—dt
v, Jr t t Yy r t t
1 1 %1 1 11 "
= — 420Dy (log =+ Jaf (7 — 1)) < — 420D (10g ~+— (@) ) :
I/p T Vp TP Vp T Vp T

3. (a) Iflz|+r<land0<r< I;—I, then |z| <1 and |z|/r > 2. From the argument of 2
and

L+logt < ¢,t% fort>1 (5.7)
it holds that

1 (lzl\? |z R (l=z[\?
< — <
Jolwy](z,r) <c, (l—l—logr—i- <r> ) <c, <1+log . + log 2] + .
<c (A () +(1+¢,) (—|x|>up>
= "p LR P r :

(b) If |x| + 7 > 1, then from 1 we see that

% (Vp_l) Y
() == 0+ (5))
T Vp T

Jlwy)(wr) < :
W
(y,—-1) A Yp
< 2 + < 1,R($)+ (M) ) if 2] < 1,

pL—p

Y log R r
11 1 1 .
Jp[w,|(@,7) < ;pﬁ < ;p (Al,R(l) + (;) ) if |z > 1.

O

Lemma 5.4 For l<p<g<oo,p<n
Cpq:R > 0 such that we have

s Tpg S 1/n and R > 3, there exists a positive number

27



. 0o 1.
Cp,q;Rgp,q;R(mln{L |I|})T Zf 0<r < 5 Hlln{l, |{E|},
B <<c 1 if m <r< E 5.8
,ugp,q;R( (7)) < S Cpagir Al,R(T)q/pl 9 = 9’ (5.8)
, 1
Cp.aiR if r> 3
Proof: First we note that for 1 < R < R
R _logR R
=> — log — f <1 . .
Ogr_logR og or 0<r<1(<R) (5.9)
By the definition we have
Mgp,qR /B Ip,a;R( (5.10)
/ L ——dy forzeR", r
B, (x)n B, log(R/Jy ) Ta/7" |y |"

(a) O <r<|x|/2 <1/2,then |z]/2 < |z|—r < |y| < |z|+7r < 3|z|/2 for y € B,.(z),
hence we have, using (5.9) with R = 2R/3,

1 2\"
B0 < [ TR () @

w,r 1 2\" w logR \'"T7P
e (2 gt (L08R VT
n  (log(2R/(3|z]))+a/r" \|z| n \log(2R/3) P:a;

(b) f0<r <1/2<|z|/2, then 1/2 <|z|/2 < |z| —r < |y| for y € B,(z), hence we have

1 w
B < I —— L TI—R es.2 (1) r™.
'ugp’q;R( H() < /BT(z)(logR)Hq/p/ 4 n gp’q’R( )

(c) If1/2 > r > |z|/2, then B,(z) C By, C By, and hence we have, using (5.9) with R = R/3,

1 1 _ p';
o) < |, oI ™~ gt

- pl 10g R a/v’ 1
W, — .
— "q \log(R/3) A, plr)av

(d) If r > 1/2, then we have

g

“pa;R

1 1 p’ 1
B < —dy = -
Hoy g (Br (@) / (og(R/[yN) o7 Ty» ™ =~ “"q (log R)a/”

After all we have the following.
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Lemma 5.5 For 1 <p<gq<oo,p<n,7,,<1/nand R> 3, it holds that
sup  p, 4R(Br(x))Jp[wp](x,r)q/p < 0. (5.11)
zeR"r>0 P9

Proof: (a) If r > 1/2, it follows from the assertion 1 of Lemma 5.3 and Lemma 5.4 that we

have
11 2%

<c N
v, = "pq;R :
P
v, T Y,

ty o (Br(@) T, [w,) (@, r)"? < ¢

Ip,a;iR ,q;R

(b) For 0 < r < min{1,|z|}/2, it follows from the assertion 3 of Lemma 5.3 and Lemma 5.4
that we have

Hg (BT(I))JP [wp] (z, T)q/p'

PR

. " . min{l,|z| (% afv’
§cpﬁq;Rgpyq;R(mln{l,|:v|})r (cp;R(ALR(mln{l,|x|})+ (ﬂ) ))

r

“pa;R Cpqg/ ( r )nq(l/nTp'q) ( r )Vp 1 wr
= T ; - + ;
ALR(mln{l,|x|}) min{1,|z|} min{1,|z|} AlyR(mln{1,|x|})

< Cpq;R C;Dq;g) 1 L + 71 "
= A R(1) ore/nmmg) (2% A 5(1) .

(c) Assume that |z|/2 < r < 1/2. First we deal with the case |z|+r < 1. Then, from the
assertion 2 of Lemma 5.3 and Lemma 5.4 we have

4

, 1 1 v\ 4/P
R e A ST ( (1 tloss (‘) >>

(14 2% + log(1/r)\""* : 1+ 24\
< o ealp < ealp 1.2~ .
= “paiRCp ( log R + log(1/7) = CpaiR P log R

If |z]4+r > 1, then we have r > 1/3. Hence, from the assertion 1 of Lemma 5.3 and Lemma
5.4 we have

I 1 11 a/v’
a/p -
e T T <)
1 3Vp ‘Z/p/
S C R A 71 Ja~a T — .
g ()
O
In addition we use the next.
Lemma 5.6 Foru € C°(R"™), it holds that
1 Az —
u(z) = — Mdy for z € R™. (5.12)
WnJR™ |$ - y|n
In particular
1
|u(z)| < w—Il*[|Vu|](x) forz € R™. (5.13)

n
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Proof: Noting that
u(r) = —/ Vu(z + tw)-wdt for w € sn-t (5.14)
0

we immediately have
(xr — . o0 tw)-t
/ Vau(y)-(z y)dy: _/ Vu(z +y) Yy - _/ / Vu(z + tw) © =1t dS(w)
no =yt syt s71Jo t
= —/ / Vu(z + tw)-wdtdS(w) = / u(z)dS(w) = wyu(x).
Snfl 0 Snfl
O
Now we are in a position to establish Proposition 5.1.

Proof of Proposition 5.1: It follows from Lemma 5.2, Lemma 5.5 and Lemma 5.1 that there
exists a positive number C, /. > 0 such that we have

||Il*fHLq(R";gp’q;R) < Cp,q;R||f||Lp(Rn;wp) for f € Lp(Rn7wp)

Then, from Lemma 5.6 we have

Opyq;R

1
gy = Wl o < A0 g, ) € 2 IV

Opyq;R oo
= LRVl ) for u € C(By\{0)).

n

6 Continuity of the best constants on parameters

In this section we prove that the best constants P97 and CP%¥ are continuous on parameters
with p being arbitrarily fixed and we also establish some relating estimates. It is clear from the
assertion 2 of Theorem 2.2 and the assertion 2 of Theorem 2.7 that the best constants in radial
spaces SZ4" and Cfgg;R are continuous functions of ¢, v, R as well.

6.1 The noncritical case (y # 0)

First in the case v > 0, we study the continuity of S”%'7 on ¢,v. Let us introduce the next
transformation.

Definition 6.1 Let 1 <p < oo and~y > 0. For u:R" — R, we set

. 1
T v(z) = WU

B[] = / )

Then, it follows from diect calculations and triangle inequalities that we have the next.

(x) for x € R*"\{0}

and set
x |P
Vou(z) — Wv(x)W I,(z)dx.

Lemma 6.1 Forl<p<g< <1/n, v,7 >0, we have the followings:

» Tpq

. X : . -1 n
1Tl gy = 0l gy (91T 0l ey = B771e] forv e T, (WRE(R).
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Py
span =i { 27701

ve T (WF®R)\{0}}

”UHLpg(Rn)

it {2 e e oy (03 ),

”vHLg(R")

. A_l n
P o] fy ey < PPN0] for v € T (W (R).
In particular

. A —1 n
Vol o ey < D7) forv € T, (W (R)).

) = _ A1 " A1 7 n
4 BT — ST < oy = Aol ey orv e TS (W R N T (IEERY).

Now let us state a crucial lemma.

Lemma 6.2 Let 1 <p<g<oo,7,, <1/nan~y>0. Assume that {q;},2, C (p,p*) satisfies

g; —q asj— 0.

If {v;}, 2 C CX(R"N\{0}) and {@P7[v;]},Z; is bounded, then it holds that

q
s gy~ 15 ) < 0
Proof: Forp < g <g<q<p",let us note that
1 1 _ 1 _
0<tllog- < tP for0<t<1, 0<t%ogt < ———t9 fort > 1. (6.1)
t~elg—p) e(g—1q)

(a) When p < ¢ < p" holds, we choose ¢, 7 and ¢ such as p < ¢ <g < qg<q<p" for
j > 1. Then it follows from Lemma 6.1 that we have

1o 2y ey = 5 ey = [ (3@ = (@) o)

- /R"((qj - q)/1|“j($)|0qj+(l_0)q10g |vj(x)|d9)fo($)dx

<lg;—dl( /{ W} i (1os ) ole)da + /{ oy P08 2D o))

p _ v ()91, (z)dx
<oy~ ol (= /{U<1}| o @)y (e)de + (q_q)/{vj>1}| @)/, () )

<o, - q|(e Sl e + 7= )H ol )
. 1 1 . a/p )
<lg—dl—F7—= o( W[UJ]"_m(anW@pﬁ[”j]) ) —0 asj— oo.
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(b) When ¢ = p holds, we choose g and ¢ such as p < ¢; <g < ¢ <p* for j > 1. Then in
a similar way as the argument in (a), we have

Il ey~ Iy < [ (@15 = 5@ Iy(o)da
(o] 1}

1
— [ (@[ @ og ]y @] do) 1y () do
(Il 21} 0

1 1 a/p
) D3V [y :
= p)e(d - q) (SMW@ [”J]) 0 asj—o0

(c) When g = p* < oo holds, we choose ¢ such as p < g <¢; <p* for j > 1. Then in a
similar way as the argument in (a) we have

e — (@))% — | (@) |P") Iy () d
O A F = /{W}('”ﬂ(m)“ oy @) (@) da
1 Ba+(1—-0)p" 1
_ p*—Q‘/ v, ()L tA=0)p log do ) 1,(z)dx
~/<{|1;J|21}(( ]) 0 | _]( )l |’UJ($)| ) O( )
< (p* ) ! ! PP y;] =0 asy
<P -94) 7= ] — — 0.
Te(g—p) P !

O
Then we have the following that assures Theorem 2.3.

Proposition 6.1 Let 1 < p < ¢ < 00, 7,, < 1/n and v > 0. Assume that {(¢;;7;)},2; C
(p,p*)x(0,00) satisfies

g4 —q v —7 asj — 0.
Then, it holds that

SP4i% — SPEY gs j — o0,

Proof: (a) We begin with showing

lim sup SP%% <SP,

j— 00
For € > 0, it follows from the assertion 2 of Lemma 6.1 that there exists v, € C>°(R™\{0})\ {0}
such that

PPy [ ]

I

< Sp.aiy +
a”Lq (R™)

By the Lebesgue convergence theorem we have

ol gy = 0l s @75 0] = 277(0u] a5 5 = 0.

Rn )

Hence for some j, € N, we have

oP; oPiY
v, p[vg] <§ for j > ..
HUEH (Rn) H’UEHLg(Rn)
We therefore have
P ;Y
spa < LMl o PN L E o gnan o por >
||U || qj(Rn) HUE”Lg(R”) 2
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(b) Secondly we show that
SPEY < liminf SP%% .

J — 00

By the assertion 2 of Lemma 6.1 there exists {v;},2°, C C°(R"\{0})\{0} such that we have

i)

e T

1
) <5Pqﬂ]+— for j > 1.
j

Then from the assertions 3 and 4 of Lemma 6.1 we have

Q)p;%[ ]1/p>¢p’y[ ]l/p | 7|”U ”LT’ R”)>¢p 'Y[ ]1/10 | . |qv)p 'Y[ ]1/20

:1_M forjz]“
Y

Combining with (a), there exist j; € N and ¢ > 0 such that we have,
D [v)]
> > >

HU || qJ(Rn = Spq] ’YJ+1/j ¢ fOI'_] .71

Letting € satisfy 0 < € < ¢, it follows from Lemma 6.2 that there exists j, > j; such that

loil fos gy < 105 Eygmeny + € For 2 G

Then from the assertions 3 and 4 of Lemma 6.1 we have

gy < 2700 L @)t by — oyl )
- L2(R™
||v HLq (R™) HU H % ) —c j JILG(R™)
v ol peme )
1 dP [y Vil 7o imn
=TTy Tl . UL v w—
Ly (R") Ly (R") Iy (R
1 N2y -\
< P 1 J P> g
_1_€/C<(S ”+j) + pEyoe for j > j.,
and this proves the assertion. (Il

6.2 The critical case (y =0)

In this subsection we study the continuity of C?% on the parameters ¢, R. Let us introduce
the next transformation.

Definition 6.2 Let 1 <p < oo, R>0. For u: B, — R, we set

T)rv(z) = Al,R(x)l/p/U(UC) for x € B;\{0}

wPifify) = /B

It follows from direct calculations together with triangle inequalities that we have

and set
1 z [P L(x)

Aup(n)Vele) = e@ps| 37y

1

Lemma 6.3 For1 <p<g< <1/n and R > 1 it holds that

’Pq
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1 ”Tp;RU”[?Z;R(Bl) = HU||I?f;R(Bl)’ ”v[Tp,RU]”[Z’(Bl) = WP;R[’U] fO’f’ (S T R(VVO (Bl))

wPiR[y)

CPaif — inf { —
Iollzs s,

| v e T, m (W (B0} }

—int {2 | e o\ (003 ).

||UHL;1;R(31)
3.
CPURul fy o STPRL] for v € Ty p(Woid (By).
In particular
@Hvﬂffﬁ(m <wPR] for v e Ty p(Wod (By)).
4.

/B (Vo) P Ay g(2)P 'L (x)dz < 2°WPE[u] for v e T;;(%l)bp(Bl)).

Further we show

Lemma 6.4 For 1 < p < q < oo, 7, 1/n and R > 1, there exists positive numbers

_ <
q - —
Cp.r+Cpg.r > 0 such that for p < ¢ < g, R < R < R we have the followings:

‘ log R\1/» B
piR1, 11/ < p;R1,11/p 00
LR < (14 (log R) )urE) Jorv e C=(B,\{0)).
2. |WPR)YP —gPREUP| < ¢ (R — R)WPE ] Jor v e C=(B,\{0}).
3 Moll gy sy = 10l 2e ) < Cpgn(R = R)WPEYP for v e CX(By\{0}).

Proof: First we have

log R
Ay pz) < A p(2) < @fh r(T),
1 _ —
Af@W>A<WW=/i—R - — s
0 PPOR+(1—0)R A gri_gr(®)"/?
R—R 1
PR Al,}j( )1/;)
In a similar way,
1 1 - R-R 1
Al,R(x)l/p Alﬁ(x)l/p - PR Al,}j(x)l—’_l/p,
1 1 R-R 1

A, g(z) - A, g(x) = R A g2 for z € B;\{0}.

1. From the assertion 3 of Lemma 6.3 we have

ppiR 1/1) / ‘A RE; ﬁ(ﬂﬁ)vv(ﬂc) i v(z )|§|2)

o
1 ALR({E) X (:E) /p
- 270( )(1 B Alﬁ(x)) || AI,R(x) dil?}
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<(/B ‘Alﬁ(a:)Vv(:c)—%v(x)%pAIf:z) ey /| l)da:)l/p

_ 1 /log R\!/P log R\UPY .1
PR /e 4 2 (208 8 ) ) P[]t P
< wPF)P 4 ,(log 7)) Wl < (14 (logR vl

2. From the assertions 3 and 4 of Lemma 6.3 we have

|!pp; U]l/p _ ![/p;R[U]l/p|

IN
— =
S

(A, 7 (@) = Ay (@) Vo(a)

1

| —

~

(ALRE‘T)UP - Al,sz)l/p) |$|2‘ 22 }1/p

IN
—~ 3

1

Ty
1 ELY

R—-R 1/p (x) 1/p
< p—1 p
< RluE /|w )P Ay g (@)~ T (2) ) /| I)d:c) )

R-R

94 £\ ygp; 1/p

< TR\ +p) 2

3. Using that ¢t' < max{1,# } for 0 <t <tand w,/(7/q) <w,/(p/q), we have

w, 1/(q/q)’ w,, 1/(p/q)
(W) Smax{lv(m) b

Then by the Holder inequality and the assertion 3 of Lemma 6.3, it holds that

1 1
q _ q — q _ I d
01 iy = 100 s, /B 1o@) e ALR@) o(@)da

< %/B '”(””)'qu,; @ AI;?Q e

SR YACCIRE A?R% ([ () o Aﬁg}ﬂ) az) "
R—R [ w, \V/@'

" RlogR ((‘?/Q)) o H

e T (- R }( 7))

In a quite similar way as the argument in Lemma 6.2 we can show the next.

IN

q/p

O

Lemma 6.5 Let 1 < p < q < 00, 7,, < 1/n and R > 1. Assume that {q;} =, C (p,p")

‘ P,q
satisfies

g; —q asj— .

If {v;}, 2, € CZ(B\{0}) and {!I/p;R[vj]}jO:Ol is bounded, then it holds that

lim sup({|v; || <0.

j— o0

R(Bl) - Hv_] ||I(/1(1)R(Bl))
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By using these we have the following proposition that assures Theorem 2.8.

Proposition 6.2 Let 1 <p < g < o0, 7,, < 1/n and R > 1. Assume that {(g;; R))},2, C
(p,p*)x(1,00) satisfies
4 —q¢ R — R asj— .

Then it holds that
cPuily o oPER g5 0.

Proof: (a) In a similar way as the argument in Proposition 6.1;(a), we have

lim sup O < CPGR

j— o0
(b) In the next we show that

CPr i < lim inf CP 4Gl

J— 00

To this end, let us take § and R such that

Q

_) <p ifp<an, .
. < 1<R<R; forj=>1.

<
P=4 <oo ifp>mn,

It follows from the assertion 2 of Lemma 6.3 that there exists {v;},2; C C>°(B;\{0})\{0} such
that

wrilh [y, 1
y)p;lj[vj] =1, - [ J] < OPuR 4 = for j > 1.
||ijqu (B,) J
LR;\71

Since R < R holds, it follows from the assertion 1 of Lemma 6.4 that we have

1/p\ P
1= wPE[y] < <1+<1°gR) ) oy for j > 1.

log R

Using the assertions 2 and 3 of Lemma 6.4 we also have

WP;R[vj]l/P < gPik [vj]l/p +c,mlR; — RWP;I_%[Uj]l/p — gpily [vj]l/p +c,.z|R;— R|,
q; q; _ .
||ijL(11];‘Rj(Bl) S ||v]|‘Lf{R(Bl) =+ CP;55E|R.7 R| fOI' J Z 1

Combining with (a), there exist j; € N and ¢ > 0 such that we have

wPik[y. c9/P
HUj“ qu' = % E |Rj - R| < -
Lyig,(By) — CP%T 41/

for j > j;.
»,q;R

Now let € satisfy 0 < ¢ < ¢. Then it follows from Lemma 6.5 that there exists j. > j; such
that we have

1oyl <

13 . .
Lf{R(Bl) — HUJHLER(BI) + € fOl“ J 2 jE'
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Then we see

C, - p/4;
N O T ) )
C

c?i
< opaiR ((1 _ LR“Q R|)p/q] +
|| ]HLqJ (Bl) || jHLf{Rj(Bl)
crai a, CpaiR
(G R, — R|)"/% — L -
HU H q] (B )((|‘U]|‘L;¥3Rj(31) p,q, | |) J 5) HU || qj (B )(HUJHL(IZJ;R(BJ 5)
C”’q’RHUjIIL iR
2 a(By) Pyl 1
o7 STl = Tl Ol el - R
J Lf{Rj(Bl) J Lf;aj Ly r;(B1)
!pp? ' C
] (1+ R, ~ R|)
HU H q] (B) Wp, [ ]
. 1 log R; C
S(Cp'rq]’] j)(l—i—ch(l—l—(l gﬁ) )|R R|) for j > j,,
and the assertion is thus established. O

6.3 Some estimates for the best constants

In this subsection we establish the assertions 5, 6 and 7 of Theorem 2.2. First the assertion 7
of Theorem 2.2 follows from the next proposition.

Proposition 6.3 Assume that 1 < p < q < g < oo and Tog = 1/n, then we have
SPGY > (yPTad (SPTV)oa) /o7 for o > 0.
For the proof we employ the lemma below.
Lemma 6.6 Let 1 <p<qg<g<oo,v>0 and let 2 be a domain of R". Then we have

lull 57y < Nl for u € L2(2) N 17(22)

L3(£2) LY (2) lu ”Lq ()

Proof: Noting that q7,./(p7,4) +47,,/(@7,;) =1, we have

Jul gy = [ (el Y78/ ey 1 )

Then the assertion easily follows from this by the aid of the Holder inequality. (]

Proof of Proposition 6.3 : For ¢ > 0, there exists a u. € C:°(R"\{0})\{0} such that we
have

||ua||ng(Rn) =1, SPEY < ||VU5||LP ®Y < SPEY 4 g,
Then, by Lemma 6.6 and Theorem 2.1 we have
_ PTpg PTqg PTpq . P ¢ 1 P P
= el ey < Mot e ol ey < (59l 2y, ae) ™ (g 192, )
1
P,a;Y Tpg

< ')/PTP,E(SPﬁW)Tp,q (S T E) s

and this proves the assertion. (I

In order to prove the assertions 5 and 6 of Theorem 2.2, we establish the next proposition.
Noting the assertion 3 of Theorem 2.2, the assertion 5 and the assertion 6 of Theorem 2.2 follow
from the assertions 1, 2 and from the assertions 2, 3 of the next proposition respectively.
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Proposition 6.4 Letn > 2,1 <p<n and ¢ =p*. Then we have the followings:

1.
Sp7p*;’yp,P* S (2 _ M)pspyp*;’)’ fOT ol Z "yp p*
S :
2.
SPPEY < QPP Yy pr for v =y e
3. When p= 27 =~
§2257 < 52257 for 0 <~ <#.

Proof: 1. For £ > 0, there exists a u, € C°(R™\{0})\{0} such that we have

w < SPPY 4 g,

=1, SPPIY < ||Vu€||L1"§,H(R )

"
el 2 e
Since n — yp,p+p* = 0, it holds that

122t gy = 1Tl gy = el gy =1

Noting that n — (14 7p,p+)p = 0 and n — p(1 + ) = (Vp,p» —7)p, by the Sobolev inequality and
the Hardy-Sobolev inequality we have

(Spp Y, p* )1/10 < ||V[

(.

< IVl ey + (- vp,ponuanmn)

Y, p* ..
< |Vu, ||LP L(R™) + (v _Wp,p) [V, ||LP L(R™) < (2 - %) (sPP ’V+€)1/p-

VY ]||L117+w (R™) — ||V[ Yo=Y ]HLP(R")

1/p
VUE(I) (FY FYpp | |2’ p(1+’y dCC)

2. Let u e C(R™"\{0})\{0} and e; = (1,0,...,0) € R™. Since p*y > n, p(1++) > n hold,

we have
*y—n 61 p* _ * * . *
= D gy = P e eatendr — [ @) e =l
S T R WA R
e/HlLy, (RM) R" p(1+7)
— R7L|Vu(:17)|pd:1: = ||vu||ff+wp,p*(Rn) as e — 0.
Therefore
cp(1+y)—n v[u( _ ﬁ)” b
SPPSY < EPPY [u( _ ﬁ)] _ e /LY, (R™)
N € ( " ( 61) p* )p/p*
erv—n|ly(. — 2L
e/ Ly mm

— EPP % [u]  as e — 0,

and this proves the assertion.
3. (a) For u € C°(R"\{0})\{0}, we set
([u)(y) = E>¥[ul,_,] for vy > 0.
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If we note that
2/ nu(m)(m-Vu(x))Io(x)d:v = /Snl/ooog [u?](rw)drdS(w) = 0,

then we obtain

IVl e
Clul(y) = N

[

= [ 0Pl = 2yul@) @ Tu(o) + | Vu(o) ) o) do
||u||L%*(R") R"

1
= 2 —(72||U||L23(R") + ||VUHL2§(R")) for v >0,
||u||L%*(R")

and so, we see that ([u] is non-decreasing with respect to .
(b) For 0 <~ <#, it follows from (a) that we have

Jon = ¢lz=]m = £

for u e C°(R"\{0})\{0}.

u

2,2%y < 2,2*;v|: u B :|: [ u
§220 < B[ g | = o[

n—% gl

This clearly proves the assertion. O

7 Existence of minimizers for the best constants

In this subsection we prove existence of minimizers for SP%7 by the effective use of the so-called
concentration compactness principle when p < ¢ < p* and v > 0. We begin with preparing
some notations.

Definition 7.1 (i) Let 11, p; € C(R"),0q and py € C(R"),q satisfy

0<¢;<1,p,>20,p,>0 onR", ;=1 OnBl/Qa Y1 =p =0 onR"\By,

9y n _
Vi =520 on RIN{0}, [IVOillme) <35 il = [P0y = 1

(i) Fore >0

1 1
po(@) = pollal) = 01 (2), 7:@) = pollal) = 70 (2) Jorw e R,
7.1 Preliminaries

In this subsection we prepare some well-known properties in the theory of concentration com-
pactness due to P. L. Lions, which are useful in the proof of existence of minimizer of the best
constant SP%7. We admit the next lemma without a proof, see §1.3 of [Lil] for the detail.

Lemma 7.1 Assume that {Qj}jozol s a sequence of uniformly bounded and non-decreasing func-
tions on [1,00). Then, there exist a subsequence {Q} },°°, and a non-decreasing function Q on
[1,00) such that we have

Q;.(t) = Q(t) ask —oo fort>1.
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It follows from the Holder inequality that we have

Lemma 7.2 For1 <p<g<oo,vy>0 and R > 0, we have

”u”Lg(BzR\BiR) < (wn log 2)Tp’q||u||Lg(B2R\]?R) fOT u € L?y(BQR\B_R)

The proof is omitted. It follows from the Rellich lemma that we have

Lemma 7.3 For 1 <p<g<oo, 1,, < 1/n and v > 0, assume that 2 is a bounded domain

of R™ and 02 is smooth. Then, the imbedding W{Y%bp(()) CLy,, . () is compact.

Proof: For u € C°(2\{0}), we have

n x
VIuli o gnypl(@) = L0 (2)YPVu(z) + (1 +v - E)Ip,y(x)l/pu(x)m for x € £2.

Hence we have

1 n
IVl gyl ) < HIP({ZV)VUHL”(Q) + ‘1 +7 - 5‘||Ip17/pu||w(9)

n
= Vully, o)+ ‘1 - ;‘nunwm for u € WA(92).

Therefore, if {u;},; is bounded in V[Ql)’op(ﬂ), then {u;I,, ., .};= should be bounded in
VVOLP( 12) (a classical Sobolev space without a weight), and by the Rellich lemma {u; [, , /p,} =1
L+y+n/p T o1 Which converges in L9(£2). Noting that n—(1+y+n/p’) =
(n— (1 +7)p)/p and (n — (1 +7)p)g/p = n — q(1 + v — n7p4), we get {u; },2; converges in
L (2) as well. O

has a subseuence {ujkI

q
'y—i—l—nrp’q

Let us recall a sharp Fatou’s lemma, which is essentially due to H. Brézis and E. Lieb [BL].
( See also [LL] )

Lemma 7.4 For 1 < q < oo and v > 0, assume that {u;} 2, is bounded in LI(R") and
assume that
u; —u ae onR" asj— oc.

Then, we have u € LI(R") and
q q q ;
HujHL‘},(R") - Hug - U‘HL?Y(R") - HUHL‘}’(R") as ) — 0.
Proof: For 0 < e <1, there exists a positive number ¢,.. > 0 such that we have
[[s + 17— |s]? = [t|?] < es|?+ ¢, |t|? for s,t € R. (7.1)
Since |u;|1,, — |u|l,, a.e. on R" as j — oo by the hypothesis, it follows from Fatou’s lemma
that

q : : q q
el o gy < Tim ine [ | fy gy < sup sl s (e

) < 00,
hence we see u € L?(R"). Then we have |u|?] ., € L'(R™) and
([ | = |u; = u|? = ul?] = elu; —ul?) 1, <&, |ul?l,, ae onR" forj>1.

Using Lebesgue’s convergence theorem, we have

/Rn[(llujlq = luj = ul® = [ul] = elu; — u|?) I, J(x)de — 0 as j — oo
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After all we have
s ey = s = ey = il el < [ sl =ty =l = "] )l

= /Rn[(||uj|‘1 = |u; —u|? = |ul?] —elu; —ul*) 1, ](z)dx + €|lu; — u||ng’(Rn)

q

< [l = by = = "] = ey = ), I, o)+ (250 g )
R" j>1
q .
— 5(2 sup ||Uj||Lg(Rn)) as j — o0.
j=>1
Thus the assertion is established. O

Lemma 7.5 For 1 < p < ¢ < o0, 7,, < 1/n and v > 0, there exists a positive number
v >0 such that we have

IVl

P n LpRpn
By ) + HUHLQ(B\y\/z(y))) fory € R"\{0}, v € W, (R").

lll fys, ) < Crasa(l
Proof: For y € R*"\{0} and u € C°(R™\{0}) we set
Kyu(@) = ¢, (@ —y)u(z) for z € R (7.2)

By differentiation we have
2 5 r—y n

Since supp(K,u) C B‘yw(y) and |z < 3|y|/2 for x € By ,(y), it holds that

|w@m@uiwwm+%m@0@‘U@)mxemwm

ul/2\Y

Noting that
[u@)xy (@) < Eu(a)| for e R,

we have
HUHLPZ(B‘yw(y)) = ||UJXB‘ Jal ”Lpg(R") < HKyquq
|ul
< VKl 2 ey < = H Vul 91 ‘
SPMII Kyl Lo, e va [Vul Tzt a0
1 oo n

< W(HVU” Ly, (B, V2(y)) ||U||Lg(3‘yv2(y)))p for uw € C(R"\{0}),

and hence the assertion follows. O

Lemma 7.6 Let us take {2"},2°, ¢ R"\{0} and L € N such that

U B|Zk|/4 =R" \{0} L= sup ﬁ{k N | T € B|zk‘/2(2k)} < Q.
zeR™"\{0}

Then, for 1 < g < oo and > 0 we have

Iy < 35100 < 55 10 o < EA ey for v € ZACRY)
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Proof : By the assumption on {2*},2°, and L, it holds that

1< _ S,
B kZ::IXB\zk\/AL(Zk)(:E) = kz::lXB‘sz(zk)(fﬂ) < L for z € R"\{0},
and this proves the assertion. _

Now we verify the following.

Lemma 7.7 Assume that 1 < p < g < oo, p < § < 00, Tp)q<1/n T <1/n and v > 0.

Then, there exists positive numbers 6, . - € (0,1) and ¢, , 5., > 0 such that we have

—0paq 1
= qu _ P n
lull Lo rry < Epgdin ||vU||L >(ye§§\){o} IIuIILg(BW(y») for uwe W, 7(R").

Proof: (i) Assume that § < ¢. Noting that 1/p — (¢/p —1)/¢—1/9= (1/p—1/q)(1—q/q) <0
we choose ¢ = @, , ; such that

q 1 1 1 1
max{—,——(——l)t}<:=_ < -
vy q q qp7q7[1' q
and then we put
0=20 _1/6_1/(1_ 1/(1_1/(]

RV B VR VIR Ve A
Then, noting that § < ¢ < @, ¢f > p and 7,5 < 1/n, it follows from Lemmas 6.6, 7.5 and 7.6
that we have

o 1/4—1/7 o
el fygrey < 32 (el i L )74

= 1 1 1/6—1 - 1=
< 3l /7 il 7 D

q(1-0)
< ZII IILq(B eyl [ L35, W(zk))

&, (
< kgl(yeiili{O} ||U||Lg(3‘ e )))q . ||U||qu0 Rﬁ)H HL"(B ()
: (ye;l}‘l\){o} ”u” (Byi/aly )))q _O)H HLq"e(Ri Zcpq,y(||Vu||Lp+ (B2 (@) +u ”L \y\/z(y»)
= L'm(y;;ifg{o} “““sz‘w,gy»)q( il 25 ey (170l £ gy ll] )
< L_p’w(yesfg}\){()} ||U||Lg(BW4(y)))q(1_9)

1 q0—p » 1 »
~(—<sp,wpliwm ) (19l e+ IV, )

_ Lépﬁ;'y v q(1-9) ¢ Wlp R
- W( )|| ull % (Rn)(ygi{e}i{o} lall g, e ))) or u € (R™).

(ii) Assume that ¢ < §. Let us take § = p.qq Such that it satisfies ¢ < g =7,,; < 00
and 7, < 1/n. Then it follows from (i) that there exist positive numbers 6 .- € (0,1) and

D,0,q
Cp7q,q,7 > 0 such that we have

lll 7 gy < Fpan IVl 57 ey ( sup for w € WAP(R").
yE

LIR") = “PadY R\ {0} Li(BW4(y)))
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Then from Lemma 6.6 we have

1/p—1 1 1 1
lull 24me ™ < ol ey Tl 47 <

1/g—1 1/p—1 n
L3R P (R") /q /7 /p /a foruEWl’p(R)

Therefore we have the desired estimate with

Ve 1/a+6,54(1/p—1/q)
Pad = 1/p—1/g

e

7.2 Some properties of minimizing sequences

In this subsection we study minimizing sequences for the best constants S”?7 by using the
concentration compactness principle on annular doamains.

Definition 7.2 Let 1 <p<g<oo andy>0. Foru € VVV{’O’)(R") we set

ppﬁq;’Y[u] — |u|q “+ |V’U,| p(147)> (73)
PG (4) = su P.aY =, fort>D0.
QM ul(t) = sup o™ (el s\ 57y

First of all we show that there exists a minimazing sequence for S?"¢*7 which does not vanish.

Proposition 7.1 Assume that 1 < p < q < 00, 7, < 1/n and v > 0. Then, there exist

{u;}= C VVV{’O’)(R”)\{O}, a non-decreasing function Q : (1,00) — R and positive numbers
A, A satisfying
0<2\§/\§1+SP-,¢1;’Y

such that:
1. ||uj||ng(Rn) =1 forj>1, ”v“jHLpfﬂ(R”) — SPEY gs j — o0.

PG Y[y, . S 1 4 j
2. |lp [u']]||L1(BS/4\BB/4) = ||u]||LQ( B,,\By ) >A forj=>1.
3 QP u(t) = Q(t) asj—oo fort>1 ;5 Q) — A ast— oo,

Proof: 1-2: From definition 2.3, there exists a sequence {v;},%; C Wy%bp(R")\{O} such that

”ijLq?,(R") =1 forj>1, ||ij||Lp,f+7(Rn) — P9 as j — oco. (7.5)
Then, from Lemma 7.7 with ¢ = ¢, we have
e LM (7.6)

therefore there exist A > 0 and {y’ };21 € R™"\{0} such that

||ijL By (uﬂ))/\ for j > 1. (7.7)

Now putting _ _
u;(z) = |y!|"v;(Jy’|x) for z € R", j > 1, (7.8)
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we see that

q q _ q
||uj||L‘3,(BS/4\BT/4) 2 HujHL?,(BlM(yj”yj\)) = ||Uj||Lg(B‘ij4(yj))A7 (7.9)
||Vuj||Lp€+w(Rn) = ||ij||ffﬂ(Rn) — SPTY as j — oo. (7.11)

(iii) We see that each QP*"[u;] is non-decreasing on (1,00) and that {Q97[u,]},Z; is
uniformly bounded on (1,00). Therefore, it follows from Lemma 7.1 that there exist, by taking
a subsequence if necessary, a non-decreasing function @ : (1,00) — R and a positive number

A € R such that

QP Mul(t) — Q(t) asj—oo fort>1; Q(t) = A ast— oo. (7.12)
Noting that
5
PGy 12 > || pP G [qy . > | 9 . | > .
Q] (3) 2 1P gl ooy 2 Wil D For g > 1, (7.13)
we have
. 5 : . 5 .
A< Qp,q,v[uj](g) < QPO [uy)(t) < pr’qﬁ[uj]HLl(R”) for t > 37 > 1. (7.14)
Letting j — oo, we have
)< Q@ < Q) <1+SP97 fort > g (7.15)
Then by letting ¢ — oo, we reach to the desired estimate A < A <1+ SPE7, O

In order to show that no dichotomy occurs in the minimizing sequence which has been
chosen in Proposition 7.1, we prepare the following.

Proposition 7.2 Assume that 1 < p < q < o0, 7,, < 1/n and v > 0. Let {u;},%; C
V[/Wl)’op(R")\{O} satisfy the properties 1, 2 and 3 in Proposition 7.1. Then for an arbtrary € > 0,
there exist {v, ;},2; C Wy%bp(R"), Je €N andé > 0 such that we have

P.gse
|pr)q;'y[va,j]”[/1(R") - /\| < gp,q;fsv |||pp1q;’y[uj - va,j]”Ll(R") - (1 + SPET — >‘)| < gp,q;av (716)
0<1- ”va,jH[?g’(R") - ||u] - va,j”ng(R") <2 forj > j..
Further it holds that €,,.— 0 ase—0.
Proof: Lete >0 .
(a) From the assertion 3 of Proposition 7.1, there exists ¢, > 1 such that we have
/\—%<Q(t) <\ fort>t. (7.17)
Also from Definition 7.2 there exist {r_ ;},2; U{R,;},Z; C (0,00) such that we have
. . € _
prq,'v[uj](ts) < |‘pp7q"y[uj]||Ll(BREj\@) + 7 R ; =t ; forj>1. (7.18)

Further from the assertions 1 and 2 of Proposition 7.1, there existsj, € N such that we have
0 < ||pP47[uy] — (14 8P97) < ¢, (7.19)

QP T [u,](4t.) — Q(4t.)| < e forj > j..

||L1(Rn)

|QP7Q§V[uj](t€) - Q(t5)| <

e
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(b) Since

€ €
A= G < Q) < QI + 5 < 1ol g, (i )5 (7.20)
X
||Pp’m[“j]||L1(BR5j\§j) <QPTuy)(t) < Qt,) + Z <A+ 5 for j > j.,
we see that
|||pp,q;7[uj]||L1(Bst\E§) — Al <e forj>j.. (7.21)
Hence we see
17 0 ey + 107 5l ) = (L S757 = ) (7.2

= 127 b gy = 107 )3,y = (L 5747) 4

Te,j

< P sy — (L 525+ 1P gy = A <26 for 2 o
€7 &

Since

1079, iy S QUL S QU FE SNk iz (T2
we have
U P FiCh s (724
= 1015 3,y ~ 1P il 5y < A E) = (A=) =26 for 2.

(c) Let us set v, ;(z) = op_,(¥)(1 =¥, (¥)u;(x) forz € R",j > 1. Then from Lemma
7.2 and elementary inequalities;

(14 8)P < 2PLH(14¢P), 14+ tP/9 < 217P/9(1 4 £)P/7 for ¢ > 0, (7.25)

we have

O O (7.26)

ej &
/B

)

{ Yar, ;(@)u; (@)1, ()

2R5’j\BRE’j p

1 -

+ |- F'@[QREJ(;E)UJ‘ (95)% +Yor.,(®)Vu; (@) L,a4q) (55)} dx
&

_ . q
+ /B . ,/2{'(1 by () ()|, () p
2J £,7 1 B
+ P @)+ (= U, (@) V(@) Ip<1+7><x>}dz

</ <|uj<w>m<w>+2p1 ((3'9”'| (@ >|> Im<w>+|Vuj<w>|pf,,<l+w<w>>> is
B2REJ-\BREJ-

+f <|uj<x>|q1q7<x> o ((3'35' |uj<x>|> T (@) + [V, (2) P T, gy (3 >>> dx
B sj\ BTg,j/2 TE’j
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p
<2 7+ 1 e
€, €, j j

p=1|| , DTV [y, . _
R LT P

6P

—1 T T

< 201204 S (0 T8 2wy P+ (08Dl i)
1 1-p/ /

< 2P¢ + 5(6((4) log 2)7ra)P 2177 ‘1(||uJ|| (B \Br ) )+ ”uJ”Lq(B 5 ))ZD q

=i/?

1
< 2Pe + W(G(w” log 2)ra)P(2)P/7 = 2Pe + (6(w,, log 2)we)PeP/?  for j > j_.

In a similar way we have

70y = vl ey = (2P 5] g 5y + 1074571 o 5, ) (7.27)
(R") (R"\B,_) (B,
-/ {<|uj<w>|q 0= ban @)y @I Ly 2)
Bop, \Br,
p
(|Vu P~ |5 R Va0 o+ (1= o (0) Vi (@) Vi @)} da
+f {(; @)1 = 146, (@), ()] ) Iy, ()
BTEJ\B’”E,]‘/2 1 - x p
(9@ = | = =0, @y @) 1+, @V, @) ) (@)}
&J
<[ @) @)+ V@) L) @)
BQRE,]‘\ BRE,]' 3|$C| P
+2 7 (Sl @)]) Ly (@) + [V @) Ly (2) o
&7
AR (FEIEACERL ME TR
(3l v
+27 7 (25 oy (@)]) Ly (@) + Vs (@) Ly ()
&J
<2(2P7 4 1)e + (6(w,, log 2)wa)PeP/? for j > j_.
(d) From (7.21), (7.22), (7.26) and (7.27) in (b) and (c), we have
110797 [0 1l 1 gy — Al < 27 + (6(w,, log 2)ma)Pe?/ +- ¢, (7.28)
10797 ;= v ) gy — (L SP47 = )
<2(2P7 4 1)e + (6(w,, log 2)we)PeP/T 4 26 for j > j..
Noing that
094+ (1-0)7<1 for0<6<1, (7.29)
we have
0 < 1= (on,, (@)1= by, (@) = (1= g, (@)(1 = b, (@)
S Xp,, fm(@ + xBTE,j\BTm/z(x) for z € R", j > j..
Then from this inequality and (b) we have
0<1- ||Us,j||ng(R”) - ||ug - Usj”[?ﬂl(R") = ||uj||[?g(R") - Hvs,j”[?g(R") - ||U’J - Us,jHng(R”)

q
< ||uj||L?Y(B2R5j\BTEj)+ ||U ||Lq(B \B ]/2)

< ||pP7Q§V[uj]||L1(B2R j\BTj) + ||pp7q’ [u j]||L1(BT j\m) <2¢ forj>j..
‘e, ‘g, & 7

46



O

Proposition 7.3 Assume that 1 <p < q < oo, 7,, <1/n and vy > 0. Assume that {u;},2, C
Wy%bp(R")\{O} satisfies the property 1 of Proposition 7.1. Then we have A =1+ SP47.

Proof: On the contrary we assume that A £ 1+ SP%7. Then from Proposition 7.1 we should
have 0 < A < 1+ SP%7. Let us retain the notations in Proposition 7.2.
(a) Since &,,.. — 0 as e — 0, there exists some ¢, > 0 such that

1
< —min{\, 14 5777 — A} for 0 < e < &, (7.30)

0< EP»%E 2

Then, from Proposition 7.2 and Theorem 2.1 we have
1 . . 1 » a/p »
SASA=Z 0 < 1Pl ey < (Gram IV 15 mey) 1V 0, ey
1

_(1 + SP»‘]?’Y _ A) S 1_|_ SP»Q?’Y — = gp,q;s S ||pP;Q§’Y[uj _ vE,j]”Ll(Rn)

[\

1 q/p
P P . ;
< (anwnv[uj - va,j]||L7f+7(R")) + ||v[u] - ’UE’j]HLIer»Y(Rn) for J > Jes 0<e< €o-

Hence, for some 3 > 0, we have
||vv87j||lz/)’l’+7(R") > B, [[V[u; — UEJ]||IZ/)€+,’(R") >p forj>j.,0<e<e,. (7.31)

(b) Choose a sequence {g,},°, C (0,g,) satifyinge, — 0 ask — oco. Then from Proposition
7.2 we have

0<1- ||v€k7j||ng(Rn) — [lu; — v6k7j||Lq§(R") <2 forjzj. ., k=1, (7.32)

and we see that {||v8k7j||qu(Rn)}k°§1 and {|Ju; — )}k"il are bounded. Hence, by choos-

UE;CJHI??,(R"
ing a subsequence with respect to j, there exist {5, },°, U {0, },>°; C [0,1] such that we have

= T, [u — 0, asj—oo fork>1 (7.33)

q q
||v8k,j||L?,(R") 3 Usk,j”LZ(R")

Since 0 <1—3, — g, < 2¢;, for k> 1, by choosing a subsequence with respect to k, there
exists o € [0,1] such that we have

g, —0, 0, —1—0 ask— oo. (7.34)
(¢) From (a), Proposition 7.2 and Theorem 2.1, we have

maX{Sp)q;’Y(H’UEk’j||£)%(R71) + [Ju; — Uak)ij%(R"))? B+ SPEY lu; — ’Uak,j”[:f)g(R")u
B+ Spﬂw””s,c,j”[ing(r{n)}
O | A [T
1071 e M g gy + 10775 = v gy = (sl s+ 1 = 1 )
< At Epgre) + (L 5757 = X4, ) = [l ey = 5 =
=SPIT+1 - ”Uak,jH[?g(R”) = [lu; - Uak,j”ng(Rn) +26, e, for j > Je,» k=1
Therefore, letting j — oo, k — oo and using (b), we have

maX{Spqu(Up/q +(1— U)p/q), B+ SPeY(1 — U)p/q7 SPAY gP/a | B} < SPEY, (7.35)
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and we have o?/7 + (1 — ¢)P/4 < 1. If we note that
0P/ 4 (1—-0)P/1 > 1 for 0 <6 <1, (7.36)
we have o € {0,1}. Then it holds that 5 < 0, and this is a contradiction. O
Then we have the following.

Proposition 7.4 Assume that 1 <p < q < o0, 7,, <1/n andy > 0. Assume that {u;}>; C

W{Y{bp(R")\{O} satifies the properties of Proposition 7.1. Then, { pP%[u,]} ;= is tight. Namely,
for an arbitrary € > 0, there exists a constant R, > 0 such that we hcwe

19757 o g gy < or 2 1. (7.37)

In particular, both {|u;|'1,,} ;=1 and {|Vu,|PL, 14 }Z1 are tight as well.

Proof: Let 0 <e < A. (a) From Proposition 7.3 we see that A = 1+ SP%7, hence there
exists ¢, > 1 such that we have

1+ PO Z <Q(t) <1+ SP97 fort >t (7.38)
From the assertions 1 and 3 of Proposition 7.1 there exists j, € N such that we have
. £ . .
PP Tuglll pa gy <1+ S”’q’”+ QP uy](te) - QE) < forj = je. (7.39)

Further, by Definition 7.2 there exist {r&j 2 U{R, ;1,2 € (0,00) such that we have
€

P Tl o, ()@ ] (E) = 3 ey =tere; forj 2 1 (7.40)
Therefore it holds that
1278l ey @ (1) = QU — G187~ Je forj 2 (1)
Then we have 5
T < 1 for j > j.. (7.42)
In fact, if not, we have
(35/4\33/4) (BREJO\ fTJO) = ¢ for some j, > j., (7.43)
and hence
L+ S5 4 2P g ] (7.44)

> ”pp,q? [ J0]||L B, \B )_,’_”pp,q, [jo]HLl(BR \B,

‘edy o

)

. 3
A+14+8707 e
Then we have A < ¢, but this is a contradiction.

(b) Let us take a number R, > 0 such that

5 . . .
R.>2> - t, pr,qﬁ[uj]HLl(Rn\]%) <e for1<j<y. —1. (7.45)
Since Bp_ \B C By, for j > j., we have
11l 3y < 07l = 1P 5 (746

ny
4 .3
< 1+anﬁ+% _ (14_51’»‘177—15) =¢ forj>j,

and this proves the assertion. O
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7.3 Convergence of minimizing sequence

In this subsection we investigate the minimizing sequence {uj}jozol for SP%7 which are in-
troduced in Proposition 7.1, and we finally prove the existence of minimizer. To this end we
employ the following lemma that is an easy corollary to [Lions, Lemma 2.1]. Here, by B(R")
we denote a set of all finite Borel measures on R", and by §, we denote a Dirac measure with
a unit mass at the origin. In a canonical way we see that L'(R") ¢ B(R"). For v € B(R"),
by 1, and v, we denote an absolutely continuous part and a singular part of v with respect to
Lebesgue measure respectively. In this notation we see that 1, € L*(R") and v = 1, + v,.

Lemma 7.8 (Lions) Assume that 1 < p < q < oo, p,v € B(R"), p,v >0, suppy, C {0} and
S > 0. Assume that

p/q
S([ wera@)” < | o@pdua) foroec® o). (747)
Then there exists a constant ay € [0,00) such that we have
v =agdy, > (Sag/q)éo. (7.48)

For reader’s convenience, let us briefly recall a notion of weak convergence of a sequence
of measures. Let us denote by BC(R"™) a set of all bounded, continuous functions on R",
then B(R") is regarded as a subspace of BC(R™)’, which is a dual of BC(R"). A sequence
{v;},21 € B(R") is said to converge weakly to v in BC(R")’, if {,},, converges in a weak *
topology to v in BC(R™)’, that is to say,

p(x)dv;(z) — | ¢(x)dv(r) asj— oo for any ¢ € BC(R"). (7.49)
R" R"

When {v;},2, C B(R") converges weakly to v in BC(R")’, we simply write

v, = v weakly as j — oo. 7.50
J

We employ the following lemma. (The proof is omitted.)

Lemma 7.9 Assume that {v;},2; is bounded in B(R"). If {v;} ;2 is tight, then {v;},2 con-
tains a weakly convergent subsequence.

If {uj ;=1 satisfies the assertions of Proposition 7.1, then from Proposition 7.4 we see that both
{u;[*14, 3520 and {|Vu;|P1, 1) }Z are tight. Hence from Lemma 7.9 they contain weakly
convergent subsequences respectively. Further, from Rellich’s therem and Lemma 7.3 we have
the following;:

Proposition 7.5 Assume that 1 < p < ¢ < o0, 7,, < 1/n and v > 0. Then there ex-

ist {u;},2; C Wy%bp(R")\{O} and u € le%bp(Rn)\{O}, w,v € B(R™) such that we have the
followings:

1. ||uj||ng(Rn) =1 forj>1, ||v“jHLp§ﬂ(Rn) — SPET g5 § — oo.
2wy —u weakly in WRP(RY), u;—u in L (R\O) O (LY, )ioe(RY),
u; —u ae onR" asj— oo

S u| My — v, [VuyPLy ) — 1 weakly as j — oo.

4 Ve = [u|?l,, a.e. on R", suppy, C {0}.
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Proof: We prove the assertion 4 only. For € > 0 it follows from the assertios 2 and 3 that

[ 6@V, @ L @de = [ o@)du(o) (7.51)
R R

/R” o(x) |u; ()|, (x)de — Rngb(x)du(a:) as j — oo for ¢ € CX(R™\ B,), (7.52)

hence it holds that

/Rnsb(x)(IU(fC)Iquy(x) —le(@)dr = | ¢(z)dv,(x) for ¢ € CX(R"\B,). (7.53)

R"

Therefore, |u|’l,, — v, coincides with v, as measures on R™\ B_. Since they are absolutely
continuous and singular with respect to Lebesgue measure respectively, they should be vanishig
as measures on R™\ B,. Hence we have

lu|l,, — 1, =0 ae on R"\B., suppy, C B..
Since € > 0 is arbitrary, we conclude that

lul?l,, — 1. =0 ae. onR", suppy, C {0}

(]
Let us define the next.
Definition 7.3 For ¢ € BC(R") satisfying ¢ >0 on R", we set
» 1/p
Hu|‘W$’P[¢](R”) = (/R7L|Vu(a:)| Ip(1+7)(a:)¢(:c)dz) . (7.54)
By Wylbp[(b](R”) we denote the completion of C2°(R™\{0}) with respect to the norm || - ||W1,p[¢](Rn).
’ v
In this definition we have
el gy < 19l Pl ey € W R, (7.55)

hence we have a continuous imbedding Wy%bp (R™") C Wy%bp [¢](R™). From this fact we have the
next.

Lemma 7.10 For 1 < p < oo and v > 0, assume that {u;} 2, C W/V{’OP(R”), u € VVV{’O’)(R”)
and p € B(R™) satisfy

u; —u  weakly in le%bp(R”), IV, P14 — 1 weakly as j — oo. (7.56)

Then, we have

|VU|pIp(1+,Y) S M. (757)
Proof: For ¢ € C ,(R") with ¢ >0 on R", it suffices to show that

| S@IVu@l iy @)de < [ ola)duo). (7.58)
R R

(a) First we show this inequality to be valid assuming that ¢ € BC(R") satifies ¢ > 0 on
R". Since the imbedding val,’op (R™) C V[/Wl)’op [#](R™) is continuous, we see that

u; —u weakly in Wy%bp[gb](R") as j — oo.
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Therefore we have

/ ¢(2)|Vu(@) P L, 4 (v)dz = [Ju]| ? WPl (RY) < hmlnf”u |2 WP 6] (R) (7.59)

= Jim [ o@IVu @ Ly ()i = | ofa)dta).

jﬂoo R"

(b) Secondly we consider the case that ¢ € C,(R") and ¢ >0 on R". For £ > 0 it holds
that p.x¢ € BO(R") and p.x¢ >0 on R". Then, from (a) we have

/ P* () |Vu(@)[P 1,14y () d S/ pexd(x)du(x) for e > 0. Here noting that
R" R"

¢ is uniformly continuous on R", for any n > 0 there exists a number 7, > 0 such that we have

|¢p(x —y) —d(x)| <n forzeR™ ye B, . (7.60)

Then

|| @IV 1y @) = | @ Tul) 1 0]

=[] )6 =) = o) V@) Iy @) ]

g/ (/ np=(y)dy +/ 72II¢||Lw(Rn)ﬁa(y)dy)IVU(:E)I”Ipuﬂ)(éE)dw

"B, R'\B,

< (n+ 2||¢||L°°(R")Hﬁl||L1(Rn\1ﬂ))HVUHI{%JW(Rn) —nlVulgy @y ase—0,

hence

/ Pk (@) V(@) P Ly (@)dr — [ o) [Vu(@) Py (@)dz ase—0.  (T61)
R R

In a similar way we have

[ pro@duto) — [ o@duta) ase o (7.62)
R" R"

and the assertion follows. O

Then we have

Proposition 7.6 Assume that 1 <p < q < o0, 7,, < 1/n and v > 0. Then, in Proposition
7.5, there exists a constant ay € [0,00) such that we have

v = |ul',, + agdy, 1> [VulPL ) + (SP7a) 6. (7.63)

Proof: (a) Taking an arbitrary ¢ € CJ°(R") with satisfying supp ¢ C Bp. Then it follows
from Lemma 7.4 that we have

||¢uj||[?‘3’(R") - H¢(u_] - u)”ng(R") - ||¢u||ng(R") as j — 0o, (7.64)

and from the assertion 3 of Proposition 7.5 we have

sl ey = / ()] (@) T, () o — / (@) %du(z) asj—oo.  (7.65)
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Hence we have
160t = ey = [ J0@Na(2) = 90l gy 253 = o0 (7.66)
Since 1/p = Tpg T 1 /q, from Holder’s inequality and the assertion 2 of Proposition 7.5 we have

I ~ W) Volle, ey = IVl = 0Ty g sl (7.67)

< ||v¢||L1/"p,q(R") ”(U’j - U)IlJr'ern/p’ HLq(BR) = ||v¢||L1/Tp,q(Rn) ”u u||Lq+1 e (R")

— 0 asj— oo.

Here we used the relations; p(n — (1 +~v+n/p’)) =n—p(l ++) and ¢(n — (1 +~v+n/p')) =
n—q(1 4+~ —n7p4). By the assertion 3 of Proposition 7.5 we have

16Vl = [ J@P T @ 1y @)de = [ 0P duta) as = 0. (768
Then, letting 7 — oo in the inequality below
(SPH1) 2ty = )l g ey < 90800ty = )y, e (7.69)
< H¢V[Uj - U]HLI;M(R”) + ||(“J - U)VQSHL{'M(R”)
<210Vl f gy H 1OVl )P Iy = @)Vl gy for G 21,

we get
s ([ ot - [ @@, @) (7.70)

<2 ([ Jo@Pduto) + [ o)l U@l (@) " tor 6 € C2RY,

Since supp(v — [u|?l,,)s C {0} by the assertion 4 of Proposition 7.5, it follows from Lemma
7.8 that we have for some a, € [0,00)

v —lu|l,, = agdy. (7.71)
Further by letting j — oo in the inequality below
(574 'v)l/p||¢u ||Lq ®Y < [IVIoy; ]”Lp J®RY S < |¢Vu; ||Lp LRy T flu; V¢||Lp (R for j > 1,
we have
pq;v\1/p q a)1/q p 1
(SPEN (| ull fy gy + aold O < ([ |o@)Pdp(@) "+ Vol ey (7.72)
R"” vy
for ¢ € C°(R™).

(b) Let ¢ > 0 and let 1. be given in Definition 7.1. Noting that 1/p = 7, ,+1/q, by
Holder’s inequality we have

1V ellzy, ey = / o)l @ la) 1 () dz) (7.73)

(
([ (e@liameetayae)™ | (ju(a) T @)dr)

IN

1
e
1
g €

= ||¢1 ||L1/ "pa(R™) ||u||L%(B€)'
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Hence, by virtue of (a) we have
. 1 .
(S”’q”)l/”ao/q < (Sp’q”)l/p(stuHng(Rn) +ag)'4 (7.74)
» 1/p 1/p ~
([ o@pdne) ™+ 19 lg, ey < ([ @) "+ 1010 g Il
= wBIY? 1191 1y oy 10l L1 () — BEODYP as e — 0,

hence
p({0}) > SPavab/e > (SPaab/h) s, (7.75)

On the other hand, by Lemma 7.10 [Vu|Pl, ;) < p holds, and we have

w> [Vl L, + (SPT7ab/?) . (7.76)

After all we have the following that proves the assertion 2 of Theorem 2.4.

Proposition 7.7 Assume that 1 <p < q < o0, 7, , < 1/n and v > 0. Then, in Proposition
7.6, it holds that ay =0 and

el fy ey = 1 IVl gy = SP90. (7.77)

Proof: By the assertion 3 of Proposition 7.5 we have

/ luj(x)|"1,, (v)dr — dl/( )s /Rn|Vu( NP Ly (14 (@) dx—>/ du(x) as j — oo.

Combining the assertion 1 of Proposition 7.5 with Proposition 7.6 we have

= / dv(z) = lu(2)|?1,, (v)dx + ag > ag, ST = / du(x). (7.78)
n R’Vl

n

Moreover by Proposition 7.6 and Theorem 2.1 we have

S”’qw:/Rd,u / IVu(@)|P L, (11 (@ )d:v+Sp’q’7ap/q (7.79)

p/a
> SPGY <( |U(x)|qu,Y(:v)dx) + aP/Q) = SPET(1 — ao)p/q + ag/q),
R"
and then (1— ag)?/7+ ag/q <1 and ay = 0 follow. In particular we have

1= lu(x)|?1,, (z)dx, Sp’qwz/ du(z) 2/ IVu(z)|P 1,14 (2)dz, (7.80)
R" R"

R”

and this proves the assertion. (|

8 Proofs of Propositions 2.1, 2.2 and some assertions
In this section we establish Proposition 2.1, Proposition 2.2 and the propositions on non-

existence of minimizers and failure of some imbedding inequalities, whose proofs have been
postponed.
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8.1 Proofs of Propositions 2.1 and 2.2

In order to prove Propositions 2.1 and 2.2, we introduce a cut-off function.

Definition 8.1 For0<e <1 and0<n<1/4 we set

1 forz e Bga77
log(e (1 —n)/|x])
Ge () = ¢, (|2]) = Tog((1 = m)/B31) for x € Ba(1_n)\Baam (8.1)
0 forz e R"\ B, _,,
and we set
wa,n(x) = wa,n(|x|) = (ba,n*pan(‘r) for x € R". (82)
Lemma 8.1 Assume that 1 <p<qg<oo,v>0, R>1and 0 < a < 1/p". Then there exist
positive numbers c,,.., €p. 0y Cp g0 > 0 such that we have for 0 < e <1 and 0 <n < 1/8 the
followings:

1. 9., € CP(R™),0a, 0< Yo, <1 onR", ¢, =1 on By Y., =0 on R™\B..

Cpin € ify >0
T 1N 17 )
2 Wealor, oy < ey &7 IV lip, ey <4 150/
70 if v = 0.
Gos/miw 17

o ~ o 1 1
5. VAR Yzl lizcs < Epiadra(e) <<1og<1/n>>1/p' +A1R<e>1/p/>’

Epgia

A o S Sk &
” LR?/}EJ?”L;R(BQ = A17R(2€77)1/p/7a

Proof: We see that ¢, € W (R™), and first derivatives of ¢.,,, in distribution sense are

given by
1 T "
v¢€)n($) = - mngufn)\BTm(x)W for a.e. x € R". (83)

Particularly we have

1 1
S —— 1 — for a.e. R" 8.4
(Voen @O < Ty Tal g Ty () for ez €R, (8.4)
1 1
v -y < _(z) forae zecR" B.,.

Here we note that

0< ¢5_’n(x) < Xp (x), 0< G (T — y) < Xp (x) forae zeR" y€ B.,,. (8.5)

c(1—m)

Since the assertion 1 is now clear, we prove the assertions 2 and 3 below.
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2.

p 1/p
IWenller, ey = < /R< Den(@ = Y)pey(y )dy> Ip(lﬂ)(a:)d;c)
’ v r 1/p
= (/B </Bsnp8"(y)dy> Ip(lﬂ)(x)dx) = </pr(1+y)(:c)d:v> = (Zﬁ) e+,

p 1/p
||vw€"nHL117+w(Rn) S (/ (/ |v¢€n |psn( )dy) Ip(1+,y) ((E)dl’)
1 1 p 1/p
: </Bs\Bzan </Bsn log(1/(4n)) 