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October 7, 2011

Abstract

The validity of the adaptive finite element method for reconstruction of dielectrics
in a symmetric structure is verified on time resolved data. Dielectric permittivity, loca-
tions and shapes/sizes of dielectric abnormalities are accurately imaged using adaptive
algorithm.

1 Introduction

In this paper we formulate an adaptive algorithm using analytical developments of publica-
tions [5, 6, 8, 12, 13, 14, 15] and present numerical results for the adaptive reconstruction
of the dielectric constant in a symmetric structure given backscattering data from a single
measurement. Such problems arise in many real-life applications, like reconstruction of the
structure of photonic crystals, and military applications such as imaging of land mines when
one mine covers another. By a single measurement we understand time dependent backscat-
tering data for a coefficient inverse problem (CIP) originating from a hyperbolic PDE, and
generated either by a point source at a single location, or by a plane wave initialized in a
single direction.

It is well known that the reliable numerical methods for solving CIPs faces major chal-
lenges such as nonlinearity and ill-posedness. Usually, CIPs are solved using least squares
Tikhonov functionals suffering from multiple local minima or a ravine. Conventional nu-
merical methods to solve such CIPs use different versions of Newton and gradient methods.
However, these algorithms converge only if the starting point for the iterations is located in
a small neighborhood of the exact solution. To solve the CIP in this paper we apply the

∗Corresponding author, Department of Mathematical Sciences, Chalmers University of Technology and
Gothenburg University, SE-42196 Gothenburg, Sweden, larisa@chalmers.se

†Department of Mathematical Sciences, NTNU, 7491 Trondheim, Norway, Marte.Hatlo@math.ntnu.no
‡Department of Mathematical Sciences, NTNU, 7491 Trondheim, Norway,

Harald.Krogstad@math.ntnu.no

1



quasi-Newton method, and assume that we start our adaptive algorithm with an initial guess
in a small neighborhood of the exact solution. A sufficiently good initial guess, applied in
our numerical tests, is a homogeneous material. We note, that recently a new approximate
globally convergent method which provides such an initial guess without any a priori knowl-
edge of the neighborhood was developed in [10]. As soon as a first approximation to the
exact solution is obtained, any locally convergent method can be applied.

The mesh-adaptive FE/FD method for solution of CIPs was first developed in [5, 6, 7, 8, 9]
using a posteriori error estimate for the Lagrangian. Adaptive technique of these publications
was originally applied for the solution of acoustic and elastic CIPs. The adaptivity consists
of minimizing the Tikhonov functional on a sequence of locally refined meshes using the finite
element discretization of the state and adjoint problems. The mesh is refined in subdomains
of the computational domain, where the a posteriori error analysis indicates the maximal
error of the computed solution.

Similarly with [5, 6, 7, 8, 9, 11] in the adaptive algorithm presented in this work we use
an a posteriori error estimate for the Lagrangian applied to the regularized solution of the
CIP. To find the error in the Lagrangian we use its Fréchet derivative. We refine the mesh in
all subdomains of the computational domain where the Fréchet derivative of the Lagrangian
attains its maximal values.

Similarly as for the Lagrangian, a posteriori error estimate for the Tikhonov functional
was developed in recent publications [12, 13, 14]. In [12] was shown rigorously that the
Fréchet derivative of the Tikhonov functional coincides with the Fréchet derivative of the
Lagrangian, and in [13] was demonstrated that certain integral terms in the Fréchet derivative
of the Lagrangian can be ignored. The computational tests in the present paper, as well as
in previous publications, [5, 6, 7, 8, 9, 11], confirm this behavior numerically. It was shown
analytically in [15] that the mesh refinement improves the accuracy of the regularized solution
as long as the modulus of the gradient of the Tikhonov functional or of the Lagrangian is
not too small. This was consistently observed in [5, 6, 7, 8, 9, 11, 12, 13, 14], and also in the
current paper.

Our main objective has been to apply the adaptive finite element method to solve the
electromagnetic CIP connected to photonic crystals, i.e. to reconstruct an unknown dielectric
permittivity from backscattering data. The basic technique is to expose the structure with
a known, time limited wave, and then record the backscattering waves. To solve the CIP
we use the hybrid FE/FD method developed in [4]. We choose this method since it seems
natural for needs of our CIP. The backscattering data of our CIP are generated by a plane
wave instead of a point source, as is often the case for real-life applications. Approximating
the point source with a plane wave is reasonable when we assume that the point source is
far from the domain where the dielectric function should be reconstructed. Based on this
setting, we split the computational domain into two domains. In the surrounding (outer)
domain we initialize the plane wave and assume that the value of the dielectric function is
known. A finite difference method is used in this domain. In the inner domain, where the
dielectric function should be reconstructed, we apply a finite element method together with
the adaptive algorithm.
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The numerical tests in Section 8 have consistently demonstrated accurate reconstruction
of the locations and contrasts of the dielectric permittivity in the symmetric structure from
the backscattering data using the adaptive algorithm outlined in Section 7.1. In Example
2 of this Section we also show that a locally convergent quasi-Newton works well as soon
good approximation to the exact solution is available. However, this method leads to a poor
quality of results when the good initial guess is unavailable.

An outline of the paper is as follows. In Section 2 we formulate both forward and inverse
problems. In Section 3 we present Tikhonov functional and in Section 4 - Lagrangian for
our CIP. In Section 5 we formulate the finite element method and in Section 6 we present
framework for the a posteriori error estimate for the Lagrangian. Further, in Section 7 we
present adaptive algorithm for solution of our CIP and in Section 8 we show the results of
reconstruction of dielectric function using adaptive algorithm of Section 7.

2 Forward and Inverse Problems

Our forward problem is two-dimensional, electromagnetic (EM) wave propagation in a non-
magnetic, inhomogeneous and isotropic material, governed by the Cauchy problem

εr(x)utt = ∆u, in R2 × (0,∞) , (1)

u (x, 0) = 0, ut (x, 0) = δ (x − x0) . (2)

Equation (1) may easily be derived from Maxwell equations in certain two-dimensional sit-
uations [1, 16].

In equation (1), εr(x) is the dielectric constant, also called the relative dielectric permit-
tivity, and defined as

εr(x) =
ε (x)

ε0

, (3)

where ε0 is the dielectric permittivity of vacuum, and ε (x) the dielectric permittivity of the
material.

Let c (x) be the speed of the EM waves in the material, and c0 the speed of light in
vacuum. Since ε = 1/c2 and ε0 = 1/c2

0, the refractive index, n (x), of the material is

n (x) =
c0

c (x)
=

√

εr(x) ≥ 1. (4)

In physical experiments, the refractive index is often measured rather than the dielectric
constant [14, 20].

Let G ⊂ R2 be a bounded domain with a piecewise smooth boundary, ∂G = Γ1∪Γ2∪Γ3.
Here, Γ1 is the top boundary of ∂G, Γ3 denotes the lateral boundaries, and Γ2 the bottom
boundary. Let Ω ⊂ G be another bounded domain with boundary ∂Ω = ∂Ω1 ∪ ∂Ω2, where
∂Ω1 denotes the top boundary of ∂Ω, and ∂Ω2 the rest.

3



We shall assume that εr (x) in equation (1) satisfies

εr (x) ∈ [1, d] for x ∈ Ω,

εr (x) = 1 for x ∈ G \ Ω. (5)

Moreover, for the analytical derivations of minimal smoothness assumptions for state and
adjoint problems of Section 3 we require

εr ∈ C
(

Ω
)

∩ H1 (Ω) , ∂xi
εr ∈ L∞ (Ω) , i = 1, 2. (6)

We refer to [14] for these analytical derivations. However, in all computations in Section 8,
the function εr(x) is piecewise constant.

We now make some assumption about the smoothness of initial conditions (2). Since the
solution of the Cauchy problem (1 ), (2) is not smooth, because of the δ−function in the
initial condition, we replace the δ (x − x0) with its approximation δθ (x − x0). In this case
smoothness would be recovered. Here θ ∈ (0, 1) is a small number. The function δθ (x − x0)
is

δθ (x − x0) =

{

Cθ exp
(

1
|x−x0|

2−θ2

)

, |x − x0| < θ,

0, |x − x0| > θ,
,

∫

R2

δθ (x − x0) dx = 1.

Here the constant Cθ > 0 is chosen to ensure the value of this integral. Since the source
x0 /∈ Ω, then for sufficiently small θ

δθ (x − x0) = 0 for x ∈ Ω. (7)

Thus, the problem (1), (2) can be rewritten as

c (x) utt = ∆u, (x, t) ∈ R2 × (0,∞) , (8)

u (x, 0) = 0, ut (x, 0) = δθ (x − x0) . (9)

Below we consider the following inverse problems:
Inverse Problem 1 (IP1). Determine the unknown function εr (x) for x ∈ Ω, assuming

that the following observation uobs (x, t) of the full solution u (x, t) of (8)– (9) is known:

u (x, t) = uobs (x, t) , ∀ (x, t) ∈ ∂Ω × (0,∞) . (10)

Inverse Problem 2 (IP2).
Determine the unknown function εr (x) for x ∈ Ω, assuming that the following observa-

tion uobs (x, t) of the full solution u (x, t) of (8)– (9) is known:

u (x, t) = uobs (x, t) , ∀ (x, t) ∈ ∂Ω1 × (0,∞) , (11)
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Note that εr (x) = 1 for x ∈ R2�Ω.
For IP1, the function uobs(x, t) in (10) represents measurements in space and time of the

wave field on the whole boundary ∂Ω of Ω. Thus, for IP1 we work with complete data.
However, for IP2 we work with backscattering data measured only on the part ∂Ω1 of the
boundary ∂Ω.

Let T > 0 be the final observation time. Then the Cauchy problem in equation (8)–(9)
with conditions (10) or (11) can be uniquely solved in G \Ω× (0, T ) with the known εr = 1,
see [21]. Thus, the function u(x, t) is known in G \ Ω × (0, T ), and we can determine the
following functions at the boundary ∂Ω for the case of complete data:

u (x, t) = uobs (x, t) , ∀ (x, t) ∈ ∂Ω × (0, T ) ,

∂nu(x, t) = p(x, t), ∀ (x, t) ∈ ∂Ω × (0, T ) .
(12)

In the case of backscattering data we will have functions

u (x, t) = uobs (x, t) , ∀ (x, t) ∈ ∂Ω1 × (0, T ) ,

∂nu(x, t) = p(x, t), ∀ (x, t) ∈ ∂Ω1 × (0, T ) .
(13)

Functions uobs (x, t) and p(x, t) will be used in formulation of the state and adjoint problems
in the next section.

3 The Tikhonov Functional

To determine εr(x), x ∈ Ω, for IP1 we minimize the Tikhonov functional

J(u, εr) =
1

2

∫

∂Ω

T
∫

0

(u − uobs)
2zζ (t) dtdx +

1

2
γ

∫

Ω

(εr − ε0)
2 dx. (14)

Here, the function u satisfies the state problem

△u − εrutt = 0, (x, t) ∈ Ω × (0, T ),

u(x, 0) = 0, ut(x, 0) = 0, (x, t) ∈ Ω,

∂nu = p(x, t), (x, t) ∈ ∂Ω × (0, T ),

(15)

where function p(x, t) is defined as in (12). The observations uobs are limited to a finite set
of observation points at the boundary ∂Ω in IP1.

When solving IP2, uobs are available only on the top boundary ∂Ω1. Thus, for the case
of IP2 the Tikhonov functional will be

J(u, εr) =
1

2

∫

∂Ω1

T
∫

0

(u − uobs)
2zζ (t) dtdx +

1

2
γ

∫

Ω

(εr − ε0)
2 dx, (16)
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and the function u here satisfies the following state problem

△u − εrutt = 0, (x, t) ∈ Ω × (0, T ),

u(x, 0) = 0, ut(x, 0) = 0, (x, t) ∈ Ω,

∂nu = p(x, t), (x, t) ∈ ∂Ω1 × (0, T ).

(17)

with function p(x, t) given in (13).
The function zζ (t) ∈ C∞ [0, T ] in (14) ensures that the compatibility conditions are

satisfied for the adjoint problem (18) at t = T , and is defined as

zζ (t) =







1 for ∈ [0, T − ζ ] ,

0 for t ∈
(

T − ζ

2
, T

]

,

zζ (t) ∈ (0, 1) for t ∈
(

T − ζ, T − ζ

2

)

.

For the second part of the Tikhonov functional (14) or (16), γ is a small regularization
parameter, and ε0 is the initial guess for εr. The L2 (Ω) norm is used in the regularization
term because we work with a finite dimensional space of finite elements in the numerical
examples of Section 8.

The adjoint problem for both IP1 and IP2 for the function λ (x, t) is

εrλtt − ∆λ = 0, (x, t) ∈ Ω × (0, T ),

∂nλ = (uobs − u)zζ (t) on Ω × (0, T ),

λ(x, T ) = λt(x, T ) = 0, x ∈ Ω.

(18)

This problem is solved backwards in time. Here, function u(x, t) is the solution of the state
problem (15) for IP1 and (17) for IP2, and the function uobs(x, t) is defined by (12) for IP1
and by (13) for IP2, correspondingly.

4 The Lagrangian and its Fréchet Derivative

In order to minimize the Tikhonov functional (14) for IP1 or (16) for IP2, we introduce
the associated Lagrangian and derive its Fréchet derivative by a heuristic approach. Below
we will derive the Fréchet derivative of the Lagrangian for IP1, since the Fréchet derivative
of the Lagrangian for IP2 can be derived similarly. In this derivation we assume that the
functions u, λ, and εr can be varied independently. However, when the Fréchet derivative is
calculated, we assume that the solutions of the forward and adjoint problems depend on εr.
A rigorous derivation of the Fréchet derivative can be found in [15] and is far from trivial
since it requires some smoothness assumptions for the solutions of the state and adjoint
problems.
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Let us introduce the following spaces,

H2
u (Ω × (0, T )) = {f ∈ H2(Ω × (0, T )) : f(x, 0) = ft(x, 0) = 0},

H1
u(Ω × (0, T )) = {f ∈ H1(Ω × (0, T )) : f(x, 0) = 0},

H2
λ(Ω × (0, T )) = {f ∈ H2(Ω × (0, T )) : f(x, T ) = ft(x, T ) = 0},

H1
λ(Ω × (0, T )) = {f ∈ H1(Ω × (0, T )) : f(x, T ) = 0},

U = H2
u(Ω × (0, T )) × H2

λ(Ω × (0, T )) × C2(Ω̄),

Ū = H1
u(Ω × (0, T )) × H1

λ(Ω × (0, T )) × L2(Ω),

(19)

where all functions are real valued. Hence, U is included and dense in Ū . In order to
incorporate the constraint imposed by equation (1), we introduce the Lagrangian

L(v) = J(u, εr) +

T
∫

0

∫

Ω

λ (εrutt − ∆u) dxdt, (20)

where λ is the Lagrange multiplier and v = (u, λ, εr) ∈ U . Clearly, if u is a solution of
equation (1), then L(v) = J(u, εr). Integrating by parts in equation (20) leads to

L(v) = J(u, εr) −
T

∫

0

∫

Ω

εrutλtdxdt +

T
∫

0

∫

Ω

∇u∇λdxdt −
T

∫

0

∫

∂Ω

pλdσdt. (21)

A stationary point of the functional L(v), satisfies

L′(v)(v̄) = 0, ∀v̄ = (ū, λ̄, ε̄r) ∈ Ū , (22)

where L′(v) is the Fréchet derivative of the Lagrangian L at v. In order to find the gradient,
one considers L (v + v̄) − L (v) , ∀v̄ ∈ Ū , and single out the linear part of this expression
with respect to v̄. Hence, from equations (21) and (22) we obtain

L′(v)(v̄) =

T
∫

0

∫

Ω

ū(u − uobs)zζ (t) dxdt + γ

∫

Ω

ε̄r(εr − ε0)dx

−
T

∫

0

∫

Ω

εr(utλ̄t + ūtλt)dxdt −
T

∫

0

∫

Ω

ε̄rutλtdxdt

+

T
∫

0

∫

Ω

(∇u∇λ̄ + ∇ū∇λ)dxdt −
T

∫

0

∫

∂Ω

pλ̄dσdt.

(23)
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Integration by parts now brings out v̄:

L′(v)(v̄) =

T
∫

0

∫

Ω

λ̄(εrutt − ∆u)dxdt −
T

∫

0

∫

∂Ω

pλ̄dσdt

+

T
∫

0

∫

∂Ω

ū(u − uobs)zζ (t) +

T
∫

0

∫

Ω

ū(εrλtt − ∆λ)dxdt

+

∫

Ω

ε̄r



γ(εr − ε0) −
T

∫

0

utλtdt



 dx.

(24)

Hence, equations (22) and (23) imply that every integral term in equation (24) equals zero.
Thus, if (u, λ, εr) = v ∈ U is a minimizer of the Lagrangian L(v) in equation (21), then
the terms containing λ̄ correspond to the forward (or state) problem (15). Furthermore, the
terms with ū are the weak form of the adjoint state equation (18).

We can find εr(x) from the equation

εr(x) =
1

γ

T
∫

0

utλtdt + ε0, x ∈ Ω.

To do this, we need to solve the equation above with respect to the function εr, where the
functions u ∈ H1

u and λ ∈ H1
λ are weak solutions of the problems (15) and (18), respectively.

The boundary value adjoint problem (18) is solved backwards in time. Uniqueness and
existence theorems for the initial/boundary value problems, equations (15) and (18), includ-
ing weak solutions, can be found in Chapter 4 of [21]. The Lagrangian L(v) is minimized
iteratively by obtaining weak solutions of the boundary value problems (15) and (18) on
each step by means of a FEM formulation.

5 A Finite Element Method to solve equation (22)

For discretization of (21) we use the finite element method. Let us introduce the finite
element spaces W u

h ⊂ H1
u (Ω × (0, T )) and W λ

h ⊂ H1
λ (Ω × (0, T )) for u and λ, respectively.

These spaces consist of continuous piecewise linear functions in space and time, satisfying the
initial conditions u (x, 0) = 0 for u ∈ W u

h , and λ (x, T ) = 0 for λ ∈ W λ
h . We also introduce the

finite element space Vh ⊂ L2 (Ω) consisting of piecewise constant functions for the coefficient
εr(x) and denote W u

h × W λ
h × Vh by Uh, Uh ⊂ Ū . Thus, Uh is a discrete analogue of Ū .

The FEM for (22) now consists of finding vh ∈ Uh, so that

L′ (vh; v̄) = 0, ∀v ∈ Uh. (25)
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6 An a Posteriori Error Estimate for the Lagrangian

We shall now present the main steps in the derivation of an a posteriori bound for the error
of the finite element approximation to the function εr.

Let v ∈ U be a minimizer of the Lagrangian L on the space Ū , and vh a minimizer of
this functional on Uh. That is, v is a solution of (22) and vh is a solution of (25).

Since adaptivity is a locally convergent numerical method, we may assume that we work
in a small neighborhood of the exact solution v∗ ∈ U of the full problem. This means that
if εr

∗ is the exact solution of IP1 or IP2, then u∗ = u(ε∗r) is the exact solution of (15), and
u∗ − u∗

obs = 0. Moreover, the solution of the adjoint problem (18) is λ(ε∗r) = 0. However, we
can never get exact measurements u∗

obs since they always suffer from a certain noise level.
Thus, we assume that

‖v − v∗‖Ū ≤ σ, (26)

where σ is sufficiently small. Here, v = (u(εr), λ(εr), εr), and we call εr the regularized
solution of the minimization problem (14). Below we present the error in the Lagrangian for
the regularized coefficient εr, see also the discussion in Introduction.

The a posteriori error estimate L(v) − L(vh) for the Lagrangian is based on the

L(v) − L(vh) =

∫ 1

0

d

ds
L(sv + (1 − s)vh)ds

=

∫ 1

0

L′(sv + (1 − s)vh) (v − vh) ds = L′(vh) (v − vh) + R,

(27)

where R = O (σ2). Since σ is small, we may ignore R in (27), see details in [15] and [3] for
similar results in the case of a general nonlinear operator equation.

Using Galerkin orthogonality (25) along with the splitting v − vh = (v − vI
h) + (vI

h − vh),
where vI

h is an interpolant of v, we obtain the error representation

L(v) − L(vh) ≈ L′ (vh) (v − vI
h), (28)

expressing the residual in terms of the interpolation error. The splitting is one of the key
elements in the adaptivity technique, because it allows us to use Galerkin orthogonality (25)
and standard estimates for interpolation errors. We estimate v − vI

h in terms of derivatives
of v, the mesh parameter h in space and τ in time. Finally, we approximate the derivatives
of v by the corresponding derivatives of vh, see [5, 9]. Numerical experiments in previous
publications [5, 8, 9, 11, 15] and of this paper show that the dominating contribution to the
error in the Lagrangian occurs in the residuals of the reconstruction of εr, which may be
estimated from the above by

γ max
Ω

|εrh − ε0| + max
Ω

∫ T

0

|uhtλht| dt. (29)

While the integral terms in the a posteriori error for the Lagrangian was ignored due to
numerical observations in the publications cited above, this fact was analytically explained
in [13]. Thus, the error in the Lagrangian may be decreased by refining the grid locally in
the regions where the absolute value of the gradient with respect to εr attains its maximum.

9



7 The Adaptive Algorithm

We minimize the Tikhonov functional using the quasi-Newton method with the classical
BFGS update formula, [22]. We denote the nodal values of the gradient function gm(x) as

gm(x) = γ(εr
m
h − ε0) −

T
∫

0

um
htλ

m
ht dt. (30)

The FEM solutions um
h ∈ W u

h and λm
h ∈ W λ

h are obtained by solving the boundary value
problems (1) and (18) with εr := εr

m
h .

Then we can compute a sequence {εr
m
h }m=1,...,M

⊂ Vh of approximations to εr defined by
the iteration

εr
m+1
h (x) = εr

m
h (x) − αHmgm(x), m = 1, ..., M. (31)

Here α is the step length in the gradient method, computed by the line-search algorithm,
gm(x) is the gradient, and Hm an approximation to the inverse of the Hessian of the La-
grangian L, updated by the BFGS formula [22].

7.1 The Algorithm

Step 0. Choose an initial mesh Kh in the domain Ω and a time partition Jτ of the time
interval (0, T ). Start with the initial approximation εr

0
h := ε0 and compute the sequence of

functions εr
m
h in the steps described below.

Step 1. Compute FEM solutions uh (x, t, εr
m
h ) , λh (x, t, εr

m
h ) of the state and adjoint

problems (15), (18) on Kh, Jτ .
Step 2. Update the coefficient εr := εr

m+1
h on Kh using (31).

Step 3. Stop computing the functions εr
m
h if either ||gm||L2(Ω) ≤ θ, or the norms

||gm||L2(Ω) abruptly grow, or the norms ||gm||L2(Ω) are stabilized, where 0 < θ < 1 is chosen
by the user. Otherwise, set m := m + 1 and go to Step 1.

Step 4. Compute the function A(x) = |gm
h (x) |. Refine the mesh where

A(x) ≥ β max
Ω

A(x). (32)

Here, the tolerance number β is chosen by the user.
Step 5. Construct a new mesh Kh and a new time partition Jτ of the time interval

(0, T ) . The new time step τ of Jτ should satisfy the CFL condition (35). Interpolate the
initial approximation εr

0
h on the new mesh. Return to Step 1 and perform all the steps above

on the new mesh.
Step 6. Stop the mesh refinements when the stopping criterion described in Step 3 is

satisfied.

10



(a) ΩF DM (b) G = ΩF EM ∪ ΩF DM (c) Ω = ΩF EM

Figure 1: The hybrid mesh (b) is a combination of a structured mesh (a), where FDM is
applied, and a mesh (c), where we use FEM, with a thin overlapping layer of structured
elements.

8 Numerical Examples

In this section we present results of numerical studies of the adaptive algorithm of Section
7.1. To solve the forward and adjoint problems, we use the hybrid FE/FD method described
in [4]. The adaptive algorithm is tested on the reconstruction of the periodic structure given
in Figure 1-c).

The computational domain is defined as G = [−4.0, 4.0] × [−5.0, 5.0]. Next, G is split
into a finite element domain Ω = ΩFEM = [−3.0, 3.0] × [−3.0, 3.0] with an unstructured
mesh, and a surrounding domain ΩFDM with a structured mesh, see Figure 1. Between
ΩFEM and ΩFDM there is an overlapping layer consisting of structured elements. The space
mesh consists of triangles in ΩFEM , and squares in ΩFDM , with mesh size h̃ = 0.125 in the
overlapping region. At the top and bottom boundaries of G we use first-order absorbing
boundary conditions [18]. At the lateral boundaries, Neumann boundary conditions allow
us to assume an infinite space-periodic structure in the lateral direction.

The forward problem in all our tests is

∆u − εr(x)
∂2u

∂t2
= 0, (x, t) ∈ Ω × (0, T ),

u(x, 0) = 0,
∂u

∂t
(x, 0) = 0, x ∈ Ω,

∂nu
∣

∣

Γ1
= f(t), on Γ1 × (0, T1],

∂nu
∣

∣

Γ1
= −ut, on Γ1 × (T1, T ),

∂nu
∣

∣

Γ2
= −ut, on Γ2 × (0, T ),

∂nu
∣

∣

Γ3
= 0, on Γ3 × (0, T ).

(33)
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To generate data at the observation points, we solve the forward problem (33) in the domain
Ω with a plane wave pulse given as

∂nu
∣

∣

Γ1
= ((sin (ωt − π/2) + 1)/10), 0 ≤ 2π

ω
= T1. (34)

The wave field thus initiates at the boundary Γ1, which in our examples represents the top
boundary of the computational domain G, and propagates in normal direction n into G with
ω = 6.

In the various examples of this section, the observation points are placed either on the
upper boundary of ΩFEM (Test 1 of Section 8.1.1, or on both the lower and top boundaries
of ΩFEM (Test 2 of Section 8.1 and Example 2 of Section 8.2).

To generate data for the inverse problem, we solve the forward problem (33) with T = 12,
with the value of the dielectric constant εr = 4 inside the four small squares in Figure 1-c),
and with εr = 1.0 everywhere else. Our goal is to reconstruct the electric permittivity εr

in ΩFEM . We enforce εr(x) to belong to the set of admissible coefficients, CM = {εr ∈
C(Ω)|1.0 < εr(x) < 4.0} as follows: if 0 < εr(x0) < 1.0 for some point x0 ∈ Ω then we set
εr(x0) = 1.0.

Since an explicit scheme [5, 9] is used to solve the forward and adjoint problems, we
choose a time step τ according to the Courant-Friedrichs-Levy (CFL) stability condition in
two dimensions, see, for example, [17]

τ ≤ h√
2εrmax

. (35)

The CFL condition assures a stable time discretization. Here, h is the minimal local mesh
size, and εrmax an a priori upper bound for the coefficient computed on the mesh Kh.

In some of the tests we have added relative random noise in the observations. Noisy data,
uσ, are defined by

uσ = uobs + α2(umax − umin)
σ

100
, (36)

where α2 is a random number in the interval [−1; 1], umax and umin are the maximal and
minimal values of the computed observations uobs, correspondingly, and σ is the noise ex-
pressed in percents. In all tests, we have applied some smoothing in the update of the
coefficient by locally averaging over neighboring elements. We choose computationally the
value of the tolerance β in (32) in all examples. Usually, this value is β = 0.7, but can vary
as 0.1 ≤ β ≤ 0.7 from the coarse to more refined mesh.

8.1 Example 1

In Test 1 and Test 2 the initial guess is chosen as εr0 = 1.0 at all points in the computational
domain ΩFEM . In Test 1, the observation points are all placed only at the top boundary of
ΩFEM , and thus we work with backscattering data, while in Test 2 we have observation points
on both the upper and lower boundary of ΩFEM . The computations have been performed
for different regularization parameters γ and with different noise level σ in (36) added to the
data.
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8.1.1 Test 1: Backscattering Data

In Test 1 we solve IP2 and minimize the Tikhonov functional (16) using the adaptive algo-
rithm of Section 7.1. The observation points are placed at ∂Ω1, the top of ΩFEM . When
solving IP2 we use following conditions

u (x, t) = uobs (x, t) , ∀ (x, t) ∈ ∂Ω1 × (0, T ) ,

u(x, t) = 0, ∀ (x, t) ∈ ∂Ω2 × (0, T ) .
(37)

Second condition in (37) follows from the computational simulations of the forward problem
(33) when we observed that values of function u(x, t) at ∂Ω1 × (0, T ) are much larger then
values of function u(x, t) at ∂Ω2 × (0, T ).

Let us denote S1 = ∂Ω1 × (0, T ). To check convergence of the adaptive algorithm of
Section 7.1, for every refined mesh we calculate the L2-norms ||uh − uobs||L2(S1). Table 1
shows a comparison of the norms for different regularization parameters. The L2-norms
||uh − uobs||L2(S1) in Table 1 are given only for the fourth refined mesh and as long as they
are decreasing. The noise level in these computations is σ = 0%. From Table 1 we observe
the smallest value of ||uh − uobs||L2(S1) is obtained with a regularization parameter γ = 0.01.
The results with γ = 0.1 are less accurate, indicating this value is too large and involve too
much regularization. We may also note that the norm is reduced by approximately a factor
of five between the first and last optimization iteration.

γ = 10−1 γ = 10−2 γ = 10−3 γ = 10−4

it = 1 0.103 0.104 0.104 0.104
it = 2 0.0714 0.0714 0.0354 0.0714
it = 3 0.0620 0.0614 0.0714 0.0702
it = 4 0.0344 0.0694 0.0463
it = 5 0.0230 0.0451 0.0291
it = 6 0.0282 0.0255
it = 7 0.0246

Table 1: Example 1, Test 1. Computed norms ||uh − uobs||L2(S1) on the fourth refined mesh
for different values of the regularization parameter γ.

In Figures 2-e), f), g), h) we show the reconstructed coefficient εr on the first, second,
third and fourth adaptively refined meshes. Corresponding adaptively refined meshes are
presented in Figures 2-a), b), c), d). These computations were done with noise level σ = 0%
and regularization parameter γ = 0.01. Our final solution corresponds to the fourth refined
mesh and is presented in Figure 2-h). One can see from this Figure that we are able quite
accurately reconstruct from the backscattering data the symmetric location of the four small
squares given in Figure 1-c). We obtain inclusions/background contrast 2.76 : 1 on the
fourth refined mesh compared with 1.88 : 1 on the first refined mesh. The value of ǫr = 1
outside of inclusions is also imaged accurately. Thus, on the fourth refined mesh we have
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reconstructed 69% of the real contrast in inclusions. We recall that this exact contrast was
4. Our results clearly indicate that contrasts and locations of inclusions are improved as the
mesh is refined.

Next, the performance of the adaptive algorithm of Section 7.1 was tested on noisy
data with a fixed γ = 0.01. Noise was added to the data as described in equation (36).
The computed norms ||uh − uobs||L2(S1) on the fourth adaptively refined mesh are given for
different noise levels in Table 2. These norms are shown as long as they decrease. From
results of Table 2 we conclude that our algorithm is stable when computing it with small
values of the noise σ = 0, 1, 3, 5%, and the algorithm deteriorates when adding more than
5% noise to the data.

σ = 0 σ = 1.0 σ = 3.0 σ = 5.0 σ = 7.0 σ = 10.0
it = 1 0.104 0.109 0.125 0.150 0.180 0.230
it = 2 0.0714 0.0830 0.114 0.148 0.184 0.239
it = 3 0.0614 0.0635 0.0801 0.109 0.147 0.211
it = 4 0.0344 0.0349 0.0610 0.0972 0.137 0.209
it = 5 0.0230 0.0282 0.0599 0.0971 0.204
it = 6 0.0280 0.0597 0.204
it = 7 0.202
it = 8 0.202
it = 9 0.200
it = 10 0.200
it = 11 0.199

Table 2: Example 1, Test 1. Computed norms ||uh − uobs||L2(S1) on the fourth refined mesh
for γ = 0.01 and different noise level σ.

8.1.2 Test 2

Let now decompose the boundary ∂Ω of the domain Ω into three parts such that ∂Ω =
∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3, where ∂Ω1 is the top boundary of ∂Ω, ∂Ω3 denotes the lateral boundaries,
and ∂Ω2 the bottom boundary. Computations in this test are performed when data at the
observation points uobs are saved both on the upper ∂Ω1 and lower ∂Ω2 boundaries of ΩFEM .
More precisely, to generate data for the inverse problem we solve the forward problem (33)
in time [0, T ] with T = 12 and register values of the function u(x, t) on ∂Ω1 and ∂Ω2 such
that when solving our CIP we use following conditions

u (x, t) = uobs (x, t) , ∀ (x, t) ∈ ∂Ω1 ∪ ∂Ω2 × (0, T ) ,

u(x, t) = 0, ∀ (x, t) ∈ ∂Ω3 × (0, T ) .
(38)

Again, second condition in (38) follows from the computational simulations of the forward
problem (33) when we observed that values of function u(x, t) at ∂Ω1 ∪ ∂Ω2 × (0, T ) are
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a) 6082 elements e) εrmax = 1.8804 i) εrmax = 1.7045

b) 8806 elements f) εrmax = 2.2325 j) εrmax = 1.8998

c) 10854 elements g) εrmax = 2.1135 k) εrmax = 1.8966

d) 18346 elements h) εrmax = 2.7559 l) εrmax = 4.0

Figure 2: Example 1. a), b), c), d) The adaptively refined meshes in Test 1. e), f), g), h) The reconstructed coefficient εr(x) in Test 1. i),
j), k), l) The reconstructed coefficient εr(x) in Test 2. Here, red color corresponds to the maximal value of εr on the corresponding meshes, and
blue color to the minimal, εrmin = 1.0 in all plots. The results of reconstruction in Test 2 are better the the results of Test 1 because we have
twice as much information in Test 2.
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much larger then values of function u(x, t) at ∂Ω3 × (0, T ). Thus, we have twice as much
information then in Test 1 and therefore expect to get a quantitative better reconstruction
of the structure.

Figures 2-i), j), k), l) show the reconstructed coefficient εr(x) when the noise level in
the data was σ = 1% and the regularization parameter γ = 0.01. On these Figures the
reconstructed coefficient ǫr is presented on the first, second, third and fourth adaptively
refined meshes at the final optimization iteration. The final solution corresponds to the
fourth refined mesh and is presented in Figure 2-l). One can see from this Figure that we
are able very accurately reconstruct the symmetric location of the four small squares given
in Figure 1-c). We obtain inclusions/background contrast 4.0 : 1 on the fourth refined mesh
compared with 1.7 : 1 on the first refined mesh. The value of ǫr = 1 outside of inclusions is
also imaged accurately. Thus, on the fourth refined mesh we have reconstructed 100% of the
real contrast in inclusions. This example demonstrates that observation data collected both
on the top and bottom boundaries allows to get excellent reconstruction results compared
with backscattering data only. However, the case of the backscattering data is realistic one.

Let us denote S2 = ∂Ω1 ∪ ∂Ω2 × (0, T ). In Figures 3 and 4 we present a comparison of
the computed L2-norms ||uh − uobs||L2(S2) depending on the relative noise σ on the different
meshes. The norms are plotted as long as they decrease. From these results we conclude
that the reconstruction is stable on the two, three and four times refined meshes, even when
σ = 10% relative noise has been added to the data. Recall that in Test 1 we observed
stability only up to 5% error in the data.

In Figure 5 we show a comparison of the computed L2-norms ||uh − uobs||L2(S2) de-
pending on the different regularization parameters γ. We see that the smallest value of
||uh − uobs||L2(S2) is obtained with regularization parameter γ = 0.01, while γ = 0.1 is again
too large and involve too much regularization. Figure 6-b) shows that the best results are
obtained on the finest mesh with 18346 elements, where ||uh − uobs||L2(S2) is reduced by ap-
proximately a factor of 7 between the first and the last optimization iterations. On the same
Figure we observe that norm ||uh − uobs||L2(S2) is reduced by approximately a factor of 3.5
between the first and the last optimization iterations on a coarse mesh with 6082 elements.

8.2 Example 2

The goal of this test is to show that the quasi-Newton method can deteriorate if a good first
initial guess of the function ǫr is unavailable. To generate data at the observation points for
the inverse problem, we solve the forward problem (33) for the same structure as in Figure 1.
As before, we assume that εr = 1 in ΩFDM . The trace of the incoming wave is measured on
both the lower and the upper boundaries of the computational domain ΩFEM as in Example
1, Test 2. Now we choose the initial guess for the function εr as εr0 = 1.5 at the inner points
of the computational domain ΩFEM . The parameter εr(x) is enforced to belong to the set
of the admissible parameters CM as defined above. The computations in the quasi-Newton
procedure are stopped when the norms ||uh − uobs||L2(S2) are stabilized.

We use the same adaptive algorithm of Section 7.1 as in the Example 1. In Figure 7-f), g),
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0.14

 

 
6082 elements, σ=0
8806 elements, σ=0
10854 elements, σ=0
18346 elements, σ=0
6082 elements, σ=1
8806 elements, σ=1
10854 elements. σ=1
18346 elements, σ=1
6082 elements, σ=3
8806 elements, σ=3
10854 elements, σ=3
18346 elements, σ=3
6082 elements, σ=5
8806 elements, σ=5
10854 elements, σ=5
18346 elements, σ=5

Figure 3: Example 1, Test 2: ||uh − uobs||L2(S2) on the first, second, third and fourth adaptively refined meshes. The

computations were performed with noise level σ = 0, 1, 3% and σ = 5% and with the regularization parameter γ = 0.01. Here,

the x-axis denotes the number of optimization iterations.
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6082 elements, σ=0
8806 elements, σ=0
10854 elements, σ=0
18346 elements, σ=0
6082 elements, σ=7
8806 elements, σ=7
10854 elements. σ=7
18346 elements, σ=7
6082 elements, σ=10
8806 elements, σ=10
10854 elements, σ=10
18346 elements, σ=10

Figure 4: Example 1, Test 2: ||uh − uobs||L2(S2) on the first, second, third and fourth adaptively refined meshes. The

computations were performed with noise level σ = 0, 7% and 10% and with the regularization parameter γ = 0.01. Here, the

x-axis denotes the number of optimization iterations.

18



1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

 

 
6082 elements, γ=0.1
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18346 elements, γ=0.1
18346 elements, γ=0.01
18346 elements, γ=0.001
18346 elements, γ=0.0001

Figure 5: Example 1, Test 2: ||uh −uobs||L2(S2) on the first, second, third and fourth adaptively refined meshes. The noise

level in data is σ = 1% and the regularization parameter γ = 0.1, 0.01, 0.001 and γ = 0.0001. Here, the x-axis denotes the

number of optimization iterations.
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a) b)

Figure 6: Example 1: computed L2 norms on the first, second, third and firth adaptively refined meshes. In a) we show

computed norms ||uh − uobs||L2(S1) when noise level σ = 0% and the regularization parameter γ = 0.01 in Test 1, and in b)

norms ||uh − uobs||L2(S2) are presented when noise level σ = 1% and the regularization parameter γ = 0.01 in Test 2. Here,

the x-axis denotes the number of optimization iterations.

h), i), j) we present the results of the reconstruction of the function ǫr when the noise level in
the data is σ = 0%, and in Figure 7-k), l), m), n), o) the noise level is σ = 5%. As before, the
noise is computed using (36). For both noise levels we obtain excellent inclusions/background
contrast 3.99 : 1 on the fourth refined mesh. The value of ǫr = 1 outside of inclusions is also
imaged accurately. Figure 7 shows that the reconstruction of the function ǫr is improved
as the meshes are refined. However, the locations of the imaged right squares are shifted
slightly to the right because of the smoothing procedure over the neighboring elements. Note
that the coarse and the ones refined meshes are the same as in the Example 1, Test 2, while
the two, three and fourth refined meshes are different.

On Figures 8 and 9 we show the one-dimensional cross-sections of the image of the
functions εr

m
h along the vertical line passing through the middle of the left small square,

with the correct εr(x) superimposed. In Figure 8 the noise level in data is σ = 0% and
in Figure 9 it is σ = 5%. Using these Figures we observe that the images deteriorate or
achieve a local minima on the coarse mesh. The reconstruction is dramatically improved as
the meshes are refined using the adaptive algorithm of Section 7.1.

We also performed similar reconstruction tests with another initial guess εr0 = 2.0 at the
inner points of ΩFEM . The reconstructed function ǫr (not shown here) is deteriorated not
only on the coarse mesh, but also on the one and two times refined meshes. Our tests allow
conclude that the adaptivity works in a neighborhood of an initial guess 1 ≤ εr0 ≤ 1.5. We
note that the usual quasi-Newton algorithm without adaptivity works well with the guess
εr0 = 1 and deteriorates for εr0 = 1.5, see Figure 7-f), k) and Test 5 in [10].
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a) 4608 elements f) εrmax = 3, 8504 k) εrmax = 4

b) 6082 elements g) εrmax = 1, 7758 l) εrmax = 1, 7758

c) 8446 elements h) εrmax = 2, 4107 m) εrmax = 2, 4107

d) 11592 elements i) εrmax = 2, 6657 n) εrmax = 2, 6657

e) 16862 elements j) εrmax = 3, 9996 o) εrmax = 3, 9945

Figure 7: Example 2: a), b), c), d), e) The adaptively refined meshes for tests with initial guess ǫr0 = 1.5 and σ = 0%. f), g), h), i), j) The

spatial distribution of the reconstructed function ε
m

r
on the coarse mesh and on the first, second, third and fourth adaptively refined meshes when

ǫr0 = 1.5 and σ = 0%. k), l), m), n), o) The spatial distribution of the reconstructed function ε
m

r
on the coarse mesh and on the first, second,

third and fourth adaptively refined meshes when ǫr0 = 1.5 and σ = 5%.
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Figure 8: Example 2: the one-dimensional cross-sections of the image of the function εr
m
h

along the vertical line connecting the points (-1.5,-3.0) and (-1.5,3.0) computed for the cor-
responding refined meshes with noise level σ = 0% in the data.
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Figure 9: Example 2: the one-dimensional cross-sections of the image of the function εr
m
h

along the vertical line connecting the points (-1.5,-3.0) and (-1.5,3.0) computed for the cor-
responding refined meshes with noise level σ = 5% in the data.
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9 Conclusions

We have formulated an adaptive FE/FD method for reconstruction of the dielectric function
in a symmetric structure. A time limited plane wave is used to generate backscattering data.
The adaptivity is based on an a posteriori error estimate for the Lagrangian. The mesh is
refined in all subdomains of the computational domain where the Fréchet derivative of the
Lagrangian attains its maximal values.

Summing up our numerical studies, we can conclude that using the adaptive algorithm of
Section 7.1 can significantly improve the location and contrast of the reconstructed dielectric
function. At the same time Example 2 shows that the quasi-Newton method converges to
the exact solution when a good approximation to the exact solution is available. However,
this method deteriorates when a good initial guess is unavailable.
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