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ON SPHERICAL HARMONICS AND A SEMIDISCRETE FINITE

ELEMENT APPROXIMATION FOR THE TRANSPORT EQUATION

MOHAMMAD ASADZADEH1,† AND TOBIAS GEBÄCK1,†,‡

Abstract. This work is the first part in a series of two papers, where the objective is to
construct, analyze and implement realistic particle transport models relevant in applications
in radiation cancer therapy. Here we use spherical harmonics and derive an energy depen-
dent model problem for the transport equation. Then we show stability and derive optimal
convergence rates for semidiscrete (discretization in energy) finite element approximations
of this model problem. The fully discrete problem, that considers the study of finite element
discretizations in radial and spatial domains as well, is the subject of a forthcoming paper.

1. Introduction

This study concerns the mathematical modeling and numerical approximations of charged
particle beams of interest in radiation therapy. We, primarily, assume the study of energy
dependent radiation particle beams (electrons and ions) under the continuous slowing down
approximation (CSDA). Roughly speaking, in this approximation, it is assumed that, the
particle loses its energy continuously along the length of its trajectory.

Our objective is two-fold: First we wish to derive a convection-diffusion model for the
charged particle transport. Inspired by the classical idea of using asymptotic expansions
to replace the scattering integral in the transport equation by a diffusion term, as, e.g. in
Pomraning’s approach in [14], we employ spherical harmonic expansions and derive a more
general and, mathematically, rigorous system of convection-diffusion-absorption equations for
the coefficient vectors/matrices. Next, we focus on a canonical equation in the system and
discretize it in the energy variable using the finite element method. Hence, we obtain a
semidiscrete problem, for which we have derived stability estimates and optimal convergence
rates.

Former approaches in this regard are considering forward-peaked beams. In, e.g. [15] where
Prinja and Pomraning are considering asymptotic scaling for forward-peaked transport, [4]
where Börgers and Larsen derive Fermi pencil beam equation, [2] where Asadzadeh, Brahme
and Xin study Galerkin methods for broad beam transport, [1] where Asadzadeh, Brahme
and Kempe extends the bipartition model for high energy electrons by Luo and Brahme in
[12] to high energy ions and inhomogeneous media, and finally Brahme and Kempe [8] who
studied solution of the Boltzmann equation for light ions. In all these studies ion particles
are considered to be normally incident at the boundary of a semi infinite medium.

Key words and phrases. spherical harmonics, transport equation, finite element method, charged particle
beams.

1 This research is partially supported by the Swedish Foundation of Strategic Research (SSF) in Gothenburg
Mathematical Modeling Center (GMMC) and The Swedish Research Council (VR).
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2 M. ASADZADEH AND T. GEBÄCK

In a previous study [1] we considered a detailed study of the bipartition model for ion
transport. A related approach, based on a split of the scattering cross-section into the hard
and soft parts is given by Larsen and Liang in [9].

An outline of this paper is as follows: In Section 2 we start with a transport equation model
under continuously slowing down assumption (CSDA) and expand the solution function in
spherical harmonics. In the subsequent Sections 3 and 4, we continue the spherical harmonic
expansions procedure for the convection term and the collision integral, respectively. Section
5 is devoted to the extension of the source term for secondary particles. In Section 6 we state
the system of equations and finally in our concluding Section 7 we prove stability estimates
and derive optimal convergence rates for a semidiscrete scheme for the discretization in the
energy variable.

2. The transport equation

Our objective is to solve the transport equation for the fluence differential f(x, r,Ω, E) of
charged particles symmetrically distributed around the x-axis at distance r from the same axis,
traveling in direction Ω ∈ S2 with energy E, using the continuous slowing down assumption
(CSDA). We also define the angle ψ such that

{

y = r cosψ

z = r sinψ

The equation is

(2.1) Ω · ∇f − 1

2

∂2ω(E)f

∂E2
− ∂S(E)f

∂E
= Cf (x, r,E) +Q(x, r,Ω, E),

where Q(x, r,Ω, E) is a source term, either for incident primary electrons or for secondary
electrons created in collisions between primary electrons and matter. Furthermore,

(2.2) Cf (x, r,Ω, E) =

∫

4π
σs(E,Ω · Ω′)

(

f(x, r,Ω′, E) − f(x, r,Ω, E)
)

dΩ′

is the collision factor, depending on the elastic scattering cross-section σs.
Our first step will be to expand f into a series of spherical harmonics, using spherical

coordinates Ω = Ω(θ, ϕ) = (cos θ, sin θ cosϕ, sin θ sinϕ), where θ is the angle from the x-axis,

f(x, r,Ω, E) =

∞
∑

n=0

n
∑

m=0

(n−m)!

(n+m)!

2n+ 1

4π
αman,m(x, r,E) cos(mϕ)Pm

n (cos θ)

≡
∞
∑

n=0

n
∑

m=0

ãn,m(x, r,E)Y m
n (Ω),

(2.3)

with

αm =

{

1 m = 0,

2 m ≥ 1,

where we have assumed that f is symmetric in ϕ so that the sin(mϕ) terms vanish (although
the analysis below is essentially valid for sin(mϕ) terms too). The coefficients an,m are given
by

an,m(x, r,E) =

∫ 1

−1

∫ 2π

0
f(x, r,Ω, E)Pm

n (cos θ) cos(mϕ) dϕ d(cos θ).
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We use the following definition for the associated Legendre polynomials

Pm
n (µ) = (1− µ2)m/2 d

mPn(µ)

dµm
,(2.4)

Pn(µ) = P 0
n(µ) = 2−n

[n
2 ]

∑

k=0

(−1)k
(

n

k

)(

2n− 2k

n

)

µn−2k.(2.5)

Note that Pm
n (µ) ≡ 0 if m > n.

3. Expanding the convection term

To evaluate the term Ω·∇f in (2.1), we note that if f is rotationally symmetric (independent
of ψ), then

Ω · ∇f(x,Ω, E) = cos θ
∂f

∂x
+ sin θ cos ν

∂f

∂r
,

where ν = ϕ − ψ, and hence we expand f = f(x, r, θ, ν,E) in spherical harmonics in the
variables (θ, ν), and get a sum of terms of the kind

cos θ Y m
n (θ, ν) and sin θ cos ν Y m

n (θ, ν).

We then wish to multiply the equation by Y k
j (θ, ν) and integrate to get a system of equations

for the coefficients aj,k(x, r,E). We then end up with

∫ π

0

∫ 2π

0

(

cos θ
∂f

∂x
+ sin θ cos ν

∂f

∂r

)

P k
j (cos θ) cos(kν) dν sin θ dθ

=

∞
∑

n=0

n
∑

m=0

(n−m)!

(n+m)!

2n+ 1

4π
αm

∫ π

0

∫ 2π

0
(cos θ

∂an,m

∂x
+ sin θ cos ν

∂an,m

∂r
)P k

j (cos θ) cos(kν)Pm
n (cos θ) cos(mν) dν sin θ dθ

=
∑

n≥k−1

(

Ak
n,j

∂an,k

∂x
+B

+,k
n,j

∂an,k+1

∂r
+B

−,k
n,j

∂an,k−1

∂r

)

,

(3.1)

where

Ak
n,j =

(n− k)!
(n+ k)!

2n+ 1

2

∫ π

0
cos θP k

j (cos θ)P k
n (cos θ) sin θ dθ,(3.2)

B
±,k
n,j =

(n− (k ± 1))!

(n+ (k ± 1))!

2n+ 1

4

∫ π

0
cos θP k

j (cos θ)P k±1
n (cos θ) sin θ dθ, ,(3.3)

since
∫ 2π

0

{

1

cos ν

}

cos(kν) cos(mν) dν =

{

2πα−1
m δmk

πα−1
m (δm,k+1 + δm,k−1)

where δmk is the Kronecker delta.
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3.1. The coefficients Ak
n,j. To evaluate the integral in (3.2), we set µ = cos θ, and note

that, see [7]

(3.4) µPm
n (µ) =

n−m+ 1

2n + 1
Pm

n+1(µ) +
n+m

2n+ 1
Pm

n−1(µ),

and since the associated Legendre polynomials are orthogonal, namely

∫ 1

−1
Pm

j (µ)Pm
n (µ) dµ =

(j +m)!

(j −m)!

2

2j + 1
δjn,

the first part of the sum (3.1) becomes

∑

n≥k

Ak
n,j

∂an,k

∂x
=

∑

n≥k

(n− k)!
(n+ k)!

2n + 1

2

∂an,k

∂x

∫ π

0
cos θP k

j (cos θ)P k
n (cos θ) sin θ dθ

=
∑

n≥k

(j + k)!

(j − k)!
2

2j + 1

(n− k)!
(n+ k)!

2n + 1

2

(

n− k + 1

2n+ 1

∂an,k

∂x
δn+1,j +

n+ k

2n+ 1

∂an,k

∂x
δn−1,j

)

=
j + k

2j + 1

∂aj−1,k

∂x
+
j − k + 1

2j + 1

∂aj+1,k

∂x
,

(3.5)

for k ≤ j, where the term with aj−1,k disappears if k = j.

3.2. The coefficients B
±,k
n,j . Similarly, we wish to evaluate the sums

(3.6)
∑

n≥k−1

B
±,k
n,j

∂an,k±1

∂r
=

∑

n≥k±1

(n − (k ± 1))!

(n + (k ± 1))!

2n+ 1

4

∂an,k±1

∂r

∫ π

0
sin θP k

j (cos θ)P k±1
n (cos θ) sin θ dθ,

which turns out to be a bit more difficult. We may transform sin θPm
n (cos θ), with m =

k ± 1 into a linear combination of “pure” Legendre polynomials Pm′

n′ by repeatedly using the
relation, see [7]
(3.7)
sin θPm

n (cos θ) = 2(m−1) cos θPm−1
n (cos θ)−(n−m+2)(n+m−1) sin θPm−2

n (cos θ), m ≥ 2

as well as (3.4), and finally the two relations

sin θP 1
n(cos θ) = nPn−1(cos θ)− n cos θPn(cos θ)(3.8)

sin θPn(cos θ) =
1

2n+ 1

(

P 1
n+1(cos θ)− P 1

n−1(cos θ)
)

.(3.9)
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The final expressions are
(3.10)

sin θPm
n (µ) =















































































1

2n+ 1

(

P 1
n+1(µ)− P 1

n−1(µ)
)

if m = 0

m/2
∑

l=2

qn,m(2l − 1)R2l−1
n (µ)

+
qn,m(1)

2n+ 1

(

(n+ 1)(n + 2)P 1
n−1(µ)− n(n− 1)P 1

n+1(µ)
)

if m even,

m > 0

(m−1)/2
∑

l=1

qn,m(2l)R2l
n (µ)

+ qn,m(0)
n(n + 1)

2n+ 1
(Pn−1(µ)− Pn+1(µ))

if m odd

with

Rm
n (µ) =

2m

2n+ 1

(

(n−m+ 1)Pm
n+1(µ) + (n+m)Pm

n−1(µ)
)

(3.11)

qn,m(l) = (−1)
m−l−1

2
(n− l − 1)!!

(n −m)!!

(n+m− 1)!!

(n+ l)!!

if m− l odd,

m ≥ l + 1
(3.12)

Here, (·)!! is the double factorial (2n)!! = 2 · 4 · . . . · 2n, (2n + 1)!! = 1 · 3 · . . . · (2n + 1).
What now remains to evaluate (3.6) is to evaluate the integrals

I
k,p
j,q =

∫ 1

−1
P k

j (µ)P p
q (µ) dµ,

with the special condition that k + p is even (as can be seen from (3.10), with m = k ± 1,
since if m is odd (even), then all P p

j in the sum (3.10) will have p even (odd)). The integrals

may be evaluated using the definition (2.5) directly as

I
k,p
j,q =

∫ π

0
(sin θ)k+p+1

(

dk

dµk
Pj(µ)

dp

dµp
Pq(µ)

)∣

∣

∣

∣

µ=cos θ

dθ

= 2−(j+q)

[ j−k

2 ]
∑

κ=0

[ q−p

2 ]
∑

λ=0

(−1)κ+λ (2j − 2κ)!

κ!(j − κ)!(j − k − 2κ)!

(2q − 2λ)!

λ!(q − λ)!(q − p− 2λ)!

·
∫ π

0
(sin θ)k+p+1(cos θ)j+q−(p+k)−2(κ+λ) dθ.

(3.13)

Now, we note that the last integral is zero if j + q is odd, as we will then integrate an odd
power of cos θ from 0 to π. Otherwise, that is if k + p is even and j + q is even, we use the
formula involving the Γ function

∫ π/2

0
sin2α+1 θ cos2β+1 θ dθ =

Γ(α+ 1)Γ(β + 1)

2Γ(α + β + 2)
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to end up with (using formula for Γ function for the integers), see, e.g. [6] and [17],

I
k,p
j,q = 2−(j+q−(k+p)/2)

(

k+p
2

)

!

[ j−k

2 ]
∑

κ=0

[ q−p

2 ]
∑

λ=0

(−1)κ+λ (2j − 2κ)!

κ!(j − κ)!(j − k − 2κ)!

(2q − 2λ)!

λ!(q − λ)!(q − p− 2λ)!

· (j + q − (k + p)− 2(κ + λ)− 1)!!

(j + q − 2(κ+ λ) + 1)!!
.

(3.14)

We note that both double-factorials contain only odd numbers.
Thus, we conclude

(3.15) B
±,k
n,j =



























































































0 if n+ j even

1

4

(

I
1,1
j,n+1(µ)− I1,1

j,n−1(µ)
) if n+ j odd,

− case, k = 1

1

2

(k±1)/2
∑

l=2

q̃n,k±1(2l − 1)Jk,2l−1
j,n

+
q̃n,k±1(1)

4

(

(n+ 1)(n+ 2)Ik,1
j,n−1 − n(n− 1)Ik,1

j,n+1

)

if n+ j odd,

k odd,

− case: k > 1

1

2

(k±1−1)/2
∑

l=1

q̃n,k±1(2l)J
k,2l
j,n

+ q̃n,k±1(0)
n(n + 1)

4

(

I
k,0
j,n−1 − I

k,0
j,n+1

)

if n+ j odd,

k even

where

J
k,m
j,n = m

(

(n−m+ 1)Ik,m
j,n+1 + (n+m)Ik,m

j,n−1

)

(3.16)

q̃n,m(l) =
(n −m)!

(n +m)!
qn,m(l) = (−1)

m−l−1

2
(n−m− 1)!!

(n+m)!!

(n− l − 1)!!

(n+ l)!!
.(3.17)

From (3.6) and (3.15) we see that the equation for the coefficient aj,k contains contributions
from all coefficients an,m with m = k± 1 and n+ j odd, in addition to the contribution from
(3.5) when m = k and n = j ± 1.

4. Expanding the collision integral

Next, we wish to expand the collision integral into spherical harmonics, namely

Cf (x, r,Ω, E) =

∫

4π
σs(E,Ω · Ω′)

(

f(x, r,Ω′, E) − f(x, r,Ω, E)
)

dΩ′

=

∞
∑

n=0

n
∑

m=0

C
n,m
f (x, r,E)Y m

n (Ω),

(4.1)

where

(4.2) C
n,m
f (x, r,E) =

(n−m)!

(n+m)!

2n + 1

2π

∫

4π
Cf (x, r,Ω, E)Y m

n (Ω) dΩ.

By expanding f in its spherical harmonics expansion with coefficients an,m, we may get
a simple expression for the coefficients Cn,m

f . The second term in (4.1) is easy enough to
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evaluate, and the first term may be evaluated by expanding σs in Legendre polynomials in
terms of Ω ·Ω′ and then using the addition formula for Legendre polynomials, see [7]. Due to
orthogonality of spherical harmonics, the final result simplifies to

(4.3) C
m,n
f (x, r,E) = 2πan,m(x, r,E)

∫ 1

−1
σs(E,µ) (Pn(µ)− 1) dµ.

5. Expanding the source term for secondary particles

Just as for the collision integral in the previous section, we can get a simple formula for the
spherical harmonics coefficients of the source term for secondary particles. The source term
is given by [11]

(5.1) Q(x, r,Ω, E) =

∫

4π

∫ E0

2E
σc(E

′, E)
1

2π
δ(Ω · Ω′ − φ(E′, E))fp(x, r,Ω

′, E′) dE′ dΩ′,

where fp is the fluence of primary electrons, σc is the collision cross-section, and

φ(E′, E) =

(

E(E′ + 2m0c
2)

E′(E + 2m0c2)

)1/2

specifies the direction of motion of the secondary electron with kinetic energy E′ and direction
Ω′ given a primary electron with kinetic energy E and direction Ω, through Ω ·Ω′ = φ(E′, E).
This follows from conservation of relativistic energy and momentum in a collision between
the primary electron and a free electron.

By expanding fp in spherical harmonics with coefficients an,m, we get the following expres-
sion for the coefficients in the expansion for Q

(5.2) Qn,m(x, r,E) =

∫ E0

2E
σc(E

′, E)Pn(φ(E′, E))an,m(x, r,E′) dE′.

Note that, in the derivation of this formula, although a Dirac function cannot be expanded
in Legendre polynomials, we can use a sequence of smooth functions approaching the δ-
function, and go to the limit on both sides of the equation.

6. The system of equations

The transport equation (2.1) may now be written as a system of equations for the coeffi-
cients of the spherical harmonics expansion for the fluence f , see (2.3).

The equation for the coefficient aj,k(x, r,E) (with j ≥ k) becomes
(6.1)

∑

n≥k

(

Ak
n,j

∂an,k

∂x
+Bk

n,j

∂an,k

∂r

)

− 1

2

∂2ω(E)aj,k

∂E2
− ∂S(E)aj,k

∂E
= C

j,k
f (x, r,E) +Qj,k(x, r,E).

If we let the vector a(x, r,E) contain the coefficients an,m(x, r,E), we can write this as

(6.2) A
∂a

∂x
+B

∂a

∂r
− 1

2

∂2(ω(E)a)

∂E2
− ∂(S(E)a)

∂E
= C(E)a + q(x, r,E),

where A and B are matrices containing the coefficients Ak
n,j and B±,k

n,j , respectively, and C(E)
is a diagonal matrix.

The sparsity pattern for the matrices A and B can be seen in figure 1, with n ≤ N = 10.
The elements in each row and column are ordered in chunks of equal m, m = 0, . . . ,N , and
within each chunk, n runs from m to N .
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Figure 1. The non-zero elements of the matrices A and B for N = 10.

7. The Semidiscrete Problem: Discretization of aj,i(x, r,E) in the energy

variable

In this section we discretize equation (6.1) in the energy variable E. In a forthcoming
paper we shall study spatial discreization in (x, r).

7.1. Notation. The equation (6.2) is a degenerate type convection-diffusion equation with
variable coefficients. The source of degeneracy is the single-variable (energy) diffusion term
related to considering the influnce of secondary particles. Because of this structure it is more
adequate, first, to study a semidiscrete approach for the energy variable using a mixed finite
element method. To this end we reformulate the problem (6.2) as a first order system viz,

(7.1)















A
∂u

∂x
+B

∂u

∂r
− 1

2

∂2(ω(E)u)

∂E2
− ∂(S(E)u)

∂E
= C(E)u + q(x, r,E),

v =
∂(ω(E)u)

∂E
.

We use a change of variable as Ẽ = E0−E and supply the boundary condition as the energy

from its peak u(0) at Ẽ = 0 in the energy interval Ẽ ∈ [0, E0] corresponding to E0
E←→ 0,
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and (x, r) = (0, 0). Then, evidently ∂G

∂E = −∂G

∂Ẽ
and ∂2G

∂E2 = ∂2G

∂Ẽ2
. Further, to use the second

relation in (7.1) we write

(7.2) S(E)u =
S(E)

ω(E)
ω(E)u ≡ γ(E)ω(E)u.

Thus

(7.3)
∂(S(E)u)

∂E
=
∂γ(E)

∂E
ω(E)u + γ(E)

∂(ω(E)u)

∂E
.

Therefore, with the simplifying notation wβ = ∂w

∂β , (7.1) can be written as a first order PDE
system

(7.4)



























Aux +Bur −
1

2
vE − γE(E)ω(E)u − γ(E)v = C(E)u + q(x, r,E),

v(x, r,E) = (ω(E)u)E(x, r,E),

u(x, r,E0) = δ(x)δ(r)u0(E0), u(x, r, 0) = 0,

v(x, r,E0) = −δ(x)δ(r)v0(E0), u(x, r, 0) = 0.

Hence, using the notation Γ := (A,B), ∇xr = (∂x, ∂r), and D(E) = γE(E)ω(E) + C(E), we
may write the differential equations in (7.4) above as

(7.5)







Γ · ∇xru−
1

2
vE − γ(E)v = D(E)u + q,

v = (ω(E)u)E .

7.1.1. Weak formulation. We use partial integration in E and the notation

(f ,g) := (f ,g)E =

∫ E0

0
f(x, r,E)g(x, r,E) dE,

to write

(Γ · ∇xrv,w) = (Avx +Bvr,w) = (A(ω(E)u)Ex +B(ω(E)u)Er,w)

= −(A(ω(E)u)x +B(ω(E)u)r ,wE) + (Aω(E)u0(E0)x +Bω(E)u(E0)r)w(E0)

= −(Γω(E) · ∇xru,wE) + (Aω(E)u0(E0)x +Bω(E)u(E0)r)w(E0)

= −
(1

2
(ω(E)vE) + S(E)v +D(E)ω(E)u + ω(E)q, ,wE

)

+ (Aω(E)u0(E0)x +Bω(E)u(E0)r)w(E0), ∀w ∈ H1,

(7.6)

and

(7.7)
(

(ω(E)u)E , χE

)

= (v, χE), ∀χ ∈ H1
0.

7.1.2. Energy estimates. We consider finite element subspaces Sh ⊂ H1
0(Ω), and Wh ⊂ H1(Ω)

with the following approximation properties: For 1 ≤ p ≤ ∞ and ℓ > 0, s > 0 integers, there
is a constant C independent of h such that, see [5]

(7.8) inf
χ∈Sh

{||g − χ||Lp(IE)+h||g − χ||W 1,p(IE)} ≤ Chℓ+1||g||W ℓ+1,p(IE), ∀g ∈ H1
0∩W ℓ+1,p(IE),

and

(7.9) inf
ζ∈Wh

{||ρ− ζ||Lp(IE) + h||ρ− ζ||W 1,p(IE)} ≤ Chs+1||ρ||W s+1,p(IE), ∀ρ ∈W s+1,p(IE).
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Motivated by the weak (variational) formulation (7.6) and (7.7), we define a pair of semi-
discrete finite element approximations {ũh, ṽh} : Ix× Ir −→ Sh×Wh for {u,v}, respectively
as solution of

(Γ · ∇xrṽh,w) = −
(1

2
(ω(E)ṽh,E) + S(E)ṽh +D(E)ω(E)ũh + ω(E)q̃h,wE

)

+ (Aω(E)ũh(E0)x +Bω(E)ũh(E0)r)w(E0), ∀w ∈Wh,
(7.10)

and

(7.11)
(

(ω(E)ũ)h,E, χE

)

= (ṽh, χE), ∀χ ∈ Sh.

where ũh(·, E0) ∈ Sh is such that

(7.12) ||u(E0)− ũh(E0)|| ≤ C(u(E0)h
s.

We assume that ω(E) is sufficiently regular, so that the coefficient matrix corresponding to
the left hand side in (7.11) is invertible. Then (7.10)-(7.11) yields a system of differential
algebraic equations (DAEs) of “index one”. For the subsequent error analysis, we now define
the elliptic projection operators Qh : H1

0 −→ Sh for u, (see [3]), by

(7.13)
(

ω(E)(uE −QhuE), χE

)

= 0, χ ∈ Sh, (x, r) ∈ Ix × Ir,

and Ph : H1 −→Wh for v by

(7.14) A(v− Phv, ρ) = 0, ∀ρ ∈Wh,

where

A(ρ, ζ) =
1

2
(ω(E)ρE , ζE) + (S(E)ρ, ζE) + (D(E)ω(E)ρ, ζE) + Λ((ρ, ζ)

=
1

2
(ω(E)ρE , ζE) +

(

(S(E) +D(E)ω(E))ρ, ζE

)

+ Λ((ρ, ζ).

(7.15)

Here Λ is chosen appropriately so that A is H1-coercive, i.e. there is a parameter α0 > 0 such
that

(7.16) A(v,v) ≥ α0|||v|||21.
Remark 7.1. Note that in this sections all norms are with respect to the energy variable E.

We let now uh = Qhu, vh = Phv, η = u−uh and ξ = v− vh. then the L2-error estimates
for η and ξ are derived using an extended version of a result by M. Wheeler [16].

Lemma 7.1. Let {u,v} be a pair of solutions of (7.5). Further, let {uh,vh} satisfy (7.10)-
(7.11). Then, there is a constant C independent of h such that for j = 0, 1

(7.17) ‖η‖j + ‖∇xvη‖j ≤ Chℓ+1−j
(

‖u‖ℓ+1 + ‖∇xvu‖ℓ+1

)

, ℓ = 0, 1, . . . ,

and

(7.18) ‖ξ‖j + ‖∇xvξ‖j ≤ Chs+1−j
(

‖v‖s+1 + ‖∇xvv‖s+1

)

, s = 0, 1, . . .

Further for j = 0, 1 and 1 ≤ p ≤ ∞, we have that

(7.19) ‖η‖W j,p(IE) ≤ Chℓ+1−j‖u‖W ℓ+1,p(IE), ℓ = 0, 1, . . . ,

(7.20) ‖ξ‖W j,p(IE) ≤ Chs+1−j‖v‖W s+1,p(IE), s = 0, 1, . . . .
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To derive error estimates for the semi-discrete (discretization in E) approximation, we split
the error as

u− ũh = (u− uh)− (ũh − uh) := η − ε
v − ṽh = (v − vh)− (ṽh − vh) := ξ − ν.

Since the estimates for η and ξ are known from the Lemma 6.1, it is enough to estimate ε
and ν. Taking difference between (7.6) and (7.10), and (7.7) and (7.11) and using the elliptic
projections Qh and Ph satisfying (7.13) and (7.14), we write the equations for ε and ν as
follows:

(Γ · ∇xr(v − ṽh), ζ) = −1

2

(

ω(E)(v − ṽh)E , ζE)− (S(E)(v − ṽh), ζE)

−
(

D(E)ω(E)(u − ũh)ζE

)

− (ω(E)(q − q̃h)ζE

)

, ζ ∈Wh,

(7.21)

and

(7.22)
(

ω(E)(u− ũh)E , χE

)

− (v − ṽh), χE) = 0.

Note that
(

ω(E)(u− ũh)E , χE

)

= (ω(E)ηE , χE)− (ω(E)εE , χE),

where using the definition of Qh we have

(7.23) (ω(E)(uE − uh,E) = (ω(E)(uE −QhuE) = 0.

Thus inserting (7.23) in (7.22) we get

(7.24) −(ω(E)εE , χE) = (ξ, χE)− (ν, χE).

Further (7.21) can be written as

(Γ · ∇xrν, ζ) = (Γ · ∇xrξ, ζ) +
1

2
(ω(E)ξE , ζE)− 1

2
(ω(E)νE , ζE) + (S(E)ξ, ζE)− ((S(E)ν, ζE)

+ (D(E)ω(E)η, ζE)− (D(E)ω(E)ε, ζE) +
(

ω(E)(q− q̃h), ζE

)

.

(7.25)

On the other hand we have that

(7.26) A(ν, ζ) =
1

2
(ω(E)νE , ζE) + ((S(E)ν, ζE) + (D(E)ω(E)ν, ζE) + Λ(ν, ζ).

Adding (7.25) and (7.26) we have that

(Γ · ∇xrν, ζ) +A(ν, ζ) = (Γ · ∇xrξ, ζ) +
1

2
(ω(E)ξE , ζE) + (S(E)ξ, ζE)

+ (D(E)ω(E)(η − ε), ζE) + (D(E)ω(E)νE , ζE)

+
(

ω(E)(q − q̃h), ζE

)

+ Λ(ν, ζ).

(7.27)
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Now we let ζ = ν, use the coercivity assumption and write

(Γ · ∇xrν,ν) + α0|||ν|||21 ≤ (Γ · ∇xrν, ν) +A(ν, ν) ≤ (Γ · ∇xr)‖ξ‖2 +
1

4
(Γ · ∇xr)‖ν‖2

+ ‖ω(E)1/2ξE‖2 +
1

16
‖ω(E)1/2νE‖2 + 4‖S(E)1/2ξE‖2 +

1

16
‖S(E)1/2νE‖2

+ 4‖D(E)1/2ω(E)1/2η‖2 +
1

16
‖D(E)1/2ω(E)1/2νE‖2

+ 4‖D(E)1/2ω(E)1/2ε‖2 +
1

16
‖D(E)1/2ω(E)1/2νE‖2

+
1

2
‖D(E)1/2ω(E)1/2ν‖2 +

1

2
‖D(E)1/2ω(E)1/2νE‖2 + ‖Λ1/2ν‖2

+ |(ω(E)(q − q̃h), νE)|.

(7.28)

The lase term in (7.28) is estimated as follows

(7.29) |(ω(E)(q − q̃h), νE)| ≤ 4‖ω(E)1/2(q− q̃h)‖2 +
1

16
‖ω(E)1/2νE‖2.

Hence, by a kick-back argument we hide all ν-terms in the right, inside the left hand side.
Except the ε-term, for all remaining ξ and η terms on the right hand side, we have theoretical
error bounds. Thus it remains to estimate the ε-term. To this end we let χ = ε in (7.24),
then

‖ω(E)1/2εE‖2 ≤ ‖ω(E)−1/2ξ‖‖ω(E)1/2εE‖+ ‖ω(E)−1/2ν‖‖ω(E)1/2εE‖,

so that

(7.30) ‖ω(E)1/2εE‖ ≤ ‖ω(E)−1/2ξ‖+ ‖ω(E)−1/2ν‖.

Now for the contribution from the ε-term in (7.28), first we use Poincare inequality to write

‖D(E)1/2ω(E)1/2ε‖2 ≤ C̃‖D(E)1/2ω(E)1/2εE‖2 ≤ C̃‖D(E)‖∞
(

‖ω(E)−1/2ξ‖+‖ω(E)−1/2ν‖
)

.

An alternative estimate, for the ε-term, is obtained by letting χE = D(E)εE in (7.24). Then

‖D(E)1/2ω(E)1/2εE‖2 = (ξ,D(E)εE)− (ν,D(E)εE)

= (ω(E)−1/2D(E)1/2ξ, ω(E)1/2D(E)1/2εE)

− (ω(E)−1/2D(E)1/2ν, ω(E)1/2D(E)1/2εE)

≤ ‖ω(E)−1/2D(E)1/2ξ‖2 + ‖ω(E)−1/2D(E)1/2ν‖2

+
1

2
‖D(E)1/2ω(E)1/2εE‖2.

(7.31)

Once again, using Poincare inequality we get

(7.32) ‖D(E)1/2ω(E)1/2ε‖2 ≤ C̃

|minω(E)|2
(

‖ω(E)1/2D(E)1/2ξ‖2 + ‖ω(E)1/2D(E)1/2ν‖2
)

.
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Inserting (7.29) and (7.32) in (7.28) and rearranging the terms yields

(Γ · ∇xrν, ν) + α0|||ν|||21 ≤ (Γ · ∇xr)‖ξ‖2 +
1

4
(Γ · ∇xr)‖ν‖2 + ‖ω(E)1/2ξE‖2

+
1

8
‖ω(E)1/2νE‖2 + 4‖S(E)1/2ξE‖2 +

1

16
‖S(E)1/2νE‖2

+ 4‖D(E)1/2ω(E)1/2η‖2 +
5

8
‖D(E)1/2ω(E)1/2νE‖2

+ 4‖D(E)1/2ω(E)1/2ε‖2 +
1

2
‖D(E)1/2ω(E)1/2ν‖2

+
C̃

|minω(E)|2
(

‖ω(E)1/2D(E)1/2ξ‖2 + ‖ω(E)1/2D(E)1/2ν‖2
)

+ 4‖ω(E)1/2(q− q̃h)‖2 + ‖Λ1/2ν‖2.

(7.33)

By an elementary calculus one can show that the Poincare constant in here is C̃ ∼ |IE | = E0.
Now assuming that minω(E0) ≥ 2

√
E0, and defining the triple norm as

|||ν|||1 =
[

‖ω(E)1/2νE‖2 + ‖S(E)1/2νE‖2 + ‖D(E)1/2ω(E)1/2νE‖2

+ ‖ω(E)1/2D(E)1/2ν‖2 + ‖Λ1/2ν‖2
]1/2

,

(7.34)

we get using a kick-back argument and with α0 ∼ 1 that

‖(Γ · ∇xr)ν‖2 + α′
0|||ν|||21 ≤ 4‖(Γ · ∇xr)ξ‖2 + 4‖ω(E)1/2ξE‖2 + 16‖S(E)1/2ξE‖2

+ 4‖ω(E)1/2D(E)1/2ξ‖2 + 16‖D(E)1/2ω(E)1/2η‖2

+ 16‖ω(E)1/2(q− q̃h)‖2,
(7.35)

for some 0 < α′
0 < α0 ∼ 1. Note that the norms of the projection errors, η and ξ, on the right

hand side in (7.35) are equivalent to their H1-norms (assuming that all the energy dependent
coefficients are absolutely bounded: ω(E) ∈ L∞(IE). S(E) ∈ L∞(IE) and ω(E)D(E) ∈
L∞(IE)). Assuming also that the error in q − q̃h is of the same order as in Lemma 6.1, we
can apply Lemma 6.1 and the above estimates to obtain

‖(Γ · ∇xr)ν‖2 + α′
0|||ν|||21
≤ Ch2min(ℓ,s)

(

‖u‖2L∞
xr(Hℓ+1) + ‖v‖2L∞

xr(Hs+1) + ‖∇xr · v‖2L2
xr(Hs+1)

)

,
(7.36)

which yields, e.g. the estimate

‖(u− ũh)(x, r)‖+ ‖(v − ṽh)(x, r)‖

≤Chmin(ℓ+1,s+1)
(

‖u‖L∞
xr(Hℓ+1) + ‖v‖L∞

xr(Hs+1) + ‖∇xr · v‖L2
xr(Hs+1)

)

.
(7.37)

Hence, using a standard procedure and the above estimates we may derive the following a

priori error estimates:

Theorem 7.2. Assume that ṽh(0) = PEv0 so that ν(0) = 0. Then there exists a constant C
independent of h such that

‖(v − ṽh)(x, r)‖1 ≤ C(E0)h
min(ℓ+1,s)

(

‖u‖L∞
xr(Hℓ+1) + ‖v‖L∞

xr(Hs) + ‖∇xr · v‖L2
xr(Hs+1)

)

.

(7.38)
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Theorem 7.3. a) Under the assumption of the above theorem, the errors u− ũh and v− ṽh

can be estimated as

‖(u− ũh)(x, r)‖ + ‖(v − ṽh)(x, r)‖ + h‖(v − ṽh)(x, r)‖1 ≤ C(E0)h
min(ℓ+1,s+1)×

×
(

‖u‖L∞
xr(Hℓ+1) + ‖v‖L∞

xr(Hs+1) + ‖∇xr · v‖L2
xr(Hs+1)

)

.
(7.39)

b) For 1 < p ≤ ∞ we have that

‖(u− ũh)(x, r)‖Lp + ‖(v − ṽh)(x, r)‖Lp+ ≤ C(E0)h
min(ℓ+1,s+1)×

×
(

‖u‖L∞
xr(W ℓ+1,p) + ‖v‖L∞

xr(W s+1,p) + ‖∇xr · v‖L2
xr(W s+1,p)

)

.
(7.40)

These estimates are of optimal order due to the maximal available regularity in the degen-
erate type convection diffusion equation, see [10] and [13].
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[17] G. Szegö, Orthogonal Polynomials, AMS Colloquium Publications 23, American Mathematical Society,

1957.

† Department of Mathematics, Chalmers University of Technology and Göteborg University,
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