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ON CONVERGENCE OF THE STREAMLINE DIFFUSION AND
DISCONTINUOUS GALERKIN METHODS FOR THE

MULTI-DIMENSIONAL FERMI PENCIL BEAM EQUATION

MOHAMMAD ASADZADEH AND EHSAN KAZEMI

Abstract. We derive error estimates in the L2 norms, for the streamline
diffusion (SD) and discontinuous Galerkin (DG) finite element methods for
steady state, energy dependent, Fermi equation in three space dimensions.
These estimates yield optimal convergence rates due to the maximal available
regularity of the exact solution. Here our focus is on theoretical aspects of
the h and hp approximations in both SD and DG settings. We also introduce
a penalty approach having computational advantageous in dealing with the
diffusive part of the weak form.

1. Introduction

In this paper we study the approximate solution for the three-dimensional Fermi
pencil beam equation using the streamline diffusion and discontinuous Galerkin fi-
nite element methods. We prove stability estimates and derive optimal convergence
rates for the weighted current function, as in the convection dominated convection
diffusion problems. This work extends the results introduced in [3] to the case of
the multidimensional Fermi equation. The physical problem has diverse applica-
tions in, e.g. astrophysics, material science, electron microscopy, radiation cancer
therapy, etc. We shall consider a pencil beam of particles normally incident on a
slab of finite thickness. The particles enter at a single point, say at x0 := (0, 0, 0),
in the direction of positive x-axis. The Fermi equation is obtained either as an
asymptotic limit of the Fokker-Planck equation as the transport cross-section (σtr)
gets smaller or as an asymptotic limit of the transport (linear Boltzmann) equation
for vanishing transport cross-section and high (tends to ∞) total cross-section (σt)
(the mean scattering angle is assumed to be small, and the large scattering is neg-
ligible). For details in derivation of Fermi equation we refer to [12]. (The physical
quantities σtr and σt are defined below).
There are several points of concern with this type of problems: The Fermi equation
considered in this paper is degenerate in both convection and diffusion in the sense
that drift and diffusion are taking place in, physically, different domains . Besides
the problem is convection dominated since the diffusion term has a very small coeffi-
cient compared to the coefficient of the convection term. Furthermore, the problem
is associated with a boundary condition in form of product of certain δ functions,
which are not suitable for numerical consideration involving L2 norms. We have
therefore considered model problems with somewhat smoother data approaching
Dirac δ function. Finally, in spite of the assumption of no back-scattering, i.e. the
scattering angle −π/2 ≤ θ ≤ π/2, we still need to restrict the range of θ, through
focusing or filtering, and avoid small intervals in vicinity of the endpoints ±π/2, in
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2 M. ASADZADEH AND E. KAZEMI

order to get, after scaling, bounded computational domains relevant in numerical
considerations.

Fermi equation has closed form solutions for σtr being a constant or a function of
only x. The subject of this paper is error estimates for the stationary (steady state),
energy dependent, three space dimensional Fermi equation. In the present setting
we have transformed and scaled the variables so that the x-direction, the direction
of penetration of the beam, being perpendicular to the slab, may also be interpreted
as the direction of the time variable. After scaling, the present technique treats all
the variables as components of a multi-dimensional space variable.

The streamline diffusion method (SD-method) is a generalized form of the stan-
dard Galrekin method designed for the finite element studies of the hyperbolic
problems, giving good stability and high accuracy. The SD-method which is used
for our purpose in this paper is obtained by modifying the test function through
adding a multiple of the ”drift-terms” involved in the equation to the usual test
function. This yields a weighted least square control of the residual of the finite el-
ement solution. See, e.g. [20] and [22] and the references therein for further details
in the SD method. The discontinuous Galerkin method allows jump discontinu-
ities across interelement boundaries in order to count for the local effects. Here we
have considered both h and hp versions of SD and DG methods. As for numerical
implementation, a characteristic method, as well as a semi-streamline diffusion for
Fermi pencil beam equation have been studied in [5] and [8], respectively.

An outline of this paper is as follows: In Section 2, we introduce the model
problem and present some notations. Section 3 is devoted to the study of stability
estimates and proof of the convergence rates for the, h and hp, streamline diffu-
sion approximation of the Fermi equation. Section 4 is the discontinuous Galerkin
counterpart of Section 3, where we have also studied a penalty approach.

2. Notations and preliminaries

We consider a model problem for three dimensional Fermi equation on a bounded
polygonal domains Ωx ⊂ R3 with velocities v ∈ Ωv ⊂ R2:

∂f
∂x + v · ∇⊥f = σtr

2 (∆vf), in (0, L]× Ω,
f(0, x⊥, v) = f0(x⊥, v), in Ω = Ωx⊥ × Ωv,
f(x, x⊥, v) = 0, in (0, L]× ([Γ−v × Ωv] ∪ [Ωx⊥ × ∂Ωv]),

(2.1)

where f0 ∈ L2(Ω0), with Ω0 := {x = 0} × Ωx⊥ × Ωv and the outflow boundary is
given by

Γ−v = {x⊥ ∈ ∂Ωx⊥ : n(x⊥).v < 0}, for v ∈ Ωv. (2.2)

Here n(x⊥) is the outward unit normal to ∂Ωx⊥ at the point x⊥ ∈ ∂Ωx⊥ , x⊥ =
(y, z), v = (v1, v2), ∇⊥ = ( ∂

∂y , ∂
∂z ) and, σtr = σtr(x, y, z) is the transport cross-

section (actually σtr = σtr[E(x, y, z)] is energy dependent).
We shall use a finite element structure on Ωx⊥ × Ωv: by letting T x⊥

h = {τx⊥}
and T v

h = {τv} be finite element subdivisions of Ωx⊥ and Ωv, into the elements
τx⊥ and τv, respectively. Thus, Th = T x⊥

h × T v
h = {τx⊥ × τv} = {τ} will be a

subdivision of Ω = Ωx⊥ × Ωv with elements {τx⊥ × τv} = {τ}. We also use the
partition 0 = x0 < x1 < . . . < xM = L of the interval I = (0, L] into subintervals
Im = (xm−1, xm), m = 1, ...,M . Now, let Ch be the corresponding subdivision of
QL := (0, L]×Ω into elements K = Im × τ with the mesh parameter h = diam K.
We assume that each K ∈ Ch is the image under a family of bijective affine maps
{FK} of a fixed standard master element K̂ into K, where K̂ is either the open
unit simplex or the open unit hypercube in R5 (in the hp-analysis, K̂ is purely the
open unit hypercube in R5). Let Pp(K) be the set of all polynomials of degree at
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most p on K; in x, x⊥ and v, and define the finite element space

Vh = {g ∈ H̃0 : g ◦ FK ∈ Pp(K̂); ∀K ∈ Ch}, (2.3)

with

H̃0 =
M∏

m=1

H1
0 (Sm), Sk = Ik × Ω, k = 1, · · · ,M. (2.4)

and
H1

0 (Sm) = {g ∈ H1(Sm) : g ≡ 0 on ∂Ωv}. (2.5)

Moreover
(f, g)m = (f, g)Sm, ‖g‖2

m = (g, g)m,
〈f, g〉m = (f(xm, ., .), g(xm, ., .))Ω, |g|2m = 〈g, g〉m,
〈f, g〉Γ− =

∫
Γ−

fg(β · n)ds, 〈f, g〉Γ−m =
∫

Im
〈f, g〉Γ−ds,

〈f, g〉Γ−I =
∫

I
〈f, g〉Γ−ds,

(2.6)

where
Γ− = {(x⊥, v) ∈ Γ = ∂(Ωx⊥ × Ωv) : β · n < 0},

β = (v,0) and n = (nx⊥ ,nv) with nx⊥ and nv being outward unit normals to
∂Ωx⊥ and ∂Ωv, respectively. Throughout the paper C will denote a constant not
necessarily the same at each occurrence and independent of the parameters, and
functions involved in the problem, unless otherwise specifically specified. Finally
for piecewise polynomials wi defined on the triangulation C′h = {K} with C′h ⊂ Ch

and for Di being some differential operators, we use the notation,

(D1w1, D2w2)Q′ =
∑

K∈C′h

(D1w1, D2w2)K , Q′ =
⋃

K∈C′h

K, (2.7)

where (., .)Q is the usual L2(Q) scalar product and ‖.‖Q is the corresponding L2(Q)-
norm.

3. Streamline diffusion method

3.1. Streamline diffusion method with discontinuity in x. For σtr constant
or σtr = σtr(x) one can obtain closed form analytic solution for the Fermi equation.
We prove stability lemmas for the discrete problem in general three dimensional
case, i.e. with σ = 1

2σtr = 1
2σtr(x, y, z), using also the corresponding variational

formulation we derive a priori error estimates. Through out the paper, the pa-
rameter σ is, basically, of the order of mesh size or smaller. In order to study the
distribution of the particle beams in a certain depth, e.g. x = xd, a reasonable ini-
tial guess would be obtained using the information in some previous distinct depths
x = xi, i = 1, 2, . . . , n, with xi < xi+1, one may assume various filters installed in
different depths to control or adjust the beam intensity. This corresponds to con-
sidering discontinuities in x-direction. In this section we study the SD-method for
the Fermi equation given by (2.1) with the trial functions being continuous in x⊥
and v but may have jump discontinuities in x. In applications, normally, these dis-
continuities in x are in a quasi-uniform partition Th : x̄0 = 0 < x̄1 < . . . < x̄N = L
of [0, L] that contains all xi : s, 1 ≤ i ≤ n, and also possibly more additional
discretization points in x.
We present the jump in x-direction

[g] = g+ − g−, (3.1)

where
g± = lims→0± g(x + s, x⊥, v), for (x⊥, v) ∈ IntΩx⊥ × Ωv, x ∈ I,
g± = lims→0± g(x + s, x⊥ + sv, v), for (x⊥, v) ∈ ∂Ωx⊥ × Ωv, x ∈ I.

(3.2)
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Equation (2.1) combined with boundary condition gives rise to the variational for-
mulation:
Find fh ∈ Vh such that for m = 0, 1, · · · ,M − 1, and for all g ∈ Vh,

(fh
x + v · ∇⊥fh, g + δ(gx + v · ∇⊥g))m + σ(∇vfh,∇vg)m

−δσ(∆vfh, gx + v · ∇⊥g)m + 〈fh
+, g+〉m − 〈fh

+, g+〉Γ−m = 〈fh
−, g+〉m.

(3.3)

Below we study this streamline diffusion method for Fermi equation (2.1) in
two different approaches: h-version and hp-version. In the h- version of the SD-
method, assuming fh to be the approximate solution and using test functions of
the form g + δ(gx + v · ∇⊥g) where δ is a small parameter of order h (or hα,
α > 1) , would supply us with a necessary (missing) diffusion term of order h in
the direction of streamlines: (1, v,0). More specifically, in the stability estimates
we will be able to control an extra term of the form h‖gx + v · ∇⊥g‖. In the
hp- studies, however, the choice of δ is somewhat involved and in addition to the
equation type, it also depends on the choice of the parameters h and p which are
chosen locally (elementwise) in an optimal manner. Therefore in hp-analysis, δ
would appropriately appear as an elementwise (local) parameter.

3.1.1. The h-version of the SD-method. To proceed, we formulate the finite element
approximation of (2.1), using SD-method with jump discontinuities in x. Introduc-
ing the bilinear form

B̃(f, g) = B(f, g) +
M−1∑
m=1

〈[f ], g+〉m + 〈f+, g+〉0 − 〈f+, g+〉Γ−I , (3.4)

where
B(f, g) = (fx + v · ∇⊥f, g + h(gx + v · ∇⊥g))QL

+ σ(∇vf,∇vg)QL

− hσ(∆vf, gx + v · ∇⊥g)QL
+ 〈f, g〉0 − 〈f, g〉Γ− .

(3.5)

and the linear form
L̃(g) = 〈f0, g+〉0,

we may rewrite (3.3) in global form as

B̃(f, g) = L̃(g), ∀g ∈ Vh. (3.6)

It is easy to see that the adequate triple norm in this case is:

[||g||]2 = 1
2

[
|||g|||2 + h ‖ gx + v.∇⊥g ‖2

QL
+

M−1∑
m=1

|[g]|2m

]
, (3.7)

where
|||g|||2 =

[
σ‖∇vg‖2

QL
+ |g|2M + |g|20 +

∫
I×∂Ω

g2 | β.n |dvds
]
. (3.8)

Lemma 3.1. The bilinear form B̃ satisfies the coercivity estimate

B̃(g, g) ≥ [||g||]2 ∀g ∈ Vh.

Proof. We use the definition of B̃ in (3.4) and write

B̃(g,g) = B(g, g) +
M−1∑
m=1

〈[g], g+〉m + 〈g+, g+〉0 − 〈g+, g+〉Γ−I

= h‖gx + v · ∇⊥g‖2
QL

+ σ‖∇vg‖2
QL

− hσ(∆vg, gx + v · ∇⊥g)QL

− 〈g+, g+〉Γ−I + (gx, g)QL
+

M−1∑
m=1

〈[g], g+〉m + 〈g+, g+〉0 + (v · ∇⊥g, g).

(3.9)
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Integrating by parts we have

(gx, g) = 1
2 〈g, g〉 |x

−
n

x+
n−1

= 1
2

∫
Ω
[g2(x−n )− g2(x+

n−1)]. (3.10)

Using Green’s formula we have also

(v · ∇⊥g, g)− 〈g+, g+〉Γ−I = 1
2

∫
I×∂Ω

g2(β · n)dv −
∫

I×Γ−
g2(β · n)dv. (3.11)

Thus, rearranging the terms we may write

(gx, g)QL
+

M−1∑
m=1

〈[g], g+〉m + 〈g+, g+〉0 − 〈g+, g+〉Γ−I + (v · ∇⊥g, g)QL

=
1
2

(
M−1∑
m=1

| [g] |2m + | g− |2M + | g+ |20 +
∫

I×∂Ω

g2|β · n|dv

)
.

(3.12)

To estimate the term involving ∆vg we use inverse estimate and assumption on σ
to obtain

hσ(∆vg, gx + v · ∇⊥g)QL
≤ 1

2 (σ‖∇vg‖2
QL

+ h‖gx + v · ∇⊥g‖2
QL

). (3.13)

Combining (3.9)-(3.13) will give the desired result. �

We shall also need the following interpolation error estimates, see Ciarlet [16]:
Let f ∈ Hr+1(Ω) then there exists an interpolant f̃h ∈ Vh of f such that

‖f − f̃h‖QL
≤ Chr+1‖f‖r+1,QL

, (3.14)

‖f − f̃h‖1,QL
≤ Chr‖f‖r+1,QL

, (3.15)

‖f − f̃h‖∂QL
≤ Chr+1/2‖f‖r+1,QL

. (3.16)

Our main result in this section is as follows:

Theorem 3.1. There is a constant C such that for f and fh satisfying in (2.1)
and (3.6), respectively, we have

[||f − fh||] ≤ Chk+1/2‖f‖k+1,QL
. (3.17)

Proof. Let f̃h ∈ Vh be an interpolant of the exact solution f and η = f − f̃h. The
error term can be split as

e := f − fh = (f − f̃h)− (fh − f̃h) = η − ξ. (3.18)

Now since ξ ∈ Vh, we have the Galerkin orthogonality property B̃(e, ξ) = 0 which
follows from (3.6) with g = ξ and the definition of boundary value problem (2.1).
Thus, we have using Lemma 3.1 and (3.4), that

[||ξ||]2 ≤ B̃(ξ, ξ) =B̃(η − e, ξ) = B̃(η, ξ)

=(ηx + v · ∇⊥η, ξ + h(ξx + v · ∇⊥ξ))QL

+ σ(∇vη,∇vξ)QL
− hσ(∆vη, ξx + v · ∇⊥ξ)QL

+
M−1∑
m=1

〈[η], ξ+〉m + 〈η+, ξ+〉0 − 〈η, ξ+〉Γ−I .

(3.19)

Integrating by parts we have

(ηx + v · ∇⊥η, ξ)QL
+

M−1∑
m=1

〈[η], ξ+〉m + 〈η+, ξ+〉0 − 〈η, ξ+〉Γ−I

=− (η, ξx + v · ∇⊥ηξ)QL
+ 〈η−, ξ−〉M

−
M−1∑
m=1

〈η−, [ξ]〉m +
∫

I×∂Ω

ηξ|β · n|.

(3.20)
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Then using Cauchy-Schwarz inequality we get

σ(∇vη,∇vξ)QL
≤ σ‖∇vη‖2

QL
+

σ

4
‖∇vξ‖2

QL
, (3.21)

and
M−1∑
m=1

〈η−, [ξ]〉m ≤
M−1∑
m=1

|η−|2m +
1
4

M−1∑
m=1

|[ξ]|2m. (3.22)

By inverse inequality we can also write

hσ(∆vη, ξx + v · ∇⊥ξ)QL
≤ Ch−1‖η‖2

QL
+ h

4 ‖ξx + v · ∇⊥ξ‖QL
. (3.23)

Then, combining the estimates (3.19)-(3.23) gives

|B̃(η, ξ)| ≤ 1
4
[||ξ||]2 + C

[
h−1‖η‖2

QL
+

M−1∑
m=1

|η−|2m + h‖ηx + v · ∇⊥η‖2
QL

+ σ‖∇vη‖2
QL

+
∫

I×∂Ω

η2|β · n|dvds

]
.

(3.24)

Now by standard interpolation theory we have (see Ciarlet [16], p.123)[
‖η‖2

QL
+ h

M−1∑
m=1

|η−|2m + h2‖η‖2
1,QL

+h

∫
I×∂Ω

η2|β · n|dvds

] 1
2

≤ Chk+1‖f‖k+1,QL
.

(3.25)

Thus

[||ξ||]2 ≤ Ch2k+1, (3.26)

and since [||η||], the interpolation error, is of the same order as [||ξ||], we have the
desired result. �

Remark 3.1. Here are some features of problem (2.1): (i) The lack of pure current
term for the beam problem, i.e. no absorption on the left hand side of the equation,
will lead to stability with no explicit L2-norm control. Besides, in all the above
estimates the semi-norms, (L2-norms of partial derivatives), appear with a small
coefficients of order O(

√
h). Since the test functions are zero on part of ∂Ω with

positive Lebesgue measure, we could again use a version of the Poincare-Friedricks
inequality and obtain an estimate for the L2-norm with the same coefficients as
for the semi-norms involved in the weighted stability norm, i.e. we add a L2-norm
with a coefficient of order O(

√
h) to the [||.||] norm in Lemma 3.1. However, a

better approach would be through Lemma 3.2 (cf. [3]) below, in a situation where
jump discontinuities are introduced and included in the stability norm [||.||]. This
approach improves the L2-norm estimate regaining the factor h1/2.

Lemma 3.2. For any constant C1 > 0, we have for g ∈ Vh,

‖g‖QL
≤

[
1

C1
‖gx + v.∇⊥g‖2

QL
+

M∑
m=1

|g−|2m +
∫

I×∂Ω

g2|β · n|

]
heC1h (3.27)

Proof. See the argument in the proof of Lemma 4.2 in [3]. �
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3.1.2. The hp-version of the SD-method. In this section, we analyze the hp-version
of the streamline diffusion method for Fermi equation (2.1). We derive error bounds
which are simultaneously optimal in both mesh size h and the spectral order p in
a stabilization parameter δ ∼

(
h2

σp4

)
. Below we formulate the local SD-method for

problem 2.1 and extend the analysis of h-version to hp-version for local case. To
this end we consider the bilinear form B̂δ(., .) defined by

B̂δ(f, g) =
∑

K∈Ch

[(fx + v · ∇⊥f, g + δK(gx + v · ∇⊥g))K + σ(∇vf,∇vg)K

−δKσ(∆vf, gx + v · ∇⊥g)K ] +
M−1∑
m=1

〈[f ], g+〉m + 〈f, g〉0 − 〈f, g〉Γ−

and the linear functional

L̂δ(g) = 〈f0, g+〉0,
where the non-negative piecewise constant function δ is defined by

δ|K = δK δK = constant for K ∈ Ch.

The precise choice of δ depends on the nature of the coefficients in the partial
differential equation and will be discussed in more details later. We now define the
local version of (3.3) as follows: Find fh ∈ V p

h such that

B̂δ(fh, g) = L̂(g) ∀g ∈ V p
h , (3.28)

where V p
h stands for Vh when the bases functions are polynomials of degree at most

p in all variables x, x⊥ and v. Note that in the h version of the SD-approach we
interpret (., .)QL

as
∑M

m=1(., .)m and, assuming discontinuities in the x variable, we
include jump terms it the x direction. Thus we estimate the sum of the norms over
slabs Sm as well as the contributions from the jumps over xm : s, m = 1, . . . ,M−1.
In the hp-version we have, in addition to slab-wise estimates, a further step of
identifying (., .)m by

∑
K∈Im×Th

(., .)K counting for the local character of parameter
δK . We also define the norm [||.||]δ, in a natural way obtained from (3.7) and (3.8)
by replacing h by δK and considering its local effects as

[||g||]2δ =
1
2

[
|||g|||2 +

∑
K∈Ch

δK ‖ gx + v.∇⊥g ‖2
K +

M−1∑
m=1

|[g]|2m

]
. (3.29)

Further, we assume that the family of partitions {Ch}h>0 is shape regular, in the
sense that there is a positive constant C0, independent of h, such that

C0h
5
K ≤ meas(K), ∀K ∈

⋃
h>0

{Ch}, (3.30)

where meas(K) is the diameter of five dimensional sphere inscribed in K.

Lemma 3.3. Assume that the local SD-parameter δK is selected in the range

0 < δK ≤ h2
K

σC2
I p4

, ∀K ∈ Ch, (3.31)

where CI is the constant in an inverse estimate. Then the bilinear form B̂δ(., .) is
coercive on V p

h × V p
h , i.e.

B̂δ(g, g) ≥ 1
2
[||g||]2δ , ∀g ∈ V p

h . (3.32)
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Proof. The proof is based on the same argument as in the proof of Lemma 3.1,
except the estimate of the term involving δKσ, where we apply Cauchy-Schwarz
and inverse inequalities together with the assumption on δK , to get

δKσ(∆vg, gx + v · ∇⊥g)K

≤ 1
2
CIh

−1
K p2

√
σδK

[
σ‖∇vg‖2

K + δK‖gx + v · ∇⊥g‖2
K

]
≤ 1

2
[
σ‖∇vg‖2

K + δK‖gx + v · ∇⊥g‖2
K

]
.

(3.33)

�

In what follows we shall use the following approximation property: Let g ∈
Hs(K) and ‖.‖s,K be the usual Sobolev norm on K; there exists a constant C
depending on s and r but independent of g, hK and p, and a polynomial Πpg of
degree p, such that for any 0 ≤ r ≤ s the following estimate holds true (see [10]),

‖g −Πpg‖r,K ≤ C
hµ−r

K

ps−r
‖g‖s,K , (3.34)

where s ≥ 0, and µ = min(p + 1, s). We shall also require a global counterpart of
the above approximation result for the finite element space V p

h , so in the sequel we
adopt the following:

Lemma 3.4. Let g ∈ H1
0 (QL)∩L2(I, Hr(Ω)), r > 2 such that g |K∈ Hs(K), with

a positive integer s ≥ r and K ∈ Ch; there exists an interpolant Πpg ∈ V p
h of g

which is continuous on Ω such that

‖g −Πpg‖1,K ≤ C
hµ−1

K

ps−1
‖g‖s,K , (3.35)

where, C > 0 is a constant independent of h and p, and µ = min(p + 1, s).

Proof. See, e.g. [18] where a proof is outlined, assuming certain regularity degree.
More elaborated proof can be found in [26], [13] and the references therein. �

We shall also need the following trace inequality:

‖η‖2
∂K ≤ C(‖∇η‖K‖η‖K + h−1

K ‖η‖2
K), ∀K ∈ Ch. (3.36)

Theorem 3.2. Let Ch be a shape regular mesh on QL and f be the exact solution of
(2.1) that satisfies the assumptions of Lemma 3.4. Let fh be the solution of (3.28)
and assume that the SD-parameter δK satisfies 0 < δK ≤ h2

K

σC2
I p4 for each K ∈ Ch.

Then the following error bound holds true

[||f − fh||]2δ ≤ C
∑

K∈Ch

h2µ−1
K

p2s−2
(

1
p2

+
1
p

+ σh−1
K + δKh−1

K +
hK

δKp2
)‖f‖2

s,K . (3.37)

Proof. Using triangle inequality we get

[||f − fh||]δ ≤ [||η||]δ + [||ξ||]δ, (3.38)
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where η = f − Πpf and ξ = fh − Πpf . Πpf ∈ V p
h is the conforming interpolant in

Lemma 3.4. Using Lemma 3.3 and Galerkin orthogonality B̂δ(e, ξ) = 0 we get

1
2
[||ξ||]2δ ≤ B̂δ(ξ, ξ) = B̂δ(η, ξ)− B̂δ(e, ξ) = B̂δ(η, ξ)

= σ(∇vη,∇vξ)QL
− σ

∑
K∈Ch

δK(∆vη, ξx + v · ∇⊥ξ)K

+ (ηx + v · ∇⊥η, ξ)QL
+
∑

K∈Ch

δK(ηx + v · ∇⊥η, ξx + v · ∇⊥ξ)K

+
M−1∑
m=1

〈[η], ξ+〉m + 〈η+, ξ+〉0 − 〈η, ξ+〉Γ−I =
7∑

i=1

Ti.

(3.39)

The terms T1 and T3 to T7 can be estimated by the same techniques as in the proof
of Theorem 3.1. Further, using the inverse inequality and assumptions on σ and
δK we get

|T2| ≤ δKσ‖∆vη‖K‖ξx + v · ∇⊥ξ‖K

≤ CIδKσp2h−1
k ‖∇vη‖K‖ξx + v · ∇⊥ξ‖K

≤ 2σ‖η‖2
K +

δK

8
‖ξx + v · ∇⊥ξ‖2

K .

We shall rewrite the estimates above concisely as

|||ξ|||δ ≤ C(I1 + I2), (3.40)

where
I1 =

∑
K∈Ch

(
δ−1
K ‖η‖2

K + δK‖ηx + v · ∇⊥η‖2
K + σ‖∇vη‖2

)
,

I2 =
M−1∑
m=1

|η−|2m +
∫

I×∂Ω

η2|β · n|dvds.

Below we estimate I1 and I2 separately. As for I1 we have using Lemma 3.4 and
assumption on δK ,

I1 ≤ C
∑

K∈Ch

h2µ−2
K

p2s−2
(δ−1

K

h2
K

p2
+ δK + σ)‖f‖2

s,K . (3.41)

As, for the term I2, we have from trace estimate (3.36),

I2 ≤
∑

K∈Ch

(
hµ−1

K

ps−1

hµ
K

ps
+ h−1

K

h2µ
K

p2s
)‖f‖2

s,K ≤
∑

K∈Ch

h2µ−1
K

p2s−1
(1 +

1
p
)‖f‖2

s,K . (3.42)

Hence from (3.40)-(3.42) we get that

[||ξ||]2δ ≤ C
∑

K∈Ch

h2µ−1
K

p2s−2
(

1
p2

+
1
p

+ σh−1
K + δKh−1

K +
hK

δKp2
)‖f‖2

s,K . (3.43)

Finally, the term [||η||]δ can be estimated in the same way and we get,

[||η||]2δ ≤ C
∑

K∈Ch

h2µ−1
K

p2s−2
(
1
p

+ σh−1
K + δKh−1

K )‖f‖2
s,K . (3.44)

Substituting the estimates (3.43)-(3.44) into (3.38), we get the desired result and
the proof is complete. �

Remark 3.2. In Theorem 3.2, we chose δK for all K ∈ Ch when σ is small compared
to hk and 1

p . The parameter Cδ is selected in a way that δK satisfies hypothesis
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of Theorem 3.2. This particular choice of δK is motivated by our analysis in the
discretization error (3.37) in the norm [||.||]δ, in order to give hp-error bound as,

[||f − fh||]2δ ≤ C
∑

K∈Ch

h2µ−1
K

p2s−1
‖f‖2

s,K . (3.45)

We note that our assumption on σ has a key role on obtaining the optimality of
the error bound simultaneously in h and p.

Remark 3.3. The assumptions of Lemma 3.4, for the global regularity of the solution
are somehow restrictive, but since we assume our test functions are continuous in
(x⊥, v), so in this framework it is difficult to relax these assumptions. Later, for the
discontinuous Galerkin counterpart of current analysis, we will ease the requirement
of Lemma 3.4.

Remark 3.4. For notational simplicity we have not chosen to allow an element-
by-element variation of the polynomial degree p and the local Sobolev smoothness
parameter s of the analytical solution f ; however our analysis can be extended
easily to this case by replacing p by pK , s by sK and ‖f‖s by ‖f‖s,K for K ∈ Ch.
Subsequently, in the local approximation (3.34), µ = min(p + 1, s) is replaced by
µK = min(pK + 1, sK).

4. Discontinuous Galerkin

4.1. Description of discontinuous Galerkin (DG)-method. In the DG-method
we assume trial functions with discontinuities in both space and velocity variables.
So trial functions are polynomials of degree k ≥ 1 on each element K of triangula-
tion and may be discontinuous across inter-element boundaries in all variables. We
may define for K ∈ Ch

∂K±(β̃) = {(x, x⊥, v) ∈ ∂K : β̃ · n = nx(x, x⊥, v) + nx⊥(x, x⊥, v) · v ≷ 0},

where β̃ = (1, v,0) and n = (nx,nx⊥ ,nv) denotes the outward unit normal to
∂K ⊂ QL.
To derive a variational formulation, for the diffusive part of (2.1), based on discon-
tinuous trial functions, we shall introduce an operator R as defined in, e.g. [14] and
[15]. To this approach, we first define the spaces Ṽ , Vh and Wh as

Ṽ =
∏

K∈Ch

H1(K),

Vh = {w ∈ L2(QL) : w |K∈ Pk(K) : ∀K ∈ Ch; w = 0 on ∂Ωv},
Wh = {w ∈ [L2(QL)]2 : w |K∈ [Pk(K)]2; ∀K ∈ Ch}.

(4.1)

More precisely, given g ∈ Ṽ we define R : Ṽ → Wh by the following relation

(R(g),w) = −
∑

Im×τx⊥

∫
Im×τx⊥

∑
e∈Ev

∫
e

[[g]]nv · (w)0dv, ∀w ∈ Wh,

where we denote by Ev the set of all interior edges of the triangulation T v
h of the

discrete velocity domain Ωv and nv is the outward normal from element τi to
element τj , sharing the edge e with i > j, τi, τj ∈ T v

h . Further, for an appropriately
chosen function χ,

(χ)0 := χ+χext

2 ,
[[χ]] := χ− χext,

(4.2)

where χext denotes the value of χ in the element τext
v having e ∈ Ev as the common

edge with τv. Hence, roughly speaking, [[χ]] corresponds to the jump and (χ)0



ON CONVERGENCE OF THE SD AND DG METHODS FOR FERMI EQUATION 11

is the average value of χ in the velocity variable. Next for e ∈ Ev we define the
operator re to be the restriction of R to the elements sharing the edge e ∈ Ev, i.e.

(re(g),w)QL
= −

∑
Im×τx⊥

∫
Im×τx⊥

∫
e

[[g]]nv · (w)0dv, ∀w ∈ Wh.

One can easily verify that ∑
e⊂∂τv∩Ev

re = R on τv, (4.3)

for any element τv of the triangulation of Ωv. As a consequence of this we have the
following estimate:

‖R(g)‖2
K ≤ γ

∑
e⊂∂τv∩Ev

‖re(g)‖2
K . (4.4)

where τv corresponds to the element K and γ > 0 is a constant. Now, since the
support of each re is the union of elements sharing the edge e, we can evidently
deduce that ∑

e∈Ev

‖re(g)‖2
QL

=
∑

K∈Ch

∑
e⊂∂τv∩Ev

‖re(g)‖2
K . (4.5)

Using these notations, the discontinuous Galerkin finite element method for Fermi
equation can now be formulated as follows: Find fh ∈ Vh such that for all g ∈ Vh,

Aδ(fh, g) + Dδ(fh, g) = 〈f0, g+〉0, (4.6)

where the bilinear forms Aδ and Dδ correspond to the convective and diffusive parts
of the equation (2.1) and are defined as follows:

Aδ(fh, g) =
∑

K∈Ch

(fh
x + v · ∇⊥fh, g + δK(gx + v · ∇⊥g))K

+ 〈f+, g+〉0 +
∑

K∈Ch

∫
∂K−(β̃)′

[f ]g+|β̃ · n|,
(4.7)

with ∂K−(β̃)′ = ∂K−(β̃)\{0} × Ω and

Dδ(fh, g) =σ(∇vfh,∇vg)QL
+ σ(∇vfh, R(g))QL

+ σ(R(fh),∇vg)QL

+ λσ
∑
e∈Ev

(re(fh), re(g))QL
−
∑

K∈Ch

δKσ(∆vfh, gx + v · ∇⊥g)K . (4.8)

Here, [fh] = fh
+−fh

− where fh
± is defined as in (3.2), δK > 0 is a positive constant on

element K and λ > 0 is a given constant. We also define the norms corresponding
to (4.7) and (4.8) by

|||g|||2Aδ
=

1
2

[ ∑
K∈Ch

δK‖gx + v.∇⊥g‖2
K + |g|2M + |g|20 +

∫
I×∂Ω+

g2|v · nx⊥ |

+
∑

K∈Ch

∫
∂K−(β̃)′

[g]2|β̃ · n|

]
,

and

|||g|||2Dδ
=

1
2

[
σ‖∇vg‖2

QL
+ 2σ

∑
e∈Ev

‖re(g)‖2
QL

]
.

We note that, in general [g] is distinct from the jump [[g]] defined in (4.2), in the
sense that, the latter depends on element numbering as well. Recall that since β̃ =
(1, v, 0) is divergent free, (β̃ · n) is continuous across the inter-element boundaries
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of Ch and thus ∂K± is well defined. If we chose δK := h, for all K ∈ Ch, then the
problem (4.6) can be formulated as

B∗(fh, g) = 〈f0, g+〉0, ∀g ∈ Vh, (4.9)

where
B∗(fh, g) = A(fh, g) + D(fh, g). (4.10)

For notational convenience we shall suppress the index δ from Aδ and Dδ, when we
set δK := h for all K ∈ Ch. Then, the stability lemma for bilinear forms Aδ and
Dδ is:

Lemma 4.1 (Extended coercivity Lemma). Suppose that δK satisfies (3.31) for
all K ∈ Ch, then, there is a constant α > 0 such that

Aδ(g, g) + Dδ(g, g) ≥ α(|||g|||2Aδ
+ |||g|||2Dδ

), ∀g ∈ Vh.

Proof. Using the definition of Aδ in (4.7) we deduce that

Aδ(g, g) =(gx + v · ∇⊥g, g)QL
+
∑

K∈Ch

δK‖gx + v · ∇⊥g‖2
K + |g|20

+
∑

K∈Ch

∫
∂K−(β̃)′

[g]g+|β̃ · n|.
(4.11)

Integrating by parts we have

(gx+v · ∇⊥g, g)QL
=

1
2

∑
K∈Ch

∫
∂K

g2β̃ · n

=
1
2

[
−
∑

K∈Ch

∫
∂K−(β̃)′

g2
+|β̃ · n|+

∑
K∈Ch

∫
∂K+(β̃)′

g2
−|β̃ · n|

]
,

(4.12)

and so, we obtain

(gx + v · ∇⊥g, g)QL
+
∑

K∈Ch

∫
∂K−(β̃)′

[g]g+|β̃ · n|+ |g|20

=
1
2

[ ∑
K∈Ch

∫
∂K−(β̃)′

[g]2|β̃ · n|+
∫

I×∂Ω+

g2|v · nx⊥ |+ |g|20 + |g|2M

]
.

(4.13)

Similarly, by the definition of Dδ and using (4.5) we get,

Dδ(g, g) =σ‖∇vg‖2
QL

+ 2σ(∇vg,R(g))QL
+ λσ

∑
K∈Ch

∑
e∈Ev∩∂τv

‖re(g)‖2
K

−
∑

K∈Ch

δKσ(∆vg, gx + v · ∇⊥g)K .
(4.14)

Using (4.4) for some 0 < ε < 1
2 we obtain

2σ(∇vg,R(g))QL
≤ σ

∑
K∈Ch

[
ε‖∇vg‖2

K +
1
ε
‖R(g)‖2

K

]

≤ σ
∑

K∈Ch

[
ε‖∇vg‖2

K +
γ

ε

∑
e∈Ev∩∂τv

‖re(g)‖2
K

]
.

(4.15)

So

2σ(∇vg,R(g))QL
+ λσ

∑
K∈Ch

∑
e∈Eh∩∂τv

‖re(g)‖2
K

≥ σ
∑

K∈Ch

[
−ε‖∇vg‖2

K + (λ− γ

ε
)

∑
e∈Ev∩∂τv

‖re(g)‖2
K

]
.

(4.16)
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By inverse estimate and assumptions on σ and δK , we obtain∑
K∈Ch

σδK(∆vg, gx + v · ∇⊥g)QL
≤ 1

2

(
σ‖∇vg‖2

QL
+
∑

K∈Ch

δK‖gx + v · ∇⊥g‖2
K

)
.

(4.17)
Now taking α = min[ 12 − ε, λ− γ

ε ], which is positive for γ
λ < ε < 1

2 , we conclude the
desired result. �

Corollary 4.1. For Bt defined as in (4.10) we have the coercivity

B∗(g, g) ≥ α|||g|||2∗, ∀g ∈ Vh, (4.18)

where |||g|||2∗ = |||g|||2A + |||g|||2D.

Suppose now that fh ∈ Wh and f are the solutions of (4.6) and (2.1), re-
spectively, and let f̃h ∈ Vh be the interpolant of the exact solution f . Then, for
η = f − f̃h the error term can be written as

e := f − fh = (f − f̃h)− (fh − f̃h) ≡ η − ξ. (4.19)

Lemma 4.2. There exists a constant C independent of the mesh size h such that
for δK chosen as in (3.31) we have the following estimates

Aδ(η, ξ) ≤1
8
|||ξ|||2Aδ

+ C
∑

K∈Ch

(δ−1
K ‖η‖K + δK‖∇η‖K)

+
∑

K∈Ch

|[η]|∂K−(β̃)′ + |η|Γ+ + |η|0 + |η|M ,

Dδ(η, ξ) ≤ 1
8
|||ξ|||2Aδ

+
1
8
|||ξ|||2Dδ

+ Cσ‖∇vη‖2
QL

.

(4.20)

Proof. The proof is similar to that of Theorem 3.1. Here, we need to control some
additional jump and boundary terms. We have, using the definition of Aδ, that

Aδ(η, ξ) =
∑

K∈Ch

(ηx + v · ∇⊥η, ξ + δK(ξx + v · ∇⊥ξ))K

+ 〈η+, ξ+〉0 +
∑

K∈Ch

∫
∂K−(β̃)′

[η]ξ+|β̃ · n|.
(4.21)

Integrating by parts we have

(ηx+v · ∇⊥η, ξ)QL
+ 〈η+, ξ+〉0 +

∑
K∈Ch

∫
∂K−(β̃)′

[η]ξ+|β̃ · n|

= −(η, ξx + v · ∇⊥ξ)QL
−
∑

K∈Ch

∫
∂K−(β̃)′

η−[ξ]|β̃ · n|

+ 〈η−, ξ−〉M +
∫

I×∂Ω+

η−ξ−|β̃ · n|.

(4.22)

Inserting (4.22) in (4.21) and applying Cauchy-schwarz inequality we obtain

Aδ(η, ξ) ≤1
8
|||ξ|||2Aδ

+ C
∑

K∈Ch

(
δ−1
K ‖η‖2

K + δK‖ηx + v · ∇⊥η‖2
K

)
+ |η|20 + |η|2M +

∑
K∈Ch

|[η]|2
∂K−(β̃)′

+ |η|2I×∂Ω+

≤1
8
|||ξ|||2Aδ

+ C
∑

K∈Ch

(
δ−1
K ‖η‖2

K + δK‖∇η‖2
K

)
+
∑

K∈Ch

|[η]|2
∂K−(β̃)′

+ |η|2Γ+
+ |η|20 + |η|2M .

(4.23)
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For Dδ we have by definition,

Dδ(η, ξ) =σ(∇vη,∇vξ)QL
+ σ(∇vη, R(ξ))QL

+ σ(R(η),∇vξ)QL

+ λσ
∑
e∈Ev

(re(η), re(ξ))QL
−
∑

K∈Ch

δKσ(∆vη, ξx + v · ∇⊥ξ)K :=
5∑

i=1

Ti.

Using similar techniques as in the proof of Theorem 3.1, we need only to estimate
the terms T2, T3 and T4. Since η is continuous, from the definition of operators R
and re we deduce that T3 = T4 = 0. It remains to estimate the term T2. To this
end we use (4.4) and (4.5) to obtain

|T2| ≤
∑

K∈Ch

σ‖∇vη‖K‖R(ξ)‖K ≤
∑

K∈Ch

(
Cσ‖∇vη‖2

K +
σ

C1
‖R(ξ)‖2

K

)
. (4.24)

Hence, by Cauchy-schwarz inequality and assumption on σ we finally get

Dδ(η, ξ) ≤ 1
8
|||ξ|||2Aδ

+
1
8
|||ξ|||2Dδ

+ Cσ‖∇vη‖2
QL

, (4.25)

and we conclude the proof. �

In what follows we shall use the following lemma (see [7]),

Lemma 4.3. Let u ∈ L2(I × Ωx⊥ ,H1(Ωv)) with ∆vu ∈ L2(QL), and let w ∈ Vh.
Then ∑

K∈Ch

∫
Im×τx⊥

∫
∂τv

w
∂u

∂nv
=

∑
Im×τx⊥

∫
Im×τx⊥

∑
e∈Ev

∫
e

[[w]]nv.(∇vu)0. (4.26)

Theorem 4.2 (Convergence Theorem). Suppose fh ∈ V h and f are the solutions
of (4.9) and (2.1) respectively, then there exists a constant C independent of the
mesh size h such that we have the following error estimate

|||f − fh|||∗ ≤ Chk+1/2‖f‖k+1,QL
. (4.27)

Proof. Using Corollary 4.1 and (4.19), we have

α|||ξ|||2∗ ≤ B∗(ξ, ξ) = B∗(η − e, ξ) = B∗(η, ξ)−B∗(e, ξ). (4.28)

For the term B∗(e, ξ) we have

B∗(e, ξ) = A(e, ξ) + D(e, ξ). (4.29)

Since
D(e, ξ) = D(f, ξ)−D(fh, ξ), (4.30)

by the definition of D and since R(f) = re(f) = 0 we have

D(f, ξ) =
∑

K∈Ch

∫
Im×τx⊥

∫
τv

σ∇vf∇vξ

− σ
∑

Im×τx⊥

∫
Im×τx⊥

∑
e∈Ev

∫
e

[[ξ]]nv.(∇vf)0

=
∑

K∈Ch

∫
K

−σ(∆vf)ξ + σ
∑

K∈Ch

∫
Im×τx⊥

∫
∂τv

ξ
∂f

∂nv

− σ
∑

Im×τx⊥

∫
Im×τx⊥

∑
e∈Ev

∫
e

[[ξ]]nv.(∇vf)0

=
∑

K∈Ch

∫
K

−σ(∆vf)ξ,

(4.31)
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where in the last equality we have used Lemma 4.3. So the problem (4.9) is fully
consistent and B∗(e, ξ) = 0. Further, we get from (4.28) that

α|||ξ|||2∗ ≤ B∗(η, ξ) = A(η, ξ) + D(η, ξ). (4.32)

We have now using Lemma 4.2, multiplicative trace inequality (3.36) and the local
interpolation error estimates (3.14)-(3.16),

A(η, ξ) ≤ 1
8
|||ξ|||2A + Ch2k+1‖f‖2

k+1,QL
, (4.33)

and
D(η, ξ) ≤ 1

8
|||ξ|||2∗ + Ch2k+1‖f‖2

k+1,QL
. (4.34)

Inserting (4.33) and (4.34) in (4.32) we obtain

|||ξ|||2∗ ≤ Ch2k+1‖f‖2
k+1,QL

. (4.35)

Using the interpolation estimates as above we also have

|||η|||2∗ ≤ Ch2k+1‖f‖2
k+1,QL

. (4.36)

Then (4.27) is a consequence of (4.35), (4.36) and the triangle inequality. �

4.2. Penalty method. In this subsection we present a variant of the scheme in-
troduced in the previous subsection for the diffusive part of (4.10). As mentioned
in [15], this approach presents some computational advantages, as it reduces the
number of integrals to be computed when building the elementary matrices. On
the negative side, very large coefficients might be introduced in the matrices since
this scheme is a penalty method. Here we replace D in (4.10) by D̂ and consider
the following problem: Find fh ∈ Vh such that

B̂∗(fh, g) = 〈f0, g+〉0, ∀g ∈ Vh, (4.37)

where
B̂∗(f, g) = A(f, g) + D̂(f, g), (4.38)

and

D̂(f, g) = σ(∇vf,∇vg)QL
+ σ

∑
e∈Ev

%(he)(re(f), re(g))QL

− σh(∆vf, gx + v · ∇⊥g)QL
,

(4.39)

with %(he) a positive constant which tends to +∞ as he, the length of the edge e,
tends to zero. For future use, we choose

%(he) =
1

h2k+1
e

, (4.40)

where k is the order of polynomial used in the approximation. We define the
diffusion norm

|||g|||2
D̂

=
1
2

[
σ‖∇vg‖2

QL
+ 2σ%(he)

∑
e∈Ev

‖re(g)‖2
QL

]
. (4.41)

and estimate the error in the following norm

[||g||]2∗ = |||g|||2A + |||g|||2
D̂

. (4.42)

For this scheme we derive coercivity and stability estimates similar to Lemmas 4.1
and 4.2.

Lemma 4.4. We have,

A(g, g) + D̂(g, g) ≥ α[||g||]2∗, ∀g ∈ Vh. (4.43)

Proof. The proof is similar to that of Lemma 4.1. �
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Lemma 4.5. There is a constant C > 0 independent of the mesh size h such that

D̂(η, ξ) ≤ 1
8
[||ξ||]2∗ + Ch‖∇vη‖2

QL
. (4.44)

Proof. Since re(η) = 0, using the definition of D̂ we obtain

D̂(η, ξ) = σ(∇vη,∇vξ)QL
− σh(∆vη, ξx + v · ∇⊥ξ)QL

. (4.45)

Now by a similar argument as in the proof of Lemma 4.2 we obtain the desired
result. �

We shall also use the following result due to Brezzi et al. [15].

Proposition 4.1. Let u|K ∈ L2(Im, τx⊥ ,H2(τv)) for all K := Im × τx⊥ × τv and
vh ∈ Vh. Then∑

Im×τx⊥

∫
Im×τx⊥

∑
e∈Ev

∫
e

[[vh]]nv.(∇vu)0

≤ C|||vh|||D̂

( ∑
K∈Ch

∫
Im×τx⊥

∑
e⊂∂τv

%(he)−1‖u‖2
H2(τv)

)1/2

.

(4.46)

Proof. It can be proved by the same argument as in the proof of Lemma 4 in
[15]. �

Theorem 4.3. Let fh and f be the solutions of (4.37) and (2.1), respectively.
Then, the following estimate holds true

[||f − fh||]∗ ≤ Chk+1/2‖f‖k+1,QL
. (4.47)

Proof. Proceeding exactly as in the proof of Theorem 4.2 and Lemmas 4.1 and 4.4
yields

α[||ξ||]2∗ ≤ B̂∗(ξ, ξ) = B̂∗(η − e, ξ) = B̂∗(η, ξ)− B̂∗(e, ξ). (4.48)

For the term B̂∗(e, ξ) we have

B̂∗(e, ξ) = A(e, ξ) + D̂(e, ξ). (4.49)

But
D̂(e, ξ) = D̂(f, ξ)− D̂(fh, ξ). (4.50)

Using (4.39), integrating by parts and applying Lemma 4.3 we have that

D̂(f, ξ) =
∑

K∈Ch

∫
Im×τx⊥

∫
τv

σ∇vf · ∇vξ

=
∑

K∈Ch

∫
K

−σ(∆vf)ξ +
∑

K∈Ch

∫
Im×τx⊥

∫
∂τv

(σξ)
∂f

∂nv

=
∑

K∈Ch

∫
K

−σ(∆vf)ξ +
∑

Im×τx⊥

∫
Im×τx⊥

∑
e∈Ev

∫
e

σ[[ξ]]nv · (∇vf)0.

(4.51)

So the scheme (4.37) is not consistent and we have to estimate the last term above.
Using Lemma 4.1, we get

B̂∗(e, ξ) =
∑

Im×τx⊥

∫
Im×τx⊥

∑
e∈Ev

∫
e

σ[[ξ]]nv.(∇vf)0

≤ C|||ξ|||D̂

( ∑
K∈Ch

∫
Im×τx⊥

∑
e⊂∂τv

%(he)−1‖f‖2
H2(τv)

)1/2

,

(4.52)
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and inserting inequality (4.52) into (4.48), we end up with

α[||ξ||]2∗ ≤ B̂∗(η, ξ)− B̂∗(e, ξ)

≤ A(η, ξ) + D̂(η, ξ)

+ C|||ξ|||D̂

( ∑
K∈Ch

∫
Im×τx⊥

∑
e⊂∂τv

%(he)−1‖f‖2
H2(τv)

)1/2

.

(4.53)

Applying Lemmas 4.2 and 4.5, and choosing %(he) as in (4.40) we get

[||ξ||]2t ≤ Ch2k+1‖f‖2
k+1,QL

. (4.54)

On the other hand, to estimate the interpolation error, we note that due to the fact
that re(η) = 0, (4.41) yields

|||η|||2
D̂

=
1
2
σ‖∇vη‖2

QL
. (4.55)

Hence, applying interpolation error estimates (3.14)-(3.16) and assumption on σ,
we get

[||η||]2∗ = |||η|||2A + |||η|||2
D̂

≤ C(h−1‖η‖2
QL

+ h‖∇η‖2
QL

+ σ‖∇vη‖2
QL

)

≤ Ch2k+1‖f‖2
k+1,QL

.

(4.56)

Then (4.47) is a consequence of (4.54), (4.56) and the triangle inequality. �

4.3. hp-Discontinuous Galerkin method. The aim of this section is to establish
error bounds, using discontinuous Galerkin method. We shall employ the approach
in [27], and derive error bound that is optimal in both h and p. We assume that
the family of partitions {Ch} is shape regular in the sense of (3.30) and that every
K ∈ Ch is affine equivalent to unit hypercube in R5. Let us first consider the
bilinear form

D̃δ = Dδ(f, g) + Ds(f, g), (4.57)
where Dδ is as in (4.8) and the stabilizer Ds is defined by

Ds(f, g) = σ
∑

Im×τx⊥

∫
Im×τx⊥

∫
Ev

γ(he)[[f ]][[g]]. (4.58)

Here γ(he) is the discontinuity scaling function and the precise choice of it will be
discussed later. We now introduce the bilinear form

B̃δ = Aδ + D̃δ. (4.59)

The hp-DG for Fermi equation (2.1) is: find fh ∈ V p
h such that

B̃δ(fh, g) = 〈f0, g+〉0 ∀g ∈ V p
h . (4.60)

Again, as in Subsection 3.1.2, we use V p
h to emphasize the polynomials degree p := k

in (4.1). We note that when the discontinuity scaling function γ(he) is set to zero
and the SD-parameter δK is considered to be h for all K ∈ Ch, then the hp-DG
(4.60) is identical to the method introduced in (4.9). Throughout the paper we shall
assume that the solution f to the Fermi equation (2.1) is sufficiently smooth on Ωv:
namely f ∈ L2(I,Ωx⊥ ,H1

0 (Ωv)) ∩ L2(I,Ωx⊥ ,H2(Ωv)), therefore, f is continuous
across interelement boundaries in Ωv and hence Ds(f, g) = 0 for all g ∈ V p

h . It
causes the Galerkin orthogonality B̃δ(f − fh, g) = 0 to be hold for all g ∈ V p

h . We
shall derive the stability of the method (4.60) in the following norm

|||g|||2γ,δ = |||g|||2Aδ
+ |||g|||2Dδ

+ σ
∑

Im×τx⊥

∫
Im×τx⊥

∫
Ev

γ(he)[[g]]2. (4.61)
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Lemma 4.6. There is a constant C > 0 such that

B̃δ(g, g) ≥ C|||g|||2γ,δ, ∀g ∈ V p
h . (4.62)

Proof. By (4.59) and (4.57), we have

B̃δ(g, g) = Aδ(g, g) + Dδ(g, g) + Ds(g, g), (4.63)

we notice that

Ds(g, g) = σ
∑

Im×τx⊥

∫
Im×τx⊥

∫
Ev

γ(he)[[g]]2, (4.64)

Inserting (4.64) in (4.63), and using Lemma 4.1, we obtain the desired result. �

Before continuing with the a priori error analysis of the hp-DG method (3.28),
we state an approximation result for the finite element space V p

h . We consider
Qk(K), the set of all polynomials of degree at most k in each variable on K.

Lemma 4.7. Let K ∈ Ch and assume that g ∈ Hs(K) for some integer s ≥ 1.
Then, for any integer µ = min(p + 1, s), and p ≥ 0, we have that

‖g − Pg‖L2(∂K) ≤ C

(
hK

p + 1

)µ− 1
2

‖g‖µ,K , (4.65)

where C > 0 is a constant independent of hK and p, and P : L2(K) → Qp(K) is
the usual L2- projector of degree p on K.

Proof. see, e.g. [19]. �

We denote by Pv the univariate elementwise L2(τv)-projector onto the polyno-
mials of degree p in the variable v for every τv ∈ T v

h . Local error estimates for
f −Pvf can now be obtained from Lemma 4.7. Actually for an element K ∈ Ch we
have

‖f − Pvf‖L2(Im,τx⊥ ,∂τv) ≤ C

(
hK

p + 1

)µ− 1
2

‖f‖L2(Im,τx⊥ ,Hµ(τv)). (4.66)

where K := Im × τx⊥ × τv. We also recall a restatement of Lemma 3.4: Suppose

f ∈ L2(I,Ωx⊥ ,H1
0 (Ωv)) ∩ L2(I,Ωx⊥ ,H2(Ωv)), (4.67)

and
f |K ∈ Hs(K), ∀K ∈ Ch, (4.68)

with s ≥ 2. Then, there is an interpolant Πpf ∈ L2(I,Ωx⊥ ,H1
0 (Ωv)) which is

continuous on Ωv (cf. [25, Theorem 4.72]). Then, by local interpolation error
estimates (3.34), with r = 1, we have that

‖f −Πpf‖1,K ≤ C
hµ−1

K

ps−1
‖f‖s,K , (4.69)

with µ = min(p + 1, s).

Theorem 4.4. Suppose that for each he ∈ Ev the scaling discontinuity function is
defined by

γ(he) =
p2

he
, (4.70)

and the SD-parameter satisfies (3.31). Let further the exact solution f of (2.1) to
satisfy the assumptions (4.67)-(4.68). Then, there is a constant C > 0 independent
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of h and p such that the following hp-error bound holds true

|||f − fh|||2γ,δ ≤C
∑

K∈Ch

h2µ−1
K

p2µ−1
‖f‖2

µ,K

+
∑

K∈Ch

h2µ−1
K

p2s−2

(
1
p2

+
1
p

+ σh−1
K + δKh−1

K +
hK

p2δK

)
‖f‖2

s,K ,

(4.71)

with µ = min(p + 1, s).

Proof. The structure of the proof is the same as that of Theorem 4.2, except now
we decompose the global error as

e := f − fh = (f − f̃h) + (f̃h − fh) ≡ η + ξ, (4.72)

where f̃h ∈ V p
h is hp-interpolant of f satisfying (4.69), i.e. f̃h := Πpf . By virtue

of Lemma 4.6, we have

CI |||ξ|||γ,δ ≤ B̃δ(ξ, ξ) = B̃δ(e− η, ξ) = B̃δ(−η, ξ), (4.73)

where we have used the Galerkin orthogonality property B̃δ(e, ξ) = 0 which follows
form (4.60) with g = ξ and the definition of boundary value problem, given the
assumed smoothness of f . Thus, we deduce that

CI |||ξ|||γ,δ ≤ |B̃δ(η, ξ)| ≤ |Aδ(η, ξ)|+ |D̃δ(η, ξ)|. (4.74)

Since η ∈ L2(I,Ωx⊥ ,H1
0 (Ωv)),

[[η]] = 0 on Ev, (4.75)

and also
R(η) = 0 on Ω,

re(η) = 0 on Ω, ∀e ∈ Ev.
(4.76)

Hence,
|D̃δ(η, ξ)| ≤ I + II + III, (4.77)

where
I = σ|(∇vη,∇vξ)QL

|, II = σ|(∇vη, R(ξ))QL
|,

III =
∑

K∈Ch

σδK |(∆vη, ξx + v · ∇⊥ξ)K |. (4.78)

The term I can be estimated similarly as in the proof of Lemma 4.2. For the term
II, using the definition of orthogonal projector to L2(QL), we obtain

σ(∇vη, R(ξ))QL
= σ(∇vη − Pv∇vη, R(ξ))QL

+ σ(Pv∇vη, R(ξ))QL

= σ(∇vη − Pv∇vη, R(ξ))QL
+ σ(∇vη, R(ξ))QL

= T1 + T2.
(4.79)

For the term T1, by the definition of the operator R and the shape regularity of Ch

to relate he to hK we obtain

T1 = σ
∑

Im×τx⊥

∫
Im×τx⊥

∑
e∈Ev

∫
e

[[ξ]]nv · (∇vη − Pv∇vη)0

≤ σ‖√γ[[ξ]]‖Ev‖γ−
1
2 (∇vη − Pv∇vη)0‖Ev

≤ Cσ‖√γ[[ξ]]‖Ev ∑
Im×τx⊥

∑
τv∈T v

h

p−2hτK
‖∇vη − Pv∇vη‖2

L2(Im,τx⊥ ,∂τv)

 1
2

,
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where, in the first inequality, we used the notation

‖g‖Ev =
∑

Im×τx⊥

∫
Im×τx⊥

∑
e∈Ev

∫
e

gdv.

Furthermore, since ∇v(Πpf) ∈ V p
h ×V p

h and the L2-projection preserves polynomi-
als, it follows that

∇vη − Pv∇vη = ∇vf −∇vΠpf − Pv∇vf + Pv∇vΠpf = ∇vf − Pv∇vf.

Hence,

T1 ≤Cσ‖√γ[[ξ]]‖Ev ∑
Im×τx⊥

∑
τv∈T v

h

p−2hK‖∇vf − Pv∇vf‖2
L2(Im,τx⊥ ,∂τv)

 1
2

.
(4.80)

Using (4.4) and (4.5), we estimate the T2 term as

T2 ≤
√

σ‖(∇vη)‖QL
(σ
∑
e∈Ev

‖re(ξ)‖2
QL

)
1
2 . (4.81)

It remains to estimate the term III. Following the proof of Theorem 3.2, i.e.
applying inverse inequality and assumption (3.31), we get

σδK |(∆vη, ξx + v · ∇⊥ξ)K | ≤
√

σδK‖∇vη‖K‖ξx + v · ∇⊥ξ‖K . (4.82)

Substituting T1 and T2 into (4.79) and then inserting (4.78) into (4.77), by Cauchy-
Schwarz inequality, we obtain

|D̃δ(η, ξ)| ≤ C1|||ξ|||2γ,δ+Cσ

(
‖(∇vη)‖2

QL

+
∑

Im×τx⊥

∑
τv∈T v

h

p−2hK‖∇vf − Pv∇vf‖2
L2(Im,τx⊥ ,∂τv)

)
,

(4.83)

where C1 ≤ 1
3CI . For the term |Aδ(η, ξ)|, using Lemma 4.2 we have

|Aδ(η, ξ)| ≤ C2|||ξ|||2γ,δ +C
∑

K∈Ch

(
δ−1
K ‖η‖2

K + δK‖ηx + v.∇⊥η‖2
K + ‖η‖2

∂K

)
, (4.84)

where C2 ≤ 1
3CI . Substituting the estimates (4.83) and (4.84) into (4.74), using

the standard kick back argument and applying the approximation error estimate
(4.69) and (4.66) and trace inequality (3.36) we deduce that

|||ξ|||2γ,δ ≤ C
∑

K∈Ch

h2µ−1
K

p2s−2

(
δKh−1

K + σh−1
K +

hK

p2δK

)
‖f‖2

s,K +
h2µ−1

K

p2µ−1
‖f‖2

µ,K . (4.85)

Similarly, due to (4.75) and (4.76) for the interpolation error we get

|||η|||2γ,δ ≤ C
∑

K∈Ch

(
h−1

K ‖η‖2
K + σ‖∇vη‖2

K + δK‖ηx + v.∇⊥η‖2
K

)
. (4.86)

Hence, using (4.69) and trace inequality (3.36) we get

|||η|||2γ,δ ≤ C
∑

K∈Ch

h2µ−1
K

p2s−2

(
δKh−1

K +
1
p2

+
1
p

+ σh−1
K

)
‖f‖2

s,K . (4.87)

Now inserting the resulting bound on |||η|||γ,δ and (4.85) in (4.74) we obtain the
desired result. �
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Remark 4.1. Suppose in Theorem 4.4 that 2 ≤ s ≤ p+1 and the streamline diffusion
parameter is chosen as δK = h2

K

σC2
I p4 for all K ∈ Ch, then if we assume O( σ

hK
) ∼ 1

for all K ∈ Ch, we deduce from Theorem 4.4 that the discretization error, in the

norm |||.|||γ,δ, converges like O(h(µ− 1
2 )

p(µ−1) ). We see that the error bound is optimal in
both h and p. The parameter δK may be selected as

δK = Cδ
hK

p
, ∀K ∈ Ch, (4.88)

where the constant Cδ is chosen subject to the constraint on δK in Theorem 4.4. In
this case the parameter δKh−1

K in (4.71) is equal to 1
p , and the error of the method

measured in DG-norm is of order O(h(µ− 1
2 )

p(µ− 1
2 )

). We note that in this case the error

bound (4.71) is again simultaneously optimal in h and p.

Remark 4.2. The choices for δK made in Remark 4.1, end to optimal error bounds,
simultaneously, in h and p. These choices are closely connected to the degeneracy
of diffusion term in Fermi equation (2.1). The use of continuous interpolant in
velocity space and the homogeneity of boundary condition on Ωv. Using The later
ones the suboptimal stabilization terms in the method (4.60) would vanish.

Conclusion: Our analysis extend the result of [3] to a three dimensional de-
generate type convection-dominated convection-diffusion problem with a small and
variable diffusion coefficient. We have presented an h- and hp-a priori error analysis
of both SD- and DG- schemes for Fermi Pencil equation. We have shown that the
schemes are optimally convergent with respect to the mesh size h and the degree p
of approximating polynomial. This estimates are sharp in the sense that omitting
any power of the diffusion coefficient on the left hand side of our stability norms
will cause the same amount of reduced convergence rate. In our error analysis the
availability of continuous interpolant have played a crucial role.
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