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Abstract

∗ The main purpose of this article is to establish the CKN-type inequalities for all

α ∈ R and to study the relating matters systematically. Roughly speaking, we shall

discuss about the characterizations of the CKN-type inequalities for all α ∈ R as the

variational problems, the existence and nonexistence of the extremal solutions to these

variational problems in proper spaces, the exact values and the assymptotic behaviors of

the best constants in both the noncritical case and the critical case.

In the study of the CKN-type inequalities, the presence of weight functions in the both

sides prevents us from employing effectively the so-called spherically symmetric rearrange-

ment. Further the invariance of R
n by the group of dilatations creates some possible loss

of compactness. As a result we will see that the existence of extremals and the values of

best constants and their asymptotic behaviors essentially depend upon the relations among

parameters in the inequality.
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1 Introduction and Histrical remarks

1.1 Introduction

We shall begin with recalling the classical weighted Sobolev inequalities (1.1), which are often
called the Caffarelli-Kohn-Nirenberg type inequalities (the CKN-type inequalities).

There is a positive number S depending only on p, q, α, β and n such that we have
∫

Rn

|∇u|p|x|αp dx ≥ S

(∫

Rn

|u|q|x|βq dx

)p/q

, for any u ∈ C∞
0 (Rn), (1.1)

where ∇u = ( ∂u
∂x1

, ∂u
∂x2

, . . . ∂u
∂xn

) and |∇u| =
(
∑n

k=1 |
∂u
∂xk

|2
)1/2

.
Here n ≥ 1, 1 ≤ p < +∞ and q, α, β are real numbers satisfying



















α > 1 − n
p ,

(1 − α+ β)p < n,

0 ≤ 1/p− 1/q = (1 − α+ β)/n,

β ≤ α.

(1.2)

The main purpose of this article is not only to establish the CKN-type inequalities for all
α ∈ R but also to study the relating matters systematically. Roughly speaking, we shall discuss
about the characterizations of the imbeddings as the variational problems, the existence and
nonexistence of the extremal solutions to these variational problems in proper spaces, the exact
values and the asymptotic behaviors of the best constants.

Now we introduce a crucial parameter γ as follows.

Definition 1.1 For 1 ≤ p < +∞, in (1.2) let us set

γ = α− 1 +
n

p
= β +

n

q
. (1.3)

Under the condition (1.2), we have 0 < γ as well. By noting that αp = p(1+γ)−n, β = γq−n,
after all we can rewrite (1.1) and (1.2 ) to obtain the followings:

∫

Rn

|∇u|p|x|p(1+γ)−n dx ≥ S

(∫

Rn

|u|q|x|γq−n dx

)p/q

, for any u ∈ C∞
0 (Rn), (1.4)

where n ≥ 1, 1 ≤ p < +∞ and q, γ are real numbers satisfying










γ > 0,

q < +∞,

0 ≤ 1/p− 1/q ≤ 1/n.

(1.5)

Throughout the present article we shall work with a parameter γ ∈ R instead of α and β,
so that most of our results become symmetric in γ with repect to γ = 0.

Furthermore we classify the CKN-type inequalities according to the range of the parameter
γ into the three cases. Namely

Definition 1.2 The parameter γ is said to be subcritical, critical and supercritical if γ satisfies
γ > 0, γ = 0 and γ < 0 respectively.

Remark 1.1 1. Here we note that the conditions γ > 0, γ = 0 and γ < 0 are equaivalent
to α > 1 − n

p , α = 1 − n
p and α < 1 − n

p respectively.

2. In the classical CKN-type inequalities (1.1), it follows from the subcritical condition γ > 0
that we have βq > −n, hence the weight functions in the both sides are locally integrable
on Rn. By this reason these inequalities (1.1) are classified into the subcritical case of
the CKN-type inequalities in this article.
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1.2 Histrical remarks

Before we go further into our main results on the CKN-type inequalities involving critical
and supercritical cases, we give a brief historical review here. As we have already mentioned,
the inequality (1.1) for γ = α−1+ n

p > 0 is often called the Caffarelli-Kohn-Nirenberg type (the

CKN-type inequalities). In fact in [CKN] they established general multiplicative inequalities
including these types. In [Ho1] we have also studied these inequalities among more general
imbedding theorems on the weighted Sobolev spaces, where the weights are powers of distance
from a given closed set F .

It was also very interesting for us to study further the properties of the imbedding operators
obtained there. But for a general F it seemed not easy to study these problems in a detailed
way. By this reason, in [Ho2] we restricted ourselves on the simplest case that F consists of a
single point, namely, the origin. In this particular case we have studied the relating problems in
a various aspect and obtained interesting results such as the exact values of the best constant
S = S(p, q, α) in certain cases, the existence and nonexistence of the extremals and so on.

Recently we have revisited the weighted Hardy-Sobolev inequality in [AH2]. It is easy to see
that the classical CKN-type inequality coincides with the weighted Hardy-Sobolev inequality
if β = α − 1, or equivalently p = q. To our surprise it was shown that the weighted Hardy-
Sobolev inequalities themselves hold for all γ ∈ R ( or equivalently all α ∈ R) with some
modifications. In fact, even if γ = α − 1 + n

p = 0 holds, the sharp inequality of the Hardy
type remains valid as long as the whole space Rn is replaced by a bounded domain containing
the origin and the weight functions in the right hand side are replaced by the logarismic ones.
Moreover we have successfully improved those weighted Hardy-Sobolev inequalities by finding
out sharp missing terms, as a result they turned out to be very useful in many aspects. For the
improved inequalities, see Proposition1.2 below. ( For the complete argument and the related
applications see [AH2].)

On the other hand, the counterpart in the CKN-type inequalities to the weighted Hardy-
Sobolev inequalities in [AH2] seems to be unknown so far. But it seems reasonable for us to
expect that the CKN-type inequalities should remain valid for all γ ∈ R ( α ∈ R ) with a similar
modification as was performed in the weighted Hardy-Sobolev inequalities. In this spirit we
shall establish the CKN type inequalities for all γ ∈ R ( α ∈ R ) and we shall further study
them systematically in the present paper.

In order to emphasize the meaning of this classification of the CKN-type inequalities and
our motivation in this paper, let us recall the results on the weighed Hardy-Sobolev inequalities
as the necessary background.

We first review as Proposition 1.1 the classical weighted Hardy-Sobolev inequalities in the
noncritical case, and then we also recall as Proposition 1.2 the improved weighted Hardy-Sobolev
inequalities with sharp missing terms in [AH2]. It follows from these results that the weighted
Hardy-Sobolev inequalities are valid for all γ ∈ R and Definition1.2 should be natural for us to
study the CKN-type inequalities based on the (improved) weighted Hardy-Sobolev inequalities.

Proposition 1.1 Let n ≥ 1, 0 ∈ Ω and Ω is a domain of Rn. Assume that 1 < p < +∞ and
γ 6= 0. Then we have

∫

Ω

|∇u|p|x|(1+γ)p−n dx ≥ |γ|p
∫

Ω

|u(x)|p|x|γp−n dx (1.6)

for any u ∈ C∞
0 (Ω \ {0}).

In this inequalities (1.6), the domain Ω may be unbounded and the best constant |γ|p is appar-
ently independent of the shape of domains. In particular we can put Ω = Rn.

Proposition 1.2 Let n ≥ 1, 0 ∈ Ω and Ω is a bounded domain of Rn.
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1. Subcritical case (γ > 0, 1 < p < +∞),

There exist K = K(n) > 1 and C = C(n) > 0 such that if R > K supΩ |x| then
∫

Ω

|∇u|p|x|(1+γ)p−n dx ≥|γ|p
∫

Ω

|u(x)|p|x|γp−n dx

+ C

∫

Ω

|u(x)|p
(

log
R

|x|

)−2

|x|γp−n dx

(1.7)

for any u ∈ C∞
0 (Ω).

2. Critical case (γ = 0, 1 < p < +∞),

Then there exist K = K(n) > 1 and C = C(n) > 0 such that if R > K supΩ |x| then

∫

Ω

|∇u|p|x|p−n dx ≥
1

(p′)p

∫

Ω

|u(x)|p

|x|n

(

log
R

|x|

)−p

dx

+ C

∫

Ω

|u(x)|p

|x|n

(

log
R

|x|

)−p(

log

(

log
R

|x|

))−2

dx

(1.8)

for any u ∈ C∞
0 (Ω). Here p′ = p

p−1 .

3. Supercritical case (γ < 0, 1 < p < +∞),

Then there exist K = K(n) > 0 and C = C(n) > 0 such that if R > K supΩ |x| then
∫

Ω

|∇u|p|x|(1+γ)p−n dx ≥|γ|p
∫

Ω

|u(x)|p|x|γp−n dx

+ C

∫

Ω

|u(x)|p
(

log
R

|x|

)−2

|x|γp−n dx

(1.9)

for any u ∈ C∞
0 (Ω \ {0}).

Remark 1.2 1. If we replace a bounded domain Ω by the whole space Rn, then in general
we can not expect any improved weighted Hardy-Sobolev inequalities with a missing term.

2. If γ = 0 (the critical case) and Ω = Rn, then one can show from a capacitary argument
that for any compact set K ⊂ Rn

inf

[∫

Rn

|∇u|p|x|p−n dx : u ∈ C∞
0 (Rn), u ≥ 1 on K

]

= 0.

Therefore we can not expect the weighted Hardy inequality in the whole space Rn.

2 Main results

2.1 The CKN-type inequalities

In the subsequent we employ the following notations:

p′ =
p

p− 1
, p∗ =

np

(n− p)+
for 1 ≤ p ≤ ∞. (2.1)

Here we set t+ = max{0, t} and 1/0 = ∞ .
As we have already mentioned in §1, for fixed p, q, instead of parameters α, β in the CKN-

type inequalities we work with a new parameter

γ = α− 1 +
n

p
= β +

n

q
. (2.2)
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Then the range for p, q, γ becomes

1 ≤ p ≤ q <∞, (0 ≤ ) τp,q =
1

p
−

1

q
≤

1

n
, γ ∈ R. (2.3)

From these conditions we obtain for a fixed p

p ≤ q ≤ p∗ =
np

n− p
if 1 ≤ p < n ; p ≤ q < p∗ = ∞ if n ≤ p <∞. (2.4)

We recall that the subcritical condition, the critical condition and the subcritical condition
simply correspond to γ > 0, γ = 0 and γ < 0 respectively.

We prepare more notations below.

Definition 2.1 For α ∈ R and R ≥ 1 we set

Iα(x) = Iα(|x|) =
1

|x|n−α
for x ∈ Rn \{0}, (2.5)

A1,R(x) = A1,R(|x|) =







log
R

|x|
for x ∈ B1\{0},

log(R|x|) for x ∈ Rn \B1

(2.6)

When 0 < α < n holds, Iα is called a Riesz kernel of order α.

Under these notations the CKN-type inequalities have the following forms:

If γ 6= 0, then
∫

R
n
|∇u(x)|pIp(1+γ)(x)dx ≥ S

(

∫

R
n
|u(x)|qIqγ(x)dx

)p/q

, (2.7)

If γ = 0, then for R > 1

∫

B1

|∇u(x)|pIp(x)dx ≥ C
(

∫

B1

|u(x)|q
I0(x)

A1,R(x)1+q/p′ dx
)p/q

. (2.8)

Now we introduce function spaces and relating norms below.

Definition 2.2 Let 1 ≤ p ≤ q < ∞, γ ∈ R and R ≥ 1 . Let Ω be a domain of Rn and let
u : Ω → R .

1. For w : Ω → R satisfying w ≥ 0 a.e. on Ω , we set

‖u‖Lq(Ω ;w) =
(

∫

Ω

|u(x)|qw(x)dx
)1/q

. (2.9)

2. Under the above notation we set

‖u‖Lq
γ(Ω) = ‖u‖Lq(Ω ;Iqγ), ‖∇u‖Lp

1+γ(Ω) = ‖|∇u|‖Lp
1+γ(Ω), (2.10)

‖u‖Lq
p;R(Ω) = ‖u‖

Lq(Ω ;I0/A
1+q/p′

1,R )
.

3. Lq
γ(Ω) = {u : Ω → R | ‖u‖Lq

γ(Ω) <∞}, Lq
p;R(Ω) = {u : Ω → R | ‖u‖Lq

p;R(Ω) <∞}.

4. By W 1,p
γ,0 (Ω) we denote the completion of C∞

c (Ω \{0}) with respect to the norm

u 7→ ‖∇u‖Lp
1+γ(Ω) .
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5. Let Ω be a radially symmetric domain. For any function space V (Ω) on Ω, we set

V (Ω)rad = {u ∈ V (Ω) | u is radial}. (2.11)

Here we remark the following fundamental properties concerning with the density of smooth
functions. ( The proof is given in §8. )

Proposition 2.1 Assume that 1 < p <∞ and γ ∈ R .

1. If γ > 0 , then C∞
c (Rn) ⊂W 1,p

γ,0 (Rn) and C∞
c (Rn) is densely contained in W 1,p

γ,0 (Rn).

2. If γ < 0 , then C∞
c (Rn) ⊂/ W 1,p

γ,0 (Rn).

3. If γ = 0 , then C∞
c (B1) ⊂W 1,p

0,0 (B1) and C∞
c (B1) is densely contained in W 1,p

0,0 (B1).

Then the CKN-type inequalities are simply represented as follows:

If γ 6= 0, then
‖∇u‖ p

Lp
1+γ(Rn)

≥ S‖u‖ p
Lq

γ(Rn)
for u ∈W 1,p

γ,0 (Rn). (2.12)

If γ = 0 , then for R > 1

‖∇u‖ p
Lp

1(B1)
≥ C‖u‖ p

Lq
p;R(B1)

for u ∈W 1,p
0,0 (B1). (2.13)

Remark 2.1 1. When p = q holds, these two inequalities are called the Hardy-Sobolev in-
equalities. It is known that the best constants S of (2.12) and C of (2.13) coincide with the
ones restricted in the radial functional spaces W 1,p

γ,0 (Rn)rad and W 1,p
0,0 (B1)rad respectively,

and hence we have

S = Sp,p;γ = γ p, C = Cp,p;R =
1

(p′)p
. (2.14)

2. It follows from the Hardy-Sobolev inequalities that if γ > 0, then the space W 1,p
γ,0 (Rn)

coincides with the completion of C∞
c (Rn \{0}) with respect to the norm

‖u‖
W 1,p

γ (Rn)
= ‖∇u‖Lp

1+γ(Rn) + ‖u‖Lp
γ(Rn) (2.15)

and if γ = 0, then the space W 1,p
0,0 (B1) coincides with the completion of C∞

c (B1\{0}) with
respect to the norm

‖u‖
W 1,p

0;R(B1)
= ‖∇u‖Lp

1(B1)
+ ‖u‖Lp

p;R(B1)
with R > 1. (2.16)

Here we note that if γ = 0, then the weight function in the right-hand side of the CKN-type
inequality (2.13) is sharp in the following sense. ( The proof is given in §8. )

Proposition 2.2 Let 1 < p ≤ q < ∞, τp,q ≤ 1/n and R > 1 . Assume that w ∈ C(B1\{0})
satisfies

w(x) ≥ 0 for x ∈ B1\{0},
A1,R(x)1+q/p′

I0(x)
w(x) → ∞ as x→ 0,

then we have

inf

{(

‖∇u‖Lp
1(B1)

‖u‖
Lq(B1;w)

)p
∣

∣

∣ u ∈ W 1,p
0,0 (B1)\{0}

}

= 0.

In the subsequent we study the validity of the CKN-type inequalities and the behavior of the
best constants precisely when the parameters enjoy 1 < p ≤ q <∞, τp,q ≤ 1/n , and in addition
the cases that γ < 0 and R = 1 are considered. Moreover when γ = 0, we also establish the
CKN-type inequality in the exterior domain Rn \B1 such that

‖∇u‖ p

Lp
1(Rn\B1)

≥ C‖u‖ p

Lq
p;R(Rn\B1)

for u ∈W 1,p
0,0 (Rn \B1). (2.17)
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2.2 Main results in the noncritical case

In this subsection we describe the results when γ 6= 0.

Definition 2.3 Let 1 ≤ p ≤ q <∞ and γ 6= 0 .

1.

Ep,q;γ [u] =

(

‖∇u‖
Lp

1+γ(Rn)

‖u‖
Lq

γ(Rn)

)p

for u ∈W 1,p
γ,0 (Rn)\{0}. (2.18)

2.

Sp,q;γ = inf{Ep,q;γ [u] | u ∈W 1,p
γ,0 (Rn)\{0}} (2.19)

= inf{Ep,q;γ [u] | u ∈ C∞
c (Rn \{0})\{0}},

Sp,q;γ
rad = inf{Ep,q;γ [u] | u ∈W 1,p

γ,0 (Rn)rad\{0}} (2.20)

= inf{Ep,q;γ [u] | u ∈ C∞
c (Rn \{0})rad\{0}}.

First of all we state the CKN-type inequalities in the noncritical case.

Theorem 2.1 Assume that 1 < p ≤ q < ∞, τp,q ≤ 1/n and γ 6= 0 . Then, we have Sp,q;γ
rad ≥

Sp,q;γ > 0 and the following inequalities.

‖∇u‖ p
Lp

1+γ(Rn)
≥ Sp,q;γ‖u‖ p

Lq
γ(Rn)

for u ∈W 1,p
γ,0 (Rn), (2.21)

‖∇u‖ p
Lp

1+γ(Rn)
≥ Sp,q;γ

rad ‖u‖ p
Lq

γ(Rn)
for u ∈W 1,p

γ,0 (Rn)rad. (2.22)

This follows from the assertions 1-4 of Theorem 2.2. Let us introduce more notations.

Definition 2.4 For 1 < p ≤ q <∞ , we set

γp,q =
n− 1

1 + q/p′
, Sp,q =















(p′)p−2+p/qqp/q

(

ωn

τp,q

B

(

1

pτp,q

,
1

p′τp,q

))1−p/q

if p < q,

1 if p = q

(2.23)

Here B(·, ·) is a beta function.

Remark 2.2 1. It holds that

B

(

1

pτ
,

1

p′τ

)τ

→
1

p1/p(p′)1/p′ as τ → 0. (2.24)

In fact for 0 < τ < min{1/p,1/p′}, we see that

t1/p−τ (1− t)1/p′−τ ≤
1

(1− 2τ)1−2τ

(

1

p
− τ

)1/p−τ (
1

p′
− τ

)1/p′−τ

for 0 ≤ t ≤ 1, (2.25)

hence we have

B

(

1

pτ
,

1

p′τ

)τ

=

(∫ 1

0

(t1/p−τ (1− t)1/p′−τ )1/τdt

)τ

≤
1

(1− 2τ)1−2τ

(

1

p
− τ

)1/p−τ (
1

p′
− τ

)1/p′−τ

→
1

p1/p(p′)1/p′ as τ → 0,
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B

(

1

pτ
,

1

p′τ

)τ

≥

(∫ 1

0

(t1/p(1− t)1/p′

)1/τdt

)τ

→ max
0≤ t≤1

t1/p(1− t)1/p′

=
1

p1/p(p′)1/p′ as τ → 0.

2. Since τp,q → 0 as q → p , it follows from the argument of 1 that we have

Sp,q =
(p′)p−1−pτp,q

(1/p− τp,q)
1−pτp,q

(

ωn

τp,q

B

(

1

pτp,q

,
1

p′τp,q

))pτp,q

→ 1 = Sp,p as q → p. (2.26)

Under these preparation we can compute the best constant Sp,q;γ
rad of the CKN-type inequality in

the radial function space to obtain the exact representation. In the next we describe important
relations among the best constants Sp,q;γ

rad and Sp,q;γ .

Theorem 2.2 Assume that 1 < p ≤ q <∞ and τp,q ≤ 1/n . Then it holds that:

1. Sp,q;γ = Sp,q;−γ, Sp,q;γ
rad = Sp,q;−γ

rad for γ 6= 0.

2. Sp,q;γ
rad = Sp,q|γ |

p(1−τp,q) for γ 6= 0.

3. Sp,q;γ = Sp,q;γ
rad = Sp,q|γ |

p(1−τp,q) for 0 < |γ | ≤ γp,q.

4.
∣

∣

∣

γ

γ

∣

∣

∣

p(1−τp,q)

Sp,q;γ ≤ Sp,q;γ ≤
∣

∣

∣

γ

γ

∣

∣

∣

pτp,q

Sp,q;γ for 0 < |γ | ≤ |γ |.

5.
1

(2 − γp,p∗/γ)p
Sp,p∗;γp,p∗ ≤ Sp,p∗;γ ≤ Sp,p∗;γp,p∗ = Srad

p,p∗;γp,p∗ for |γ | ≥ γp,p∗ =
n− p

p
if p < n.

6. S2,2∗;γ = S2,2∗;γ2,2∗ = Srad
2,2∗;γ2,2∗ for |γ | ≥ γ2,2∗ =

n− 2

2
if p = 2 < n.

7. Sp,q;γ ≥ (|γ |pτq,q(Sp,q ;γ)τp,q)1/τp,q for γ 6= 0.

In particular,

Sp,q;γ ≥ |γ |p(1−nτp,q)(Sp,p∗;γ)nτp,q for γ 6= 0 if p < n.

Remark 2.3 1. The assertions1-4 are proved in §§3 and 4, and the assertions 5-7 are es-
tablised in §6.

2. It follows from Remark (2.1) and Proposition 3.1 that we have

Sp,p;γ = Sp,p;γ
rad = |γ |p for γ 6= 0. (2.27)

3. For 1 < p < n, the number;

Sp,p∗;γp,p∗ = Srad
p,p∗;γp,p∗ = n

(

n− p

p− 1

)p−1(
ωn

p′
B

(

n

p
,
n

p′

))p/n

(2.28)

coincides with the classical best constant of the Sobolev inequality;

‖∇u‖ p
Lp(Rn)

= ‖∇u‖ p
Lp

1+γp,p∗
(Rn)

≥ S‖u‖ p

Lp∗
γp,p∗

(Rn)
= S‖u‖ p

Lp∗(Rn)
for u ∈W 1,p

γ
p,p∗

,0(R
n).

In particular for n ≥ 3 and p = 2, we see that

S2,2∗;γ2,2∗ = Srad
2,2∗;γ2,2∗ = n(n− 2)

(ωn

2
B
(n

2
,
n

2

))2/n

= n(n− 2)

(

Γ(n/2)

Γ(n)

)2/n

π. (2.29)

Here, Γ(·) is a gamma function.
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Moreover the best constant Sp,q;γ is a continuous function of the parameters q and γ. Namely
we have the following that is established in §6.

Theorem 2.3 For 1 < p <∞, the maps

([p, p∗]\{∞})×(R\{0}) ∋ (q ; γ) 7→ Sp,q;γ , Sp,q;γ
rad ∈ R (2.30)

are continuous. In particular, it holds that

Sp,q;γ → Sp,p;γ = |γ |p as q → p. (2.31)

In the next we describe results on the existence and non-existence of extremal functions
which attain the best constants of the CKN-type inequalities. Shortly speaking, the best
constant Sp,q;γ is attained by some element in W 1,p

γ,0 (Rn) \ {0} provided that p < q < p∗

is satisfied. On the other hand if q = p, then the corresponding CKN-type inequalities are
reduced to the Hardy-Sobolev inequalities and therefore no extremal function exists. When
q = p∗ holds, then Sp,p∗;γ is attained provided that 0 < |γ | ≤ (n− p)/p = γp,p∗ , but in the

case that |γ | > (n− p)/p, it is unkown in general except for the case p = 2, whether Sp,p∗;γ is
achieved by some element or not. If p = 2 is assumed, then it is shown that no extremal exists
provided that |γ | > (n− 2)/2 holds.

Theorem 2.4 Assum that 1 < p ≤ q <∞, τp,q ≤ 1/n and γ 6= 0 . Then we have the followings:

1. If p < q , then Sp,q;γ
rad is achieved in W 1,p

γ,0 (Rn)rad\{0}.

2. If p < q < p∗ , then Sp,q;γ is achieved in W 1,p
γ,0 (Rn)\{0}.

3. If p < n, q = p∗ and |γ | ≤ (n− p)/p = γp,p∗ , then Sp,p∗;γ = Sp,p∗;γ
rad is achieved in

W 1,p
γ,0 (Rn)rad\{0}.

4. If p = 2 < n, q = 2∗ = 2n/(n− 2) and |γ | > (n− 2)/2 = γ2,2∗ , then S2,2∗;γ = Srad
2,2∗;γ2,2∗

holds and S2,2∗;γ is not achieved in W 1,2
γ,0 (Rn)\{0}.

Remark 2.4 The assertions 1 and 3 is proved in §4. On the other hand the assertions 2 and
4 are established in §7 and §8 respectively.

Proposition 2.3 If 1 < p = q < ∞, γ 6= 0 , then Sp,p;γ and Sp,p;γ
rad are not achieved in

W 1,p
γ,0 (Rn)\{0} and W 1,p

γ,0 (Rn)rad\{0} respectively.

This is proved in §8.

2.3 Main results in the critical case

In this subsection we state the results in the case of γ = 0 . Let us begin with defining various
functionals and best constants.

Definition 2.5 Let 1 ≤ p ≤ q <∞ and R ≥ 1 .

1.

F p,q;R[u] =

(

‖∇u‖
Lp

1(B1)

‖u‖
Lq

p;R(B1)

)p

for u ∈ W 1,p
0,0 (B1)\{0}. (2.32)
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2.

Cp,q;R = inf{F p,q;R[u] | u ∈ W 1,p
0,0 (B1)\{0}} (2.33)

= inf{F p,q;R[u] | u ∈ C∞
c (B1\{0})\{0}},

Cp,q;R
rad = inf{F p,q;R[u] | u ∈ W 1,p

0,0 (B1)rad\{0}} (2.34)

= inf{F p,q;R[u] | u ∈ C∞
c (B1\{0})rad\{0}}.

3.

F
p,q;R

[u] =





‖∇u‖
Lp

1(Rn\B1)

‖u‖
Lq

p;R(Rn\B1)





p

for u ∈W 1,p
0,0 (Rn \B1)\{0}. (2.35)

4.

C
p,q;R

= inf{F
p,q;R

[u] | u ∈ W 1,p
0,0 (Rn \B1)\{0}} (2.36)

= inf{F
p,q;R

[u] | u ∈ C∞
c (Rn \B1)\{0}},

C
p,q;R

rad = inf{F
p,q;R

[u] | u ∈ W 1,p
0,0 (Rn \B1)rad\{0}} (2.37)

= inf{F
p,q;R

[u] | u ∈ C∞
c (Rn \B1)rad\{0}}.

When R > 1, we have the next.

Theorem 2.5 Assume that 1 < p ≤ q < ∞, τp,q ≤ 1/n and R > 1 . Then, we have Cp,q;R
rad ≥

Cp,q;R > 0, C
p,q;R

rad ≥ C
p,q;R

> 0 and the following inequalities:

‖∇u‖ p
Lp

1(B1)
≥ Cp,q;R‖u‖ p

Lq
p;R(B1)

for u ∈W 1,p
0,0 (B1), (2.38)

‖∇u‖ p
Lp

1(B1)
≥ Cp,q;R

rad ‖u‖ p
Lq

p;R(B1)
for u ∈W 1,p

0,0 (B1)rad, (2.39)

‖∇u‖ p

Lp
1(Rn\B1)

≥ C
p,q;R

‖u‖ p

Lq
p;R(Rn\B1)

for u ∈W 1,p
0,0 (Rn \B1), (2.40)

‖∇u‖ p

Lp
1(Rn\B1)

≥ C
p,q;R

rad ‖u‖ p

Lq
p;R(Rn\B1)

for u ∈W 1,p
0,0 (Rn \B1)rad. (2.41)

Remark 2.5 If p ≥ n, these imbedding inequalities follow from the assertions 3 and 4 of
Theorem 2.7. On the other hand if 1 < p < n, then these are established in §5 by using the
so-called nonlinear potential theory.

When R = 1 holds, we have the next result which is established in §4 and partly in §8.

Theorem 2.6 Assume that 1 < p ≤ q < ∞, τp,q ≤ 1/n and R = 1 . Then we have the
followings:

1. If n = 1, then Cp,q;1
rad ≥ Cp,q;1 > 0 and C

p,q;1

rad ≥ C
p,q;1

> 0 hold. Further the inequalities
in Theorem 2.5 are valid with R = 1 .

2. If n ≥ 2, then Cp,q;1
rad > 0 and C

p,q;1

rad > 0 hold. Further the inequalities in Theorem 2.5

are valid with R = 1 , and Cp,q;1 = C
p,q;1

= 0 holds.

Now we introduce more notations.
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Definition 2.6 For 1 < p ≤ q <∞ we set

Rp,q = exp
1 + q/p′

(n− 1)p′
if n ≥ 2, Cp,q =

Sp,q

(p′)p(1−τp,q)
. (2.42)

By virtue of these we can represent in a concrete way Cp,q;R
rad and C

p,q;R

rad which are the best
constants in the radial function spaces.

Theorem 2.7 Assume that 1 < p ≤ q <∞ and τp,q ≤ 1/n . Then we have the followings:

1. Cp,q;R = C
p,q;R

, Cp,q;R
rad = C

p,q;R

rad for R ≥ 1.

2. Cp,q;R
rad = C

p,q;R

rad = Cp,q for R ≥ 1.

3. Cp,q;R = Cp,q;R
rad = C

p,q;R
= C

p,q;R

rad = Cp,q for R ≥

{

1 if n = 1,

Rp,q if p ≥ n ≥ 2.

4. Cp,q;R = C
p,q;R

≤ Cp,q;R = C
p,q;R

≤

(

logR

logR

)p

Cp,q;R =

(

logR

logR

)p

C
p,q;R

for 1 < R ≤ R.

Remark 2.6 1. The assertions 1 and 4 are established in §3 and the rests are done in §4.

2. Cp,q →
1

(p′)p
= Cp,p as q → p. Namely we have the next which is established in §6.

3. From Remark 2.1 and Proposition 3.1 we obtain

Cp,p;R = Cp,p;R
rad = C

p,p;R
= C

p,p;R

rad =
1

(p′)p
= Cp,p for R > 1. (2.43)

Further the best constant Cp,q;R is a continuous function of the parameters q,R.

Theorem 2.8 1. For 1 < p <∞, the maps

([p, p∗]\{∞})×(1,∞) ∋ (q ;R) 7→ Cp,q;R = C
p,q;R

, Cp,q;R
rad = C

p,q;R

rad ∈ R (2.44)

are continuous.

2. For n = 1 and 1 < p <∞, the maps

[p,∞)×[1,∞) ∋ (q ;R) 7→ Cp,q;R = Cp,q;R
rad = C

p,q;R
= C

p,q;R

rad ∈ R (2.45)

are continuous.

On the existence of extremal functions we have the next theorem which is proved in §4. When

n ≥ 2, p < q and R > 1 hold, we do not know so far if Cp,q;R and C
p,q;R

are achieved by any
extremals or not.

Theorem 2.9 Assume that 1 < p < q < ∞, τp,q ≤ 1/n and R ≥ 1 . Then we have the
followings.

1. For R = 1, Cp,q;1
rad and C

p,q;1

rad are achieved in W 1,p
0,0 (B1)rad\{0} and W 1,p

0,0 (Rn \B1)rad\{0}
respectively.
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2. For n = 1, R = 1, Cp,q;1 = Cp,q;1
rad and C

p,q;1
= C

p,q;1

rad are achieved in W 1,p
0,0 ((−1,1))rad\{0}

and W 1,p
0,0 (R\[−1,1])rad\{0} respectively.

3. For R > 1, Cp,q;R
rad and C

p,q;R

rad are not achieved in W 1,p
0,0 (B1)rad\{0} and W 1,p

0,0 (Rn \B1)rad\{0}
respectively.

We also have the next which will be proved in §8.2 together with the assertion 4 of Theorem
2.4.

Proposition 2.4 Let 1 < p = q < ∞ and τp,q ≤ 1/n . If R > 1 is sufficiently large,

then Cp,p;R, Cp,p;R
rad , C

p,p;R
and C

p,p;R

rad are not achieved in W 1,p
0,0 (B1)\{0}, W

1,p
0,0 (B1)rad\{0},

W 1,p
0,0 (Rn \B1)\{0} and W 1,p

0,0 (Rn \B1)rad\{0} respectively.

3 Change of variables and the best constants

Here we see the relations among the best constants by the method of change of variables.

Definition 3.1 For β > 0 and R ≥ 1 , we set the followings:

1. Y(y) =
y

|y|2
for y ∈ Rn \{0}.

2. Yβ(y) = |y|β−1y for y ∈ Rn.

3. ỸR(y) = R exp
(

−
1

|y|

) y

|y|
for y ∈ Rn.

Remark 3.1 For β > 0 and R ≥ 1 , we have the inverse maps as follows:

1. Y
−1

(x) = Y(x) =
x

|x|2
for x ∈ Rn \{0}.

2. Y −1
β (x) = Y1/β(x) = |x|1/β−1x for x ∈ Rn.

3. Ỹ −1
R (x) =

1

log(R/|x|)

x

|x|
for x ∈ BR .

In the next we define various operators which are fundamental in the present paper.

Definition 3.2 Let β > 0 and R ≥ 1 . Let Ω be a domain of Rn and u : Ω → R .

1. Tu(y) = u(Y(y)) = u

(

y

|y|2

)

for y ∈ Y
−1

(Ω \{0}).

2. Tβu(y) = u(Yβ(y)) = u(|y|β−1y) for y ∈ Y −1
1/β (Ω).

3. For Ω ⊂ BR ,

T̃Ru(y) = u(ỸR(y)) = u

(

R exp

(

−
1

|y|

)

y

|y|

)

for y ∈ Ỹ −1
R (Ω).

We begin with studying the operator T . By a direct calculation we have

det(δij + axixj)1≤i,j≤n = 1 + a|x|2 for x ∈ Rn, a ∈ R. (3.1)

Since the Jacobi determinant of the change of variables defined by x = Y(y) = y/|y|2 is

detDY(y) = det
( 1

|y|2

(

δij − 2
yiyj
|y|2

))

1≤i,j≤n
= −

1

|y|2n
, (3.2)

we have the next.
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Lemma 3.1 Assume that 1 ≤ p ≤ q <∞, γ 6= 0 and R ≥ 1 . Then we have the followings:

1. ‖u‖Lq
γ(Rn) = ‖Tu‖Lq

−γ(Rn) for u ∈ Lq
γ(Rn),

‖∇u‖Lp
1+γ(Rn) = ‖∇[Tu]‖Lp

1−γ(Rn) for u ∈ W 1,p
γ,0 (Rn).

2. ‖u‖Lq
p;R(B1)

= ‖Tu‖
Lq

p;R(Rn\B1)
for u ∈ Lq

p;R(B1),

‖∇u‖Lp
1(B1)

= ‖∇[Tu]‖
Lp

1(Rn\B1)
for u ∈W 1,p

0,0 (B1).

For the proof of this, it suffice to note that for x = y
|y|2 we have

∣

∣

∣

∣

(∇xu)

(

y

|y|2

)∣

∣

∣

∣

2

= |y|4
∣

∣∇y(Tu(y))
∣

∣

2
, for y ∈ R \ {0}.

As a direct consequence of this we have the next proposition which proves the assertion 1 of
Theorem 2.2 and the assertion 1 of Theorem 2.7. Further we see that in the proofs of Theorems
2.1–2.4, it suffices to assume that γ > 0, and it suffices to establish the proofs of Theorems
2.5–2.9 in a unit ball B1 instead of a general domain.

Proposition 3.1 Assume that 1 ≤ p ≤ q <∞, γ 6= 0 and R ≥ 1 . Then we have the followings:

1. Sp,q;γ = Sp,q;−γ, Sp,q;γ
rad = Sp,q;−γ

rad .

2. Cp,q;R = C
p,q;R

, Cp,q;R
rad = C

p,q;R

rad .

Proof: From Lemma 3.1 we see that

Ep,q;γ [u] = Ep,q;−γ [Tu] for u ∈ W 1,p
γ,0 (Rn)\{0}, (3.3)

F p,q;R[u] = F
p,q;R

[Tu] for u ∈ W 1,p
0,0 (B1)\{0}, (3.4)

hence the assertions follow. �

In the next we consider the operators Tβ, T̃R. By ∆
Sn−1 we denote the Laplace-Beltrami

operator on a unit sphere Sn−1. Then a gradient operator Λ on Sn−1 is defined by
∫

Sn−1
(−∆

Sn−1u)vdS =

∫

Sn−1
Λu·ΛvdS for u, v ∈ C2(Sn−1). (3.5)

Here we note that

∆u =
1

rn−1

∂

∂r

[

rn−1 ∂u

∂r

]

+
1

r2
∆

Sn−1u, |∇u|2 =
∣

∣

∣

∂u

∂r

∣

∣

∣

2

+
1

r2
|Λu|2, (3.6)

where

r(x) = |x|,
∂u

∂r
(x) =

x

|x|
·∇u(x). (3.7)

The Jacobi determinant of the change of variables x = Yβ(y) = |y|β−1y is given by

detDYβ(y) = det
(

|y|β−1
(

δij + (β − 1)
yiyj
|y|2

))

1≤i,j≤n
= β |y|n(β−1). (3.8)

Hence by calculations we have the next lemma.

Lemma 3.2 Assume that 1 ≤ p ≤ q < ∞, γ > 0, R ≥ 1 and β > 0 . Then we have the
followings:
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1. ‖u‖Lq
γ(Rn) = β1/q‖Tβu‖Lq

βγ(Rn) for u ∈ Lq
γ(Rn),

‖∇u‖Lp
1+γ(Rn) =

1

β1/p′

∥

∥

∥

(∣

∣

∣

∂

∂r
[Tβu]

∣

∣

∣

2

+
β2

r2
|Λ[Tβu]|

2
)1/2∥

∥

∥

Lp
1+βγ(Rn)

for u ∈ W 1,p
γ,0 (Rn).

2. ‖u‖Lq
p;R(B1)

=
1

β1/p′ ‖Tβu‖Lq

p;R1/β(B1)
for u ∈ Lq

p;R(B1),

‖∇u‖Lp
1(B1)

=
1

β1/p′

∥

∥

∥

(∣

∣

∣

∂

∂r
[Tβu]

∣

∣

∣

2

+
β2

r2
|Λ[Tβu]|

2
)1/2∥

∥

∥

Lp
1(B1)

for u ∈W 1,p
0,0 (B1).

As a consequence we have the next proposition which assures the assertion 4 of Theorem 2.2
and the assertion 4 of Theorem 2.7 as well.

Proposition 3.2 Assume that 1 ≤ p ≤ q <∞ . Then we have the followings:

1.
(γ

γ

)p(1−τp,q)

Sp,q;γ ≤ Sp,q;γ ≤
(γ

γ

)pτp,q

Sp,q;γ, Sp,q;γ
rad =

(γ

γ

)p(1−τp,q)

Sp,q;γ
rad for 0 < γ ≤ γ.

In particular, there is a constant Ŝp,q ≥ 0 such that we have

Sp,q;γ
rad = Ŝp,qγ

p(1−τp,q) for γ > 0.

2. Cp,q;R ≤ Cp,q;R ≤
(logR

logR

)p

Cp,q;R, Cp,q;R
rad = Cp,q;R

rad for 1 < R ≤ R.

In particular, there is a constant Ĉp,q ≥ 0 such that we have

Cp,q;R
rad = Ĉp,q for R > 1.

Proof: Let us note that by Remark 3.1, u = T 1
β
v holds for v = Tβu. Then it follows from the

assertion 1 of Lemma 3.2 with β =
γ

γ
that we have

(γ

γ

)p(1−τp,q)

Ep,q;γ[Tγ/γu] ≤ Ep,q;γ [u] ≤
(γ

γ

)pτp,q

Ep,q;γ[Tγ/γu] for u ∈ W 1,p
γ,0 (Rn)\{0},

Ep,q;γ [u] =
(γ

γ

)p(1−τp,q)

Ep,q;γ[Tγ/γu] for u ∈ W 1,p
γ,0 (Rn)rad\{0}.

From the assertion 2 with β =
logR

logR
, we have

F p,q;R[T
logR/logR

u] ≤ F p,q;R[u] ≤
(logR

logR

)p

F p,q;R[T
logR/logR

u] for u ∈W 1,p
0,0 (B1)\{0},

F p,q;R[u] = F p,q;R[T
logR/logR

u] for u ∈W 1,p
0,0 (B1)rad\{0}.

Thus the desired assertions follow. �

Further from Proposition 3.2 we have the next one.

Proposition 3.3 Assume that 1 ≤ p ≤ q <∞, γ > 0 and R > 1 . Then we have the followings:

1. If Sp,q;γ = Sp,q;γ
rad holds, then

Sp,q;γ = Sp,q;γ
rad = Ŝp,qγ

p(1−τp,q) for 0 < γ ≤ γ.
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2. If Cp,q;R = C
p,q;R
rad holds, then

Cp,q;R = Cp,q;R
rad = Ĉp,q for R ≥ R.

Lastly we have the next lemma, noting that the Jacobi determinant of the change of variables
x = ỸR(y) = R exp(−1/|y|)y/|y| is given by

detDỸR(y) = det
(R

|y|
exp

(

−
1

|y|

)(

δij +
( 1

|y|
− 1
)yiyj
|y|2

))

1≤i,j≤n
(3.9)

= Rn exp
(

−
n

|y|

) 1

|y|n+1
.

Lemma 3.3 Assume that 1 ≤ p ≤ q <∞, R ≥ 1. Then we have the followings:

‖u‖Lq
p;R(B1)

= ‖ T̃Ru‖Lq

1/p′(B1/logR
) for u ∈ Lq

p;R(B1),

‖∇u‖Lp
1(B1)

=
∥

∥

∥

(∣

∣

∣

∂

∂r
[ T̃Ru]

∣

∣

∣

2

+
1

r4
|Λ[ T̃Ru]|

2
)1/2∥

∥

∥

Lp

1+1/p′(B1/logR
)

for u ∈W 1,p
0,0 (B1).

Conbining this with the assertion 2 of Proposition 3.2 we have the next.

Proposition 3.4 For 1 ≤ p ≤ q <∞ we have

Cp,q;R
rad = S

p,q;1/p′

rad =
Ŝp,q

(p′)p(1−τp,q)
for R ≥ 1. (3.10)

Proof: It follows from Lemma 3.3 that we have

F p,q;R[u] = Ep,q;1/p′

[T̃Ru] for u ∈ W 1,p
0,0 (B1)rad\{0}. (3.11)

Here we note that the operator T̃Ru is an extension of TRu to the whole Rn by setting T̃Ru =

0 on Rn \B1/logR . Then we immediately have Cp,q;1
rad = S

p,q;1/p′

rad . Form the assertion 2 of
Proposition 3.2 we also have

Ĉp,q = inf
R>1

Cp,q;R
rad = inf

R>1
inf{F p,q;R[u] | u ∈ C∞

c (B1\{0})rad\{0}}

= inf
R>1

inf{Ep,q;1/p′

[T̃Ru] | u ∈ C∞
c (B1\{0})rad\{0}}

= inf{Ep,q;1/p′

[v] | v ∈ C∞
c (Rn \{0})rad\{0}} = S

p,q;1/p′

rad .

The assertion follows from this together with the assertions 1 and 2 of Proposition 3.2. �

4 Relations among S
p,q ;γ
rad , C

p,q ;R
rad , Sp,q ;γ and C p,q ;R

In this section we exactly determine the best constant Sp,q;γ
rad , Cp,q;R

rad in the radial function

spaces, and we study when Sp,q;γ
rad and Cp,q;R

rad should coincide with Sp,q;γ and Cp,q;R respectively.
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4.1 Variational problems in radially symmetric spaces

In this subsection we determine the best constants Sp,q;γ
rad and Cp,q;R

rad for p < q by solving
corresponding variational problems in radially symmetric spaces employing Talenti’s result in
an essential way. We begin with introducing variational problems and solutions.

Definition 4.1 Let 1 < p < q <∞ and a, b > 0 .

1. C1
p,q((0,∞)) =

{

u ∈ C1((0,∞))
∣

∣

∣

∫ ∞

0

|u′(r)|pr1/τp,q−1dr <∞, u(r) → 0 as r → ∞
}

.

2. J p,q[u] =

(

∫∞

0
|u′(r)|pr1/τp,q−1dr

)1/p

(

∫∞

0 |u(r)|q r1/τp,q−1dr
)1/q

for u ∈ C1
p,q((0,∞))\{0}.

3. ϕ0(x) = ϕ0(|x|) =
1

(a+ b|x|p′)p/(q−p)
for x ∈ Rn \{0}.

(In the subsequent ϕ0 is also regarded as a function of r = |x| on (0,∞). )

The next lemma is essentially due to G. Talenti.

Lemma 4.1 For 1 < p < q <∞ , we have

J p,q[u] ≥ J p,q[ϕ0] for u ∈ C1
p,q((0,∞))\{0}. (4.1)

Noting that
∫ ∞

0

tα−1

(1 + t)β
dt = B(α, β − α) for 0 < α < β, (4.2)

we have
∫ ∞

0

|ϕ0(r)|
q r1/τp,q−1dr =

1

(a1/pb1/p′)1/τp,q

1

p′
B

(

1

pτp,q

,
1

p′τp,q

)

, (4.3)

∫ ∞

0

|ϕ ′
0(r)|

pr1/τp,q−1dr =
1

(a1/pb1/p′)p/(qτp,q)

(p′)p−1

(qτp,q)
p
B

(

1

pτp,q

− 1,
1

p′τp,q

+ 1

)

(4.4)

=
1

(a1/pb1/p′)p/(qτp,q)

(p′)p−2

qp−1τ p
p,q

B

(

1

pτp,q

,
1

p′τp,q

)

.

Hence we have

J p,q[ϕ0] =
(p′)1/p′−τp,q

q1/p′τp,q

B

(

1

pτp,q

,
1

p′τp,q

)τp,q

. (4.5)

First of all, for γ > 0, we have the next proposition and then the assertion 1 of Theorem 2.4
follows. Moreover combining it with Proposition 3.2, the assertion 2 of Theorem 2.2 follows.

Proposition 4.1 Assume that 1 < p < q <∞ and γ > 0 . Then we have the followings:

1. The infimum of Sp,q;γ
rad in W 1,p

γ,0 (Rn)rad\{0} is attained by up,q;γ = Tqτp,qγϕ0 .

2. In the assertion 1 of Proposoition 3.2,

Ŝp,q = (ωn
τp,q(qτp,q)

1−τp,qJ p,q[ϕ0])
p = Sp,q.
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Proof: 1. It follows from Lemma 3.2 that we have for u ∈ C∞
c (Rn \{0})rad,

‖u‖Lq
γ(Rn) =

1

(qτp,qγ)
1/q

‖T1/(qτp,qγ)u‖Lq
1/(qτp,q)

(Rn), (4.6)

‖∇u‖Lp
1+γ(Rn) = (qτp,qγ)

1/p′

‖∇[T1/(qτp,qγ)u]‖Lp
1+1/(qτp,q)

(Rn). (4.7)

Then we have

Ep,q;γ [u] = (ωn
τp,q(qτp,q)

1−τp,qJ p,q[T1/(qτp,qγ)u])
pγ p(1−τp,q) for u ∈ C∞

c (Rn \{0})rad\{0},

hence the assertion follows from Lemma 4.1.
2. This is clear from the previous result 1, (2.23) and the assertion 1 of Proposition 3.2. �

Let us proceed to the case γ = 0. In this case we have the next proposition, from which
Theorem 2.6 and the assertions 1 and 3 of Theorem 2.9 follow. Moreover combining it with the
assertion 2 of Proposition 3.2, the assertion 2 of Theorem 2.7 follows.

Proposition 4.2 Assume that 1 < p < q <∞, γ = 0 and R ≥ 1 . Then we have the followings:

1. If R = 1, the infimum of Cp,q;1
rad in W 1,p

0,0 (B1)rad\{0} is attained by ũp,q;1 = T̃−1
1 [Tqτp,q/p′ϕ0].

2. In the assertion of Proposition 3.2, it holds that

Ĉp,q =
(

ωn
τp,q

(qτp,q

p′

)1−τp,q

J p,q[ϕ0]
)p

= Cp,q

3. If R > 1, then the infimum of Cp,q;R
rad is not attained in W 1,p

0,0 (B1)rad\{0}.

Proof: 1. From Lemmas 3.2 and 3.3, we have for u ∈ C∞
c (B1\{0})rad

‖u‖Lq
p;R(B1)

= ‖ T̃1u‖Lq

1/p′(R
n) =

( p′

qτp,q

)1/q

‖Tp′/(qτp,q)
[ T̃1u]‖Lq

1/(qτp,q)
(Rn), (4.8)

‖∇u‖Lp
1(B1)

= ‖∇[ T̃1u]‖Lp

1+1/p′(R
n) =

(qτp,q

p′

)1/p′

‖∇[Tp′/(qτp,q)
[ T̃1u]]‖Lp

1+1/(qτp,q)
(Rn), (4.9)

and we have

F p,q;1[u] =
(

ωn
τp,q

(qτp,q

p′

)1−τp,q

J p,q[Tp′/(qτp,q)
[ T̃1u]]

)p

for u ∈ C∞
c (B1\{0})rad\{0}.

Hence from Lemma 4.1 the desired assertion follows.

2. This is clear from the assertion 2 of Propositions 3.2 and Proposition 3.4.

3. If u ∈W 1,p
0,0 (B1)rad\{0} for R > 1 achieves the infimum of Cp,q;R

rad , then from the previous
result we have

F p,q;R[u] = Cp,q;R
rad = Cp,q.

But we have F p,q;R[u] > F p,q;R′

[u] ≥ Cp,q for any 1 < R′ < R, and this is a contradiction. �

4.2 A generalized rearrangement of functions

We introduce a rearrangement of functions with respect to general weight functions instead of
Lebesugue measure to eatablish the validities of Sp,q;γ = Sp,q;γ

rad and Cp,q;R = Cp,q;R
rad under

additional conditions. First we begin with studying a theory of generalized rearrangement of
functions.
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Definition 4.2 1. For f ∈ L1
loc(R

n) and f ≥ 0 a.e. on Rn, let us set for a (Lebesgue)
measurable set A

µf (A) =

∫

A

dµf =

∫

A

f(x)dx. (4.10)

Then µf is said to be the measure determined by f .

2. f is said to be admissible, if and only if f ∈ L1
loc(R

n) ∩ C(Rn \{0})rad, f ≥ 0 on Rn \{0}
and f is non-increasing with respect to r = |x|. For u : Rn → R and u ≥ 0 a.e. on
Rn , we set

µf [u](t) = µf ({u > t}) =

∫

{u>t}

f(x)dx for t ≥ 0, (4.11)

Rf [u](x) = sup{ t ≥ 0 | µf [u](t) > µf (B|x|)} for x ∈ Rn \{0}. (4.12)

Then µf [u] and Rf [u] are said to be the distribution function of u and the rearrangement
function of u with respect to f respectively.

Direct from this definition we see the next proposition.

Proposition 4.3 Let 1 ≤ p <∞ and assume that f is admissible. Then, for u : Rn → R and
u ≥ 0 a.e. on Rn , we have the followings:

1. µf [u](t) = µf [Rf [u]](t) for t ≥ 0.

2. Rf [up](x) = Rf [u](x)p for x ∈ Rn \{0}.

3. If u is radially symmetric and nonincreasing with respect to r = |x|, then

Rf [u](x) = u(x) for x ∈ Rn \{0}.

Further we have

Proposition 4.4 Let 1 ≤ p < ∞ and assume that f is admissible. Then, for u, v : Rn → R

and u, v ≥ 0 a.e. on Rn , we have the followings:

1.

∫

R
n
u(x)pf(x)dx =

∫

R
n
Rf [u](x)pf(x)dx.

2.

∫

R
n
u(x)v(x)f(x)dx ≤

∫

R
n
Rf [u](x)Rf [v](x)f(x)dx.

Proof: 1. Since u(x)p = p

∫ ∞

0

χ
{u>t}

(x)tp−1dt for a.e. x ∈ Rn, we see that

∫

R
n
u(x)pf(x)dx = p

∫

R
n

(

∫ ∞

0

χ
{u>t}

(x)tp−1dt
)

f(x)dx (4.13)

= p

∫ ∞

0

(

∫

{u>t}

f(x)dx
)

tp−1dt = p

∫ ∞

0

µf [u](t)tp−1dt,

and in a similar way

∫

R
n
Rf [u](x)pf(x)dx = p

∫ ∞

0

µf [Rf [u]](t)tp−1dt. (4.14)

Then the assertion follows from the assertion 1 of Proposition 4.3.
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2. (a) First we show that

µf ({u > t} ∩ {v > s}) ≤ µf ({Rf [u] > t} ∩ {Rf [v] > s}) for s, t ≥ 0. (4.15)

If µf ({u > t}) ≤ µf ({v > s}) , then we have {Rf [u] > t} ⊂ {Rf [v] > s} . So it follows from the
assertion 1 of Proposition 4.3 that we have

µf ({u > t} ∩ {v > s}) ≤ µf ({u > t}) = µf ({Rf [u] > t}) = µf ({Rf [u] > t} ∩ {Rf [v] > s}).

If µf ({v > s}) ≤ µf ({u > t}) , then we see {Rf [v] > s} ⊂ {Rf [u] > t} , hence in a similar way
the desired assertion holds.

(b) In a similar way we see that
∫

R
n
u(x)v(x)f(x)dx =

∫

R
n

(

∫ ∞

0

χ
{u>t}

(x)dt
)(

∫ ∞

0

χ
{v >s}

(x)ds
)

f(x)dx (4.16)

=

∫ ∞

0

∫ ∞

0

(

∫

{u>t}∩{v >s}

f(x)dx
)

dsdt =

∫ ∞

0

∫ ∞

0

µf ({u > t} ∩ {v > s})dsdt

and
∫

R
n
Rf [u](x)Rf [v](x)f(x)dx =

∫ ∞

0

∫ ∞

0

µf ({Rf [u] > t} ∩ {Rf [v] > s})dsdt. (4.17)

The assertion therefore follows from (a). �

Lastly we show the next. Here by Hn−1 we denote the (n− 1)−dimensional Hausdorff
measure.

Proposition 4.5 Let 1 ≤ p < ∞ and assume that f is admissible. Then for u ∈ C∞
c (Rn) we

have the followings:

1.

∫

{Rf [|u|]= t}

dHn−1 ≤

∫

{|u|= t}

dHn−1.

2.

∫

R
n
|∇[Rf [|u|]](x)|p

1

f(x)p−1
dx ≤

∫

R
n
|∇u(x)|p

1

f(x)p−1
dx.

For the proof we prepare two lemmas below.

Lemma 4.2 (The coarea formula) Let 1 ≤ p <∞. For u ∈ C1
c (Rn) and g ∈ L1(Rn) ∩ L∞(Rn) ,

it holds that

∫

R
n
|∇u(x)|pg(x)dx =

∫ ∞

−∞

∫

{u=s}

|∇u(x)|p−1g(x)dHn−1(x)ds (4.18)

Remark 4.1 We note that the boundedness of g is not essential, in fact by a usual approxima-
tion argument we see that the formula remains valid if the left-hand side is finite. This is also
valid under the assumption that u is Lipschitz continuous and ∇u is integrable. For the proof
of this formula, see [Ma; Theorem in §1.2.4] for example.

In this formula, assuming that for an admissible f , g = f , u ∈ C∞
0 (Rn) is nonnegative and

Φ =

{

χ{u>t}(x)

|∇u|p f(x), if ∇u 6= 0,

0 if ∇u = 0,

we have

µf [u](t) = µf ({u > t} ∩ {∇u = 0}) +

∫ ∞

t

ds

∫

{u=s}

f(x)

|∇u|
dHn−1. (4.19)
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By Sard’s lemma the set of critical values of u ∈ C∞
0 (Rn) has a vanishing measure, hence we

have

−µf [u]′(t) =

∫

{u=t}

f(x)

|∇u|
dHn−1, for almost all t ∈ (0,∞). (4.20)

Now we replace u by its rearrangementRf [u] in (4.19). We recall that both u and Rf [u] share
the same distribution function, and Rf [u] is at least Lipschitz continuous as a rearrangement
of a smooth u. If we admit the property (4.21);

d

dt
µf ({Rf [u] > t} ∩ {∇Rf [u] = 0}) = 0, for almost all t ∈ (0,∞), (4.21)

then we see that

µf [u]′(t) = −

∫

{Rf [u]=t}
f dHn−1

|∇Rf [u]||{Rf [u]=t}
, for almost all t ∈ (0,∞). (4.22)

When f ≡ 1, the proof of (4.21) is seen in [CF;Lemma 2.4, Lemma 2.6]. By the same argument
it is easy to see the validity of the property (4.21) for a general f . Here we shall give a
brief explanation of (4.21) for the reader’s convenience. Since Rf [u] and f are radial, we may
assume that n = 1 without loss of the generality. Then the property (4.21) follows from the
next elementaly lemma due to [CF; p.12, lemma 2.4].

Lemma 4.3 Let f be an admissible weight function on R. Let I = (a, b) be a bounded open
interval of R and let v be a cmpactly supported and Lipschitz continuous function in I. Then
we have

1. There is a Borel set N in I with |N | = 0 such that v(s) is differentiable for all s ∈ I \N .
Moreover we have

|v({s ∈ I \N : v′(s) = 0})| = 0.

Here by v(A) with A ⊂ I we denote the set defined by v(A) = {t ∈ R : t = v(s), for some s ∈
A}.

2. The function h : R → [0,∞), defined as

h(t) = µf ({s ∈ I \N : v′(s) = 0} ∩ {s ∈ I : v(s) > t}) (4.23)

is non-increasing, right-continuous and h′(t) = 0 for a.e. t ∈ R.

A sketch of the proof: Let us set

|v′|((a, b)) = sup







M−1
∑

j=1

|v(sj+1) − v(sj)| : M ≥ 2, a < s1 < s2 · · · < sM < b







.

This is called the total variation of v in I = (a, b). Since v is compactly supported and Lipschitz

continuous, this quantity is finite. Then we see that |v(I)| ≤ |v′|((a, b)) =
∫ b

a
|v′(s)| ds. By a

similar argument we have

|v({s ∈ I \N : v′(s) = 0})| ≤ |v′|(A)

for any Borel set A containing {s ∈ I \N : v′(s) = 0}. By taking a infimum with respect to A,
we have

|v({s ∈ I \N : v′(s) = 0})| ≤

∫

{s∈I\N :v′(s)=0}

|v′(s)| ds = 0
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This proves the assertion 1.
From the definition of h(t) we easily see that h is non-increasing and right-continuous. Hence

we have h(t2) − h(t1) = h′((t1, t2]) for any t1, t1 ∈ R with t1 < t2. Then for any F ⊂ R

|h′|(F ) =

∫

{s∈I\N :v′(s)=0}∩v−1(F )

f(s) ds.

It follows from the assertion 1 that there is a Borel set F0 such that

v({s ∈ I \N : v′(s) = 0}) ⊂ F0, and |F0| = 0.

Then we see that

|h′|(R \ F0) =

∫

{s∈I\N :v′(s)=0}∩v−1(R\F0)

f(s) ds = 0.

This means |h′| is concentrated in F0, and hence h′(t) = 0 for a.e. t ∈ R. �

Now we give a proof to Proposition 4.5.

Proof of Proposition 4.5 :

1. Let A be any Borel set such as 0 < |A| < ∞. By Rf [A] we denote the rearrangement of A
with respect to an admissible weight f , namely, Rf [A] ia a ball centered at the origin satisfying

µf (A) = µf (Rf [A]). (4.24)

Let r be a positive number such that

|Br(0)| = |A|. (4.25)

Since
∫

Br(0)

f(x) dx ≥

∫

A

f(x) dx, (4.26)

we see that
Rf [A] ⊂ Br(0). (4.27)

Therefore we conclude that
∫

∂A

dHn−1 ≥

∫

∂Br(0)

dHn−1 ≥

∫

∂Rf [A]

dHn−1. (4.28)

Since A is an arbitrary Borel set, the assertion follows immediately.
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2. Since Rf [u] is Lipschitz continuous, we can employ the coarea formula. Then we have

∫

Rn

|∇Rf [u]|pf(x)1−p dx =

∫ ∞

0

dt

∫

{Rf [u]=t}

|∇Rf [u]|p−1f(x)1−p dHn−1

=

∫ ∞

0

dt

(

∫

{Rf [u]=t}
dHn−1

)p

(

∫

{Rf [u]=t}
f(x)

|∇Rf [u]|dH
n−1
)p−1

=

∫ ∞

0

dt

(

∫

{Rf [u]=t} dH
n−1
)p

(−µf [u]′(t))
p−1 (the property (4.22))

≤

∫ ∞

0

dt

(

∫

{u=t} dH
n−1
)p

(−µf [u]′(t))
p−1 (Assertion 1)

=

∫ ∞

0

dt

(

∫

{u=t} dH
n−1
)p

(

∫

{u=t}
f(x)
|∇u|dH

n−1
)p−1 ( the property (4.20))

≤

∫ ∞

0

dt

∫

{u=t}

|∇u|p−1f(x)1−p dHn−1 ( Hölder inequality )

=

∫

Rn

|∇u|pf(x)1−p dx.

Clearly this proves the assertion. This proves the assertion. �

4.3 Application of the theory on rearrangement of functions

In this subsection we establish Sp,q;γ = Sp,q;γ
rad and Cp,q;R = Cp,q;R

rad under certain assumption
using the theory of the generalized rearrangement of functions which was developed in the
previous subsection.

First let us consider the case that γ > 0. Then we have the next proposition which proves
the assertion 3 of Theorem 2.2. Further, making use of the assertion 4 of Theorem 2.2 at the
same time, we see that the assertion 1 of Theorem 2.1 follows as well. Here we note that Iα is
admissible if 0 < α ≤ n.

Proposition 4.6 For 1 ≤ p ≤ q < ∞, τp,q ≤ 1/n and 0 < γ ≤ γp,q , it holds that Sp,q;γ =
Sp,q;γ

rad .

Proof: By virtue of the assertion 1 of Proposition 3.3, it suffices to consider the case that
γ = γp,q = (n− 1)/(1 + q/p′). Since 0 < qγp,q < n , by using the assertions 2 of Proposition
4.3, 1 of Proposition 4.4 and 2 of Proposition 4.5, we have for u ∈ C∞

c (Rn \{0})

‖u‖ q
Lq

γp,q
(Rn)

=

∫

R
n
|u(x)|qIqγp,q

(x)dx =

∫

R
n
RIqγp,q

[|u|q](x)Iqγp,q
(x)dx

=

∫

R
n
RIqγp,q

[|u|](x)qIqγp,q
(x)dx = ‖RIqγp,q

[|u|]‖ q
Lq

γp,q
(Rn)

,

‖∇u‖ p
Lp

1+γp,q
(Rn)

= ‖∇[|u|]‖ p
Lp

1+γp,q
(Rn)

=

∫

R
n
|∇[|u|](x)|p

1

Iqγp,q
(x)p−1

dx

≥

∫

R
n
|∇[RIqγp,q

[|u|]](x)|p
1

Iqγp,q
(x)p−1

dx = ‖∇[RIqγp,q

[|u|]]‖ p
Lp

1+γp,q
(Rn)

.

Therefore
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Ep,q;γp,q(u) =





‖∇u‖Lp
1+γp,q

(Rn)

‖u‖
Lq

γp,q
(Rn)





p

≥





‖∇[RIqγp,q

[|u|]]‖Lp
1+γp,q

(Rn)

‖RIqγp,q

[|u|]‖
Lq

γp,q
(Rn)





p

≥ Srad
p,q;γp,q (4.29)

for u ∈ C∞
c (Rn \{0})\{0}.

This proves the assertion. �

Now we consider the case γ = 0. Noting that the above argument works only when p ≥ n ,
we have the following which assures the assertion 3 of Theorem 2.7.

Proposition 4.7 Let n ≥ 2. Assume that n ≤ p ≤ q < ∞ and R ≥ Rp,q , then it holds that

Cp,q;R = Cp,q;R
rad .

Proof: When R ≥ Rp,q = exp((1 + q/p′)/((n− 1)p′)) holds, |x|−(n−1)p′

/A
1+q/p′

1,R : B1\{0} → R

is positive and decreasing with respect to r = |x|. Then, noting that 0 < (n− 1)p′ < n and
I0 = I(n−1)p′ |x|−(n−1)p′

, it follows from the assertion 2 of Proposition 4.4, the assertions 2 and
3 of Proposition 4.3 that we have for u ∈ C∞

c (B1\{0})

‖u‖ q
Lq

p;R(B1)
=

∫

B1

|u(x)|q

[

|x|−(n−1)p′

A
1+q/p′

1,R

]

(x)I(n−1)p′(x)dx

≤

∫

B1

RI
(n−1)p′

[|u|q](x)RI
(n−1)p′

[

|x|−(n−1)p′

A
1+q/p′

1,R

]

(x)I(n−1)p′(x)dx

=

∫

B1

RI
(n−1)p′

[|u|](x)q

[

|x|−(n−1)p′

A
1+q/p′

1,R

]

(x)I(n−1)p′(x)dx = ‖RI
(n−1)p′

[|u|]‖ q
Lq

p;R(B1)
,

Since (n− (n− 1)p′)(p− 1) = p− n, we have, using the assertion 2 of Proposition 4.5,

‖∇u‖ p
Lp

1(B1)
= ‖∇[|u|]‖ p

Lp
1(B1)

=

∫

B1

|∇[|u|](x)|p
1

I(n−1)p′(x)p−1
dx

≥

∫

B1

|∇[RI
(n−1)p′

[|u|]](x)|p
1

I(n−1)p′(x)p−1
dx = ‖∇[RI

(n−1)p′
[|u|]]‖ p

Lp
1(B1)

.

Therefore we see that

F p,q;R(u) =

(

‖∇u‖Lp
1(B1)

‖u‖
Lq

p;R(B1)

)p

≥





‖∇[RI
(n−1)p′

[|u|]]‖Lp
1(B1)

‖RI
(n−1)p′

[|u|]‖
Lq

p;R(B1)





p

≥ Cp,q;R
rad

for u ∈ C∞
c (B1\{0})\{0},

and this proves the assertion.
�

We remark that I(n−1)p′ = I0 is not admissible if n = 1. Hence we can not apply the same
method direct, but the assertion 2 of Theorem 2.9 follows from the next proposition.

Proposition 4.8 Let n = 1. If 1 < p ≤ q <∞ and R ≥ 1 , then it holds that Cp,q;R = Cp,q;R
rad .

Proof: (a) Admitting that (1 + tp)1/p ≥ (1 + tq)1/q for t ≥ 0, it holds that for any u ∈
C∞

c ((−1,1)\{0})

(‖u‖ p
Lq

p;R((−1,0))
+ ‖u‖ p

Lq
p;R((0,1))

)1/p ≥ (‖u‖ q
Lq

p;R((−1,0))
+ ‖u‖ q

Lq
p;R((0,1))

)1/q = ‖u‖Lq
p;R((−1,1)).
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Then we also have

‖u′‖Lp
1((−1,1))

‖u‖
Lq

p;R((−1,1))

≥ min

{

‖u′‖Lp
1((−1,0))

‖u‖
Lq

p;R((−1,0))

,
‖u′‖Lp

1((0,1))

‖u‖
Lq

p;R((0,1))

}

for u ∈ C∞
c ((−1,1)\{0})\{0}.

In fact, if ‖u′‖Lp
1((−1,0))/‖u‖Lq

p;R((−1,0)) ≥ ‖u′‖Lp
1((0,1))/‖u‖Lq

p;R((0,1)) holds, then we have

‖u′‖Lp
1((−1,1))

‖u‖
Lq

p;R((−1,1))

=
(‖u′‖ p

Lp
1((−1,0))

+ ‖u′‖ p
Lp

1((0,1))
)1/p

‖u‖
Lq

p;R((−1,1))

≥
1

‖u‖
Lq

p;R((−1,1))

(

‖u′‖ p
Lp

1((0,1))

‖u‖ p
Lq

p;R((0,1))

‖u‖ p
Lq

p;R((−1,0))
+ ‖u′‖ p

Lp
1((0,1))

)1/p

=
‖u′‖Lp

1((0,1))

‖u‖
Lq

p;R((0,1))

(‖u‖ p
Lq

p;R((−1,0))
+ ‖u‖ p

Lq
p;R((0,1))

)1/p

‖u‖
Lq

p;R((−1,1))

≥
‖u′‖Lp

1((0,1))

‖u‖
Lq

p;R((0,1))

.

If ‖u′‖Lp
1((0,1))/‖u‖Lq

p;R((0,1)) ≥ ‖u′‖Lp
1((−1,0))/‖u‖Lq

p;R((−1,0)) , then in a similar way we see

‖u′‖Lp
1((−1,1))

‖u‖
Lq

p;R((−1,1))

≥
‖u′‖Lp

1((−1,0))

‖u‖
Lq

p;R((−1,0))

.

(b) Since we have

Cp,q;R
rad = inf

{(

‖u′‖Lp
1((−1,1))

‖u‖
Lq

p;R((−1,1))

)p
∣

∣

∣ u ∈ C∞
c ((−1,1)\{0})rad\{0}

}

= inf

{(

‖u′‖Lp
1((−1,0))

‖u‖
Lq

p;R((−1,0))

)p
∣

∣

∣ u ∈ C∞
c ((−1,1)\{0})\{0}

}

= inf

{(

‖u′‖Lp
1((0,1))

‖u‖
Lq

p;R((0,1))

)p
∣

∣

∣ u ∈ C∞
c ((−1,1)\{0})\{0}

}

,

it follows fromt (a) that we have

F p,q;R(u) =

(

‖u′‖Lp
1((−1,1))

‖u‖
Lq

p;R((−1,1))

)p

≥ min

{(

‖u′‖Lp
1((−1,0))

‖u‖
Lq

p;R((−1,0))

)p

,

(

‖u′‖Lp
1((0,1))

‖u‖
Lq

p;R((0,1))

)p}

≥ Cp,q;R
rad

for u ∈ C∞
c ((−1,1)\{0})\{0}.

Thus the assertion follows. �

5 Application of Nonlinear potential theory

It follow from Proposition 4.7 and Proposition 4.8 that we have the assertion 3 of Theorem 2.7.
Then, combining it with the assertion 4 of Theorem 2.7, Theorem 2.5 clearly follows provided
that p ≥ n. Therefore, it suffices to assume that 1 < p < n in the rest of the proof of Theorem
2.5. We finish this aim by employing the so-called nonlinear potential theory.

Definition 5.1 (Muckenhoupt Ap class) Let 1 < p < ∞ . w ∈ C(Rn \{0}) is said to belong to
Ap class, if and only if w > 0 on Rn \{0} and

sup
x∈R

n, r>0

n

ωnr
n

∫

Br(x)

w(y)dy

(

n

ωnr
n

∫

Br(x)

1

w(y)1/(p−1)
dy

)p−1

<∞ (5.1)
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is satisfied.

When w belongs to Ap class, simply we describe w ∈ Ap(R
n) . Let us define

Jp[w](x,r) =

∫ ∞

r

(

n

ωnt
n

∫

Bt(x)

1

w(y)1/(p−1)
dy

)

1

t1+νp
dt for x ∈ Rn, r > 0. (5.2)

Here, νp = (n− p)/(p− 1) .

Under these notations we have the next lemma which is due to R. Adams [Ad].

Lemma 5.1 Let 1 < p < q < ∞ . Assume that w ∈ Ap(R
n), g ∈ L1

loc(R
n) and g ≥ 0 a.e. on

Rn . Then, the following two assertions are equivalent to each other.

(a) sup
x∈R

n, r>0

µg(Br(x))Jp[w](x,r)q/p′

<∞.

(b) There is a positive number C > 0 such that we have

‖I1∗f‖Lq(Rn;g) ≤ C‖f‖Lp(Rn;w) for any f ∈ Lp(Rn;w).

Using this we establish the next Proposition. Then, combining it with the assertion 4 of
Theorem 2.7, we see that Theorem 2.5 is valid even when 1 < p < n holds.

Proposition 5.1 Assume that 1 < p < q < ∞, p < n, τp,q ≤ 1/n and R > 3 , then we have

Cp,q;R > 0 .

Introducing more notations, we verify this using Lemma 5.1.

Definition 5.2 For 1 < p < q <∞, p < n, τp,q ≤ 1/n and R > 1 , we set

wp(x) = wp(|x|) = max{Ip(x), 1} for x ∈ Rn \{0}, (5.3)

gp,q;R(x) = gp,q;R(|x|) =











I0(x)

A1,R(x)1+q/p′ for x ∈ B1 \{0},

0 for x ∈ Rn \B1.

(5.4)

In order to apply Lemma 5.1 to these weight functions, let us prepare more lemmas.

Lemma 5.2 For 1 < p < n, it holds that wp ∈ Ap(R
n) .

Proof: Let us set

σp[wp](x,r) =
n

ωnr
n

∫

Br(x)

wp(y)dy

(

n

ωnr
n

∫

Br(x)

1

wp(y)
1/(p−1)

dy

)p−1

for x ∈ Rn, r > 0 (5.5)

and show it to be bounded.

(i) First we asssume that 0 ≤ |x| ≤ 1.
(a) If 0 < r ≤ min{|x|/2,1− |x|} , then we see Br(x) ⊂ B|x|+r\B|x|−r ⊂ B1 , hence

σp[wp](x,r) ≤
n

ωnr
n

∫

Br(x)

wp(|x| − r)dy

(

n

ωnr
n

∫

Br(x)

1

wp(|x| + r)1/(p−1)
dy

)p−1

=

(

|x| + r

|x| − r

)n−p

≤

(

|x| + |x|/2

|x| − |x|/2

)n−p

= 3n−p.
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(b) If 1− |x| ≤ r ≤ |x|/2, we see |x| ≥ 2/3, hence

σp[wp](x,r) ≤
n

ωnr
n

∫

Br(x)

wp(|x| − r)dy

(

n

ωnr
n

∫

Br(x)

dy

)p−1

=
1

(|x| − r)n−p

≤
1

(|x| − |x|/2)n−p
=

(

2

|x|

)n−p

≤ 3n−p.

(c) If |x|/2 ≤ r ≤ 1− |x| , then we see Br(x) ⊂ B|x|+r ⊂ B1 , and hence

σp[wp](x,r) ≤
n

ωnr
n

∫

B
|x|+r

wp(y)dy

(

n

ωnr
n

∫

B
|x|+r

1

wp(y)
1/(p−1)

dy

)p−1

=
n

p

(

n′

p′

)p−1(
|x| + r

r

)np

≤
n

p

(

n′

p′

)p−1(
2r + r

r

)np

=
n

p

(

n′

p′

)p−1

3np.

(d) If r ≥ max{|x|/2,1− |x|} , then r ≥ 1/3 and Br(x) ⊂ B|x|+r . Hence

σp[wp](x,r) ≤
n

ωnr
n

∫

B
|x|+r

wp(y)dy

(

n

ωnr
n

∫

B
|x|+r

1

wp(y)
1/(p−1)

dy

)p−1

=

((

|x| + r

r

)n

+

(

n

p
− 1

)

1

rn

)((

|x| + r

r

)n

−

(

1−
n′

p′

)

1

rn

)p−1

≤

((

2r + r

r

)n

+

(

n

p
− 1

)

3n

)(

2r + r

r

)n(p−1)

=
n

p
3np.

(ii) Secondly we assume that |x| ≥ 1.

(a) If 0 < r ≤ |x|/2, thenBr(x) ⊂ B|x|+r\B|x|−r , hence

σp[wp](x,r) ≤
n

ωnr
n

∫

Br(x)

wp(|x| − r)dy

(

n

ωnr
n

∫

Br(x)

dy

)p−1

=
1

(|x| − r)n−p

≤
1

(|x| − |x|/2)n−p
=
( 2

|x|

)n−p

≤ 2n−p.

(b) If r ≥ |x|/2, then r ≥ 1/2 and Br(x) ⊂ B|x|+r , hence

σp[wp](x,r) ≤
n

ωnr
n

∫

B
|x|+r

wp(y)dy

(

n

ωnr
n

∫

B
|x|+r

1

wp(y)
1/(p−1)

dy

)p−1

=

((

|x| + r

r

)n

+

(

n

p
− 1

)

1

rn

)((

|x| + r

r

)n

−

(

1−
n′

p′

)

1

rn

)p−1

≤

((

2r + r

r

)n

+

(

n

p
− 1

)

2n

)(

2r + r

r

)n(p−1)

=

(

3n +

(

n

p
− 1

)

2n

)

3np.

�

Lemma 5.3 For 1 < p < n and R > 3 , there exist positive numbers cp and cp;R > 0 such that
we have the followings:

1. Jp[wp](x,r) ≤
1

νp

1

rνp
for x ∈ Rn, r > 0.
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2. Jp[wp](x,r) ≤ cp

(

1 + log
1

r
+
(|x|

r

)νp

)

if |x| + r ≤ 1.

3. Jp[wp](x,r) ≤ cp;R

(

A1,R(min{1, |x|}) +

(

min{1, |x|}

r

)νp
)

if 0 < r ≤
|x|

2
.

Proof: Let us note that

n

ωnt
n

∫

Bt(x)

1

wp(y)
1/(p−1)

dy ≤ min{1,(t+ |x|)νp} ≤ 1 for x ∈ Rn, t > 0. (5.6)

Then

1. Jp[wp](x,r) =

∫ ∞

r

(

n

ωnt
n

∫

Bt(x)

1

wp(y)
1/(p−1)

dy

)

1

t1+νp
dt ≤

∫ ∞

r

1

t1+νp
dt

=
1

νp

1

rνp
for x ∈ Rn, r > 0.

2. If |x| + r ≤ 1, then we see r ≤ 1, and hence

Jp[wp](x,r) ≤

∫ ∞

r

min{1,(t+ |x|)νp}
1

t1+νp
dt ≤

∫ ∞

1

1

t1+νp
dt+

∫ 1

r

(t+ |x|)νp
1

t1+νp
dt

=
1

νp
+

∫ 1

r

(

1 +
|x|

t

)νp 1

t
dt ≤

1

νp
+ 2(νp−1)+

∫ 1

r

(

1 +

(

|x|

t

)νp
)

1

t
dt

=
1

νp
+ 2(νp−1)+

(

log
1

r
+

|x|νp

νp

(

1

rνp
− 1

))

≤
1

νp
+ 2(νp−1)+

(

log
1

r
+

1

νp

(

|x|

r

)νp
)

.

3. (a) If |x| + r ≤ 1 and 0 < r ≤ |x|
2 , then |x| ≤ 1 and |x|/r ≥ 2. From the argument of 2

and
1 + log t ≤ c̃pt

νp for t ≥ 1 (5.7)

it holds that

Jp[wp](x,r) ≤ cp

(

1 + log
1

r
+

(

|x|

r

)νp
)

≤ cp

(

1 + log
|x|

r
+ log

R

|x|
+

(

|x|

r

)νp
)

≤ cp

(

A1,R(x) + (1 + c̃p)

(

|x|

r

)νp
)

.

(b) If |x| + r ≥ 1, then from 1 we see that

Jp[wp](x,r) ≤
1

νp

1

rνp
≤

1

νp

(

|x| + r

r

)νp

≤
2(νp−1)+

νp

(

1 +

(

|x|

r

)νp
)

≤
2(νp−1)+

νp

(

A1,R(x)

logR
+

(

|x|

r

)νp
)

if |x| ≤ 1,

Jp[wp](x,r) ≤
1

νp

1

rνp
≤

1

νp

(

A1,R(1) +

(

1

r

)νp
)

if |x| ≥ 1.

�

Lemma 5.4 For 1 < p < q < ∞, p < n, τp,q ≤ 1/n and R > 3 , there exists a positive number
cp,q;R > 0 such that we have
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µgp,q;R
(Br(x)) ≤











































cp,q;R gp,q;R(min{1, |x|})rn if 0 < r ≤
1

2
min{1, |x|},

cp,q;R

1

A1,R(r)q/p′ if
|x|

2
≤ r ≤

1

2
,

cp,q;R if r ≥
1

2
.

(5.8)

Proof: First we note that for 1 < R < R

log
R

r
≥

logR

logR
log

R

r
for 0 < r ≤ 1 (< R). (5.9)

By the definition we have

µgp,q;R
(Br(x)) =

∫

Br(x)

gp,q;R(y)dy (5.10)

=

∫

Br(x)∩B1

1

(log(R/|y|))1+q/p′

1

|y|n
dy for x ∈ Rn, r > 0.

(a) If 0 < r ≤ |x|/2 ≤ 1/2, then |x|/2 ≤ |x| − r ≤ |y| ≤ |x| + r ≤ 3|x|/2 for y ∈ Br(x) ,
hence we have, using (5.9) with R = 2R/3,

µgp,q;R
(Br(x)) ≤

∫

Br(x)

1

(log(2R/(3|x|)))1+q/p′

(

2

|x|

)n

dy

=
ωnr

n

n

1

(log(2R/(3|x|)))1+q/p′

(

2

|x|

)n

≤ 2nωn

n

(

logR

log(2R/3)

)1+q/p′

gp,q;R(x)rn.

(b) If 0 < r ≤ 1/2 ≤ |x|/2, then 1/2 ≤ |x|/2 ≤ |x| − r ≤ |y| for y ∈ Br(x) , hence we have

µgp,q;R
(Br(x)) ≤

∫

Br(x)

1

(logR)1+q/p′ 2
ndy = 2nωn

n
gp,q;R(1)rn.

(c) If 1/2 ≥ r ≥ |x|/2, then Br(x) ⊂ B3r ⊂ BR , and hence we have, using (5.9) with R = R/3,

µgp,q;R
(Br(x)) ≤

∫

B3r

1

(log(R/|y|))1+q/p′

1

|y|n
dy = ωn

p′

q

1

(log(R/(3r)))q/p′

≤ ωn

p′

q

(

logR

log(R/3)

)q/p′

1

A1,R(r)q/p′ .

(d) If r ≥ 1/2, then we have

µgp,q;R
(Br(x)) ≤

∫

B1

1

(log(R/|y|))1+q/p′

1

|y|n
dy = ωn

p′

q

1

(logR)q/p′ .

�

After all we have the following.
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Lemma 5.5 For 1 < p < q <∞, p < n, τp,q ≤ 1/n and R > 3 , it holds that

sup
x∈R

n, r>0

µgp,q;R
(Br(x))Jp[wp](x,r)

q/p′

<∞. (5.11)

Proof: (a) If r ≥ 1/2, it follows from the assertion 1 of Lemma 5.3 and Lemma 5.4 that we
have

µgp,q;R
(Br(x))Jp[wp](x,r)

q/p′

≤ cp,q;R

1

νp

1

rνp
≤ cp,q;R

2νp

νp
.

(b) For 0 < r ≤ min{1, |x|}/2, it follows from the assertion 3 of Lemma 5.3 and Lemma 5.4
that we have

µgp,q;R
(Br(x))Jp[wp](x,r)

q/p′

≤ cp,q;R gp,q;R(min{1, |x|})rn

(

cp;R

(

A1,R(min{1, |x|}) +

(

min{1, |x|}

r

)νp

))q/p′

=
cp,q;R c

q/p′

p;R

A1,R(min{1, |x|})

(

r

min{1, |x|}

)nq(1/n−τp,q)
(

(

r

min{1, |x|}

)νp

+
1

A1,R(min{1, |x|})

)q/p′

≤
cp,q;R c

q/p′

p;R

A1,R(1)

1

2nq(1/n−τp,q)

(

1

2νp
+

1

A1,R(1)

)q/p′

.

(c) Assume that |x|/2 ≤ r ≤ 1/2. First we deal with the case |x| + r ≤ 1. Then, from the
assertion 2 of Lemma 5.3 and Lemma 5.4 we have

µgp,q;R
(Br(x))Jp[wp](x,r)

q/p′

≤ cp,q;R

1

A1,R(r)q/p′

(

cp

(

1 + log
1

r
+

(

|x|

r

)νp
))q/p′

≤ cp,q;R c
q/p′

p

(

1 + 2νp + log(1/r)

logR + log(1/r)

)q/p′

≤ cp,q;R c
q/p′

p

(

max

{

1,
1 + 2νp

logR

})q/p′

.

If |x| + r > 1, then we have r > 1/3. Hence, from the assertion 1 of Lemma 5.3 and Lemma
5.4 we have

µgp,q;R
(Br(x))Jp[wp](x,r)

q/p′

≤ cp,q;R

1

A1,R(r)q/p′

(

1

νp

1

rνp

)q/p′

≤ cp,q;R

1

A1,R(1/2)q/p′

(

3νp

νp

)q/p′

.

�

In addition we use the next.

Lemma 5.6 For u ∈ C∞
c (Rn), it holds that

u(x) =
1

ωn

∫

R
n

∇u(y)·(x− y)

|x− y|n
dy for x ∈ Rn. (5.12)

In particular

|u(x)| ≤
1

ωn

I1∗[|∇u|](x) for x ∈ Rn. (5.13)
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Proof: Noting that

u(x) = −

∫ ∞

0

∇u(x+ tω)·ωdt for ω ∈ Sn−1, (5.14)

we immediately have

∫

R
n

∇u(y)·(x− y)

|x− y|n
dy = −

∫

R
n

∇u(x+ y)·y

|y|n
dy = −

∫

Sn−1

∫ ∞

0

∇u(x+ tω)·tω

tn
tn−1dtdS(ω)

= −

∫

Sn−1

∫ ∞

0

∇u(x+ tω)·ωdtdS(ω) =

∫

Sn−1
u(x)dS(ω) = ωnu(x).

�

Now we are in a position to establish Proposition 5.1.

Proof of Proposition 5.1: It follows from Lemma 5.2, Lemma 5.5 and Lemma 5.1 that there
exists a positive number Cp,q;R > 0 such that we have

‖I1∗f‖Lq(Rn;gp,q;R) ≤ Cp,q;R‖f‖Lp(Rn;wp)
for f ∈ Lp(Rn;wp).

Then, from Lemma 5.6 we have

‖u‖Lq
p;R(B1)

= ‖u‖Lq(Rn;gp,q;R) ≤
1

ωn

‖I1∗[|∇u|]‖Lq(Rn;gp,q;R) ≤
Cp,q;R

ωn

‖∇u‖Lp(Rn;wp)

=
Cp,q;R

ωn

‖∇u‖Lp
1(B1)

for u ∈ C∞
c (B1\{0}).

�

6 Continuity of the best constants on parameters

In this section we prove that the best constants Sp,q;γ and Cp,q;R are continuous on parameters
with p being arbitrarily fixed and we also establish some relating estimates. It is clear from the
assertion 2 of Theorem 2.2 and the assertion 2 of Theorem 2.7 that the best constants in radial
spaces Sp,q;γ

rad and Cp,q;R
rad are continuous functions of q, γ, R as well.

6.1 The noncritical case (γ 6= 0)

First in the case γ > 0, we study the continuity of Sp,q;γ on q, γ. Let us introduce the next
transformation.

Definition 6.1 Let 1 < p <∞ and γ > 0 . For u : Rn → R , we set

T̂γv(x) =
1

|x|γ
v(x) for x ∈ Rn \{0}

and set

Φp;γ [v] =

∫

R
n

∣

∣

∣∇v(x) − γv(x)
x

|x|2

∣

∣

∣

p

Ip(x)dx.

Then, it follows from diect calculations and triangle inequalities that we have the next.

Lemma 6.1 For 1 < p ≤ q <∞, τp,q ≤ 1/n, γ, γ > 0 , we have the followings:

1. ‖ T̂γv‖
q

Lq
γ(Rn)

= ‖v‖ q
Lq

0(R
n)
, ‖∇[ T̂γv]‖Lp

1+γ(Rn) = Φp;γ [v] for v ∈ T̂
−1

γ (W 1,p
γ,0 (Rn)).
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2.

Sp,q;γ = inf
{ Φp;γ [v]

‖v‖ p
Lq

0(R
n)

∣

∣

∣ v ∈ T̂
−1

γ (W 1,p
γ,0 (Rn))\{0}

}

= inf
{ Φp;γ [v]

‖v‖ p
Lq

0(R
n)

∣

∣

∣ v ∈ C∞
c (Rn \{0})\{0}

}

.

3.

Sp,q;γ‖v‖ p
Lq

0(R
n)

≤ Φp;γ [v] for v ∈ T̂
−1

γ (W 1,p
γ,0 (Rn)).

In particular

γ p‖v‖ p
Lp

0(Rn)
≤ Φp;γ [v] for v ∈ T̂

−1

γ (W 1,p
γ,0 (Rn)).

4. |Φp;γ[v]1/p − Φp;γ[v]1/p| ≤ |γ − γ |‖v‖Lp
0(Rn) for v ∈ T̂

−1

γ (W 1,p
γ,0 (Rn)) ∩ T̂

−1

γ (W 1,p
γ,0 (Rn)).

Now let us state a crucial lemma.

Lemma 6.2 Let 1 < p ≤ q <∞, τp,q ≤ 1/n an γ > 0 . Assume that {qj}
∞

j=1 ⊂ (p,p∗) satisfies

qj → q as j → ∞.

If {vj}
∞

j=1 ⊂ C∞
c (Rn \{0}) and {Φp;γ[vj ]}

∞
j=1 is bounded, then it holds that

lim sup
j→∞

(‖vj‖
qj

L
qj
0 (Rn)

− ‖vj‖
q

Lq
0(R

n)
) ≤ 0.

Proof: For p < q < q < q̃ < p∗ , let us note that

0 ≤ tq log
1

t
≤

1

e(q − p)
tp for 0 < t ≤ 1, 0 ≤ tq log t ≤

1

e(q̃ − q)
tq̃ for t ≥ 1. (6.1)

(a) When p < q < p∗ holds, we choose q , q and q̃ such as p < q ≤ qj ≤ q < q̃ < p∗ for
j ≥ 1 . Then it follows from Lemma 6.1 that we have

‖vj‖
qj

L
qj
0 (Rn)

− ‖vj‖
q

Lq
0(R

n)
=

∫

R
n
(|vj(x)|

qj − |vj(x)|
q)I0(x)dx

=

∫

R
n

(

(qj − q)

∫ 1

0

|vj(x)|
θqj+(1−θ)q log |vj(x)|dθ

)

I0(x)dx

≤ |qj − q|
(

∫

{|vj|≤1}

|vj(x)|
q
(

log
1

|vj(x)|

)

I0(x)dx +

∫

{|vj|≥1}

|vj(x)|
q(log |vj(x)|)I0(x)dx

)

≤ |qj − q|
( 1

e(q − p)

∫

{|vj|≤1}

|vj(x)|
pI0(x)dx +

1

e(q̃ − q)

∫

{|vj|≥1}

|vj(x)|
q̃I0(x)dx

)

≤ |qj − q|
( 1

e(q − p)
‖vj‖

p
Lp

0(Rn)
+

1

e(q̃ − q)
‖vj‖

q̃

Lq̃
0(R

n)

)

≤ |qj − q|
( 1

e(q − p)

1

γ p
Φp;γ [vj ] +

1

e(q̃ − q)

( 1

Sp,q̃;γ
Φp;γ [vj ]

)q̃/p)

→ 0 as j → ∞.
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(b) When q = p holds, we choose q and q̃ such as p < qj ≤ q < q̃ < p∗ for j ≥ 1 . Then in
a similar way as the argument in (a), we have

‖vj‖
qj

L
qj
0 (Rn)

− ‖vj‖
p

Lp
0(Rn)

≤

∫

{|vj|≥1}

(|vj(x)|
qj − |vj(x)|

p)I0(x)dx

=

∫

{|vj|≥1}

(

(qj − p)

∫ 1

0

|vj(x)|
θqj+(1−θ)p log |vj(x)|dθ

)

I0(x)dx

≤ (qj − p)
1

e(q̃ − q)

( 1

Sp,q̃;γ
Φp;γ [vj ]

)q̃/p

→ 0 as j → ∞

(c) When q = p∗ < ∞ holds, we choose q such as p < q ≤ qj < p∗ for j ≥ 1 . Then in a
similar way as the argument in (a), we have

‖vj‖
qj

L
qj
0 (Rn)

− ‖vj‖
p∗

Lp∗

0 (Rn)
≤

∫

{|vj|≤1}

(|vj(x)|
qj − |vj(x)|

p∗

)I0(x)dx

=

∫

{|vj|≥1}

(

(p∗− qj)

∫ 1

0

|vj(x)|
θqj+(1−θ)p∗

log
1

|vj(x)|
dθ
)

I0(x)dx

≤ (p∗− qj)
1

e(q − p)

1

γ p
Φp;γ [vj ] → 0 as j → ∞.

�

Then we have the following that assures Theorem 2.3.

Proposition 6.1 Let 1 < p ≤ q < ∞, τp,q ≤ 1/n and γ > 0 . Assume that {(qj ; γj)}
∞

j=1 ⊂
(p,p∗)×(0,∞) satisfies

qj → q, γj → γ as j → ∞.

Then, it holds that
Sp,qj;γj → Sp,q;γ as j → ∞.

Proof: (a) We begin with showing

lim sup
j→∞

Sp,qj;γj ≤ Sp,q;γ .

For ε > 0, it follows from the assertion 2 of Lemma 6.1 that there exists vε ∈ C∞
c (Rn \{0})\{0}

such that
Φp;γ [vε]

‖vε‖
p

Lq
0(R

n)

≤ Sp,q;γ +
ε

2
.

By the Lebesgue convergence theorem we have

‖vε‖
qj

L
qj
0 (Rn)

→ ‖vε‖
q

Lq
0(R

n)
, Φp;γj [vε] → Φp;γ [vε] as j → ∞.

Hence for some jε ∈ N, we have

Φp;γj [vε]

‖vε‖
p

L
qj
0 (Rn)

−
Φp;γ [vε]

‖vε‖
p

Lq
0(R

n)

<
ε

2
for j ≥ jε.

We therefore have

Sp,qj;γj ≤
Φp;γj [vε]

‖vε‖
p

L
qj
0 (Rn)

≤
Φp;γ [vε]

‖vε‖
p

Lq
0(R

n)

+
ε

2
≤ Sp,q;γ + ε for j ≥ jε.
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(b) Secondly we show that
Sp,q;γ ≤ lim inf

j→∞
Sp,qj;γj .

By the assertion 2 of Lemma 6.1 there exists {vj}
∞

j=1 ⊂ C∞
c (Rn \{0})\{0} such that we have

Φp;γ [vj ] = 1,
Φp;γj [vj ]

‖vj‖
p

L
qj
0 (Rn)

≤ Sp,qj;γj +
1

j
for j ≥ 1.

Then from the assertions 3 and 4 of Lemma 6.1 we have

Φp;γj [vj ]
1/p ≥ Φp;γ [vj ]

1/p − |γj − γ |‖vj‖Lp
0(Rn) ≥ Φp;γ [vj ]

1/p −
|γj − γ |

γ
Φp;γ [vj ]

1/p

= 1−
|γj − γ |

γ
for j ≥ 1.

Combining with (a), there exist j1 ∈ N and c > 0 such that we have,

‖vj‖
p

L
qj
0 (Rn)

≥
Φp;γj [vj ]

Sp,qj;γj + 1/j
≥ c for j ≥ j1.

Letting ε satisfy 0 < ε < c , it follows from Lemma 6.2 that there exists jε ≥ j1 such that

‖vj‖
p

L
qj
0 (Rn)

≤ ‖vj‖
p

Lq
0(R

n)
+ ε for j ≥ jε.

Then from the assertions 3 and 4 of Lemma 6.1 we have

Sp,q;γ ≤
Φp;γ [vj ]

‖vj‖
p

Lq
0(R

n)

≤
1

‖vj‖
p

L
qj
0 (Rn)

− ε
(Φp;γj [vj ]

1/p + |γj − γ |‖vj‖Lp
0(Rn))

p

=
1

1− ε/‖vj‖
p

L
qj
0 (Rn)











Φp;γj [vj ]

‖vj‖
p

L
qj
0 (Rn)





1/p

+ |γj − γ |
‖vj‖Lp

0(Rn)

‖vj‖L
qj
0 (Rn)







p

≤
1

1− ε/c

(

(

Sp,qj;γj +
1

j

)1/p

+
|γj − γ |

c1/pγ

)p

for j ≥ jε,

and this proves the assertion. �

6.2 The critical case (γ = 0)

In this subsection we study the continuity of Cp,q;R on the parameters q,R. Let us introduce
the next transformation.

Definition 6.2 Let 1 < p <∞, R > 0 . For u : B1 → R , we set

T̂p;Rv(x) = A1,R(x)1/p′

v(x) for x ∈ B1\{0}

and set

Ψ p;R[v] =

∫

B1

∣

∣

∣

∣

A1,R(x)∇v(x) −
1

p′
v(x)

x

|x|2

∣

∣

∣

∣

p Ip(x)

A1,R(x)
dx.

It follows from direct calculations together with triangle inequalities that we have

Lemma 6.3 For 1 < p ≤ q <∞, τp,q ≤ 1/n and R > 1 it holds that
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1. ‖ T̂p;Rv‖
q

Lq
p;R(B1)

= ‖v‖ q
Lq

1;R(B1)
, ‖∇[ T̂p;Rv]‖

p
Lp

1(B1)
= Ψ p;R[v] for v ∈ T̂

−1

p;R(W 1,p
0,0 (B1)).

2.

Cp,q;R = inf
{ Ψ p;R[v]

‖v‖ p
Lq

1;R(B1)

∣

∣

∣ v ∈ T̂
−1

p;R(W 1,p
0,0 (B1))\{0}

}

= inf
{ Ψ p;R[v]

‖v‖ p
Lq

1;R(B1)

∣

∣

∣ v ∈ C∞
c (B1\{0})\{0}

}

.

3.
Cp,q;R‖v‖ p

Lq
1;R(B1)

≤ Ψ p;R[v] for v ∈ T̂
−1

p;R(W 1,p
0,0 (B1)).

In particular
1

(p′)p
‖v‖ p

Lp
1;R(B1)

≤ Ψ p;R[v] for v ∈ T̂
−1

p;R(W 1,p
0,0 (B1)).

4.
∫

B1

|∇v(x)|pA1,R(x)p−1Ip(x)dx ≤ 2pΨ p;R[v] for v ∈ T̂
−1

p;R(W 1,p
0,0 (B1)).

Further we show

Lemma 6.4 For 1 < p ≤ q < ∞, τp,q ≤ 1/n and R > 1 , there exists positive numbers

cp;R , cp,q;R > 0 such that for p ≤ q ≤ q, R ≤ R ≤ R we have the followings:

1. Ψ p;R[v]1/p ≤
(

1 +
(logR

logR

)1/p)

Ψ p;R[v]1/p for v ∈ C∞
c (B1\{0}).

2. |Ψ p;R[v]1/p − Ψ p;R[v]1/p| ≤ cp;R(R −R)Ψ p;R [v] for v ∈ C∞
c (B1\{0}).

3. |‖v‖ q
Lq

1;R(B1)
− ‖v‖ q

Lq
1;R(B1)

| ≤ cp,q;R(R −R)Ψ p;R [v]q/p for v ∈ C∞
c (B1\{0}).

Proof: First we have

A1,R(x) ≤ A1,R(x) ≤
logR

logR
A1,R(x),

A1,R(x)1/p′

−A1,R(x)1/p′

=

∫ 1

0

1

p′
R −R

θR + (1− θ)R

1

A1,θR+(1−θ)R(x)1/p
dθ

≤
R −R

p′R

1

A1,R(x)1/p
.

In a similar way,

1

A1,R(x)1/p
−

1

A1,R(x)1/p
≤
R −R

pR

1

A1,R(x)1+1/p
,

1

A1,R(x)
−

1

A1,R(x)
≤
R −R

R

1

A1,R(x)2
for x ∈ B1\{0}.

1. From the assertion 3 of Lemma 6.3 we have

Ψ p;R[v]1/p =
{

∫

B1

∣

∣

∣

A1,R(x)

A1,R(x)

(

A1,R(x)∇v(x) −
1

p′
v(x)

x

|x|2

)

−
1

p′
v(x)

(

1−
A1,R(x)

A1,R(x)

) x

|x|2

∣

∣

∣

p Ip(x)

A1,R(x)
dx
}1/p
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≤
(

∫

B1

∣

∣

∣A1,R(x)∇v(x) −
1

p′
v(x)

x

|x|2

∣

∣

∣

p Ip(x)

A1,R(x)
dx
)1/p

+
1

p′

(

∫

B1

|v(x)|p
I0(x)

A1,R(x)
dx
)1/p

≤ Ψ p;R[v]1/p +
1

p′

(logR

logR

)1/p

‖v‖Lp
1;R(B1)

≤
(

1 +
(logR

logR

)1/p)

Ψ p;R[v]1/p.

2. From the assertions 3 and 4 of Lemma 6.3 we have

|Ψ p;R[v]1/p − Ψ p;R[v]1/p|

≤
{

∫

B1

∣

∣

∣(A1,R(x)1/p′

−A1,R(x)1/p′

)∇v(x)

−
1

p′

( 1

A1,R(x)1/p
−

1

A1,R(x)1/p

)

v(x)
x

|x|2

∣

∣

∣

p

Ip(x)dx
}1/p

≤
(

∫

B1

(R −R

p′R

1

A1,R(x)1/p
|∇v(x)|

)p

Ip(x)dx
)1/p

+
1

p′

(

∫

B1

(R −R

pR

1

A1,R(x)1+1/p
|v(x)|

)p

I0(x)dx
)1/p

≤
R −R

p′R logR

((

∫

B1

|∇v(x)|pA1,R(x)p−1Ip(x)dx
)1/p

+
1

p

(

∫

B1

|v(x)|p
I0(x)

A1,R(x)
dx
)1/p)

≤
R −R

p′R logR

(

2 +
p′

p

)

Ψ p;R [v]1/p.

3. Using that t t ≤ max{1, t
t
} for 0 < t ≤ t and ωn/(q/q)

′ ≤ ωn/(p/q)
′ , we have

( ωn

(q/q)′

)1/(q/q)′

≤ max
{

1,
( ωn

(p/q)′

)1/(p/q)′}

.

Then by the Hölder inequality and the assertion 3 of Lemma 6.3, it holds that

|‖v‖ q
Lq

1;R(B1)
− ‖v‖ q

Lq
1;R(B1)

| =

∫

B1

|v(x)|q
( 1

A1,R(x)
−

1

A1,R(x)

)

I0(x)dx

≤
R −R

R

∫

B1

|v(x)|q
1

A1,R(x)

I0(x)

A1,R(x)
dx

≤
R −R

R

(

∫

B1

(|v(x)|q)q/q I0(x)

A1,R(x)
dx
)q/q(

∫

B1

( 1

A1,R(x)

)(q/q)′ I0(x)

A1,R(x)
dx
)1/(q/q)′

=
R −R

R logR

( ωn

(q/q)′

)1/(q/q)′

‖v‖ q

Lq
1;R(B1)

≤
R −R

R logR
max

{

1,
( ωn

(p/q)′

)1/(p/q)′}( 1

Cp,q;R
Ψ p;R [v]

)q/p

.

�

In a quite similar way as the argument in Lemma 6.2 we can show the next.

Lemma 6.5 Let 1 < p ≤ q < ∞, τp,q ≤ 1/n and R > 1 . Assume that {qj}
∞

j=1 ⊂ (p,p∗)
satisfies

qj → q as j → ∞.

If {vj}
∞

j=1 ⊂ C∞
c (B1\{0}) and {Ψ p;R[vj ]}

∞
j=1 is bounded, then it holds that

lim sup
j→∞

(‖vj‖
qj

L
qj
1;R(B1)

− ‖vj‖
q

Lq
1;R(B1)

) ≤ 0.
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By using these we have the following proposition that assures Theorem 2.8.

Proposition 6.2 Let 1 < p ≤ q < ∞, τp,q ≤ 1/n and R > 1 . Assume that {(qj ;Rj)}
∞

j=1 ⊂
(p,p∗)×(1,∞) satisfies

qj → q, Rj → R as j → ∞.

Then it holds that
Cp,qj;Rj → Cp,q;R as j → ∞.

Proof: (a) In a similar way as the argument in Proposition 6.1;(a), we have

lim sup
j→∞

Cp,qj;Rj ≤ Cp,q;R.

(b) In the next we show that

Cp,q;R ≤ lim inf
j→∞

Cp,qj;Rj .

To this end, let us take q and R such that

p ≤ qj ≤ q

{

≤ p∗ if p < n,

<∞ if p ≥ n,
1 < R ≤ Rj for j ≥ 1.

It follows from the assertion 2 of Lemma 6.3 that there exists {vj}
∞

j=1 ⊂ C∞
c (B1\{0})\{0} such

that

Ψ p;R [vj ] = 1,
Ψ p;Rj [vj ]

‖vj‖
p

L
qj
1;Rj

(B1)

≤ Cp,qj;Rj +
1

j
for j ≥ 1.

Since R ≤ R holds, it follows from the assertion 1 of Lemma 6.4 that we have

1 = Ψ p;R [vj ] ≤

(

1 +

(

logR

logR

)1/p
)p

Ψ p;R[vj ] for j ≥ 1.

Using the assertions 2 and 3 of Lemma 6.4 we also have

Ψ p;R[vj ]
1/p ≤ Ψ p;Rj [vj ]

1/p + cp;R |Rj −R|Ψ p;R [vj ]
1/p = Ψ p;Rj [vj ]

1/p + cp;R |Rj −R|,

‖vj‖
qj

L
qj
1;Rj

(B1)
≤ ‖vj‖

qj

L
qj
1;R(B1)

+ cp,q;R |Rj −R| for j ≥ 1.

Combining with (a), there exist j1 ∈ N and c > 0 such that we have

‖vj‖
p

L
qj
1;Rj

(B1)
≥

Ψ p;Rj [vj ]

Cp,qj;Rj + 1/j
≥ c, |Rj −R| ≤

cqj/p

cp,q;R

for j ≥ j1.

Now let ε satisfy 0 < ε < c . Then it follows from Lemma 6.5 that there exists jε ≥ j1 such
that we have

‖vj‖
p

L
qj
1;R(B1)

≤ ‖vj‖
p

Lq
1;R(B1)

+ ε for j ≥ jε.
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Then we see

Cp,q;R
((

1−
cp,q ;R

cqj/p
|Rj −R|

)p/qj

−
ε

c

)

≤ Cp,q;R
((

1−
cp,q;R

‖vj‖
qj

L
qj
1;Rj

(B1)

|Rj −R|
)p/qj

−
ε

‖vj‖
p

L
qj
1;Rj

(B1)

)

=
Cp,q;R

‖vj‖
p

L
qj
1;Rj

(B1)

((‖vj‖
qj

L
qj
1;Rj

(B1)
− cp,q;R |Rj −R|)p/qj − ε) ≤

Cp,q;R

‖vj‖
p

L
qj
1;Rj

(B1)

(‖vj‖
p

L
qj
1;R(B1)

− ε)

≤
Cp,q;R‖vj‖

p
Lq

1;R(B1)

‖vj‖
p

L
qj
1;Rj

(B1)

≤
Ψ p;R[vj ]

‖vj‖
p

L
qj
1;Rj

(B1)

≤
1

‖vj‖
p

L
qj
1;Rj

(B1)

(Ψ p;Rj [vj ]
1/p + cp;R |Rj −R|)p

=
Ψ p;Rj [vj ]

‖vj‖
p

L
qj
1;Rj

(B1)

(

1 +
cp;R

Ψ p;Rj [vj ]
1/p

|Rj −R|
)p

≤
(

Cp,qj;Rj +
1

j

)(

1 + cp;R

(

1 +
(logRj

logR

)1/p)

|Rj −R|
)p

for j ≥ jε,

and the assertion is thus established. �

6.3 Some estimates for the best constants

In this subsection we establish the assertions 5, 6 and 7 of Theorem 2.2. First the assertion 7
of Theorem 2.2 follows from the next proposition.

Proposition 6.3 Assume that 1 < p ≤ q ≤ q <∞ and τp,q ≤ 1/n , then we have

Sp,q;γ ≥ (γ pτq,q(Sp,q;γ)τp,q)1/τp,q for γ > 0.

For the proof we employ the lemma below.

Lemma 6.6 Let 1 ≤ p ≤ q ≤ q <∞, γ > 0 and let Ω be a domain of Rn. Then we have

‖u‖
τp,q

Lq
γ(Ω)

≤ ‖u‖
τq,q

Lp
γ(Ω)

‖u‖
τp,q

Lq
γ(Ω)

for u ∈ Lp
γ(Ω) ∩ Lq

γ(Ω).

Proof: Noting that q τq,q/(pτp,q) + q τp,q/(q τp,q) = 1, we have

‖u‖ q
Lq

γ(Ω)
=

∫

Ω

(|u(x)||x|γ)qτq,q/τp,q(|u(x)||x|γ)qτp,q/τp,qI0(x)dx.

Then the assertion easily follows from this by the aid of the Hölder inequality. �

Proof of Proposition 6.3 : For ε > 0, there exists a uε ∈ C∞
c (Rn \{0})\{0} such that we

have
‖uε‖

q
Lq

γ(Rn)
= 1, Sp,q;γ ≤ ‖∇uε‖

p
Lp

1+γ(Rn)
≤ Sp,q;γ + ε.

Then, by Lemma 6.6 and Theorem 2.1 we have

1 = ‖uε‖
pτp,q

Lq
γ(Rn)

≤ ‖uε‖
pτq,q

Lp
γ(Rn)

‖uε‖
pτp,q

Lq
γ(Rn)

≤
( 1

γ p
‖∇uε‖

p
Lp

1+γ(Rn)

)τq,q
( 1

Sp,q;γ
‖∇uε‖

p
Lp

1+γ(Rn)

)τp,q

≤
1

γ pτp,q(Sp,q;γ)τp,q
(Sp,q;γ + ε)τp,q ,

and this proves the assertion. �

In order to prove the assertions 5 and 6 of Theorem 2.2, we establish the next proposition.
Noting the assertion 3 of Theorem 2.2, the assertion 5 and the assertion 6 of Theorem 2.2 follow
from the assertions 1, 2 and from the assertions 2, 3 of the next proposition respectively.
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Proposition 6.4 Let n ≥ 2, 1 < p < n and q = p∗ . Then we have the followings:

1.

Sp,p∗;γp,p∗ ≤
(

2 −
γp,p∗

γ

)p

Sp,p∗;γ for γ ≥ γp,p∗ .

2.
Sp,p∗;γ ≤ Sp,p∗;γp,p∗ for γ ≥ γp,p∗ .

3. When p = 2,
S2,2∗;γ ≤ S2,2∗;γ for 0 < γ ≤ γ.

Proof: 1. For ε > 0, there exists a uε ∈ C∞
c (Rn \{0})\{0} such that we have

‖uε‖
p∗

Lp∗
γ (Rn)

= 1, Sp,p∗;γ ≤ ‖∇uε‖
p

Lp
1+γ(Rn)

≤ Sp,p∗;γ + ε.

Since n− γp,p∗p∗ = 0, it holds that

‖ T̂γ
p,p∗

−γuε‖
p∗

Lp∗(Rn)
= ‖ T̂γ

p,p∗
−γuε‖

p∗

Lp∗
γp,p∗

(Rn)
= ‖uε‖

p∗

Lp∗
γ (Rn)

= 1.

Noting that n− (1 + γp,p∗)p = 0 and n− p(1 + γ) = (γp,p∗ − γ)p, by the Sobolev inequality and
the Hardy-Sobolev inequality we have

(Sp,p∗;γp,p∗)1/p ≤ ‖∇[ T̂γ
p,p∗

−γuε]‖Lp
1+γp,p∗

(Rn) = ‖∇[ T̂γ
p,p∗

−γuε]‖Lp(Rn)

=
(

∫

R
n

∣

∣

∣∇uε(x) + (γ − γp,p∗)uε(x)
x

|x|2

∣

∣

∣

p

Ip(1+γ)(x)dx
)1/p

≤ ‖∇uε‖Lp
1+γ(Rn) + (γ − γp,p∗)‖uε‖Lp

γ(Rn)

≤ ‖∇uε‖Lp
1+γ(Rn) + (γ − γp,p∗)

1

γ
‖∇uε‖Lp

1+γ(Rn) ≤
(

2 −
γp,p∗

γ

)

(Sp,p∗;γ + ε)1/p.

2. Let u ∈ C∞
c (Rn \{0})\{0} and e1 = (1, 0, . . . , 0) ∈ Rn . Since p∗γ ≥ n, p(1 + γ) ≥ n hold,

we have

εp∗γ−n
∥

∥

∥u
(

· −
e1
ε

)∥

∥

∥

p∗

Lp∗
γ (Rn)

=

∫

R
n
|u(x)|p

∗

Ip∗γ(εx+ e1)dx→

∫

R
n
|u(x)|p

∗

dx = ‖u‖ p∗

Lp∗
γp,p∗

(Rn)
,

εp(1+γ)−n
∥

∥

∥∇
[

u
(

· −
e1
ε

)]∥

∥

∥

p

Lp
1+γ(Rn)

=

∫

R
n
|∇u(x)|pIp(1+γ)(εx+ e1)dx

→

∫

R
n
|∇u(x)|pdx = ‖∇u‖ p

Lp
1+γp,p∗

(Rn)
as ε→ 0.

Therefore

Sp,p∗;γ ≤ Ep,p∗;γ
[

u
(

· −
e1
ε

)]

=

εp(1+γ)−n
∥

∥

∥∇
[

u
(

· −
e1
ε

)]∥

∥

∥

p

Lp
1+γ(Rn)

(

εp∗γ−n
∥

∥

∥u
(

· −
e1
ε

)∥

∥

∥

p∗

Lp∗
γ (Rn)

)p/p∗

→ Ep,p∗;γp,p∗ [u] as ε→ 0,

and this proves the assertion.

3. (a) For u ∈ C∞
c (Rn \{0})\{0}, we set

ζ[u](γ) = E2,2∗;γ [uIn−γ ] for γ > 0.
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If we note that

2

∫

R
n
u(x)(x·∇u(x))I0(x)dx =

∫

Sn−1

∫ ∞

0

∂

∂r
[u2](rω)drdS(ω) = 0,

then we obtain

ζ[u](γ) =
‖∇[uIn−γ]‖ 2

L2
1+γ(Rn)

‖uIn−γ‖ 2
L2∗

γ (Rn)

=
1

‖u‖ 2
L2∗

0 (Rn)

∫

R
n
(γ2u(x)2 − 2γu(x)(x·∇u(x)) + |x|2|∇u(x)|2)I0(x)dx

=
1

‖u‖ 2
L2∗

0 (Rn)

(γ2‖u‖ 2
L2

0(R
n) + ‖∇u‖ 2

L2
1(R

n)) for γ > 0,

and so, we see that ζ[u] is non-decreasing with respect to γ.
(b) For 0 < γ ≤ γ , it follows from (a) that we have

S2,2∗;γ ≤ E2,2∗;γ
[ u

In−γ
In−γ

]

= ζ
[ u

In−γ

]

(γ) ≤ ζ
[ u

In−γ

]

(γ) = E2,2∗;γ[u]

for u ∈ C∞
c (Rn \{0})\{0}.

This clearly proves the assertion. �

7 Existence of minimizers for the best constants

In this subsection we prove existence of minimizers for Sp,q;γ by the effective use of the so-called
concentration compactness principle when p < q < p∗ and γ > 0. We begin with preparing
some notations.

Definition 7.1 (i) Let ψ1, ρ1 ∈ C∞
c (Rn)rad and ρ1 ∈ C∞(Rn)rad satisfy

0 ≤ ψ1 ≤ 1, ρ1 ≥ 0, ρ1 > 0 on Rn, ψ1 = 1 on B1/2, ψ1 = ρ1 = 0 on Rn \B1,

ψ′
1 =

∂ψ1

∂r
≤ 0 on Rn \{0}, ‖∇ψ1‖L∞(Rn) ≤ 3, ‖ρ1‖L1(Rn) = ‖ρ1‖L1(Rn) = 1.

(ii) For ε > 0

ψε(x) = ψε(|x|) = ψ1

(x

ε

)

, ψ̃ε(x) = ψ̃ε(|x|) = − [ψ′
1]
(|x|

ε

)

=
∣

∣

∣[ψ′
1]
(|x|

ε

)∣

∣

∣,

ρε(x) = ρε(|x|) =
1

εn
ρ1

(x

ε

)

, ρε(x) = ρε(|x|) =
1

εn
ρ1

(x

ε

)

for x ∈ Rn.

7.1 Preliminaries

In this subsection we prepare some well-known properties in the theory of concentration com-
pactness due to P. L. Lions, which are useful in the proof of existence of minimizer of the best
constant Sp,q;γ . We admit the next lemma without a proof, see §1.3 of [Li1] for the detail.

Lemma 7.1 Assume that {Qj}
∞

j=1 is a sequence of uniformly bounded and non-decreasing func-
tions on [1,∞). Then, there exist a subsequence {Qj

k
} ∞

k=1 and a non-decreasing function Q on
[1,∞) such that we have

Qj
k
(t) → Q(t) as k → ∞ for t > 1.
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It follows from the Hölder inequality that we have

Lemma 7.2 For 1 < p ≤ q <∞, γ > 0 and R > 0, we have

‖u‖
Lp

γ(B2R\BR)
≤ (ωn log 2)τp,q‖u‖

Lq
γ(B2R\BR)

for u ∈ Lq
γ(B2R\BR).

The proof is omitted. It follows from the Rellich lemma that we have

Lemma 7.3 For 1 < p ≤ q < ∞, τp,q < 1/n and γ > 0 , assume that Ω is a bounded domain

of Rn and ∂Ω is smooth. Then, the imbedding W 1,p
γ,0 (Ω) ⊂ Lq

γ+1−nτp,q
(Ω) is compact.

Proof: For u ∈ C∞
c (Ω \{0}), we have

∇[uI1+γ+n/p′ ](x) = Ip(1+γ)(x)
1/p∇u(x) +

(

1 + γ −
n

p

)

Ipγ(x)1/pu(x)
x

|x|
for x ∈ Ω.

Hence we have

‖∇[uI1+γ+n/p′ ]‖Lp(Ω) ≤ ‖I
1/p

p(1+γ)∇u‖Lp(Ω) +
∣

∣

∣1 + γ −
n

p

∣

∣

∣‖I 1/p
pγ u‖Lp(Ω)

= ‖∇u‖Lp
1+γ(Ω) +

∣

∣

∣1 + γ −
n

p

∣

∣

∣‖u‖Lq
γ(Ω) for u ∈ W 1,p

γ,0 (Ω).

Therefore, if {uj}
∞

j=1 is bounded in W 1,p
γ,0 (Ω), then {ujI1+γ+n/p′} ∞

j=1 should be bounded in

W 1,p
0 (Ω) ( a classical Sobolev space without a weight), and by the Rellich lemma {ujI1+γ+n/p′} ∞

j=1

has a subseuence {ujk
I1+γ+n/p′} ∞

k=1 which converges in Lq(Ω). Noting that n−(1+γ+n/p′) =

(n − (1 + γ)p)/p and (n − (1 + γ)p)q/p = n − q(1 + γ − nτp,q), we get {uj
k
} ∞

k=1 converges in

Lq
γ+1−nτp,q

(Ω) as well. �

Let us recall a sharp Fatou’s lemma, which is essentially due to H. Brézis and E. Lieb [BL].
( See also [LL] )

Lemma 7.4 For 1 < q < ∞ and γ > 0 , assume that {uj}
∞

j=1 is bounded in Lq
γ(Rn) and

assume that
uj → u a.e. on Rn as j → ∞.

Then, we have u ∈ Lq
γ(Rn) and

‖uj‖
q

Lq
γ(Rn)

− ‖uj − u‖ q
Lq

γ(Rn)
→ ‖u‖ q

Lq
γ(Rn)

as j → ∞.

Proof: For 0 < ε < 1, there exists a positive number ĉq;ε > 0 such that we have

||s+ t|q − |s|q − |t|q| ≤ ε|s|q + ĉq;ε|t|
q for s, t ∈ R. (7.1)

Since |uj|Iqγ → |u|Iqγ a.e. on Rn as j → ∞ by the hypothesis, it follows from Fatou’s lemma
that

‖u‖ q
Lq

γ(Rn)
≤ lim inf

j→∞
‖uj‖

q
Lq

γ(Rn)
≤ sup

j≥1
‖uj‖

q
Lq

γ(Rn)
<∞,

hence we see u ∈ Lq
γ(Rn) . Then we have |u|qIqγ ∈ L1(Rn) and

(||uj |
q − |uj − u|q − |u|q| − ε|uj − u|q)+Iqγ ≤ ĉq;ε|u|

qIqγ a.e. on Rn for j ≥ 1.

Using Lebesgue’s convergence theorem, we have

∫

R
n
[(||uj |

q − |uj − u|q − |u|q| − ε|uj − u|q)+Iqγ ](x)dx→ 0 as j → ∞.
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After all we have

|‖uj‖
q

Lq
γ(Rn)

− ‖uj − u‖ q
Lq

γ(Rn)
− ‖u‖ q

Lq
γ(Rn)

| ≤

∫

R
n
[||uj |

q − |uj − u|q − |u|q|Iqγ ](x)dx

=

∫

R
n
[(||uj |

q − |uj − u|q − |u|q| − ε|uj − u|q)Iqγ ](x)dx + ε‖uj − u‖ q
Lq

γ(Rn)

≤

∫

R
n
[(||uj |

q − |uj − u|q − |u|q| − ε|uj − u|q)+Iqγ ](x)dx + ε
(

2 sup
j≥1

‖uj‖Lq
γ(Rn)

)q

→ ε
(

2 sup
j≥1

‖uj‖Lq
γ(Rn)

)q

as j → ∞.

Thus the assertion is established. �

Lemma 7.5 For 1 < p ≤ q < ∞, τp,q < 1/n and γ > 0 , there exists a positive number
cp,q;γ > 0 such that we have

‖u‖ p
Lq

γ(B
|y|/4

(y))
≤ cp,q;γ(‖∇u‖ p

Lp
1+γ(B

|y|/2
(y))

+ ‖u‖ p
Lp

γ(B
|y|/2

(y))
) for y ∈ Rn \{0}, u ∈W 1,p

γ,0 (Rn).

Proof: For y ∈ Rn \{0} and u ∈ C∞
c (Rn \{0}) we set

Kyu(x) = ψ|y|/2(x− y)u(x) for x ∈ Rn. (7.2)

By differentiation we have

∇[Kyu](x) = ψ|y|/2(x− y)∇u(x) −
2

|y|
ψ̃|y|/2(x − y)u(x)

x− y

|x− y|
for x ∈ Rn.

Since supp(Kyu) ⊂ B|y|/2(y) and |x| ≤ 3|y|/2 for x ∈ B|y|/2(y) , it holds that

|∇[Kyu](x)| ≤
(

|∇u(x)| +
9

|x|
|u(x)|

)

χ
B|y|/2(y)

(x) for x ∈ Rn \{0}.

Noting that
|u(x)|χ

B|y|/4(y)
(x) ≤ |Kyu(x)| for x ∈ Rn,

we have

‖u‖ p
Lq

γ(B
|y|/4

(y))
= ‖uχ

B|y|/4(y)
‖ p

Lq
γ(Rn)

≤ ‖Kyu‖
p

Lq
γ(Rn)

≤
1

Sp,q;γ
‖∇[Kyu]‖

p
Lq

1+γ(Rn)
≤

1

Sp,q;γ

∥

∥

∥
|∇u| + 9

|u|

| · |

∥

∥

∥

p

Lq
1+γ(B

|y|/2
(y))

≤
1

Sp,q;γ
(‖∇u‖Lp

1+γ(B
|y|/2

(y)) + 9‖u‖Lq
γ(B

|y|/2
(y)))

p for u ∈ C∞
c (Rn \{0}),

and hence the assertion follows. �

Lemma 7.6 Let us take {zk} ∞
k=1 ⊂ Rn \{0} and L ∈ N such that

∞
⋃

k=1

B|zk|/4(z
k) = Rn \{0}, L = sup

x∈R
n\{0}

♯{k ∈ N | x ∈ B|zk|/2(z
k)} <∞.

Then, for 1 < q <∞ and γ > 0 we have

‖u‖ q
Lq

γ(Rn)
≤

∞
∑

k=1

‖u‖ q
Lq

γ(B
|zk|/4

(zk))
≤

∞
∑

k=1

‖u‖ q
Lq

γ(B
|zk|/2

(zk))
≤ L‖u‖ q

Lq
γ(Rn)

for u ∈ Lq
γ(Rn).
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Proof : By the assumption on {zk} ∞
k=1 and L, it holds that

1 ≤
∞
∑

k=1

χ
B

|zk|/4
(zk)

(x) ≤
∞
∑

k=1

χ
B

|zk|/2
(zk)

(x) ≤ L for x ∈ Rn \{0},

and this proves the assertion. �

Now we verify the following.

Lemma 7.7 Assume that 1 < p ≤ q < ∞, p ≤ q̃ < ∞, τp,q < 1/n, τp,q̃ < 1/n and γ > 0 .
Then, there exists positive numbers θp,q,q̃ ∈ (0,1) and cp,q,q̃ ;γ > 0 such that we have

‖u‖Lq
γ(Rn) ≤ cp,q,q̃ ;γ‖∇u‖

θp,q,q̃

Lp
1+γ(Rn)

(

sup
y∈R

n\{0}

‖u‖
Lq̃

γ(B
|y|/4

(y))

)1−θp,q,q̃

for u ∈W 1,p
γ,0 (Rn).

Proof: (i) Assume that q̃ < q . Noting that 1/p− (q/p− 1)/q̃−1/q = (1/p−1/q)(1−q/q̃) < 0
we choose q = qp,q,q̃ such that

max
{ 1

p∗
,
1

p
−
(q

p
− 1
)1

q̃

}

<
1

q
=

1

qp,q,q̃

<
1

q
,

and then we put

θ = θp,q,q̃ =
1/q̃ − 1/q

1/q̃ − 1/q
=

1/q̃ − 1/q

1/q̃ − 1/qp,q,q̃

.

Then, noting that q̃ < q < q, qθ > p and τp,q < 1/n, it follows from Lemmas 6.6, 7.5 and 7.6
that we have

‖u‖ q
Lq

γ(Rn)
≤

∞
∑

k=1

(‖u‖
1/q̃−1/q

Lq
γ(B

|zk|/4
(zk))

)q/(1/q̃−1/q)

≤
∞
∑

k=1

(‖u‖
1/q−1/q

Lq̃
γ(B

|zk|/4
(zk))

‖u‖
1/q̃−1/q

Lq
γ(B

|zk|/4
(zk))

)q/(1/q̃−1/q)

≤
∞
∑

k=1

‖u‖
q(1−θ)

Lq̃
γ(B

|zk|/4
(zk))

‖u‖qθ

Lq
γ(B

|zk|/4
(zk))

≤
∞
∑

k=1

(

sup
y∈R

n\{0}

‖u‖
Lq̃

γ(B
|y|/4

(y))

)q(1−θ)

‖u‖ qθ−p

Lq
γ(Rn)

‖u‖ p

Lq
γ(B

|zk|/4
(zk))

≤
(

sup
y∈R

n\{0}

‖u‖
Lq̃

γ(B
|y|/4

(y))

)q(1−θ)

‖u‖ qθ−p

Lq
γ(Rn)

∞
∑

k=1

cp,q ;γ(‖∇u‖ p
Lp

1+γ(B
|y|/2

(y))
+ ‖u‖ p

Lp
γ(B

|y|/2
(y))

)

≤ Lcp,q ;γ

(

sup
y∈R

n\{0}

‖u‖
Lq̃

γ(B
|y|/4

(y))

)q(1−θ)

‖u‖ qθ−p

Lq
γ(Rn)

(‖∇u‖ p
Lp

1+γ(Rn)
+ ‖u‖ p

Lp
γ(Rn)

)

≤ Lcp,q;γ

(

sup
y∈R

n\{0}

‖u‖
Lq̃

γ(B
|y|/4

(y))

)q(1−θ)

·
( 1

(Sp,q;γ)1/p
‖∇u‖Lp

1+γ(Rn)

)qθ−p(

‖∇u‖ p
Lp

1+γ(Rn)
+

1

γ p
‖∇u‖ p

Lp
1+γ(Rn)

)

=
Lcp,q;γ

(Sp,q ;γ)qθ/p−1

(

1 +
1

γ p

)

‖∇u‖ qθ
Lp

1+γ(Rn)

(

sup
y∈R

n\{0}

‖u‖
Lq̃

γ(B
|y|/4

(y))

)q(1−θ)

for u ∈W 1,p
γ,0 (Rn).

(ii) Assume that q ≤ q̃ . Let us take q = qp,q,q̃ such that it satisfies q̃ ≤ q = qp,q,q̃ < ∞
and τp,q < 1/n . Then it follows from (i) that there exist positive numbers θp,q,q̃ ∈ (0,1) and
cp,q,q̃;γ > 0 such that we have

‖u‖
Lq

γ(Rn)
≤ cp,q,q̃;γ‖∇u‖

θp,q,q̃

Lp
1+γ(Rn)

(

sup
y∈R

n\{0}

‖u‖
Lq̃

γ(B
|y|/4

(y))

)1−θp,q,q̃

for u ∈W 1,p
γ,0 (Rn).
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Then from Lemma 6.6 we have

‖u‖
1/p−1/q

Lq
γ(Rn)

≤ ‖u‖
1/q−1/q

Lp
γ(Rn)

‖u‖
1/p−1/q

Lq
γ(Rn)

≤
1

γ1/q−1/q
‖∇u‖

1/q−1/q

Lp
1+γ(Rn)

‖u‖
1/p−1/q

Lq
γ(Rn)

for u ∈W 1,p
γ,0 (Rn).

Therefore we have the desired estimate with

θp,q,q̃ =
1/q − 1/q + θp,q,q̃(1/p− 1/q)

1/p− 1/q
.

�

7.2 Some properties of minimizing sequences

In this subsection we study minimizing sequences for the best constants Sp,q;γ by using the
concentration compactness principle on annular doamains.

Definition 7.2 Let 1 < p ≤ q <∞ and γ > 0 . For u ∈W 1,p
γ,0 (Rn) we set

ρp,q;γ [u] = |u|qIqγ + |∇u|pIp(1+γ), (7.3)

Qp,q;γ [u](t) = sup
r>0

‖ρp,q;γ[u]‖
L1(Btr\Br)

for t > 0. (7.4)

First of all we show that there exists a minimazing sequence for Sp,q;γ which does not vanish.

Proposition 7.1 Assume that 1 < p < q < ∞, τp,q < 1/n and γ > 0 . Then, there exist

{uj}
∞

j=1 ⊂ W 1,p
γ,0 (Rn)\{0}, a non-decreasing function Q : (1,∞) → R and positive numbers

λ, λ satisfying
0 < λ ≤ λ ≤ 1 + Sp,q;γ

such that:

1. ‖uj‖
q

Lq
γ(Rn)

= 1 for j ≥ 1, ‖∇uj‖
p

Lp
1+γ(Rn)

→ Sp,q;γ as j → ∞.

2. ‖ρp,q;γ[uj ]‖L1(B
5/4

\B
3/4

)
≥ ‖uj‖

q

Lq
γ(B

5/4
\B

3/4
)
≥ λ for j ≥ 1.

3. Qp,q;γ [uj](t) → Q(t) as j → ∞ for t > 1 ; Q(t) → λ as t→ ∞.

Proof: 1–2: From definition 2.3, there exists a sequence {vj}
∞

j=1 ⊂W 1,p
γ,0 (Rn)\{0} such that

‖vj‖
q

Lq
γ(Rn)

= 1 for j ≥ 1, ‖∇vj‖
p

Lp
1+γ(Rn)

→ Sp,q;γ as j → ∞. (7.5)

Then, from Lemma 7.7 with q̃ = q , we have

lim inf
j→∞

sup
y∈R

n\{0}

‖vj‖Lq
γ(B

|y|/4
(y))0, (7.6)

therefore there exist λ > 0 and {yj} ∞
j=1 ⊂ Rn \{0} such that

‖vj‖
q

Lq
γ(B|yj|/4(y

j))
λ for j ≥ 1. (7.7)

Now putting
uj(x) = |yj|γvj(|y

j|x) for x ∈ Rn, j ≥ 1, (7.8)
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we see that

‖uj‖
q

Lq
γ(B

5/4
\B

3/4
)
≥ ‖uj‖

q
Lq

γ(B
1/4

(yj/|yj|))
= ‖vj‖

q
Lq

γ(B|yj|/4(y
j))
λ, (7.9)

‖uj‖
q

Lq
γ(Rn)

= ‖vj‖
q

Lq
γ(Rn)

= 1 for j ≥ 1, (7.10)

‖∇uj‖
p

Lp
1+γ(Rn)

= ‖∇vj‖
p

Lp
1+γ(Rn)

→ Sp,q;γ as j → ∞. (7.11)

(iii) We see that each Qp,q;γ [uj ] is non-decreasing on (1,∞) and that {Qp,q;γ [uj]}
∞

j=1 is
uniformly bounded on (1,∞). Therefore, it follows from Lemma 7.1 that there exist, by taking
a subsequence if necessary, a non-decreasing function Q : (1,∞) → R and a positive number
λ ∈ R such that

Qp,q;γ [uj](t) → Q(t) as j → ∞ for t > 1 ; Q(t) → λ as t→ ∞. (7.12)

Noting that

Qp,q;γ [uj]
(5

3

)

≥ ‖ρp,q;γ [uj]‖L1(B
5/4

\B
3/4

)
≥ ‖uj‖

q

Lq
γ(B

5/4
\B

3/4
)
λ for j ≥ 1, (7.13)

we have

λ < Qp,q;γ [uj ]
(5

3

)

≤ Qp,q;γ [uj](t) ≤ ‖ρp,q;γ[uj]‖L1(Rn)
for t ≥

5

3
, j ≥ 1. (7.14)

Letting j → ∞ , we have

λ ≤ Q
(5

3

)

≤ Q(t) ≤ 1 + Sp,q;γ for t ≥
5

3
. (7.15)

Then by letting t→ ∞ , we reach to the desired estimate λ ≤ λ ≤ 1 + Sp,q;γ . �

In order to show that no dichotomy occurs in the minimizing sequence which has been
chosen in Proposition 7.1, we prepare the following.

Proposition 7.2 Assume that 1 < p < q < ∞, τp,q < 1/n and γ > 0 . Let {uj}
∞

j=1 ⊂

W 1,p
γ,0 (Rn)\{0} satisfy the properties 1, 2 and 3 in Proposition 7.1. Then for an arbtrary ε > 0,

there exist {vε,j}
∞

j=1 ⊂W 1,p
γ,0 (Rn), jε ∈ N and ε̃p,q;ε > 0 such that we have

|‖ρp,q;γ[vε,j ]‖L1(Rn)
− λ| ≤ ε̃p,q;ε, |‖ρ

p,q;γ[uj − vε,j ]‖L1(Rn)
− (1 + Sp,q;γ − λ)| ≤ ε̃p,q;ε, (7.16)

0 ≤ 1− ‖vε,j‖
q

Lq
γ(Rn)

− ‖uj − vε,j‖
q

Lq
γ(Rn)

< 2ε for j ≥ jε.

Further it holds that ε̃p,q;ε → 0 as ε→ 0 .

Proof: Let ε > 0 .
(a) From the assertion 3 of Proposition 7.1, there exists tε > 1 such that we have

λ−
ε

2
< Q(t) ≤ λ for t ≥ tε. (7.17)

Also from Definition 7.2 there exist {rε,j}
∞

j=1 ∪ {Rε,j}
∞

j=1 ⊂ (0,∞) such that we have

Qp,q;γ [uj](tε) ≤ ‖ρp,q;γ [uj]‖L1(BRε,j
\Brε,j

)
+
ε

4
, Rε,j = tεrε,j for j ≥ 1. (7.18)

Further from the assertions 1 and 2 of Proposition 7.1, there existsjε ∈ N such that we have

0 ≤ ‖ρp,q;γ[uj ]‖L1(Rn)
− (1 + Sp,q;γ) < ε, (7.19)

|Qp,q;γ [uj ](tε) −Q(tε)| <
ε

4
, |Qp,q;γ [uj ](4 tε) −Q(4 tε)| < ε for j ≥ jε.
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(b) Since

λ−
ε

2
< Q(tε) < Qp,q;γ [uj](tε) +

ε

4
< ‖ρp,q;γ[uj]‖L1(BRε,j

\Brε,j
)
+
ε

2
, (7.20)

‖ρp,q;γ[uj]‖L1(BRε,j
\Brε,j

)
≤ Qp,q;γ [uj ](tε) < Q(tε) +

ε

4
< λ+

ε

2
for j ≥ jε,

we see that
|‖ρp,q;γ [uj]‖L1(BRε,j

\Brε,j
)
− λ| < ε for j ≥ jε. (7.21)

Hence we see

|‖ρp,q;γ[uj ]‖L1(Rn\BRε,j
)
+ ‖ρp,q;γ [uj]‖L1(Brε,j

)
− (1 + Sp,q;γ − λ)| (7.22)

= |‖ρp,q;γ [uj]‖L1(Rn)
− ‖ρp,q;γ[uj ]‖L1(BRε,j

\Brε,j
)
− (1 + Sp,q;γ) + λ|

≤ |‖ρp,q;γ [uj]‖L1(Rn)
− (1 + Sp,q;γ)| + |‖ρp,q;γ[uj ]‖L1(BRε,j

\Brε,j
)
− λ| < 2ε for j ≥ jε.

Since

‖ρp,q;γ[uj ]‖L1(B2Rε,j
\B

rε,j/2
)
≤ Qp,q;γ [uj ](4 tε) ≤ Q(4 tε) + ε ≤ λ+ ε for j ≥ jε, (7.23)

we have

‖ρp,q;γ[uj ]‖L1(B2Rε,j
\BRε,j

)
+ ‖ρp,q;γ[uj ]‖L1(Brε,j

\B
rε,j/2

)
(7.24)

= ‖ρp,q;γ[uj ]‖L1(B2Rε,j
\B

rε,j/2
)
− ‖ρp,q;γ[uj ]‖L1(BRε,j

\Brε,j
)
< (λ+ ε) − (λ− ε) = 2ε for j ≥ jε.

(c) Let us set vε,j(x) = ψ2Rε,j
(x)(1− ψrε,j

(x))uj(x) for x ∈ Rn, j ≥ 1. Then from Lemma
7.2 and elementary inequalities;

(1 + t)p ≤ 2p−1(1 + tp), 1 + tp/q ≤ 21−p/q(1 + t)p/q for t ≥ 0, (7.25)

we have
∣

∣

∣

∣

‖ρp,q;γ [vε,j ]‖L1(Rn)
− ‖ρp,q;γ [uj]‖L1(BRε,j

\Brε,j
)

∣

∣

∣

∣

(7.26)

=

∫

B2Rε,j
\BRε,j

{

|ψ2Rε,j
(x)uj(x)|

qIqγ(x)

+

∣

∣

∣

∣

∣

−
1

2Rε,j

ψ̃2Rε,j
(x)uj(x)

x

|x|
+ ψ2Rε,j

(x)∇uj(x)

∣

∣

∣

∣

∣

p

Ip(1+γ)(x)

}

dx

+

∫

Brε,j
\B

rε,j/2

{

|(1− ψrε,j
(x))uj(x)|

qIqγ(x)

+

∣

∣

∣

∣

∣

1

rε,j
ψ̃rε,j

(x)uj(x)
x

|x|
+ (1− ψrε,j

(x))∇uj(x)

∣

∣

∣

∣

∣

p

Ip(1+γ)(x)

}

dx

≤

∫

B2Rε,j
\BRε,j

(

|uj(x)|
qIqγ(x) + 2p−1

((

3|x|

2Rε,j

|uj(x)|

)p

Ipγ(x) + |∇uj(x)|
pIp(1+γ)(x)

))

dx

+

∫

Brε,j
\B

rε,j/2

(

|uj(x)|
qIqγ(x) + 2p−1

((

3|x|

rε,j
|uj(x)|

)p

Ipγ(x) + |∇uj(x)|
pIp(1+γ)(x)

))

dx
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≤ 2p−1‖ρp,q;γ[uj]‖L1(B2Rε,j
\BRε,j

)
+

6p

2
‖uj‖

p

Lp
γ(B2Rε,j

\BRε,j
)

+ 2p−1‖ρp,q;γ[uj ]‖L1(Brε,j
\B

rε,j/2
)
+

6p

2
‖uj‖

p

Lp
γ(Brε,j

\B
rε,j/2

)

≤ 2p−1·2ε+
6p

2
(((ωn log 2)τp,q‖uj‖Lq

γ(B2Rε,j
\BRε,j

)
)p + ((ωn log 2)τp,q‖uj‖Lq

γ(Brε,j
\B

rε,j/2
)
)p)

≤ 2pε+
1

2
(6(ωn log 2)τp,q)p 21−p/q(‖uj‖

q

Lq
γ(B2Rε,j

\BRε,j
)
+ ‖uj‖

q

Lq
γ(Brε,j

\B
rε,j/2

)
)p/q

≤ 2pε+
1

2p/q
(6(ωn log 2)τp,q)p(2ε)p/q = 2pε+ (6(ωn log 2)τp,q)pεp/q for j ≥ jε.

In a similar way we have

|‖ρp,q;γ[uj − vε,j ]‖L1(Rn)
− (‖ρp,q;γ [uj]‖L1(Rn\BRε,j

)
+ ‖ρp,q;γ[uj ]‖L1(Brε,j

)
)| (7.27)

=
∣

∣

∣

∫

B2Rε,j
\BRε,j

{

(|uj(x)|
q − |(1− ψ2Rε,j

(x))uj(x)|
q)Iqγ(x)

+
(

|∇uj(x)|
p −

∣

∣

∣

1

2Rε,j

ψ̃2Rε,j
(x)uj(x)

x

|x|
+ (1− ψ2Rε,j

(x))∇uj(x)
∣

∣

∣

p)

Ip(1+γ)(x)
}

dx

+

∫

Brε,j
\B

rε,j/2

{

(|uj(x)|
q − |ψrε,j

(x)uj(x)|
q)Iqγ(x)

+
(

|∇uj(x)|
p −

∣

∣

∣−
1

rε,j
ψ̃rε,j

(x)uj(x)
x

|x|
+ ψrε,j

(x)∇uj(x)
∣

∣

∣

p)

Ip(1+γ)(x)
}

dx
∣

∣

∣

≤

∫

B2Rε,j
\BRε,j

{

|uj(x)|
qIqγ(x) + |∇uj(x)|

pIp(1+γ)(x)

+ 2p−1
(( 3|x|

2Rε,j

|uj(x)|
)p

Iqγ(x) + |∇uj(x)|
pIp(1+γ)(x)

)}

dx

+

∫

Brε,j
\B

rε,j/2

{

|uj(x)|
qIqγ(x) + |∇uj(x)|

pIp(1+γ)(x)

+ 2p−1
((3|x|

rε,j
|uj(x)|

)p

Iqγ(x) + |∇uj(x)|
pIp(1+γ)(x)

)}

dx

≤ 2(2p−1 + 1)ε+ (6(ωn log 2)τp,q)pεp/q for j ≥ jε.

(d) From (7.21), (7.22), (7.26) and (7.27) in (b) and (c), we have

|‖ρp,q;γ [vε,j ]‖L1(Rn)
− λ| ≤ 2pε+ (6(ωn log 2)τp,q)pεp/q + ε, (7.28)

|‖ρp,q;γ [uj − vε,j ]‖L1(Rn)
− (1 + Sp,q;γ − λ)|

≤ 2(2p−1 + 1)ε+ (6(ωn log 2)τp,q)pεp/q + 2ε for j ≥ jε.

Noing that
θq + (1− θ)q ≤ 1 for 0 ≤ θ ≤ 1, (7.29)

we have

0 ≤ 1− (ψ2Rε,j
(x)(1− ψrε,j

(x)))q − (1− ψ2Rε,j
(x)(1− ψrε,j

(x)))q

≤ χ
B2Rε,j

\BRε,j

(x) + χ
Brε,j

\B
rε,j/2

(x) for x ∈ Rn, j ≥ jε.

Then from this inequality and (b) we have

0 ≤ 1− ‖vε,j‖
q

Lq
γ(Rn)

− ‖uj − vε,j‖
q

Lq
γ(Rn)

= ‖uj‖
q

Lq
γ(Rn)

− ‖vε,j‖
q

Lq
γ(Rn)

− ‖uj − vε,j‖
q

Lq
γ(Rn)

≤ ‖uj‖
q

Lq
γ(B2Rε,j

\BRε,j
)
+ ‖uj‖

q

Lq
γ(Brε,j

\B
rε,j/2

)

≤ ‖ρp,q;γ[uj]‖L1(B2Rε,j
\BRε,j

)
+ ‖ρp,q;γ[uj]‖L1(Brε,j

\B
rε,j/2

)
< 2ε for j ≥ jε.

46



�

Proposition 7.3 Assume that 1 < p < q <∞, τp,q < 1/n and γ > 0 . Assume that {uj}
∞

j=1 ⊂

W 1,p
γ,0 (Rn)\{0} satisfies the property 1 of Proposition 7.1. Then we have λ = 1 + Sp,q;γ .

Proof: On the contrary we assume that λ 6= 1 + Sp,q;γ . Then from Proposition 7.1 we should
have 0 < λ < 1 + Sp,q;γ . Let us retain the notations in Proposition 7.2.

(a) Since ε̃p,q;ε → 0 as ε→ 0, there exists some ε0 > 0 such that

0 < ε̃p,q;ε <
1

2
min{λ,1 + Sp,q;γ − λ} for 0 < ε < ε0. (7.30)

Then, from Proposition 7.2 and Theorem 2.1 we have

1

2
λ ≤ λ− ε̃p,q;ε ≤ ‖ρp,q;γ [vε,j ]‖L1(Rn)

≤
( 1

Sp,q;γ
‖∇vε,j‖

p
Lp

1+γ(Rn)

)q/p

+ ‖∇vε,j‖
p

Lp
1+γ(Rn)

,

1

2
(1 + Sp,q;γ − λ) ≤ 1 + Sp,q;γ − λ− ε̃p,q;ε ≤ ‖ρp,q;γ[uj − vε,j ]‖L1(Rn)

≤
( 1

Sp,q;γ
‖∇[uj − vε,j ]‖

p
Lp

1+γ(Rn)

)q/p

+ ‖∇[uj − vε,j ]‖
p

Lp
1+γ(Rn)

for j ≥ jε, 0 < ε < ε0.

Hence, for some β > 0, we have

‖∇vε,j‖
p

Lp
1+γ(Rn)

≥ β, ‖∇[uj − vε,j ]‖
p

Lp
1+γ(Rn)

≥ β for j ≥ jε, 0 < ε < ε0. (7.31)

(b) Choose a sequence {εk}
∞

k=1 ⊂ (0,ε0) satifying εk → 0 as k → ∞. Then from Proposition
7.2 we have

0 ≤ 1− ‖vεk,j‖
q

Lq
γ(Rn)

− ‖uj − vεk,j‖
q

Lq
γ(Rn)

≤ 2εk for j ≥ jεk , k ≥ 1, (7.32)

and we see that {‖vεk,j‖
q

Lq
γ(Rn)

} ∞
k=1 and {‖uj − vεk,j‖

q
Lq

γ(Rn)
} ∞

k=1 are bounded. Hence, by choos-

ing a subsequence with respect to j, there exist {σk}
∞

k=1 ∪ {σk}
∞

k=1 ⊂ [0,1] such that we have

‖vεk,j‖
q

Lq
γ(Rn)

→ σk, ‖uj − vεk,j‖
q

Lq
γ(Rn)

→ σk as j → ∞ for k ≥ 1. (7.33)

Since 0 ≤ 1− σk − σk ≤ 2εk for k ≥ 1, by choosing a subsequence with respect to k, there
exists σ ∈ [0,1] such that we have

σk → σ, σk → 1− σ as k → ∞. (7.34)

(c) From (a), Proposition 7.2 and Theorem 2.1, we have

max{Sp,q;γ(‖vεk,j‖
p

Lq
γ(Rn)

+ ‖uj − vεk,j‖
p

Lq
γ(Rn)

), β + Sp,q;γ‖uj − vεk,j‖
p

Lq
γ(Rn)

,

β + Sp,q;γ‖vεk,j‖
p

Lq
γ(Rn)

}

≤ ‖∇vεk,j‖
p

Lp
1+γ(Rn)

+ ‖∇[uj − vεk,j ]‖
p

Lp
1+γ(Rn)

= ‖ρp,q;γ[vεk,j ]‖L1(Rn)
+ ‖ρp,q;γ[uj − vεk,j]‖L1(Rn)

− (‖vεk,j‖
q

Lq
γ(Rn)

+ ‖uj − vεk,j‖
q

Lq
γ(Rn)

)

≤ (λ+ ε̃p,q;ε
k
) + (1 + Sp,q;γ − λ+ ε̃p,q;ε

k
) − ‖vε

k
,j‖

q
Lq

γ(Rn)
− ‖uj − vε

k
,j‖

q
Lq

γ(Rn)

= Sp,q;γ + 1− ‖vεk,j‖
q

Lq
γ(Rn)

− ‖uj − vεk,j‖
q

Lq
γ(Rn)

+ 2 ε̃p,q;εk
for j ≥ jεk , k ≥ 1.

Therefore, letting j → ∞, k → ∞ and using (b), we have

max{Sp,q;γ(σp/q + (1− σ)p/q), β + Sp,q;γ(1− σ)p/q , Sp,q;γσp/q + β} ≤ Sp,q;γ , (7.35)
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and we have σp/q + (1− σ)p/q ≤ 1. If we note that

θp/q + (1− θ)p/q > 1 for 0 < θ < 1, (7.36)

we have σ ∈ {0,1} . Then it holds that β ≤ 0, and this is a contradiction. �

Then we have the following.

Proposition 7.4 Assume that 1 < p < q <∞, τp,q < 1/n and γ > 0 . Assume that {uj}
∞

j=1 ⊂

W 1,p
γ,0 (Rn)\{0} satifies the properties of Proposition 7.1. Then, {ρp,q;γ [uj]}

∞
j=1 is tight. Namely,

for an arbitrary ε > 0, there exists a constant Rε > 0 such that we have

‖ρp,q;γ [uj]‖L1(Rn\BRε
)
< ε for j ≥ 1. (7.37)

In particular, both {|uj|
qIqγ}

∞
j=1 and {|∇uj|

pIp(1+γ)}
∞

j=1 are tight as well.

Proof: Let 0 < ε < λ . (a) From Proposition 7.3 we see that λ = 1 + Sp,q;γ , hence there

exists tε > 1 such that we have

1 + Sp,q;γ −
ε

4
< Q(t) ≤ 1 + Sp,q;γ for t ≥ tε. (7.38)

From the assertions 1 and 3 of Proposition 7.1 there exists jε ∈ N such that we have

‖ρp,q;γ[uj ]‖L1(Rn)
< 1 + Sp,q;γ +

ε

4
, |Qp,q;γ [uj](tε) −Q(tε)| <

ε

4
for j ≥ jε. (7.39)

Further, by Definition 7.2 there exist {rε,j}
∞

j=1 ∪ {Rε,j}
∞

j=1 ⊂ (0,∞) such that we have

‖ρp,q;γ[uj]‖L1(BRε,j
\Brε,j

)
Qp,q;γ [uj ](tε) −

ε

4
, Rε,j = tεrε,j for j ≥ 1. (7.40)

Therefore it holds that

‖ρp,q;γ[uj ]‖L1(BRε,j
\Brε,j

)
Qp,q;γ [uj ](tε) −

ε

4
Q(tε) −

ε

2
1 + Sp,q;γ −

3

4
ε for j ≥ jε. (7.41)

Then we have

rε,j ≤
5

4
for j ≥ jε. (7.42)

In fact, if not, we have

(B5/4 \B3/4) ∩ (BRε,j
0
\Brε,j

0
) = o/ for some j0 ≥ jε, (7.43)

and hence

1 + Sp,q;γ +
ε

4
‖ρp,q;γ[uj0

]‖
L1(Rn)

(7.44)

≥ ‖ρp,q;γ[uj0
]‖

L1(B
5/4

\B
3/4

)
+ ‖ρp,q;γ [uj0

]‖
L1(BRε,j

0

\Brε,j
0
)

λ + 1 + Sp,q;γ −
3

4
ε.

Then we have λ < ε , but this is a contradiction.

(b) Let us take a number Rε > 0 such that

Rε >
5

4
tε, ‖ρp,q;γ[uj]‖L1(Rn\BRε

)
< ε for 1 ≤ j ≤ jε − 1. (7.45)

Since BRε,j
\Brε,j

⊂ BRε
for j ≥ jε , we have

‖ρp,q;γ[uj ]‖L1(Rn\BRε
)
≤ ‖ρp,q;γ[uj ]‖L1(Rn)

− ‖ρp,q;γ[uj]‖L1(BRε,j
\Brε,j

)
(7.46)

< 1 + Sp,q;γ +
ε

4
−
(

1 + Sp,q;γ −
3

4
ε
)

= ε for j ≥ jε,

and this proves the assertion. �
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7.3 Convergence of minimizing sequence

In this subsection we investigate the minimizing sequence {uj}
∞

j=1 for Sp,q;γ , which are in-
troduced in Proposition 7.1, and we finally prove the existence of minimizer. To this end we
employ the following lemma that is an easy corollary to [Lions, Lemma 2.1]. Here, by B(Rn)
we denote a set of all finite Borel measures on Rn, and by δ0 we denote a Dirac measure with
a unit mass at the origin. In a canonical way we see that L1(Rn) ⊂ B(Rn) . For ν ∈ B(Rn),
by νac and νs we denote an absolutely continuous part and a singular part of ν with respect to
Lebesgue measure respectively. In this notation we see that νac ∈ L1(Rn) and ν = νac + νs .

Lemma 7.8 (Lions) Assume that 1 < p ≤ q < ∞, µ, ν ∈ B(Rn), µ, ν ≥ 0, supp νs ⊂ {0} and
S > 0 . Assume that

S
(

∫

R
n
|φ(x)|qdν(x)

)p/q

≤

∫

R
n
|φ(x)|pdµ(x) for φ ∈ C∞

c (Rn \{0}). (7.47)

Then there exists a constant a0 ∈ [0,∞)such that we have

ν = a0δ0, µ ≥ (Sa
p/q
0 )δ0. (7.48)

For reader’s convenience, let us briefly recall a notion of weak convergence of a sequence
of measures. Let us denote by BC(Rn) a set of all bounded, continuous functions on Rn,
then B(Rn) is regarded as a subspace of BC(Rn)′, which is a dual of BC(Rn). A sequence
{νj}

∞
j=1 ⊂ B(Rn) is said to converge weakly to ν in BC(Rn)′, if {νj}

∞
j=1 converges in a weak ∗

topology to ν in BC(Rn)′, that is to say,

∫

R
n
φ(x)dνj(x) →

∫

R
n
φ(x)dν(x) as j → ∞ for any φ ∈ BC(Rn). (7.49)

When {νj}
∞

j=1 ⊂ B(Rn) converges weakly to ν in BC(Rn)′, we simply write

νj ⇀ ν weakly as j → ∞. (7.50)

We employ the following lemma. (The proof is omitted.)

Lemma 7.9 Assume that {νj}
∞

j=1 is bounded in B(Rn). If {νj}
∞

j=1 is tight, then {νj}
∞

j=1 con-
tains a weakly convergent subsequence.

If {uj}
∞

j=1 satisfies the assertions of Proposition 7.1, then from Proposition 7.4 we see that both
{|uj|

qIqγ}
∞

j=1 and {|∇uj|
pIp(1+γ)}

∞
j=1 are tight. Hence from Lemma 7.9 they contain weakly

convergent subsequences respectively. Further, from Rellich’s therem and Lemma 7.3 we have
the following:

Proposition 7.5 Assume that 1 < p < q < ∞, τp,q < 1/n and γ > 0 . Then there ex-

ist {uj}
∞

j=1 ⊂ W 1,p
γ,0 (Rn)\{0} and u ∈ W 1,p

γ,0 (Rn)\{0}, µ, ν ∈ B(Rn) such that we have the
followings:

1. ‖uj‖
q

Lq
γ(Rn)

= 1 for j ≥ 1, ‖∇uj‖
p

Lp
1+γ(Rn)

→ Sp,q;γ as j → ∞.

2. uj ⇀ u weakly in W 1,p
γ,0 (Rn), uj → u in Lq

loc(R
n \{0})∩ (Lq

γ+1−nτp,q
)loc(R

n),

uj → u a.e. on Rn as j → ∞.

3. |uj|
qIqγ ⇀ ν, |∇uj |

pIp(1+γ) ⇀ µ weakly as j → ∞.

4. νac = |u|qIqγ a.e. on Rn, supp νs ⊂ {0}.
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Proof: We prove the assertion 4 only. For ε > 0 it follows from the assertios 2 and 3 that
∫

R
n
φ(x)|∇uj(x)|

pIp(1+γ)(x)dx→

∫

R
n
φ(x)dµ(x), (7.51)

∫

R
n
φ(x)|uj(x)|

qIqγ(x)dx→

∫

R
n
φ(x)dν(x) as j → ∞ for φ ∈ C∞

c (Rn \Bε), (7.52)

hence it holds that
∫

R
n
φ(x)(|u(x)|qIqγ(x) − νac(x))dx =

∫

R
n
φ(x)dνs(x) for φ ∈ C∞

c (Rn \Bε). (7.53)

Therefore, |u|qIqγ − νac coincides with νs as measures on Rn \Bε . Since they are absolutely
continuous and singular with respect to Lebesgue measure respectively, they should be vanishig
as measures on Rn \Bε . Hence we have

|u|qIqγ − νac = 0 a.e. on Rn \Bε , supp νs ⊂ Bε .

Since ε > 0 is arbitrary, we conclude that

|u|qIqγ − νac = 0 a.e. on Rn, supp νs ⊂ {0}.

�

Let us define the next.

Definition 7.3 For φ ∈ BC(Rn) satisfying φ > 0 on Rn, we set

‖u‖
W 1,p

γ [φ](Rn)
=
(

∫

R
n
|∇u(x)|pIp(1+γ)(x)φ(x)dx

)1/p

. (7.54)

By W 1,p
γ,0 [φ](Rn) we denote the completion of C∞

c (Rn \{0}) with respect to the norm ‖ · ‖
W 1,p

γ [φ](Rn)
.

In this definition we have

‖u‖
W 1,p

γ [φ](Rn)
≤ ‖φ‖L∞(Rn)‖∇u‖Lp

1+γ(Rn) u ∈ W 1,p
γ,0 (Rn), (7.55)

hence we have a continuous imbedding W 1,p
γ,0 (Rn) ⊂ W 1,p

γ,0 [φ](Rn). From this fact we have the
next.

Lemma 7.10 For 1 < p < ∞ and γ > 0 , assume that {uj}
∞

j=1 ⊂ W 1,p
γ,0 (Rn), u ∈ W 1,p

γ,0 (Rn)
and µ ∈ B(Rn) satisfy

uj ⇀ u weakly in W 1,p
γ,0 (Rn), |∇uj |

pIp(1+γ) ⇀ µ weakly as j → ∞. (7.56)

Then, we have
|∇u|pIp(1+γ) ≤ µ. (7.57)

Proof: For φ ∈ Cc(R
n) with φ ≥ 0 on Rn, it suffices to show that

∫

R
n
φ(x)|∇u(x)|pIp(1+γ)(x)dx ≤

∫

R
n
φ(x)dµ(x). (7.58)

(a) First we show this inequality to be valid assuming that φ ∈ BC(Rn) satifies φ > 0 on
Rn . Since the imbedding W 1,p

γ,0 (Rn) ⊂W 1,p
γ,0 [φ](Rn) is continuous, we see that

uj ⇀ u weakly in W 1,p
γ,0 [φ](Rn) as j → ∞.
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Therefore we have

∫

R
n
φ(x)|∇u(x)|pIp(1+γ)(x)dx = ‖u‖ p

W 1,p
γ [φ](Rn)

≤ lim inf
j→∞

‖uj‖
p

W 1,p
γ [φ](Rn)

(7.59)

= lim
j→∞

∫

R
n
φ(x)|∇uj(x)|

pIp(1+γ)(x)dx =

∫

R
n
φ(x)dµ(x).

(b) Secondly we consider the case that φ ∈ Cc(R
n) and φ ≥ 0 on Rn. For ε > 0 it holds

that ρε∗φ ∈ BC(Rn) and ρε∗φ > 0 on Rn. Then, from (a) we have
∫

R
n
ρε∗φ(x)|∇u(x)|pIp(1+γ)(x)dx ≤

∫

R
n
ρε∗φ(x)dµ(x) for ε > 0.Here noting that

φ is uniformly continuous on Rn, for any η > 0 there exists a number rη > 0 such that we have

|φ(x − y) − φ(x)| < η for x ∈ Rn, y ∈ Brη
. (7.60)

Then

∣

∣

∣

∫

R
n
ρε∗φ(x)|∇u(x)|pIp(1+γ)(x)dx −

∫

R
n
φ(x)|∇u(x)|pIp(1+γ)(x)dx

∣

∣

∣

=
∣

∣

∣

∫

R
n

∫

R
n
ρε(y)(φ(x − y) − φ(x))|∇u(x)|pIp(1+γ)(x)dydx

∣

∣

∣

≤

∫

R
n

(

∫

Brη

ηρε(y)dy +

∫

R
n\Brη

2‖φ‖L∞(Rn)ρε(y)dy
)

|∇u(x)|pIp(1+γ)(x)dx

≤ (η + 2‖φ‖L∞(Rn)‖ρ1‖L1(Rn\B
rη/ε

)
)‖∇u‖ p

Lp
1+γ(Rn)

→ η‖∇u‖ p
Lp

1+γ(Rn)
as ε→ 0,

hence
∫

R
n
ρε∗φ(x)|∇u(x)|pIp(1+γ)(x)dx→

∫

R
n
φ(x)|∇u(x)|pIp(1+γ)(x)dx as ε→ 0. (7.61)

In a similar way we have

∫

R
n
ρε∗φ(x)dµ(x) →

∫

R
n
φ(x)dµ(x) as ε→ 0, (7.62)

and the assertion follows. �

Then we have

Proposition 7.6 Assume that 1 < p < q < ∞, τp,q < 1/n and γ > 0 . Then, in Proposition
7.5, there exists a constant a0 ∈ [0,∞) such that we have

ν = |u|qIqγ + a0δ0, µ ≥ |∇u|pIp(1+γ) + (Sp,q;γa
p/q
0 )δ0. (7.63)

Proof: (a) Taking an arbitrary φ ∈ C∞
c (Rn) with satisfying suppφ ⊂ BR . Then it follows

from Lemma 7.4 that we have

‖φuj‖
q

Lq
γ(Rn)

− ‖φ(uj − u)‖ q
Lq

γ(Rn)
→ ‖φu‖ q

Lq
γ(Rn)

as j → ∞, (7.64)

and from the assertion 3 of Proposition 7.5 we have

‖φuj‖
q

Lq
γ(Rn)

=

∫

R
n
|φ(x)|q |uj(x)|

qIqγ(x)dx →

∫

R
n
|φ(x)|qdν(x) as j → ∞. (7.65)
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Hence we have

‖φ(uj − u)‖ q
Lq

γ(Rn)
→

∫

R
n
|φ(x)|qdν(x) − ‖φu‖ q

Lq
γ(Rn)

as j → ∞. (7.66)

Since 1/p = τp,q + 1/q , from Hölder’s inequality and the assertion 2 of Proposition 7.5 we have

‖(uj − u)∇φ‖Lp
1+γ(Rn) = ‖|∇φ|(uj − u)I1+γ+n/p′‖Lp(BR) (7.67)

≤ ‖∇φ‖
L1/τp,q(Rn)

‖(uj − u)I1+γ+n/p′‖Lq(BR) = ‖∇φ‖
L1/τp,q(Rn)

‖uj − u‖Lq
γ+1−nτp,q

(Rn)

→ 0 as j → ∞.

Here we used the relations; p(n− (1 + γ + n/p′)) = n − p(1 + γ) and q(n − (1 + γ + n/p′)) =
n− q(1 + γ − nτp,q). By the assertion 3 of Proposition 7.5 we have

‖φ∇uj‖
p

Lp
1+γ(Rn)

=

∫

R
n
|φ(x)|p|∇uj(x)|

pIp(1+γ)(x)dx →

∫

R
n
|φ(x)|pdµ(x) as j → ∞. (7.68)

Then, letting j → ∞ in the inequality below

(Sp,q;γ)1/p‖φ(uj − u)‖Lq
γ(Rn) ≤ ‖∇[φ(uj − u)]‖Lp

1+γ(Rn) (7.69)

≤ ‖φ∇[uj − u]‖Lp
1+γ(Rn) + ‖(uj − u)∇φ‖Lp

1+γ(Rn)

≤ 21/p′

(‖φ∇uj‖
p

Lp
1+γ(Rn)

+ ‖φ∇u‖ p
Lp

1+γ(Rn)
)1/p + ‖(uj − u)∇φ‖Lp

1+γ(Rn) for j ≥ 1,

we get

(Sp,q;γ)1/p
(

∫

R
n
|φ(x)|qdν(x) −

∫

R
n
|φ(x)|q |u(x)|qIqγ(x)dx

)1/q

(7.70)

≤ 21/p′
(

∫

R
n
|φ(x)|pdµ(x) +

∫

R
n
|φ(x)|p|∇u(x)|pIp(1+γ)(x)dx

)1/p

for φ ∈ C∞
c (Rn).

Since supp(ν − |u|qIqγ)s ⊂ {0} by the assertion 4 of Proposition 7.5, it follows from Lemma
7.8 that we have for some a0 ∈ [0,∞)

ν − |u|qIqγ = a0δ0. (7.71)

Further by letting j → ∞ in the inequality below

(Sp,q;γ)1/p‖φuj‖Lq
γ(Rn) ≤ ‖∇[φuj ]‖Lp

1+γ(Rn) ≤ ‖φ∇uj‖Lp
1+γ(Rn) + ‖uj∇φ‖Lp

1+γ(Rn) for j ≥ 1,

we have

(Sp,q;γ)1/p(‖φu‖ q
Lq

γ(Rn)
+ a0|φ(0)|q)1/q ≤

(

∫

R
n
|φ(x)|pdµ(x)

)1/p

+‖u∇φ‖Lp
1+γ(Rn) (7.72)

for φ ∈ C∞
c (Rn).

(b) Let ε > 0 and let ψε be given in Definition 7.1. Noting that 1/p = τp,q + 1/q , by
Hölder’s inequality we have

‖u∇ψε‖Lp
1+γ(Rn) =

1

ε

(

∫

Bε

(|ψ̃ε(x)||x|·|u(x)||x|
γ)pI0(x)dx

)1/p

(7.73)

≤
1

ε

(

∫

R
n
(|ψ̃ε(x)||x|)

1/τp,qI0(x)dx
)τp,q

(

∫

Bε

(|u(x)||x|γ)qI0(x)dx
)1/q

= ‖ψ̃1‖L1/τp,q(Rn)
‖u‖Lq

γ(Bε)
.
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Hence, by virtue of (a) we have

(Sp,q;γ)1/pa
1/q
0 ≤ (Sp,q;γ)1/p(‖ψεu‖

q
Lq

γ(Rn)
+ a0)

1/q (7.74)

≤
(

∫

R
n
|ψε(x)|

pdµ(x)
)1/p

+ ‖u∇ψε‖Lp
1+γ(Rn) ≤

(

∫

Bε

dµ(x)
)1/p

+ ‖ψ̃1‖L1/τp,q(Rn)
‖u‖Lq

γ(Bε)

= µ(Bε)
1/p + ‖ψ̃1‖L1/τp,q(Rn)

‖u‖Lq
γ(Bε)

→ µ({0})1/p as ε→ 0,

hence
µ({0}) ≥ Sp,q;γa

p/q
0 , µ ≥ (Sp,q;γa

p/q
0 )δ0. (7.75)

On the other hand, by Lemma 7.10 |∇u|pIp(1+γ) ≤ µ holds, and we have

µ ≥ |∇u|pIp(1+γ) + (Sp,q;γa
p/q
0 )δ0. (7.76)

�

After all we have the following that proves the assertion 2 of Theorem 2.4.

Proposition 7.7 Assume that 1 < p < q < ∞, τp,q < 1/n and γ > 0 . Then, in Proposition
7.6, it holds that a0 = 0 and

‖u‖ q
Lq

γ(Rn)
= 1, ‖∇u‖ p

Lp
1+γ(Rn)

= Sp,q;γ . (7.77)

Proof: By the assertion 3 of Proposition 7.5 we have

∫

R
n
|uj(x)|

qIqγ(x)dx→

∫

R
n
dν(x),

∫

R
n
|∇uj(x)|

pIp(1+γ)(x)dx→

∫

R
n
dµ(x) as j → ∞.

Combining the assertion 1 of Proposition 7.5 with Proposition 7.6 we have

1 =

∫

R
n
dν(x) =

∫

R
n
|u(x)|qIqγ(x)dx+ a0 > a0, S

p,q;γ =

∫

R
n
dµ(x). (7.78)

Moreover by Proposition 7.6 and Theorem 2.1 we have

Sp,q;γ =

∫

R
n
dµ(x) ≥

∫

R
n
|∇u(x)|pIp(1+γ)(x)dx + Sp,q;γa

p/q
0 (7.79)

≥ Sp,q;γ

(

(∫

R
n
|u(x)|qIqγ(x)dx

)p/q

+ a
p/q
0

)

= Sp,q;γ((1− a0)
p/q + a

p/q
0 ),

and then (1− a0)
p/q + a

p/q
0 ≤ 1 and a0 = 0 follow. In particular we have

1 =

∫

R
n
|u(x)|qIqγ(x)dx, Sp,q;γ =

∫

R
n
dµ(x) ≥

∫

R
n
|∇u(x)|pIp(1+γ)(x)dx, (7.80)

and this proves the assertion. �

8 Proofs of Propositions 2.1, 2.2 and some assertions

In this section we establish Proposition 2.1, Proposition 2.2 and the propositions on non-
existence of minimizers and failure of some imbedding inequalities, whose proofs have been
postponed.
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8.1 Proofs of Propositions 2.1 and 2.2

In order to prove Propositions 2.1 and 2.2, we introduce a cut-off function.

Definition 8.1 For 0 < ε < 1 and 0 < η < 1/4 we set

φε,η(x) = φε,η(|x|) =



















1 for x ∈ B3εη,

log(ε(1− η)/|x|)

log((1− η)/(3η))
for x ∈ Bε(1−η)\B3εη,

0 for x ∈ Rn \Bε(1−η),

(8.1)

and we set
ψε,η(x) = ψε,η(|x|) = φε,η∗ρεη(x) for x ∈ Rn. (8.2)

Lemma 8.1 Assume that 1 < p ≤ q < ∞, γ ≥ 0, R ≥ 1 and 0 < α < 1/p′ . Then there exist
positive numbers cp;γ , cp;α, c p,q;α > 0 such that we have for 0 < ε < 1 and 0 < η < 1/8 the
followings:

1. ψε,η ∈ C∞
c (Rn)rad , 0 ≤ ψε,η ≤ 1 on Rn, ψε,η = 1 on B2εη, ψε,η = 0 on Rn \Bε.

2. ‖ψε,η‖Lp
1+γ(Rn) ≤ cp;γ ε

1+γ , ‖∇ψε,η‖Lp
1+γ(Rn) ≤















cp;γε
γ

log(1/η)
if γ > 0,

cp;0

(log(1/η))1/p′ if γ = 0.

3. ‖∇[A α
1,Rψε,η]‖Lp

1(B1)
≤ cp;αA1,R(ε)α

(

1

(log(1/η))1/p′ +
1

A1,R(ε)1/p′

)

,

‖A α
1,Rψε,η‖Lq

p;R(B1)
≥

cp,q;α

A1,R(2εη)1/p′−α
.

Proof: We see that φε,η ∈ W 1,∞(Rn) , and first derivatives of φε,η in distribution sense are
given by

∇φε,η(x) = −
1

log((1− η)/(3η))
χ

Bε(1−η)\B3εη

(x)
x

|x|2
for a.e. x ∈ Rn. (8.3)

Particularly we have

|∇φε,η(x)| ≤
1

log(1/(4η))

1

|x|
χ

Bε(1−η)\B3εη

(x) for a.e. x ∈ Rn, (8.4)

|∇φε,η(x− y)| ≤
1

log(1/(4η))

1

|x| − εη
χ

Bε\B2εη

(x) for a.e. x ∈ Rn, y ∈ Bεη.

Here we note that

0 ≤ φε,η(x) ≤ χ
Bε(1−η)

(x), 0 ≤ φε,η(x− y) ≤ χ
Bε

(x) for a.e. x ∈ Rn, y ∈ Bεη. (8.5)

Since the assertion 1 is now clear, we prove the assertions 2 and 3 below.
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2.

‖ψε,η‖Lp
1+γ(Rn) =

(∫

R
n

(∫

R
n
φε,η(x− y)ρεη(y)dy

)p

Ip(1+γ)(x)dx

)1/p

≤

(

∫

Bε

(

∫

Bεη

ρεη(y)dy

)p

Ip(1+γ)(x)dx

)1/p

=

(

∫

Bε

Ip(1+γ)(x)dx

)1/p

=

(

ωn

p(1 + γ)

)1/p

ε1+γ ,

‖∇ψε,η‖Lp
1+γ(Rn) ≤

(∫

R
n

(∫

R
n
|∇φε,η(x− y)|ρεη(y)dy

)p

Ip(1+γ)(x)dx

)1/p

≤

(

∫

Bε\B2εη

(

∫

Bεη

1

log(1/(4η))

1

|x| − εη
ρεη(y)dy

)p

Ip(1+γ)(x)dx

)1/p

=
1

log(1/(4η))

(

∫

Bε\B2εη

1

(1− εη/|x|)p
Ipγ(x)dx

)1/p

≤
2

log(1/(4η))

(

∫

Bε\B2εη

Ipγ(x)dx

)1/p

=



















2

(

ωn

pγ

)1/p
εγ(1− (2η)γ)

log(1/(4η))
≤ 2

(

ωn

pγ

)1/p
εγ

log(1/(4η))
if γ > 0,

2ω 1/p
n

(log(1/(2η)))1/p

log(1/(4η))
if γ = 0.

3.

‖A α
1,R∇ψε,η‖Lp

1(B1)
=

(

∫

B1

(∫

R
n
|∇φε,η(x− y)|ρεη(y)dy

)p

A1,R(x)pαIp(x)dx

)1/p

≤

(

∫

Bε\B2εη

(

∫

Bεη

1

log(1/(4η))

1

|x| − εη
ρεη(y)dy

)p

A1,R(x)pαIp(x)dx

)1/p

=
1

log(1/(4η))

(

∫

Bε\B2εη

(

A1,R(x)α

1− εη/|x|

)p

I0(x)dx

)1/p

≤
2A1,R(ε)α

log(1/(4η))

(

∫

Bε\B2εη

I0(x)dx

)1/p

= 2ω 1/p
n A1,R(ε)α (log(1/(2η)))1/p

log(1/(4η))
,

‖ψε,η∇[A α
1,R ]‖Lp

1(B1)
= α

(

∫

B1

ψε,η(x)p I0(x)

A1,R(x)p(1−α)
dx

)1/p

≤ α

(

∫

Bε

I0(x)

A1,R(x)p(1−α)
dx

)1/p

= α

(

ωn

p(1/p′− α)

)1/p
1

A1,R(ε)1/p′−α
,

‖ψε,ηA
α

1,R‖Lq
p;R(B1)

=

(

∫

B1

ψε,η(x)q I0(x)

A1,R(x)1+q(1/p′−α)
dx

)1/q

≥

(

∫

B2εη

I0(x)

A1,R(x)1+q(1/p′−α)
dx

)1/q

=

(

ωn

q(1/p′− α)

)1/q
1

A1,R(2εη)1/p′−α
.

�

By using these we now verify Propositions 2.1 and 2.2.

Proof of Proposition 2.1: 1. For γ > 0 it suffices to show C∞
c (Rn) ⊂ W 1,p

γ,0 (Rn) . Take
and fix a u ∈ C∞

c (Rn) . Then, for 0 < ε < 1 and 0 < η < 1/8 we see that u(1− ψε,η) ∈
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C∞
c (Rn \{0}) holds, hence by the assertion 2 of Lemma 8.1, we obtain

‖∇[u(1− ψε,η) − u]‖Lp
1+γ(Rn) = ‖∇[uψε,η]‖Lp

1+γ(Rn) (8.6)

≤ ‖∇u‖L∞(Rn)‖ψε,η‖Lp
1+γ(Rn) + ‖u‖L∞(Rn)‖∇ψε,η‖Lp

1+γ(Rn)

≤ cp;γ

(

‖∇u‖L∞(Rn)ε
1+γ + ‖u‖L∞(Rn)

εγ

log(1/η)

)

→ 0 as ε→ 0, η → 0.

The assertion 2 is now clear, hence we proceed to 3.
3. It suffices to prove C∞

c (B1) ⊂ W 1,p
0,0 (B1) . Let u ∈ C∞

c (B1) . Then, for 0 < ε < 1 and
0 < η < 1/8, we see that u(1− ψε,η) ∈ C∞

c (B1\{0}), and hence by the assertion 2 of Lemma
8.1 we have

‖∇[u(1− ψε,η) − u]‖Lp
1(B1)

= ‖∇[uψε,η]‖Lp
1(B1)

(8.7)

≤ ‖∇u‖L∞(B1)
‖ψε,η‖Lp

1(B1)
+ ‖u‖L∞(B1)

‖∇ψε,η‖Lp
1(B1)

≤ cp;0

(

‖∇u‖L∞(B1)
ε+ ‖u‖L∞(B1)

1

(log(1/η))1/p′

)

→ 0 as ε→ 0, η → 0.

�

Proof of Proposition 2.2: (a) First we show that if 0 < α < 1/p′, it holds that

A α
1,Rψε,η ∈W 1,p

0,0 (B1) for 0 < ε < 1, 0 < η <
1

8
. (8.8)

For 0 < δ < min{2εη,1/8}, noting that A α
1,Rψε,η(1− ψδ,δ) ∈ C∞

c (B1\{0}) and ψε,ηψδ,δ = ψδ,δ ,
it follows from the assertion 3 of Lemma 8.1 that we have

‖∇[A α
1,Rψε,η(1− ψδ,δ) −A α

1,Rψε,η]‖Lp
1(B1)

= ‖∇[A α
1,Rψε,ηψδ,δ]‖Lp

1(B1)
= ‖∇[A α

1,Rψδ,δ]‖Lp
1(B1)

≤ cp;αA1,R(δ)α

(

1

(log(1/δ))1/p′ +
1

A1,R(δ)1/p′

)

→ 0 as δ → 0.

(b) By the assumption, for an arbitrary ε > 0 there exists 0 < ηε < 1/8 such that we have

I0(x)

A1,R(x)1+q/p′ ≤ εw(x) for all x ∈ Bηε
\{0}. (8.9)

Then, if 0 < η < ηε , we see that

‖A α
1,Rψη,η‖Lq

p;R(B1)
= ‖A α

1,Rψη,η‖Lq
p;R(Bηε

) ≤ ε‖A α
1,Rψη,η‖Lq(Bηε

;w) = ε‖A α
1,Rψη,η‖Lq(B1;w).

Hence using the assertion 3 of Lemma 8.1, we have

‖∇[A α
1,Rψη,η]‖Lp

1(B1)

‖A α
1,Rψη,η‖Lq(B1;w)

≤
‖∇[A α

1,Rψη,η]‖Lp
1(B1)

‖A α
1,Rψη,η‖Lq

p;R(B1)

ε (8.10)

≤
cp;α

cp,q;α

A1,R(η)α
( 1

(log(1/η))1/p′ +
1

A1,R(η)1/p′

)

A1,R(2η2)1/p′−αε

→ 21+1/p′−α
cp;α

cp,q;α

ε as η → 0.

Thus the assertion follows. �
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8.2 Non-existence of minimizers

In this subsection we verify the assertion 4 of Theorem 2.4, Proposition 2.3 and Proposition 2.4.
We remark that both the assertion 4 of Theorem 2.4 and Proposition 2.4 follow from improved
Hardy-Sobolev inequalities with sharp missing terms.

First the assertion 4 of Theorem 2.4 follows from the next whose proof is seen in [Ho2].

Lemma 8.2 (Horiuchi) Assume that n ≥ 3, p = 2 < q = 2∗ = 2n/(n− 2) and γ > γ2,2∗ =
(n− 2)/2 , then it holds that

‖∇u‖ 2
L2

1+γ(Rn) ≥ S2,2∗;γ2,2∗‖u‖ 2
L2∗

γ (Rn) + (γ2 − γ2,2∗
2 )‖u‖ 2

L2
γ(Rn) for u ∈W 1,2

γ,0 (Rn). (8.11)

Proposition 2.4 follows from Lemma 8.3 below, which is seen in [AH2]. Here we put for R > e

A2,R(x) = A2,R(|x|) = logA1,R(x) = log
(

log
R

|x|

)

for x ∈ B1 \{0}. (8.12)

Lemma 8.3 (Ando-Horiuchi) For 1 < p = q < ∞ there exist positive numbers Rp > 0 and
C > 0 such that we have for R ≥ Rp

‖∇u‖ p
Lp

1(B1)
≥

1

(p′)p
‖u‖ p

Lp
p;R(B1)

+ C

∫

B1

|u(x)|p
I0(x)

A1,R(x)pA2,R(x)2
dx for u ∈W 1,p

0,0 (B1). (8.13)

Now we proceed to the proof of Proposition 2.3. To this end we epmloy the next proposition.

Proposition 8.1 Let 1 < p = q <∞ and γ > 0 . If w ∈ C(Rn \{0}) satisfies

w(x) ≥ 0 for x ∈ Rn \{0},
(log(1/|x|))p

Ipγ(x)
w(x) → ∞ as x→ 0, (8.14)

then it holds that

inf







‖∇u‖Lp
1+γ(Rn) − (Sp,p;γ)1/p‖u‖Lp

γ(Rn)

‖u‖
Lp(Rn;w)

∣

∣

∣

∣

u ∈ C∞
c (Rn \{0})\{0}







= 0. (8.15)

Proof: (a) Assuming that R > 1, then it follows from the assumption that we have

A1,R(x)1+p/p′

I0(x)

w(x)

Ipγ+n(x)
=
A1,R(x)p

Ipγ(x)
w(x) → ∞ as x→ 0. (8.16)

Hence by Proposition 2.2

inf

{

( ‖∇v‖Lp
1(B1)

‖v‖
Lp(B1;w/Ipγ+n)

)p
∣

∣

∣

∣

v ∈ C∞
c (B1\{0})\{0}

}

= 0. (8.17)

(b) On the contrary we assume that the assertion is false. Since Sp,p;γ = γ p holds, there
exists a number C > 0 such thta we have

‖∇u‖Lp
1+γ(Rn) ≥ γ‖u‖Lp

γ(Rn) + C‖u‖Lp(Rn;w) for u ∈ C∞
c (Rn \{0}). (8.18)

Therefore

γ‖v‖Lp
0(Rn)+C‖v‖Lq(Rn;w/Ipγ+n) = γ‖T̂γv‖Lp

γ(Rn) + C‖T̂γv‖Lp(Rn;w) ≤ ‖∇[T̂γv]‖Lp
1+γ(Rn)

=
(

∫

R
n

∣

∣

∣
∇v(x) − γv(x)

x

|x|2

∣

∣

∣

p

Ip(x)dx
)1/p

≤ ‖∇v‖Lp
1(Rn) + γ‖v‖Lp

0(Rn) for v ∈ C∞
c (Rn \{0}),

‖∇v‖Lp
1(B1)

≥ C‖v‖Lp(B1;w/Ipγ+n) for v ∈ C∞
c (B1\{0}).
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This contradicts to (a). �

Let us recall the result due to [AH2].

Lemma 8.4 (Ando–Horiuchi) Assume that 1 < p = q <∞ and γ > 0 . If u ∈W 1,p
γ,0 (Rn)\{0}

is a minimizer for Sp,p;γ, then u is radially symmetric with respect to the origin and has a
constant sign. Moreover if u ≥ 0 on Rn, then u is a monotonically decreasing function of
r = |x| and satisfies

u(x)|x|γ → 0 as |x| → 0, u(x)|x|γ → 0 as |x| → ∞. (8.19)

From this we have the next, from which Proposition 2.3 follows.

Proposition 8.2 Assume that 1 < p = q < ∞ and γ > 0 . Then, there exists no minimizer
for Sp,p;γ in W 1,p

γ,0 (Rn)\{0}.

Proof: (a) Assume that there exists a minimizer u ∈ W 1,p
γ,0 (Rn)\{0} for Sp,p;γ . Then it

follows from variational principle that we have
∫

R
n
|∇u(x)|p−2∇u(x)·∇φ(x)Ip(1+γ)(x)dx = γ p

∫

R
n
|u(x)|p−2u(x)φ(x)Ipγ (x)dx (8.20)

for φ ∈W 1,p
γ,0 (Rn).

By Lemma 8.4 u should be radially symmetric and satisfy

u > 0 on Rn,
∂u

∂r
< 0 on Rn \{0}. (8.21)

Hence we have for φ ∈ W 1,p
γ,0 (Rn)rad

−

∫ ∞

0

(

−
∂u

∂r
(r)
)p−1 ∂φ

∂r
(r)rp(1+γ)−1dr = γ p

∫ ∞

0

u(r)p−1φ(r)rpγ−1dr. (8.22)

Since u : (0,∞) → (0, u(0)) is surjective, we have the inverse R : (0, u(0)) → (0,∞), and by
Lemma 8.4 it holds that

R(ε)γε = u(R(ε))R(ε)γ → 0 as ε→ 0. (8.23)

(b) For 0 < ε < u(0), we set

uε(x) = (u(x) − ε)+ =

{

u(x) − ε for x ∈ BR(ε),

0 for x ∈ Rn \BR(ε).
(8.24)

Then uε ∈ W 1,p
γ,0 (Rn)rad and its derivative in a sense of distribution is given by

∂uε

∂r
(x) =







∂u

∂r
(x) for x ∈ BR(ε),

0 for x ∈ Rn \BR(ε) .
(8.25)

Therefore from (a) we have

−

∫ ∞

0

(

−
∂u

∂r
(r)
)p−1 ∂uε

∂r
(r)rp(1+γ)−1dr = γ p

∫ ∞

0

u(r)p−1uε(r)r
pγ−1dr, (8.26)

∫ R(ε)

0

(

−
∂u

∂r
(r)
)p

rp(1+γ)−1dr = γ p

∫ R(ε)

0

u(r)prpγ−1dr − εγp

∫ R(ε)

0

u(r)p−1rpγ−1 dr.
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Setting
v(r) = u(r)rγ for r > 0, (8.27)

we have

∫ R(ε)

0

(

γv(r) −
∂v

∂r
(r)
)p 1

r
dr = γ p

∫ R(ε)

0

(v(r) − εrγ)v(r)p−1 1

r
dr for 0 < ε < u(0), (8.28)

v(R(ε)) = u(R(ε))R(ε)γ → 0 as ε→ 0.

(c) Since there exists a number cp > 0 such that

|1− t|p − 1 + pt ≥ cp
t2

1 + t2
for t ∈ R, (8.29)

we have for r > 0

(

γv(r) −
∂v

∂r
(r)
)p

≥ γ pv(r)p − pγ p−1v(r)p−1 ∂v

∂r
(r)r + cpγ

p
v(r)p ∂v

∂r
(r)2r2

γ2v(r)2 + v(r)p
∂v

∂r
(r)2r2

.

By using Lemma 8.4, we have

γ p

∫ R(ε)

0

(v(r) − εrγ)v(r)p−1 1

r
dr =

∫ R(ε)

0

(

γv(r) −
∂v

∂r
(r)
)p 1

r
dr (8.30)

≥

∫ R(ε)

0

(

γ pv(r)p 1

r
− pγ p−1v(r)p−1 ∂v

∂r
(r) + cpγ

p
v(r)p ∂v

∂r
(r)2r

γ2v(r)2 + v(r)p
∂v

∂r
(r)2r2

)

dr

= γ p

∫ R(ε)

0

(

v(r)p 1

r
+ cp

v(r)p ∂v

∂r
(r)2r

γ2v(r)2 + v(r)p
∂v

∂r
(r)2r2

)

dr − γ p−1v(R(ε))p for 0 < ε < u(0).

(8.31)

Therefore we have

0 ≤ cp

∫ R(ε)

0

v(r)p ∂v

∂r
(r)2r

γ2v(r)2 + v(r)p
∂v

∂r
(r)2r2

dr ≤
1

γ
v(R(ε))p − ε

∫ R(ε)

0

v(r)p−1rγ−1dr (8.32)

≤
1

γ
v(R(ε))p for 0 < ε < u(0),

and then, letting ε→ 0, it follows from (b) that

∫ ∞

0

v(r)p ∂v

∂r
(r)2r

γ2v(r)2 + v(r)p
∂v

∂r
(r)2r2

dr = 0. (8.33)

Thus we have a constant c such that

0 = v(r)p/2 ∂v

∂r
(r) =

2

p+ 2

∂

∂r
[v(p+2)/2](r), c = v(r) = u(r)rγ for r > 0,

and this contradicts to Lemma 8.4. �
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8.3 Failure of imbedding inequalities

In this subsection we prove Cp,q;1 = 0 provided that n ≥ 2 and p < q . Combining this fact
with the assertions 1 and 2 of Proposition 4.2, we have the assertion 2 of Theorem 2.6.

Proposition 8.3 Assume that n ≥ 2, 1 < p < q < ∞, τp,q ≤ 1/n and R = 1 . Then it holds

that Cp,q;1 = 0 .

Let us set

B ′
r = {x′ ∈ Rn−1 | |x′| < r} for r > 0, (B1)+ = {x = (x′, xn) ∈ B1 | xn > 0},

and let us prepare the following.

Lemma 8.5 For n ≥ 2, we set

ϕ(x) = ϕ(x′, xn) = (x′, ϕn(x)), ϕn(x) = ϕn(x′, xn) = (1− |x′|2)1/2 − xn (8.34)

for x = (x′, xn) ∈ (B1)+.

Then we have the followings:

1. ϕ : (B1)+ → (B1)+ is a diffeomorphism and ϕ−1 = ϕ is valid. In particular we have

ϕn(ϕ(x)) = xn for x ∈ (B1)+.

2. detDϕ(x) = −1 for x ∈ (B1)+.

3. 1− xn ≤ |ϕ(x)| = (|x′|2 + ϕn(x)2)1/2 ≤ 1 + xn for x ∈ (B1)+.

Proof of Proposition 8.3: (a) Let us fix an α > 0. For 0 < ε < 1/2 we set

uε(x) =

{

ψε(ϕ(x))ϕn(x)1+α for x ∈ (B1)+,

0 for x ∈ B1\(B1)+.
(8.35)

Then, we see that uε ∈W 1,p
0,0 (B1) and

∂xn |ϕ(x)| = −
ϕn(x)

|ϕ(x)|
, ∂xj |ϕ(x)| =

xjxn

|ϕ(x)|
√

1 − |x′|2
for 1 ≤ j ≤ n− 1.

Then we have

|∇uε(x)|
2 =

(1

ε

ψ̃ε(ϕ(x))

|ϕ(x)|
ϕn(x)xn + (1 + α)ψε(ϕ(x))

)2

ϕn(x)2α |x′|2

1− |x′|2
(8.36)

+
(1

ε

ψ̃ε(ϕ(x))

|ϕ(x)|
ϕn(x)2 − (1 + α)ψε(ϕ(x))

)2

ϕn(x)2α

≤ 2
( 1

ε2
ψ̃ε(ϕ(x))2

|ϕ(x)|2
ϕn(x)2(|x′|2x2

n + (1− |x′|2)ϕn(x)2) + (1 + α)2ψε(ϕ(x))2
)ϕn(x)2α

1− |x′|2

≤ 2
( 1

ε2
ψ̃ε(ϕ(x))2ϕn(x)2 + (1 + α)2ψε(ϕ(x))2

)ϕn(x)2α

1− |x′|2
for x ∈ (B1)+.

(b) By using (a) and Lemma 8.5 we have

|uε(ϕ(y))| = ψε(y)y
1+α
n , (8.37)

|[∇uε](ϕ(y))|2 ≤ 2
( 1

ε2
ψ̃ε(y)

2y 2
n + (1 + α)2ψε(y)

2
) y 2α

n

1− |y′|2

≤
8

3

( 1

ε2
ψ̃ε(y)

2y 2
n + (1 + α)2ψε(y)

2
)

y 2α
n for y ∈ (B1)+ ∩B1/2.
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Noting the assertion 3 of Lemma 8.5 and

1

t
log

1

1− t
≤ 2 log 2 for 0 < t ≤

1

2
, (8.38)

we see that

I0(ϕ(y)) ≥
1

(1 + 1/2)n
=

(

2

3

)n

, (8.39)

Ip(ϕ(y)) ≤ max

{

(

1 +
1

2

)p−n

,

(

1

1− 1/2

)n−p
}

≤ 2|n−p|,

A1,1(ϕ(y)) = log
1

|ϕ(y)|
≤ log

1

1− yn

≤ (2 log 2)yn for y ∈ (B1)+ ∩B1/2.

Then, we also have

‖uε‖
q

Lq
p;1(B1)

=

∫

(B1)+

|uε(x)|
q I0(x)

A1,1(x)
1+q/p′ dx =

∫

(B1)+

|uε(ϕ(y))|q
I0(ϕ(y))

A1,1(ϕ(y))1+q/p′ dy (8.40)

≥

∫

(B1)+∩Bε/2

(ψε(y)y
1+α
n )q 1

((2 log 2)yn)1+q/p′

(

2

3

)n

dy

≥
1

(2 log 2)1+q/p′

(

2

3

)n∫

Bε/4
′ ×(0,ε/4)

y q(α+1/p)−1
n dy

=
1

(2 log 2)1+q/p′

(

2

3

)n
p

q

ωn−1

(n− 1)(1 + pα)

(ε

4

)n−1+q(α+1/p)

,

and

‖∇uε‖
p

Lp
1(B1)

=

∫

(B1)+

|∇uε(x)|
pIp(x)dx =

∫

(B1)+

|∇uε(ϕ(y))|pIp(ϕ(y))dy (8.41)

≤

∫

(B1)+∩Bε

(

8

3

(

1

ε2
ψ̃ε(y)

2y 2
n + (1 + α)2ψε(y)

2

)

y 2α
n

)p/2

2|n−p|dy

≤ 2|n−p|

(

8

3
(9 + (1 + α)2)

)p/2∫

Bε
′×(0,ε)

y pα
n dy

= 2|n−p|

(

8

3
(9 + (1 + α)2)

)p/2 ωn−1

(n− 1)(1 + pα)
εn+pα.

Since n+ pα− (p/q)(n− 1 + q(α+ 1/p)) = (n− 1)(1− p/q) > 0 holds, after all we have

F p,q;1(uε) → 0 as ε→ 0.

�
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