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ADAPTIVE FINITE ELEMENT METHOD FOR THE FREDHOLM INTEGRAL
EQUATION OF THE FIRST KIND AND ITS VERIFICATION ON THE

EXPERIMENTAL DATA

N.KOSHEV∗ AND L. BEILINA ∗,1

Abstract. We propose an adaptive finite element method for the solution of the linear Fredholm integral equation of
the first kind. We derive a posteriori error estimate in the functional to be minimized. To do it we specify nonlinear results
obtained in [9, 10, 11, 12, 16] for the case of the linear bounded operator. Accuracy of the regularized solution is also presented.
Numerical experiments justify the efficiency of our a posteriori estimates applied both to the computationally simulated and
experimental backscattered data measured in microtomography.

1. Introduction. In this work we consider a problem of the solution of the Fredholm integral equation
of the first kind and propose at the first time an adaptive finite element method to solve it. Such problems
arise in many applications of astrophysics [1], astronomy [2], image processing on the smeared and defocused
photographies [4] and image processing in microtomography [5], spectroscopy in the backscattered electron
signal [6], etc. In our consideration we specify results of [9, 10, 11, 12, 16] for the case of linear Fredholm
integral equation which is ill-posed problem. Because of the linearity, results of this paper sound more
clear than those of previous works and proofs here are different from ones of [9, 10, 11, 12, 16]. Another
new element of this paper is that the Tikhonov regularization term is given in H1 norm, which is stronger
than the L2 norm being used for the original operator of [9, 10, 11, 12, 16]. This causes certain additional
difficulties, compared with [16], where the L2 norm was used for both the original operator and the Tikhonov
regularization term.

We note that in [9, 12] a posteriori error estimates were obtained not for the exact but for the regularized
coefficient. In the follow-up work [16] the effort of the accuracy improvement of the regularized coefficient
rather than the exact coefficient was explained. More precisely, from [16] follows that the regularized coeffi-
cient is closer to the exact coefficient than the first guess in the nonlinear case. Therefore, an improvement
of the accuracy of the reconstruction of the regularized coefficient on the adaptively refined meshes leads to
an improvement of the accuracy of the reconstruction of the exact solution. First, similarly with [9, 12] in
our work we obtain a posteriori error estimates for the regularized function. Next, using results of [16] we
show that the regularized function is closer to the exact function in the case of the bounded linear operator.

The main concept of the adaptivity technique, which we apply to the Fredholm integral equation of the
first kind, is following. In the case of ill-posed problems it is inefficient to use an exceedingly fine mesh in
computations. The main idea of the adaptive finite element method is to obtain a good accuracy of solutions
via local mesh refinements. In order to do it, we minimize the Tikhonov functional on a sequence of locally
refined meshes. A posteriori error analysis developed in this paper answers to the main question in the
adaptivity: where locally refine the mesh to improve the resulting solution.

In our numerical examples we show efficiency of the adaptivity technique on image restoration problem
arised in electron micsroscopy [4, 5]. The goal of our tests is to restore blurred images obtained in electron
microscopy, and identify possible defects on them. To do that we apply adaptive algorithm of Section 6.
Since in computational examples of Section 7 we work only with a finite dimensional space of standard
piecewise linear finite elements, then we consider our problem in a finite dimensional space. However, the
corresponding Fredholm equation operator certainly inherits the ill-posed nature of its infinitely dimensional
analog. Therefore, it is worth to consider the Tikhonov functional.

In Tests 1,2 of Section 7 we applied computationally simulated data, while in Test 3 was used real
measured backscattered data obtained by microtomograph developed by professor Eduard Rau at Moscow
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Lomonosov State University [4, 5]. Conclusion from these tests is that the local adaptive mesh refinement
algorithm can significantly improve contrast of the blurred images. Comparison with other techniques which
are used for solution of such kind of problems is outside of this publication. We plan to consider it as future
work. However, in Test 2 of Section 7 we compared performance of our adaptive algorithm with performance
of methods of [5, 18] on reconstruction of deconvolution function. Our computational tests show the better
stability of the adaptive method with respect to the regularization parameter then the stability of methods
presented in [5, 18].

2. The Framework Of the Functional Analysis. We introduce first common notations which we
are using in this paper. Let Ω ⊂ R

n, n = 2, 3 be a bounded domain with the piecewise-smooth boundary
∂Ω. In our numerical experiments we are working with piecewise smooth boundaries and this is one of
discrepancies between the theory and its numerical implementation.

Let function u (x) , x = (x1, ..., xn) ∈ Ω be a k times continuously differentiable in Ω. We denote the
partial derivative of the order |α| ≤ k, of function u by

Dαu =
∂|α|u

∂α1x1 . . . ∂αnxn

, |α| = α1 + . . . + αn

where α = (α1, . . . , αn) is such that αi ≥ 0.
Denote Ck

(
Ω

)
the Hilbert space of functions u (x) which are continuous in the closure Ω of the domain

Ω together with their derivatives Dαu, |α| ≤ m. The norm in this space is defined as

‖u‖
Ck(Ω) =

∑

|α|≤m

sup
x∈Ω

|Dαu (x)| < ∞.

Consider the Sobolev space Hk (Ω) of all functions with the norm defined as

‖u‖2
Hk(Ω) =

∑

|α|≤k

∫

Ω

|Dαu|2 dx < ∞,

where Dαu are weak derivatives of the function u.
Hk (Ω) is a Hilbert space with the inner product defined as

(u, v)Hk(Ω) =
∑

|α|≤k

∫

Ω

DαuDαvdx.

2.1. The finite element. Following [13] we call a triple (K, PK ,NK) by a m-dimensional finite element
where K is a closed bounded subset of R

m, m = 2, 3 with nonempty interior and piecewise smooth boundary,
PK is a finite-dimensional vector space of functions defined on K, and NK is a basis of the dual space P ∗

K .
The function space PK is the space of the shape functions and the elements of NK are the nodal variables
or degrees of freedom. In this work as K we take triangle or tetrahedron in two and three space dimensions,
respectively, PK will be the space of piecewise linear functions and the set NK will consist of evaluations of
the shape functions at the vertices of triangles/tetrahedra. The dual basis of PK we denote by ϕ1, ..., ϕn,
where n = dimPK , and nodal variables in NK by N1, .., Nn such that

Ni(ϕj) = δij =

{
1, if i = j,

0, if i 6= j.

2.2. The space H of piecewise finite elements and its subspaces. Let Ω ⊂ R
m, m = 2, 3 be a

bounded domain. We discretize the domain Ω by an unstructured mesh T using tetrahedral elements in
R

3 and triangles in R
2. We define by T0 the partition of this domain with a rather coarse mesh. Using

subsequent mesh refinement procedure of the coarse mesh T0 we obtain a new meshes with smaller mesh
size.
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Let T be one of those meshes. We approximate the function z on this triangulation by piecewise linear
functions {ϕj (x)}n

j=1 in a standard way [14] as z(x) =
∑n

j=1 zjϕj(x) and thus construct a linear space of
these functions.

Let h′ be the diameter of triangles/tetrahedra in the element K of the mesh T and r′ be the radius of
the maximal circle/sphere contained in that triangle/tetrahedra. We make the following shape regularity
assumption on the mesh T which means that we do not decrease the size of triangles/tetrahedra indefinitely

a1 ≤ h′ ≤ r′a2; a1, a2 = const. > 0. (2.1)

From the above mesh regularity assumption follows that there exists only a finite number Ñ of possible
triangulations satisfying (2.1). Let us denote by H = ∪T Span (B (T )) . Thus H is a subspace of L2 (Ω) and

dimH := dH := dH

(
Ñ

)
< ∞. Furthermore,

H ⊂
(
H1 (Ω) ∩ C

(
Ω

))
as a set, ∂xi

f ∈ L∞ (Ω) , ∀f ∈ H. (2.2)

We denote by (·, ·) and ‖·‖ the scalar product and the corresponding norm in H , respectively. We consider
the space H as an “ideal” space of very fine finite elements, which is never reached in computations.

We now construct subspaces Mk ⊂ H associated with our triangulations Tk. These subspaces should be
such that that

Mk ⊂ Mk+1. (2.3)

The first coarse subspace we define by M0 := Span (B (T0)) ⊂ H. The next pair (Tk+1, Mk+1) for the
given pair (Tk, Mk) , is constructed in following way. We refine the mesh Tk and obtain the corresponding
triangulation Tk+1 and the corresponding basis B (Tk+1) . Next, we define the space Mk+1 as Mk+1 :=
Span (B (Tk+1)) . Since in approximation of our function z(x) we use piecewise linear finite elements, B (Tk) ⊂
Span (B (Tk+1)) . Hence, Span (B (Tk)) := Mk ⊂ Mk+1, i.e. (2.3) holds.

Let PM : H → M for ∀M ⊂ H be the operator of the orthogonal projection. To short notations we
denote Pk := PMk

, Pk+1 := PMk+1
. Let the function f ∈ H1 (Ω) ∩ C

(
Ω

)
and its ∂xi

fxi
∈ L∞ (Ω) .

Consider a mesh which is split into triangles/tetrahedral elements K such that Ω = ∪K. In a general case
we allow meshes in space with hanging nodes and assume that the local mesh size has bounded variation
in such meshes. This means that there exists a constant γ > 0 such that γhK+ ≤ hK− ≤ γ−1hK+ for
all the neighboring elements K− and K+. We define also by hK be the maximal diameter of the above
triangles/tetrahedra which are involved in Tk. By the construction of above subspaces hK+1 ≤ hK .

Let S be the internal face of the non-empty intersection of the boundaries of two neighboring elements
K+ and K−. We denote the jump of the function vh computed from the two neighboring elements K+ and
K− sharing the common side S as

[vh] = v+
h − v−h . (2.4)

We define by f I
k the standard interpolant [14] on triangles/tetrahedra of the function f ∈ H . Then by

one of properties of the orthogonal projection

‖f − Pkf‖L2(Ω) ≤
∥∥f − f I

k

∥∥
L2(Ω)

. (2.5)

Hence, it follows from (2.2, 2.5) and formula 76.3 of [14] that

‖f − Pkf‖L2(Ω) ≤ CI ‖∇f‖L∞(Ω) hK , ∀f ∈ H. (2.6)

where CI = CI (Ω) is positive interpolation constant depending only on the domain Ω.
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2.3. Statement of the problem. Let H and L2 be two Hilbert spaces and let Ω ⊂ R
m, m = 2, 3 be

a convex bounded domain introduced in section 2.2.
Our goal is to solve the Fredholm integral equation of the first type

∫

Ω

ρ(x, y)z(x)dx = u(x), (2.7)

where u(x) ∈ L2(Ω̄), z(x) ∈ H , ρ (x, y) ∈ Ck
(
Ω × Ω

)
, k ≥ 0 be the kernel of the integral equation.

For our next considerations we can rewrite (2.7) in an operator form as

A(z) = u (2.8)

with an operator A : H → L2(Ω̄) defined as

A(z) :=

∫

Ω

ρ(x, y)z(x)dx. (2.9)

Ill-posed problem.
Let the function z(x) ∈ H of the equation (2.7) be unknown in the domain Ω. Determine the function

z(x) for x ∈ Ω assuming the functions ρ(x, y) ∈ Ck
(
Ω × Ω

)
, k ≥ 0 and u(x) ∈ L2(Ω) in (2.7) are known.

Although the function A (z) ∈ Ck
(
Ω

)
, k ≥ 0 we assume in (2.9) that u ∈ L2

(
Ω

)
. The reason of this is

that the right hand side of this equation can be given with a noise.

2.4. The Tikhonov functional. Let us assume that the right hand side of (2.7) is given with the
small parameter δ ∈ (0, 1) which characterizes the level of the error in data such that u = u∗ + δ. Let u∗ be
the ideal noiseless right hand side of (2.7) which corresponds to the ideal exact solution z∗,

A (z∗) = u∗, ‖u − u∗‖L2(Ω) < δ. (2.10)

Let us consider all functions z ∈ H and introduce the operator F : H → L2 such that

F (z) := Az − u. (2.11)

Hence Az∗ − u∗ = 0 and thus F (z∗) = Az∗ − u = δ. We assume that

||F (z∗)||L2(Ω) ≤ δ. (2.12)

Although H is a finite dimensional space, where all norms are equivalent, we have discovered in our
computations that it is better to use the H1(Ω) norm in the regularizing term of the Tikhonov functional.
Note that H ⊂ H1 (Ω) as a set.

To find an approximate solution of equation (2.7), we minimize the Tikhonov regularization functional
Mα(z),

Mα (z) =
1

2
‖F (z)‖2

L2(Ω) +
α

2
‖z − z0‖2

H1(Ω) , (2.13)

Mα : H → R, z0 ∈ H,

where α = α (δ) > 0 is a regularization parameter which is small. How to choose the point z0 depends on
the concrete minimization problem. Usually z0 is a good first approximation for the exact solution z∗.

Further, we consider more general form of the Tikhonov functional (2.13). Let W1,W2, Q be three Hilbert
spaces, Q ⊆ W1 as a set, the norm in Q is stronger than the norm in W1 and Q = W1, where the closure is
understood in the norm of W1. We denote scalar products and norms in these spaces as

(·, ·) , ‖·‖ for W1,
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(·, ·)2 , ‖·‖2 for W2

and [·, ·] , [·] for Q.

Let A : W1 → W2 be a bounded linear operator. Consider the general Tikhonov functional

Jα (z) : Q → R, (2.14)

Jα (z) =
1

2
‖Az − u‖2

2 +
α

2
[z − z0]

2
, u ∈ W2; z, z0 ∈ Q, (2.15)

where α ∈ (0, 1) is the regularization parameter.

2.5. The Fréchet Derivative and the convexity of the Tikhonov Functional. The following
lemma is well known [7]. Although some of its generalizations can also be formulated, we restrict our
attention to the current one, since this is sufficient for our goal.

Lemma 1. Let A : W1 → W2 be a bounded linear operator. Then the Fréchet derivative of the
functional (2.14) is

J ′
α (z) (b) = (A∗Az − A∗u, b) + α [z − z0, b] , ∀b ∈ Q. (2.16)

In particular, for the integral operator (2.7) we have

J ′
α (z) (b) =

∫

Ω

b (s)




∫

Ω

z (y)




∫

Ω

ρ (x, y) ρ (x, s) dx


 dy −

∫

Ω

ρ (x, s) u (x) dx


 ds (2.17)

+α [z − z0, b] , ∀b ∈ Q.

Lemma 2 is also well known, since A : W1 → W2 is a bounded linear operator. We again formulate this
lemma only for our specific case, referring to [17] for a more general case. The situation is naturally more
complicated for a nonlinear operator, and we refer to [9] for this case.

Lemma 2. Let the operator A : W1 → W2 satisfies conditions of Lemma 1. Then the functional Jα (z)
is strongly convex on the space Q,

(J ′
α (x) − J ′

α (z) , x − z) ≥ α[x − z]2, ∀x, z ∈ Q.

3. The accuracy of the regularized solution. In this section we specify results of [16] where only
nonlinear operator was considered, for the case of the bounded linear operator. In Theorem 1 we recall proof
of the existence and uniqueness of the minimizer zα of the functional Jα (z). This theorem has been proved
by A.N. Tikhonov. We establish this result for a bounded linear operator whose domain is the infinitely
dimensional Hilbert space L2 (Ω) . It is well known that zα is called the regularized solution.

Theorem 1. Let in (2.15) A : W1 → W2 be a bounded linear operator. Then for every u ∈ W2, there
exists unique minimizer zα of the functional Jα (z) .

Proof. By the variational principle the element zα ∈ Q is a minimizer if and only if

(A∗Azα − A∗u, v)2 + α [zα − z0, v] = 0, ∀v ∈ Q.

Hence,

(Azα, Av)2 + α [zα, v] = (A∗u, v)2 + α [z0, v] , ∀v ∈ Q. (3.1)

Introduce a new scalar product {·, ·} in Q by

{x, y} := (Ax, Ay)2 + α [x, y] , ∀x, y ∈ Q.

5



Since the norm in Q is stronger than the norm in W1, then the norm {x} :=
√
{x, x} is equivalent to the

norm [x] . The rest of the proof follows from the Riesz theorem. �

We now prove estimate of the accuracy between the regularized solution zα and the exact solution z∗.
Such an estimate was previously established in [16] for the nonlinear case. We present now this estimate for
the bounded linear operator.

Theorem 2. Let in (2.15) A : W1 → W2 be a bounded linear one-to-one operator. Assume that there
exists a constant γ > 0 such that

‖Az‖2
2 ≥ γ ‖z‖2

, ∀z ∈ W1. (3.2)

Let zα be the minimizer of the functional (2.14) and (2.10) holds, where the norm in L2 (Ω) is replaced with
the norm in the space W2. Then

||z∗ − zα|| ≤
√

4 + α2

4αγ
||A||2 ||δ||2 +

1√
γ

[z∗ − z0] +

√
α2 − 4α

2
√

γ
[δ].

Proof.
First, we write expression (3.1) for z∗:

(Az∗, Av)2 + α [z∗, v] = (A∗u∗, v)2 + α [z0, v] , ∀v ∈ Q. (3.3)

Subtract (3.1) from (3.3) and denote y = z∗ − zα to get

(Ay, Av)2 + α [y, v] = (u∗ − u, Av)2 + α [z∗ − z0, v] , ∀v ∈ Q. (3.4)

Using the fact that Az∗ = u∗, Azα = u we can rewrite above equation as

(Ay, Av)2 + α [y, v] = (Az∗ − Azα, Av)2 + α [z∗ − z0, v] , ∀v ∈ Q, (3.5)

and recalling that y = z∗ − zα we obtain

(Ay, Av)2 + α [y, v] = (Ay, Av)2 + α [z∗ − z0, v] , ∀v ∈ Q. (3.6)

Setting here v := y we have

(Ay, Ay)2 + α [y, y] = (Ay, Ay)2 + α [z∗ − z0, y] , ∀y ∈ Q, (3.7)

which can be rewritten as

||Ay||22 + α[y]2 = (Ay, Ay)2 + α [z∗ − z0, y] , ∀y ∈ Q. (3.8)

First we will estimate right hand side of (3.8). Using the Cauchy-Schwarz inequality

ab ≤ a2

2ε
+

ε

2
b2, ∀ε > 0, ∀a, b, (3.9)

we obtain

(Ay, Ay)2 ≤ ||Ay||22
2ε

+
ε

2
||Ay||22,

and since Ay = Az∗ − Azα = u∗ − u above expression can be estimated using (2.10) as

(Ay, Ay)2 ≤ ||A||22||δ||22
2ε

+
ε

2
||A||22||δ||22,

6



and with α = 2ε we have

(Ay, Ay)2 ≤ ||A||22||δ||22
α

+
α

4
||A||22||δ||22. (3.10)

Using again (3.9) and α = 2ε we obtain following estimate for the second term in the right hand side of (3.8)

[z∗ − z0, y] ≤ [z∗ − z0]
2

2ε
+

ε

2
[y]2 =

[z∗ − z0]
2

α
+

α

4
[y]2. (3.11)

Estimating right hand side of (3.8) using (3.2) and collecting above estimates we have

γ||y||2 + α[y]2 ≤ ||A||22||δ||22(
1

α
+

α

4
) + [z∗ − z0]

2 +
α2

4
[y]2

which can ve rewritten as

||y||2 ≤ 1

γ

(
4 + α2

4α
||A||22 ‖|δ||22 + [z∗ − z0]

2 +
α2 − 4α

4
[y]2

)
.

Hence,

||z∗ − zα|| = ||y|| ≤ 1√
γ

√
4 + α2

4α
||A||2 ||δ||2 +

1√
γ

[z∗ − z0] +
1√
γ

√
α2 − 4α

2
[δ].

�

4. Accuracy of the regularized solution on a locally refined meshes. It follows from Theorem
2 that it makes sense to improve the accuracy of the regularized solution via mesh refinements. Indeed, if
zk is the minimizer of the functional Jα (z) on the subspace Mk, then

‖zk − z∗‖ ≤ ‖zk − zα‖ + ‖zα − z∗‖

≤ ‖zk − zα‖ +

√
4 + α2

4αγ
||A||2 ||δ||2 +

1√
γ

[z∗ − z0] +

√
α2 − 4α

2
√

γ
[δ].

Thus, the closer zk to zα, the closer zk to z∗.

From the theory of convex optimization it is known, that Lemma 2 claims existence and uniqueness of
the global minimizer of the functional Jα defined in (2.14) for zα ∈ Q such that

Jα(zα) = inf
z∈Q

Jα(z).

We also assume that the operator F is Lipschitz continuous

‖F (z1) − F (z2)‖ ≤ C‖z1 − z2‖ ∀z1, z2 ∈ H.

and it has the Frechét derivative F ′ (z) which is also Lipschitz continuous, i.e. for certain positive constants
N1, N2

‖F ′(z)‖ ≤ N1,

‖F ′(z1) − F ′(z2)‖ ≤ N2‖z1 − z2‖ ∀z1, z2 ∈ H,

N1, N2 = const. > 0

(4.1)

We also introduce new constant N3 = N3 (N1, N2) = const. > 0 [7, 8] such that

‖J ′
α (z1) − J ′

α (z2)‖ ≤ N3 ‖z1 − z2‖ , ∀z1, z2 ∈ H. (4.2)

7



Theorem 3 provides an estimate of the norm ||zk − zα||H1 via the norm of the difference between the
regularized solution zα and its projection on the subspace Mk. Since we work in this theorem with a subspace
Mk ⊂ H, we formulate this result for the functional Mα(z) defined in (2.13).

Let us denote by zk the solution on the triangulation Tk and by zα - the solution on the finally refined
mesh. Then the following theorem is valid:

Theorem 3
Let Mk ⊂ H be the subspace obtained after k mesh refinements. Suppose that all conditions of Lemma

2 are fullfiled. Let zk be the minimizer of the Tikhonov functional (2.14) obtained after k mesh refinements.
The existence of this minimizer is guaranteed by Lemma 2. Assume that the regularized solution zα is not
yet coincides with the minimizer zk after k mesh refinements. Then there exists a constant N3 defined by
(4.2) such that the following estimate holds

||zk − zα||H1 ≤ N3

α
||Pkzα − zα||H1 . (4.3)

In particular, if Pkzα = zα, then zk = zα, which means that the regularized solution is reached after k mesh
refinements.

Proof. Let zk be a minimizer of the functional (2.13). The Lemma 2 implies that the minimizer zk

is unique. Since by the Lemma 2 the functional (2.13) is strongly convex on the space H with the strong
convexity constant α, then this implies that

α ‖zk − zα‖2
H1 ≤ (M ′

α (zk) − M ′
α (zα) , zk − zα) . (4.4)

Since zk is the minimizer of the functional (2.13), then

(M ′
α (zk) , y) = 0, ∀y ∈ Mk. (4.5)

Next, since zα is the minimizer on the set H , then

(M ′
α (zα) , z) = 0, ∀z ∈ H.

Using (4.4) with the splitting

zk − zα = (zk − Pkzα) + (Pkzα − zα) ,

together with the Galerkin orthogonality principle (4.5) we obtain

(M ′
α (zk) − M ′

α (zα) , zk − Pkzα) = 0 (4.6)

and thus

α ‖zk − zα‖2
H1 ≤ (M ′

α (zk) − M ′
α (zα) , Pkzα − zα) . (4.7)

Since ‖zk − zα‖L2(Ω) ≤ ||zk − zα||H1 , then it follows from (4.2) that

(M ′
α (zk) − M ′

α (zα) , Pkzα − zα) ≤ N3||zk − zα||H1 ||Pkzα − zα||H1 .

Substituting above equation into (4.7) we obtain (4.3).
�

In Theorem 4 we consider the function PM ′
α(z) instead of M ′

α(z), where P : L2 (Ω) → H is the operator
of the orthogonal projection of L2 (Ω) onto H . We note that

(PM ′
α (z) , f) = (M ′

α (z) , f) , ∀z ∈ H, ∀f ∈ H.

In Theorem 4 we derive a posteriori error estimates for the error in the Tikhonov functional (2.13) on
the mesh obtained after k mesh refinements.
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Theorem 4
Let conditions of Lemma 2 hold. Suppose that there exists minimizer zα,k of the functional Mα on the

set H and mesh Tk. Suppose also that there exists approximation of a minimizer zα,k,h of Mα on the set H

and mesh Tk. Let hk be the maximal grid step size of the subspace Mk. Then the following approximate a
posteriori error estimate for the error in the Tikhonov functional (2.13) holds

||M(zα,k) − M(zα,k,h)||H1 ≤ CIhk ‖M ′
α(zα,k,h)‖

H1 ||zα,k||H2 (4.8)

Proof
By definition of the Frechét derivative we can write that on every mesh Tk

M(zα,k) − M(zα,k,h) = M ′(zα,k,h)(zα,k − zα,k,h) + R(zα,k, zα,k,h), (4.9)

where by Lemma 1 R(zα,k, zα,k,h) = O(r2), r → 0 ∀zα,k, zα,k,h ∈ H .
Now we neglect R, use the splitting

zα,k − zα,k,h = zα,k − zI
α,k + zI

α,k − zα,k,h (4.10)

and the Galerkin orthogonality [14]

M ′(zα,k,h)(zI
α,k − zα,k,h) = 0 ∀zI

α,k, zα,k,h ∈ Hh (4.11)

with the space of piecewise linear functions Hh for approximation of functions zα,k, to get

M(zα,k) − M(zα,k,h) ≤ M ′(zα,k,h)(zα,k − zI
α,k), (4.12)

where zI
α,k is a standard interpolant of zα,k on the mesh Tk [14]. Since || · ||L2 ≤ || · ||H1 we have that

||M(zα,k) − M(zα,k,h)||L2 ≤ ||M ′(zα,k,h)||L2 ||(zα,k − zI
α,k)||L2 ≤ ||M(zα,k,h)||H1 ||(zα,k − zI

α,k)||H1 , (4.13)

where the term ||(zα,k − zI
α,k)||H1 in the right hand side of the above inequality can be estimated through

the interpolation estimate with the interpolation constant CI

||(zα,k − zI
α,k)||H1 ≤ CIhk||(zα,k||H2 .

Substituting above estimate into (4.13) we get (4.8). �

We now provide a more explicit estimate for the weaker norm ‖zk − zα‖L2(Ω) . To do this, we replace in

(2.13) the norm ‖z − z0‖2
H1(Ω) with the weaker norm ‖z − z0‖2

L2(Ω) . As before, let hk be the maximal grid
step size of the subspace Mk.

Below in Theorems 5 and 6 we will consider the following Tikhonov functional

Eα(z) : H → R,

Eα (z) =
1

2
‖Az − u‖L2(Ω) +

α

2
‖z − z0‖2

L2(Ω) . (4.14)

Theorem 5. Let α ∈ (0, 1) and A : H → L2 (Ω) be a bounded linear operator . Let zk be the minimizer
of the functional Eα (z) on the subspace Mk, which is obtained after k mesh refinements. Assume that the
regularized solution zα is not yet reached after k mesh refinements with the minimizer zk. Let jump of the
function zk computed from the two neighboring elements K+ and K− sharing the common side S on the
subspace Mk is defined by

[zk] = z+
k − z−k . (4.15)

9



Then there exist constants N3, CI defined by (4.2),(2.6), correspondingly, such that the following estimate
holds

‖zk − zα‖L2(Ω) ≤
CIN3

α
||[zk]||L2(Ω)

Proof.
Conditions (4.2) imply that

‖E′
α (zk) − E′

α (zα)‖L2(Ω) ≤ N3 ‖zk − zα‖L2(Ω) (4.16)

with a constant N3 = N3 (N1, N2) > 0. By (2.6)

‖zα − Pkzα‖C(K) ≤ CI ‖∇zα‖L∞(K) hk. (4.17)

Using the Cauchy-Schwarz inequality as well as (4.16) and (4.17), we obtain from (4.3)

‖zk − zα‖L2(Ω) ≤
CIN3

α
‖∇zα‖L∞(K) hk. (4.18)

We can estimate |∇zα| in following way [15]

|∇zα| ≤
|[zk]|
hk

and substitute this estimate in (4.18) to get

‖zk − zα‖L2(Ω) ≤
CIN3

α

‖[zk]‖L2(Ω)

hk

hk ≤ CIN3

α
‖[zk]‖L2(Ω). (4.19)

�

5. A posteriori error estimate for the error in the Tikhonov functional (4.14). Here we will
consider the function PE′

α(z) instead of E′
α(z), where P : L2 (Ω) → H is the operator of the orthogonal

projection of L2 (Ω) onto H . In practical computations we actually compute the interpolant of E′
α (z) on the

corresponding mesh instead of PE′
α(z), which are the sources of computational errors. We also note that

(PE′
α (z) , f) = (E′

α (z) , f) , ∀z ∈ H, ∀f ∈ H.

In Theorem 6 we derive a posteriori error estimates for the error in the Tikhonov functional (4.14) on the
mesh obtained after k mesh refinements by defining the minimizer and its approximation by zα := zα,k, zk :=
zα,k,h, correspondingly. The proof of Theorem 6 is modification of the proof given in [11].

Theorem 6
Let conditions of Lemma 2 hold. Suppose that there exists minimizer zα,k of the functional Eα on the

set H and mesh Tk. Suppose also that there exists approximation of a minimizer zα,k,h of Eα on the set
H and mesh Tk. Then the following approximate a posteriori error estimate for the error in the Tikhonov
functional (2.13) holds

||E(zα,k) − E(zα,k,h)||L2(Ω) ≤ CI ‖E′
α(zα,k,h)‖

L2(Ω) ||[zα,k]||L2(Ω) (5.1)

Proof
By definition of the Frechét derivative we can write that on every mesh Tk

E(zα,k) − E(zα,k,h) = E′(zα,k,h)(zα,k − zα,k,h) + R(zα,k, zα,k,h), (5.2)

where by Lemma 1 R(zα,k, zα,k,h) = O(r2), r → 0 ∀zα,k, zα,k,h ∈ H .
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Now we neglect R, use the splitting

zα,k − zα,k,h = zα,k − zI
α,k + zI

α,k − zα,k,h (5.3)

and the Galerkin orthogonality [14]

E′(zα,k,h)(zI
α,k − zα,k,h) = 0 ∀zI

α,k, zα,k,h ∈ Hh (5.4)

with the space of piecewise linear functions Hh for approximation of functions zα,k, to get

E(zα,k) − E(zα,k,h) ≤ E′(zα,k,h)(zα,k − zI
α,k), (5.5)

where zI
α,k is a standard interpolant of zα,k on the mesh Tk [14]. Applying interpolation estimate (2.6) to

zα,k − zI
α,k we get

||E(zα,k) − E(zα,k,h)||L2(Ω) ≤ CI ‖E′(zα,k,h)‖
L2(Ω) ||∇zα,k||L∞(Ω)hk. (5.6)

Using for |∇zα, k| the estimate on the mesh Tk [15]

|∇zα,k| ≤
|[zα,k]|

hk

we get the following a posteriori error estimate

||E(zα,k) − E(zα,k,h)||L2(Ω) ≤ CI ‖E′
α(zα,k)‖

L2(Ω) ||[zα,k]||L2(Ω). (5.7)

�

Using the Theorems 5 and 6 we can now formulate our mesh refinement recommendations used in
practical computations.

The First Mesh Refinement Recommendation. Refine the mesh in neighborhoods of those points
x ∈ Ω where the function |E′

α(zk) (x)| attains its maximal values. More precisely, let κ ∈ (0, 1) be the
tolerance number which should be chosen in computational experiments. Refine the mesh in such subdomains
of Ω where

|E′
α(zk)| ≥ κ max

Ω
|E′

α(zk)| .

The Second Mesh Refinement Recommendation. Refine the mesh in neighborhoods of those points
x ∈ Ω where the function |zk (x)| attains its maximal values. More, precisely in such subdomains of Ω where

|zk (x)| ≥ κ̃ max
Ω

|zk (x)| .

where κ̃ ∈ (0, 1) is the number which should be chosen computationally.

6. The Adaptive Algorithm. In this section for solution of (2.7) we present adaptive algorithms
which we apply in numerical examples of section 7. Our algorithms use mesh refinement recommendations
of section 5. In these algorithms we also assume that the kernel in (2.7) is such that ρ(x, y) = ρ(y−x). Next,
using the convolution theorem we can determine the functions z(x) in (2.7) and the regularized solution
zα(x) of (2.13), correspondingly. For example, for calculation of the function zα(x) in numerical examples of
section 7 we use (7.9). To reduce notations, in our algorithms we define the minimizer and its approximation
zα := zα,k, zk := zα,k,h, correspondingly.

In Algorithm 1 we use first mesh refinement recommendation of 5, while in Algorithm 2 are used
both mesh refinement recommendations of section 5. These algorithms are successfully tested by numerical
examples of section 7.

Algorithm 1
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Step 0. Choose an initial mesh T0 in Ω and obtain the numerical solution z0 of (2.13) on T0 using the
finite element discretization of the convolution theorem (7.9). Compute the sequence zk, k > 0 via
following steps:

Step 1. Interpolate the given right hand side of (2.7) and the solution zk−1 from the mesh Tk−1 to the mesh
Tk and obtain the numerical solution zk of (2.13) on Tk using the finite element discretization of
(7.9).

Step 2. Refine the mesh Tk at all points where

|B′
α (zk) | ≥ βk max

Ω
|B′

α (zk) |, (6.1)

with

B′
α (zk) =

∫

Ω



∫

Ω

zk (y)




∫

Ω

ρ (x, y) ρ (x, s) dx


 dy −

∫

Ω

ρ (x, s)u (x) dx


 ds. (6.2)

Here the tolerance number βk ∈ (0, 1) is chosen by the user.
Step 3. Construct a new mesh Tk+1 in Ω and perform steps 1-3 on the new mesh. Stop mesh refinements

when ||zk − zk−1|| < ǫ or ||M ′
α (zk) || < ǫ, where ǫ is tolerance chosen by the user.

Algorithm 2

Step 0. Choose an initial mesh T0 in Ω and obtain the numerical solution z0 of (2.13) on T0 using the
finite element discretization of the convolution theorem (7.9). Compute the sequence zk, k > 0 via
following steps:

Step 1. Interpolate the given right hand side of (2.7) and the solution zk−1 from the mesh Tk−1 to the mesh
Tk and obtain the numerical solution zk of (2.13) on Tk using the finite element discretization of
(7.9).

Step 2. Refine the mesh Tk at all points where

|B′
α (zk) | ≥ βk max

Ω
|B′

α (zk) | (6.3)

with B′
α (zk) defined by (6.2), and where

|zk (x)| ≥ κ̃k max
Ω

|zk (x)| . (6.4)

Here the tolerance numbers βk, κ̃k ∈ (0, 1) are chosen by the user.
Step 3. Construct a new mesh Tk+1 in Ω and perform steps 1-3 on the new mesh. Stop mesh refinements

when ||zk − zk−1|| < ǫ or ||M ′
α (zk) || < ǫ, where ǫ is tolerance chosen by the user.

Remarks

We note that the choice of the tolerance numbers βk, κ̃k in (6.2), (6.4) depends on the concrete values of
maxΩ |B′

α (zk) | and maxΩ |zk (x)|, correspondingly. If we would choose βk, κ̃k very close to 1 then we would
refine the mesh in very narrow region of the computational domain Ω, and if we will choose βk, κ̃k ≈ 0 then
almost all mesh of the domain Ω will be refined what is unsatisfactory. Thus, the values of the numbers
βk, κ̃k should be chosen in optimal way. Our numerical tests show that the choice of βk, κ̃k = 0.5 is almost
optimal one, however, it can be changed during the iterations from one mesh to other.

We also note that we neglect the computation of the regularization term in a posteriori error indicator
(6.2) since this term is very small and does not affects on the refinement procedure. However, this term is
included in the minimization procedure of the Tikhonov’s functional (2.13).
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7. Numerical studies of the adaptivity technique in microtomography. In all our tests of
this section we consider the problem of the two-dimensional reconstruction of the backscattered signal in
microtomography [4, 5]. This method allows nondestructive layer-by-layer image restoration of micro and
nanostructures, for example, reconstruction of integral microschemes.

Backscattered signal in Test 3 of subsection 7.3 is generated by the microtomograph developed by pro-
fessor Eduard Rau at Moscow Lomonosov State University. This device is based on the electron microscope
working in the backscattering electron mode. Scheme of this device is presented on Figure 7.1. As soon as
images are obtained by the device of Figure 7.1, they can be improved by mathematical methods. It is well
known, that in mathematics the problem of the image restoration in microtomography consists in solution of
the Fredholm integral equation of the first kind which is ill-posed problem. Usual method for solution of this
equation in two and three dimensions is minimization of the Tikhonov functional (2.13) in some bounded
domain Ω ⊂ R

n, n = 2, 3 using deconvolution algorithm on the uniform mesh [4, 5].
In the numerical tests of this section we show examples of the image restoration in microtomography

using adaptive finite element method with piecewise linear functions on a locally refined meshes. We present
numerical studies of the adaptive algorithms of section 6 on the computationally simulated data (Tests 1,2
in subsection 7.3) and on the experimental data (Test 3 in subsection 7.3). In Test 2 of subsection 7.3) we
also compare results obtained by the uniform deconvolution algorithm of [4, 5] with the adaptivity technique
of this paper.

7.1. Experimental setup. The scheme of the data collection is presented in Figure 7.1. The method
of the collecting backscattered data consists on the analysis of the energy loss of the backscattered electrons.
The energy filtration E0 allows us to fix only the electrons backscattered from the depth t corresponding
to the scattering energy Es. To define the intensity of the backscattered electron signal we use following
expression

Is = C0η(kxηc)Es
2(1 − 2.1xηc

R0
). (7.1)

Here, η(kxηc) is the scattering coefficient, k is the density of the material, xηc = 0.5C1(kZ)E0
2Z−0.333e−0.022Z

is the most probable depth of backscattering electrons, R0 = C1(kZ)E0
2 - the total depth of the penetration

of the electrons inside the material of the target.
The energy Es depends on the depth xηc and the energy E0 through the empirical expression

Es

E0
=

(
1 − 2.7xηc

R0

)
. (7.2)

Using (7.2) we can conclude that by appropriately selecting of energies E0 and Es we can tune the device
on the some depth t of the target and get spatial information about the structure of the object under inves-
tigation. However, the method of producing images using the device of Figure 7.1 has following problems:

• Finite radius and nonlinear arrangement of the current density in the electron ray can significantly
blur or erosion images.

• Nonlinear arrangement of the energy in the electron ray on some depth of the penetration can occur
in imposition of the layers lying close to each other.

• Imposition of the layers lying far from each other are defined by the features of the structure of the
object under investigation.

In this paper we show reconstruction results for the first problem. Namely, we will restore blurred images
using adaptive finite element method. Blurring of images can be explained by the fact that the finite radius
of the electron probe leads to the situation, when every point of the layer under investigation becomes some
spot on the image of this layer.

Let us denote by r0 the known radius of the primary electron beam outside the target. The radius r of
the electron probe on the penetration depth t can be represented using the empiric formula

r(t)2 = r2
0 + 0.625

(
Z

E0

)(
ρ

A

)0.5

t1.5, (7.3)
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Fig. 7.1: The working principle of the device. Primary monokinetic electron beam 1 with the particle energy E0

falls normally on the plane surface of the object under investigation 2. Object is located on the metallic substrate 3
for grounding. Part of the primary beam is backscattered from the different depths of the object and comes to the
spectrometer 4, setted on some energy Es, or to the detector of electrons 11 depending on the position of the swich 6.
Part of the backscattered ray, which corresponds to the energy Es, falls through the spectrometer on the detector of
electrons 5. From the detector 5 or 11 the signal, which is proportional to the number of electrons and their energy,
comes to the videocontrol device 8 or to the personal computer 9. In the case when the detector of electrons 11 is
turned on, the signal comes to these devices through the charge-sensitive preamplifier 7. To reduce the noise, the
spectrometer is fed with a sawtooth voltage power supply unit 10.

where Z and A are the atomic number and the atomic weight, respectively. Here, r and t are expressed in
[cm], E0 - in [keV], the current dencity of the material of the target ρ - in [g/cm3].

The arrangement of the current dencity in the cross section of the electron probe can be represented as a
Gauss arrangement [5]. This arrangement transforms on the depth t with the scaling parameter r(t) defined
by (7.3). In fact, this is a radius of the electron probe. Thus, the arrangement of the current density can be
calculated using the expression

ρ(r′) =
1

2πr2
exp(− r′

2

2r2
) (7.4)

or in the Cartesian coordinate system - using the formula

ρ(x, y) =
1

2πr2
exp(−x2 + y2

2r2
). (7.5)

The image is formed then line by line through the integral measuring of the intensity of backscattered electron
signal. The measured intensity saved into the point of a plane image, which corresponds to the position of
the electron probe.
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7.2. Statement of the problem. Let us introduce the Cartesian coordinate system xOy in the plane
of the layer under investigation. Let z(x, y) be the scattering coefficient at the point with coordinates (x, y).
Let ξOη be other Cartesian coordinate system which is defined in the plane of the image. Without loss of
generality we can assume, that this system is equivalent to the system xOy. If the electron probe is located
at some point (ξ, η) of the layer under investigation, then the intensity at this point is proportional to the
number of electrons backscattered from the object.

Let Ω will be bounded domain representing the object to be investigated which is decomposed into N

small rectangular subdomains ωi such that Ω = ∪N
i=1ωi, ωi ∩ ωj = 0 ∀i 6= j. Let subdomains ωi have sizes

dx, dy such that ωi = dx × dy. We assume a constant scattering coefficient z(x, y) inside every subdomain
ωi. Then the backscattered signal from the domain ωi at the point (ξ, η) is defined by the formula

u(ξ, η) =

∫

ωi

z(x, y)ρ(x − ξ, y − η)dxdy. (7.6)

Taking the sum over all subdomains ωi ⊂ Ω we get expression for the backscattered signal u(ξ, η) at the
point (ξ, η) in the whole domain Ω

u(ξ, η) =

∫

Ω

z(x, y)ρ(x − ξ, y − η)dxdy. (7.7)

Inverse problem
Inverse problem consists in the calculating of the intensity arrangement z(x, y) by using known values

of the functions u(ξ, η) and ρ(x − ξ, y − η) in (7.7).
To solve the inverse problem we minimize the Tikhonov functional (2.13) in the form

Mα(z) = ||
∫

Ω

ρ(x − ξ, y − η)z(x, y)dxdy − u(ξ, η)‖2
L2(Ω) + α‖z(x, y)‖2

H1 . (7.8)

Using the convolution theorem we can easily obtain the formula of the minimizer zα(x, y) of the functional
(7.8)

zα(x, y) =

∫

Ω

e−i(λx+νy) P ∗(λ, ν)U(λ, ν)

|P (λ, ν)|2 + α(1 + λ2 + ν2)2
dλdν (7.9)

where functions U and P are the Fourier images of the functions u and ρ, respectively.
In [5, 18] the solution of the equation (7.7) was found on uniform grids on the spaces H1 and V H(B)

(the space of functions with bounded total variation). The best reconstruction result was obtained using the
bounded total variation functions when for the first approximation was taken the result obtained on space
H1. Our computational tests of section 7.3 show the better stability for the adaptive method then methods
of [5, 18].

7.3. Results of the reconstruction using adaptive finite element method.

7.3.1. Test 1-a). The goal of this test was to restore the image presented on the Figure 7.2-a). The
image of Figure 7.2-a) is simulation of the function u(ξ, η) in (7.6) for the data from the electron microscope
with the smearing parameter r′ = 0.188 mkm in (7.4). Area of the image of Figure 7.2-a) is Ω = 3.4813 mkm.
For restoration of the image of Figure 7.2-a) we apply the first adaptive algorithm of section 6. First, we
compute z0 using the finite element discretization of (7.9) with the regularization parameter α = 3e10 − 07
in (7.8) on the coarse mesh presented in Figure 7.2-g). Let us define the function

B′
α (zk) =

∫

Ω



∫

Ω

zk (y)




∫

Ω

ρ (x − ξ, y − η) ρ (x − ξ, s − η) dx


 dy −

∫

Ω

ρ (x − ξ, s − η)u (x) dx


 ds, (7.10)

where Ω is our two-dimensional domain.
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a) 7938 elements b) 9336 elements c) 12094 elements

d) 17706 elements e) 28676 elements f) 48864 elements

g) 7938 elements h) 9336 elements i) 12094 elements

j) 17706 elements k) 28676 elements l) 48864 elements

m) n) o)

Fig. 7.2: Test 1-a). Image restoration of the simulated data from the the electron microscope. On a) we present
simulated measured data. On b)-f) we show the results of the image restoration on different adaptively refined meshes
using the algorithm of section 6. Adaptively refined meshes corresponding to the images on b)-f) are presented on
h)-l). Enlarged parts of the refined meshes on j), k), l) are presented on m), n), o), respectively.

16



a) 7938 elements b) 9604 elements c) 12798 elements

d) 7938 elements e) 9604 elements f) 12798 elements

Fig. 7.3: Test 1-b). Image restoration of the simulated data from the the electron microscope. On a) we present
simulated measured data. On b)-f) we show the results of the image restoration on different adaptively refined meshes
using the algorithm of section 6. Adaptively refined meshes corresponding to the images on b)-c) are presented on
e)-f).

a) b) c) d)

Fig. 7.4: Test2. Efficiency of the application of the adaptive mesh refinement for calculation of the deconvolution
function zα given by (7.9). a) Simulated measured data. b) Computed deconvolution result of the function zα on the
adaptively refined mesh with α = 2e10 − 7. c),d) Computed deconvolution result of the function zα on the uniform
mesh with the regularization parameters α = 0.01 and α = 2e10 − 7, respectively.
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a) 17706 elements b) 28676 elements c) 48864 elements

Fig. 7.5: Test 1-a). Image restoration on the simulated data. Presentation of the results in color scale. Figures
a),b),c) corresponds to the Figures 7.2-d),e),f).

We refine the mesh in all subdomains where the gradient of the function B′
α (zk) attains its maximal

values, or where

|B′
α (zk) | ≥ βk max

Ω
|B′

α (zk) | (7.11)

with βk = 0.5. Next, we perform all steps of the first adaptive algorithm of section 6 until the desired
tolerance ||zk − zk−1|| < ǫ with ǫ = 10e − 05 is achieved, or the computed L2- norms of the differences
||zk − zk−1|| are started abruptly grow.

Figures 7.2-b)-f) show results of the reconstruction of the function z(x, y) in (7.6) on the adaptively
refined meshes presented in Figures 7.2-h)-l). We observe that on the fifth refined mesh corresponding to the
Figure 7.2-l) we obtain the best restoration results. Since the computed L2- norms ||zk − zk−1|| are started
abruptly grow after the fifth refinement of the initial mesh we conclude that the restoration image for the
function z(x, y) of the Figure 7.2-f) is the resulting one.

7.3.2. Test 1-b). This test is similar to the previous one only the goal was to restore the image
presented on the Figure 7.3-a). The image of Figure 7.3-a) is simulation of the function u(ξ, η) in (7.6) for
the data from the electron microscope with the smearing parameter r′ = 0.188 mkm in (7.4). For restoration
of the image of Figure 7.3-a) we apply the second adaptive algorithm of section 6 with both mesh refinement
recommendations of Section 5. Figures 7.3-b)-c) show results of the reconstruction of the function z(x, y) in
(7.6) on the adaptively refined meshes presented in Figures 7.3-e)-f). Stopping criterion for mesh refinements
is the same as in the Test 1-a).

We observe that on the second refined mesh corresponding to the Figure 7.3-f) we obtain the best
restoration results. Since the computed L2- norms ||zk − zk−1|| are started abruptly grow after the second
refinement of the initial mesh we conclude that the restoration image for the function z(x, y) of the Figure
7.3-c) is the resulting one.

7.3.3. Test 2. The goal of this test is to present the efficiency and robustness of the applying of the
adaptive mesh refinement for calculating of the deconvolution function zα given by (7.9).

On Figure 7.4-a) we present simulation of the real image measured by the electron microscope with the
smearing parameter r′ = 0.0612 mkm in (7.4) and with the area of the image 6.963 mkm. On Figure 7.4-b)
we present computed result of the deconvolution of the function zα on the adaptively refined mesh using the
first adaptive algorithm of section 6. In this example the regularization parameter in Tikhonov functional is
chosen α = 2e10− 7.
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Figure 7.4-c) shows computed result of the deconvolution of the function zα on the uniform mesh with
the regularization parameter α = 0.01. Figure 7.4-d) shows that the image blows up on the uniform mesh
when taking the regularization parameter α = 2e10 − 7 in the Tikhonov functional.

Comparing results of Figures 7.4 we can conclude that the computed deconvolution function zα on the
adaptively refined mesh of the Figure 7.4-b) is better then the corresponding function on the uniform mesh
of the Figure 7.4-c). We observe, that this function blows up on the uniform mesh with the regularization
parameter taken the same as in the adaptive algorithm, compare results of Figure 7.4-b) with the Figure
7.4-d). This test points out towards the robustness of using the adaptive algorithm for image restoration
problems.

7.3.4. Test 3. In this test our goal was to restore image of Figure 7.6-a) which represents the part of
the planar microscheme obtained from the experimentally measured data by microtomograph [4, 5]. This
image was measured on the depth 0.9 µm of the microscheme with the smearing parameter r′ = 0.149
mkm in (7.4). Real area of the image of Figure 7.6-a) is Ω = 16.963 mkm. For restoration of the image
of Figure 7.6-a) we apply the first adaptive algorithm of section 6. First, we compute z0 using the finite
element discretization of (7.9) with the regularization parameter α = 2e10− 07 in (7.8) on the coarse mesh
presented in Figure 7.6-g). Then we refine the mesh in all subdomains where the gradient of (7.10) attains
its maximal values by choosing βk = 0.5 in (7.11). Next, we perform all steps of the adaptive algorithm
until the desired tolerance ||zk − zk−1|| < ǫ with ǫ = 10e − 05 is achieved or the computed L2- norms of the
differences ||zk − zk−1|| are started abruptly grow.

Figures 7.6-b)-f) show results of the reconstruction on the adaptively refined meshes which are presented
in Figures 7.6-h)-l). Using this Figure we observe that on the fifth refined mesh corresponding to the
Figure7.6-l) we obtain the best restoration results. Since the computed L2- norms ||zk − zk−1|| are started
abruptly grow after the fifth refinement of the initial mesh we conclude that the restoration image of the
Figure 7.6-f) is the resulting one.
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a) 7938 elements b) 11270 elements c) 15916 elements

d) 24262 elements e) 40358 elements f) 72292 elements

g) 7938 elements h) 11270 elements i) 15916 elements

j) 24262 elements k) 40358 elements l) 72292 elements

m) n) o)

Fig. 7.6: Test 3. Reconstructed images from the experimental backscattering data obtained by the microtomograph
[4, 5]. On a) we present the real measured signal on the part of the planar microscheme obtained by microtomograph
on the depth 0.9 µm. On b)-f) we show results of the image restoration presented on a) on different adaptively
refined meshes using the algorithm of section 6. Adaptively refined meshes corresponding to the images on b)-f) are
presented on h)-l). Enlarged parts of refined meshes on j), k), l) are presented on m), n), o), respectively.

20



Acknowledgments
This research was supported by the Swedish Research Council, the Swedish Foundation for Strategic Re-
search (SSF) in Gothenburg Mathematical Modelling Centre (GMMC) and by the Swedish Institute, Visby
Program. The first author acknowledges also the Russian Foundation For Basic Research, the grant RFFI
11-01-00040.

REFERENCES

[1] A.V.Goncharsky, A.M.Cherepashchuk, A.G.Yagola. Ill-posed problems of astrophysics. -Moscow, Nauka, 1985, p. 1-352
(in Russian).

[2] Yu.A.Basistov, A.V.Goncharsky, E.E.Lekht, A.M.Cherepashchuk, A.G.Yagola. Application of the regularization method
for increasing of the radiotelescope resolution power, Astron. zh., 56, N 2, 1979, p. 443-449 (in Russian).

[3] V.D.Rusov, Yu.F.Babikova, A.G.Yagola. Image restoration in electronic microscopy autoradiography of surfaces.
Moscow, Energoatomizdat, 1991, p. 1-216 (in Russian).

[4] A.G. Yagola, N.A. Koshev. Restoration of smeared and defocused color images, Numerical Methods and Programming,
v. 9, 2008, pp. 207-212 (in Russian).

[5] N.A. Koshev, N.A. Orlikovsky, E.I. Rau, A.G. Yagola. Solution of the inverse problem of restoring the signals from an
electronic microscope in the backscattered electron mode on the class of bounded variation functions, Numerical

Methods and Programming, v.12, 2011, pp. 362-367 (in Russian).
[6] A.V.Bolotina, F.A.Lukyanov, E.I. Rau, R.A. Sennov, A.G.Yagola. Energy spectra of the electrons backscattered of the

massive targets, Vestnik Moskovskogo Universiteta, Section 3:Physics, Astronomy, vol.5 pp.30-32, 2009.
[7] A. B. Bakushinsky, M. Y. Kokurin, A. Smirnova, Iterative methods for ill-posed problems, Walter de Gruyter

GmbH&Co., 2011.
[8] A.B. Bakushinsky, A posteriori error estimates for approximate solutions of irregular operator equations, Doklady

Mathematics, 83, 1-2, 2011.
[9] L. Beilina, M.V. Klibanov and M.Yu. Kokurin, Adaptivity with relaxation for ill-posed problems and global convergence

for a coefficient inverse problem, Journal of Mathematical Sciences, 167, 279-325, 2010.
[10] L. Beilina and M.V. Klibanov, A posteriori error estimates for the adaptivity technique for the Tikhonov functional and

global convergence for a coefficient inverse problem, Inverse Problems, 26, 045012, 2010.
[11] L. Beilina, M. V. Klibanov and A. Kuzhuget, New a posteriori error estimates for adaptivity technique and global

convergence for a hyperbolic coefficient inverse problem, Journal of Mathematical Sciences, 172, 449-476, 2011.
[12] L.Beilina, M.V.Klibanov, Reconstruction of dielectrics from experimental data via a hybrid globally convergent/adaptive

inverse algorithm, Inverse Problems, 26, 125009, 2010.
[13] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods (2nd edn), Springer-Verlag, New

York, 2002.
[14] K. Eriksson, D. Estep and C. Johnson, Calculus in Several Dimensions, Springer, Berlin, 2004.
[15] C. Johnson and A. Szepessy, Adaptive finite element methods for conservation laws based on a posteriori error

estimation, Comm. Pure Appl. Math., 48, 199–234, 1995.
[16] M.V. Klibanov, A.B. Bakushinsky and L. Beilina, Why a minimizer of the Tikhonov functional is closer to the exact

solution than the first guess, J. Inverse and Ill-Posed Problems, 19, 83-105, 2011.
[17] A.N. Tikhonov, A.V. Goncharsky, V.V. Stepanov and A.G. Yagola, Numerical Methods for the Solution of Ill-Posed

Problems, London: Kluwer, London, 1995.
[18] N.A. Koshev, F.A. Luk’anov, E.I. Rau, R.A. Sennov, and A.G. Yagola. Increasing Spatial Resolution in the

Backscattered Electron Mode of Scanning Electron Microscopy, Bulletin of the Russian Academy of Sciences.

Physics. v. 75, No. 9, pp. 1181-1184. Allerton Press, 2011.

21


