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Abstract

We will give an overview of the Strichartz and Space Time Integral esti-
mates for the Klein-Gordon and subcritical nonlinear Klein-Gordon equa-
tions, respectively. In this framework, the regularity of the solution and
scattering operators for the nonlinear subcritical Klein-Gordon is stud-
ied, mainly using these tools and estimates of the nonlinearity in Besov
spaces. We prove that these operators are (uniformly) Hölder continuous
on the energy space for space dimension n ≥ 3, and Lipschitz continuous
for n ≤ 8.

1 Introduction

We will give an overview of the Strichartz and Space Time Integral estimates for
the Klein-Gordon and subcritical nonlinear Klein-Gordon equations, respectively.
We use this to study the regularity properties of the solution operator Et to

∂2
t u− ∆u+m2u+ f(u) = 0, t > 0, x ∈ Rn, u|0= φ, ∂tu|0= ψ, (1.1)

where m > 0 and f(u) ≈ |u|ρ−1u, ρ > 1 (we will give precise assumptions below)
and the data φ, ψ belong to (H1

2 ∩ Lρ+1) × L2 = Xe, the energy space for the
nonlinear equation.
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(A) assumptions on f

f ∈ C1, f(R) ⊆ R, F (u) =

∫ u

0

f(v)dv ≥ 0, u ∈ R

|f (j)(u)| ≤ C|u|ρ−j, j = 0, 1

|f ′(u) − f ′(v)| ≤ C|u− v|(ρ−1)−(|u| + |v|)(ρ−2)+ ,

(ρ− 1)− = min(ρ− 1, 1), (ρ− 2)+ = max(ρ− 2, 0)

(B) Additional assumptions on f for uniform estimates and scattering

uf(u) − 2F (u) ≥ ǫF (u), some ǫ > 0

uf(u) − 2F (u) not flat at 0 or ∞

We also assume that 1 < ρ ≤ ρ∗ = ρ∗(n) = n+2
n−2

, n ≥ 3.
An important, often used, example of a function f satisfying (A) and (B) is

f(u) = |u|ρ−1u (1.2)

The energy

E(u) =
1

2

∫

(|∂xu|
2 +m2|u|2 + |∂tu|

2)dx+

∫

F (u)dx

is under our assumptions on f uniformly bounded by the energy of u(0).We write
E0(u0) for the energy of the solution u0 of the Klein-Gordon equation, i.e. with
F = 0.
For the subcritical case ρ < ρ∗, any weak solution u with data in the energy space
(H1

2 ∩ Lρ+1) × L2 = Xe, is unique (see [14] ; an alternative proof of uniqueness
can be found in Section 4.2, Theorem 3 - cf.[8]) and the energy is (actually as
a consequence of the uniqueness, cf. [40]) conserved for ρ < ρ∗, i.e. the energy
E(u(t)) is constant in time, again see [14].

(C) In the critical case, i.e. ρ = ρ∗, we assume that f is of the form (1.2).

In this cas the finite energy solutions constructed by Shatah and Struwe [39] (cf.
also Ch. 6 in [40]), for short denoted Shatah - Struwe solutions, belong to and

are unique in L∞(H1
2 × L2) ∩ Lloc

q′ (B
1
2
,2

q′ ), q′ = 2n+1
n−1

. These solutions also have
conserved energy. We will only treat the critical case marginally, and for com-
pleteness - leaving most of the problems for the critical case outside the scoop of
this paper.
Here and in the following we use the concept and notation of Besov and Sobolev
spaces as presented in [4] and [3]. We also use the notation Lr(I;B) for the space
of functions on R × Rn whose B-norm over Rn is Lr-integrable over I. If this
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holds for arbitrary bounded intervals I, or for I = R+, we simply write Lloc
r (B)

and Lr(B), respectively.
For ρ = ρ∗, let in the following Et(φ, ψ) denote the Shatah - Struwe solution, and
for ρ < ρ∗ the unique weak finite energy solution, of (1.1).

Let 3 ≤ n, 1 + 4
n
< ρ < ρ∗(n). Then method of the proof of the uniquness of

weak solutions of the NLKG given in [8] easily extends in a strightforward way
to prove the local Lipschitz continuity of the mapping Et : H1

2 × L2 7→ Lq′(B
s′

q′ ),

where Bs′

q′ denotes the Besov space Bs′,2
q′ with s′ ≤ 1

2
min(ρ− 1, 1) and with q′ as

above.

Using the Strichartz estimates and the Space-Time Integral (STI) estimates for
the NLKG this implies in particular that Et is locally Lipschitz continuous on the
energy space for the whole permitted range of ρ for n = 3, n = 4.
A more systematic use of the Strichartz and uniform STI-estimates (specific)
for the Klein-Gordon and NLKG, give rise to more general results on the global
uniform Lipschitz continuity for subcritical NLKG. A review of STI estimates
is given in Section 2, estimates originating in [42],[13], [8]; The proof of the
important case (used exclusively in this paper) when there is a uniform energy
bound in the STI estimates, is scetched in an appendix.
Here we are content to give the following consequences, which are proved and
presented in more detail in Section 5.

Theorem 1. Let n ≥ 3 and 1 + 4
n
< ρ < ρ∗(n). Assume that f satisfies (A) and

(B). Then
(i) for n ≤ 8, Et : H1

2 × L2 7→ L∞(H1
2 ) is Lipschitz continuous for ρ > 1 + 4

n
,

except for n = 8 and n = 7, in which case the lower bound becomes 1 + 4.5
n−1

and

1 + 4
n−1

, respectively.
(ii) For n ≥ 6, Et : H1

2 × L2 7→ L∞(H1
2 ) is Hölder continuous of order α, for

some 0 < α = α(ρ, n) ≤ 1,where α(ρ, n) = O( 1
n
).

(iii) For all n ≥ 6, Et : H1
2 × L2 7→ L∞(H

1
2
2 ) is Lipschitz continuous.

A sharper form of (iii) is given in Theorem 4 in Section 5.2 in connection with
the proof of Theorem 1.

For n = 3 Lipschitz estimates for the critical case have been proved by Bahouri
and Gerard [1]. The methods used in the present paper break down in the critical
case.

In the supercritical case, ρ > ρ∗, local Lipschitz estimates (on arbitrarily small
time intervals containing t=0) will not hold for integer values of ρ, [9] and in case
3 ≤ n ≤ 6, not for any ρ > ρ∗ (work in progress). For related work, see Lebeau
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[30], [31].
Notice also that Lipschitz estimates for Φ ∋ H1

2 ×L2 7→ f(EtΦ) ∈ L1(L2) will only
hold in low dimensions and Hölder estimates of order α will require α(ρ, n) =
O( 1

n
) (see [10] and also the comments in e.g. [16], p. 3 ). Since Lipschitz (or

Hölder) estimates of Et imply the same type of estimates for f(Et), with natural
changes of the spaces involved, this means that the estimates in Theorem 1 are
at least in this sense best possible.

The scattering operator for the NLKG is the mapping S : (u−, ∂tu−) 7→ (u+, ∂tu+)
where if u is a solution of the NLKG, there exist solutions of the Klein-Gordon
equation u± such that

‖u(t) − u±‖e → 0 as t→ ±∞

where ‖ · ‖e denotes the energy norm (i.e. the square root of the energy - in
the subcritical case the the linear and nonlinear energy norms are equivalent by
Sobolev’s inequality). S is defined on (all of)H1

2×L2 (Brenner [8], [7] and Ginibre
and Velo [14]) for 1 + 4

n
< ρ < ρ∗, n ≥ 3 and assuming conditions (A) and (B).

For n = 3 and ρ = 3 the analyticity of S in case f is analytic was proved by
Kumlin [27]. Here we prove the Lipschitz continuity of S as a counter part of part
(i) of Theorem 1. The results corresponding to part (ii) of Theorem 1, including
the comments, with obvious changes, also hold for the scattering operator.

Theorem 2. Assume that f satisfies (A) and (B), and that 1 + 4
n
< ρ < ρ∗(n).

(i) Let 3 ≤ n ≤ 8 Then the scattering operator S : H1
2 × L2 7→ H1

2 × L2 for the
NLKG is Lipschitz continuous for ρ > 1 + 4

n
, except for n = 8 and n = 7, in

which case the lower bound becomes 1 + 4.5
n−1

and 1 + 4
n−1

, respectively.
(ii) For n ≥ 6, there is an α = α(ρ, n), 0 < α ≤ 1 such that S : H1

2×L2 7→ H1
2×L2

is Hölder continuous of order α .

In order to keep the size of this paper within reasonable bounds, we have omitted
proofs of the basic Strichartz and space time integral (STI) estimates for the
wave- and Klein-Gordon equation, respectively.We have tried to supply proper
references for these. In addition, we scetch a proof of the uniform STI estimates
in an appendix, following [8] and [5].
As mentioned above, we assume a basic knowledge of Besov- and Sobolev spaces,
as presented e.g. in [4].
I take the opportunity to thank Peter Kumlin for his comments and suggestions
during the work on this paper.
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2 Strichartz and Space Time Integral (STI) es-

timates

2.1 Notation, solution operators and basic kernel esti-

mates

For the remainder of this paper we fix the following notation: p, p′ will be dual
exponents, 1

p
+ 1

p′
= 1, 1 ≤ p ≤ 2 ≤ p′. Primed exponents in Lr-spaces are

assumed ≥ 2. We define δ = δp′ = 1
2
− 1

p′
. We write for short Bs

p for the Besov

space Bs,2
p .

Let u0 be the solution of the Klein-Gordon equation

∂2
t u− ∆u+m2u = 0, t > 0, x ∈ Rn, u|0= φ, ∂tu|0= ψ, (2.1)

with m > 0 and (φ, ψ) in H1
2 × L2. Then we can write

u0(t) = E0(t)φ+ E1(t)ψ

and ([6], [8])
‖Eµ(t)v‖Bs′

p′
≤ Kµ(t)‖v‖Bs

p
, µ = 0, 1 , (2.2)

where 0 ≤ θ ≤ 1 and
0 ≤ µ− (n + 1 + θ)δ + s− s′ (2.3)

and where Kµ(t) satisfies

Kµ(t) ≤ C

{

tµ−2nδ+s−s′ ≤ t−(n−1−θ)δ 0 < t < 1,
(1 + t)−(n−1+θ)δ 1 ≤ t

(2.4)

Let K(t) denote the upper bound in (2.4). Notice that with the assumption (2.3)
K is independent of µ. If

(n− 1 + θ)δ > 1 > (n− 1 − θ)δ (2.5)

then Kµ ≤ K ∈ Lr for 1 ≤ r ≤ 1 + ǫ, some ǫ = ǫ(δ, n) > 0 for 0 < θ ≤ 1,
1
n
< δ ≤ 1

n−1
. In addition K ∈ Lloc

r if θ = 0 and (n− 1)δ < 1, in which case the
upper bound in (2.5) is not needed.
At this point it is convenient to notice that the finite energy solution of (1.1) is
the (weak) finite energy solution of integral equation

u(t) = u0(t) +

∫ t

0

E1(t− τ)f(u(τ)dτ (2.6)

where u0 is the solution of the linear Klein-Gordon equation (2.1) with the same
initial data as u.
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2.2 Strichartz type estimates

Using (2.4), a duality argument (a clear exposition of the duality argument can be
found in Ginibre and Velo [15]) and Young’s (or the Hardy-Littlewood) inequality,
we obtain the following space-time estimate for the Klein - Gordon equation in
the form proved in [7].

Proposition 2.1. Let n ≥ 3, s′ ∈ Rn and r′ ≥ 2. Then if u0 is a finite energy
solution of the Klein-Gordon equation,

u0 ∈ Lr′(I;B
s′

p′) ≡ A(I), any interval I ⊆ R+

and
‖u0‖A(I) ≤ C‖u0‖L∞(I;H1

2 )

with C independent of I and u0, provided (r′, p′, s′) satisfy

1 − s′ − δ ≥
1

r′
≥ −1 + s′ + nδ, (2.7)

with equality only if r′ 6= 2, or (n− 1)δ = 1 and n ≥ 4 .

The endpoint case (n− 1)δ, r′ = 2 is due to Keel and Tao [25].
Notice that by (2.7) s′ ≤ s′max = 1 − n+1

2
δ, and that s′ = s′max in the endpoint

case. If s′ = s′max, then 1
r′

= 1
2
(n − 1)δ. For the choice s′ = s′max we get the

classical Strichartz estimates, originated by Strichartz [42]. For general Strichartz
estimates, see Ginibre and Velo [15], and the references given there.

Proposition 2.2 (Strichartz estimates). Let n ≥ 3, s′ ∈ R and r′ ≥ 2. Then if
u0 is a finite energy solution of the Klein-Gordon equation,

u0 ∈ Lr′(I;B
s′

p′) ≡ A(I), any interval I ⊆ R+

and
‖u0‖A(I) ≤ C‖u0‖L∞(I;H1

2 )

with C independent of I and u0, provided (r′, p′, s′) satisfy

(n− 1)δ ≤ 1, s′ = 1 −
n+ 1

2
δ − σ, and

1

r′
=

1

2
(n− 1)δ − σ, (2.8)

for some σ ∈ [0, 1
2
(n− 1)δ).

For n = 3 the value r′ = 2, (n− 1)δ = 1 is not allowed.

The following are useful variations of Proposition 2.1 and the Strichartz estimates.
Let w0 be defined by

w0(t) =

∫ t

0

E1(t− τ)h(τ)dτ (2.9)

where h = h(t, x) ∈ Lloc
1 (L2).
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Proposition 2.3. With the notation of (2.2) through (2.4), let µ = 1 and assume
that (2.3) holds with equality. Assume that ǫ = θδ > 0. Let I = (t0, t) ⊆ R+ and
Ī = (0, t − t0), let w0 be defined by (2.9) with the integral taken over I, and let
E(I) = L∞(I,H1

2 ), A = L2(I;B
s′

p′), and B(I) = L2(I, B
s
p). Then

‖w0‖E(I) + ‖w0‖A(I) ≤ C‖K1‖L1(Ī)‖h‖B(I) (2.10)

and with L(I) = L1(I, L2),

‖w0‖A(I) ≤ C‖h‖L(I) (2.11)

where
1

n
< δ <

1

n− 1
, s >

1

2
+ δ, s′ = 1 − s

and p′ the dual exponent of p, so that p′, s′ satisfy (2.7) for r′ = 2.

Proof: We first prove the estimate for the term ‖w0‖E(I).
By duality and since E0(t)

∗ = E0(−t), we get

‖w0(t)‖H1
2

= ‖

∫ t

0

E1(t− τ)h(τ)dτ‖H1
2

= ‖

∫ t

0

E0(t− τ)h(τ)dτ‖L2

and, with p′, p dual exponents,

‖w0‖
2
L∞(I,H1

2 ) ≤ (

∫

I

(‖

∫ t

0

E0(t− τ)h(τ)dτ‖Bs̄
p′
)2dt)

1
2‖h‖L2(Bs̄

p) (2.12)

If

s̄ =
1

2
(n+ 1 + θ)δ = nδ −

1

2
+

1

2
(1 − (n− 1)δ) +

1

2
θδ

where by (2.5), θδ > 1−(n−1)δ and hence K ∈ L1, we get by Young’s inequality
and (2.12)

‖w0()‖
2
L∞(I,H1

2 ) ≤

(

∫

I

(

∫ t

0

K(t− τ)‖h(τ)‖Bs̄
p
dτ)2dt)

1
2‖h‖L2(Bs̄

p) ≤

‖K‖L1(Ī)‖h‖
2
L2(Bs̄

p)

where s̄ > nδ − 1
2

+ (1 − (n− 1)δ) = 1
2

+ δ.
The estimate of the second term follows from a slight variation of the inequalities
above and Proposition 2.1:

‖w0‖A(I) = (

∫

I

‖

∫ t

0

E1(t− τ)h(τ)dτ‖2
Bs′

p′
dt)

1
2

≤ (

∫

I

(

∫ t

0

K(t− τ)‖h(τ)‖Bs̄
p
dτ)2dt)

1
2

≤ (

∫

I

‖h‖2
Bs̄

p
)

1
2 = ‖h‖B(I)
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In the same way,

‖w0‖A(I) = (

∫

I

‖

∫ t

0

E1(t− τ)h(τ)dτ‖2
Bs′

p′
dt)

1
2

≤

∫

I

‖E1(· − τ)h(τ)‖A(I)dτ

≤ C

∫

I

‖h(τ)‖L2dτ = C‖h‖L1(I,L2)

which completes the proof. �

Remark In (2.11) we may obviously let A(I) = Lr′(I, B
p′

p′ ) for any tripple (r′, p′, s′)
satisfying(2.7) or (2.8).

In contrast to Proposition 2.5 below, Proposition 2.3 is, with the exception of
(2.11), only valid for the Klein-Gordon equation (i.e. m > 0), since (2.4), and so
(2.5), is not valid for the wave equation (i.e. m=0 in (1.1)) with θ > 0.

Proposition 2.4. With the assumptions of Proposition 2.3,define q by 1
q

= (n− 1)δ ≤ 1,
so that

(n− 1 + θ)δq > 1 > (n− 1 − θ)δq,

by which K ∈ Lq. Then

‖w0‖A(I)) ≤ C‖K‖Lq(Ī)‖h‖B(I) (2.13)

where A = Lr′(I;B
s′

p′) and B = Lr(I;B
s+ǫ
p ) and with s = 1 − s′ and (r′, p′, s′)

satisfies the assumptions of the Strichartz inequality (2.8). As above, r, p are dual
exponents to r′, p′.

Proof: Since K ∈ Lq, the proposition follows immediatly from

w0(t) =

∫ t

0

E1(t− τ)h(τ)dτ ,

the estimate (2.2) and Young’s inequality with

1

r
=

1

r′
− (n− 1)δ + 1 ,

and

s = (n+ 1 + θ)δ − 1 + s′ =
1

2
(n+ 1)δ + θδ = 1 − s′ + ǫ

since by (2.8), 1
r′

= 1
2
(n− 1)δ and s′ = 1 − 1

2
(n+ 1)δ. �
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If we allow θ = 0 in (2.3), (2.5) we get the following estimate, which, in particular
that of the H1

2 -norm, originates from Kapitanski [24].

Proposition 2.5. Let w0 be defined by (2.9). Then

‖w0‖e + ‖w0‖A ≤ C‖h‖B (2.14)

where A = Lr′(B
s
p′) and B = Lr̄(B

1−s̄′

p̄ ), and where (r′, p′, s′) and (r̄′, p̄′, s̄′) satis-
fies the assumptions of the Strichartz inequality.
The same inequality holds with integrals over intervals I ⊆ R+ in time.

Proof: [after Pecher [34]] In the proof of Proposition 2.3 we let θ = 0, we may
take (with equality) s̄ = 1

2
(n + 1)δ = nδ − 1

2
(1 − (n − 1)δ), 1

r′
= 1

2
(n − 1)δ =

1
2
− 1

2
(1 − (n − 1)δ) by (2.7). Then substitute Young’s inequality by Hardy’s

inequality for (n− 1)δ < 1.
For the second term (with (r′, p′, s′) in A independent of the corresponding pa-
rameters (r̄′, p̄′, s̄′) for B), interpolate with the estimate

‖w0‖A(I) ≤

∫

I

‖E1(· − τ)h(τ)‖A(I)dτ

≤ C

∫

I

‖h(τ)‖L2dτ = C‖h‖L1(I,L2)

as follows from Proposition 2.2, in analogue to the proof of the estimate of the
second term in Proposition 2.3.
We thus arrive at a proof for the non-endpoint case. The the proof of the endpoint
case is more complex, and we have to refer Keel and Tao [25]. �

For a complete proof (in homogeneous norms for the wave equation), see again
Keel and Tao [25] (cf. also Ginibre and Velo [15] and Pecher [34]).
The following consequence of Proposition 2.5, as well as the obvious analogue for
Proposition 2.4, will be useful:

Corollary 2.1. Let n ≥ 3 and let u and v be solutions of the NLKG, and
u0, and v0 the corresponding solutions of the linear equation. We use the fol-
lowing notation and assumptions

δ =
1

2
−

1

p′
, 1 =

1

p′
+

1

p
, p′ ≥ 2, s =

1

2
(n+1)δ, γ = s and γ̄ = 1−s,

1

r′
= 1−

1

r
=

1

2
(n−1)δ

It is also assumed that (n− 1)δ ≤ 1 , with strict inequality for n = 3.
Let 0 ≤ θ ≤ 1. Then

‖u− v‖L∞(H1
2 ) + ‖u− v‖Lr′(B

γ

p′
) ≤ C‖u0 − v0‖L∞(H1

2 )

+ C‖f(u) − f(v)‖
Lr(θ)(B

θγ̄

p(θ)
) (2.15)
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where
1

r(θ)
= θ

1

r
+ (1 − θ), δp(θ) = θδ, p(θ) ≤ 2

and, in the previous notation, with σ ∈ R,

‖u− v‖Lr′(B
γ−σ

p′
) ≤ C(‖u0 − v0‖L∞(H1−σ

2 ) + ‖f(u) − f(v)‖
Lr(θ)(B

θγ̄−σ

p(θ)
)) (2.16)

The same inequality holds with integrals over intervals I ⊆ R+ in time.

Proof: Notice that although u and v are solutions of the NLKG, the estimates
are in fact linear estimates obtained from Proposition 2.5.
In view of (2.6), the first estimates is a direct interpolation of the estimates in
Proposition 2.5 between B = L1(L2) and B = L2(B

γ̄
p ).

In the same way, the second estimate, is obtained using the isometry of the
solution operator of the Klein-Gordon equation on Hs

2 in (2.15). �

Remark If we instead use the estimate in Proposition 2.1, we get an additional
factor ‖K‖θ

L1
in front of ‖f(u) − f(v)‖

2.3 Space time integral (STI) estimates

Using different spaces and methods, the author [8] and Ginibre and Velo [13]
obtained space-time integral inequalites (STI), originally in order to prove the
existence of scattering operators on the energy space for the NLKG (cf. Section
5.3 below), that implied results for the NLKG which are very similar to the
Strichartz estimates.
The original STI estimates required K(t) to be integrable, i.e. that (2.5) holds for
some θ > 0. The estimates for δ ≤ 1

n
follows from interpolation of the estimate

for δ > 1
n

with the energy estimate (using the convexity of the Lp-norm).
The end point case (n−1)δ = 1, r′ = 2 follows from the corresponding result for
the Klein-Gordon equation and Theorem 1 of [8]. For convenience we will give
a proof in Section 4 as a consequence of the corresponding case for the Klein-
Gordon equation, an end point STI estimate for the NLKG in Lloc

2 (Bγ
p′) -which

we will prove here, and which can also be found in [8] - and the “close to the end
point” uniform estimate in the proposition.
Since the uniform bound in the STI estimates in terms of the energy of u (or,
equivalently, of u0) wasn’t explicit in [8], we scetch a proof of the STI estimate
with stress on the uniform energy bound in an appendix, following the proof in
[8].

Proposition 2.6 (STI). Let n ≥ 3, s′ ∈ Rn and r′ ≥ 2. Let u0 be a finite
energy solution of the Klein-Gordon equation, and u the corresponding solution
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of the NLKG (1.1) with the same finite energy initial data, and where f satisfies
conditions (A) and (B). Let δ+ = max(δ, 1

n
). Then if 1 + 4δ+ < ρ < ρ∗ = n+2

n−2
,

u ∈ Lr′(I;B
s′

p′) ≡ A(I), any interval I ⊆ R+

and
‖u‖A(I) ≤ C(‖u0‖e)

with C independent of I, depending continuously on the energy norm of u0 , pro-
vided (r′, p′, s′) satisfy the conditions (2.7) in Proposition 2.1, and in particular,
the conditions (2.8) in the Strichartz estimates.

The next result is an STI for critical case ρ = ρ∗ and the Shatah - Struwe solutions
introduced in Section 1.
Part (i) of the Proposition is due to Bahouri and Shatah [2], and the uniform
energy bound for n = 3, as well as the statement (iii) for n = 3, is due to Bahouri
and Gerard [1].

Proposition 2.7. Let ρ = ρ∗ and let u be a Shatah - Struwe solution of the
critical NLKG (with finte energy data). Then

(i) u ∈ Lq′(B
1
2

q′), n ≥ 3, (n+ 1)δq′

(ii) u ∈ L2(B
γ
p′), n ≥ 4, (n− 1)δp′ = 1, and γ = 1

2
− δp′

(iii) u ∈ Lr′(I;B
s
p′) where (r′, p′, s) satisfy (2.8).

The norm in (ii) and (iii) is bounded by an increasing function of the energy of

the initial data, which for n ≥ 4,may depend also on u, v ∈ Lq′(B
1
2

q′).

We will in Section 4 give a proof of (ii), showing that it is a consequence of (i) and
of the fact that the energy of the unique Shatah - Struwe solution is conserved,
i.e. constant in time (cf. Shatah and Struwe [39] and also[40], in the proof of
Theorem 6.6).

3 Basic estimates of f(u) and f(u) − f(v).

3.1 Some initial observations

By Corollary 2.1, Lipschitz and Hölder estimates of u 7→ f(u) in choosen Besov
spaces should be natural tools to obtain the corresponding energy space estimates

11



for the solution operator Et of (1.1).
First, the Besov spaces can be described in terms of integrals of moduli of conti-
nuity: Let fh(·) = f(· + h), and let ωp(τ, f) denote the modulus of continuity of
f in Lp,

ωp(τ, f) = sup
|h|≤τ

(‖fh − f‖Lp
).

Then for 1 ≤ p ≤ ∞ and 0 < s, Bs,q
p has for non-integers s the intrinsic norm

(among many)

‖f‖B
s,q
p

≃ ‖f‖Lp
+

(
∫ 1

0

(τ−sωp(τ, f))q dτ

τ

)
1
q

(3.1)

If s is an integer, the modulus of continuity is replaced by the second order
modulus of continuity:

ω1
p(τ, f) = sup

|h|≤τ

(‖fh − 2f + f−h‖Lp
).

Next,using (3.1) we will need estimates of ωp(τ, f(u)) in tems of ωp̄(τ, u), and of
ωp(τ, f(u) − f(v)) in terms of ωp̄(τ, u− v), for some suitable p̄.
This will be handled as follows: Let f(z) satisfy conditions (A) , with 1 < ρ.
Defined w by

f(u) − f(v) = f ′(w)(u− v) (3.2)

The w(u, u) = u, and by the mean value theorem, w(u, v) is bounded by |u|+ |v|.
If condition (A) holds, we get the desired estimate for ωp(τ, f(u)) from (3.2) and
the preceeding remarks:

|f(uh) − f(u)| ≤ C(|u| + |uh|)
ρ−1|uh − u|

For the estimate of ωp(τ, f(u) − f(v)) we have (with wh = w(uh, vh) and w =
w(u, v))

|f(uh) − f(vh) − (f(u) − f(v))| ≤ |f ′(wh) − f ′(w)||u− v|

+ |f ′(wh)||(uh − u− (vh − v)|

If |u− v| ≤ |uh − u| or |u− v| ≤ |vh − v| we get

|f(uh) − f(vh)− (f(u)− f(v))| ≤ C(|wh|
ρ−1 + |w|ρ−1)(|uh − u|+ |vh − v|) (3.3)

which takes care of the estimate of ωp(τ, f(u) − f(v)) in this case. If |uh − u| +
|vh − v| ≤ |u − v|, u 6= v, we need an estimate of f ′(wh) − f ′(w) in terms of
|uh − u| and |vh − v|. Under condition (C), i.e when f(z) = |z|ρ−1z, the estimate
follows from the Lipschitz continuity of w(u, v) for this function. In general the
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Lipschitz continuity of w(u, v) on the diagonal u = v and condition (A) result in
the following estimate

|f ′(w̄)− f ′(w)| ≤ C(|ū− u|(ρ−1)− + |v̄− v|(ρ−1)−)(|u|+ |ū|+ |v|+ |v̄|)(ρ−2)+ (3.4)

provided

|u− v| ≥ |ū− u| + |v̄ − v|, w̄ = w(ū, v̄) and w = w(u, v) (3.5)

Since (3.4) will be used in the proof of the Lipschitz estimates in section 3.4, we
give the details of the elementary proof.

Proof: [of (3.4)] As w(u, u) = u and w(u, v) is Lipschitz continuous on the
diagonal u = v, assumption (A) proves (3.4) in case u = v. It is then sufficient
to prove (3.4) for u 6= v,assuming that (3.5) holds. We also assume that ρ ≤ 2.
The extension to ρ > 2 should be obvious.We first handle the case v̄ = v.
Then

f(ū) − f(v) = f ′(w̄)(ū− v)

f(u) − f(v) = f ′(w)(u− v)

and so
f(ū) − f(u) = (f ′(w̄) − f ′(w))(u− v) + f ′(w̄)(ū− u)

Hence

(f ′(w̄) − f ′(w))(u− v) = f(ū) − f(u) − f ′(w̄)(ū− u)

= f ′(ū)(ū− u) + (f ′(w(ū, u)) − f ′(ū))(ū− u) − f ′(w̄)(ū− u)

= (f ′(w(ū, u)) − f ′(ū))(ū− u) − (f ′(w̄) − f ′(ū))(ū− u)

Since w(·, ·) is Lipschitz continuous on the diagonal, we get from (A) that

|f ′(w̄) − f ′(w)||u− v| ≤ C(|ū− u|1+(ρ−1) + |ū− u||ū− v|ρ−1)

≤ C(|ū− u|1+(ρ−1) + |ū− u||u− v|ρ−1)

If then |ū− u| ≤ |u− v|, we obtain for v̄ = v:

|f ′(ū, v) − f ′(u, v)| ≤ C|ū− u|ρ−1 (3.6)

Since

|f ′(w(ū, v̄)) − f ′(w(u, v)| ≤ |f ′(w(ū, v̄)) − f ′(w(u, v̄)| + |f ′(w(u, v̄)) − f ′(w(u, v)|

symmetry and (3.6) proves (3.4) in case (3.5) holds. �
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3.2 Besov- and Sobolev space estimates of u 7→ f(u)

The following estimate of f(u) is well known and is a strightforward application
of Hölder’s inequality, but as it contains an unusual twist in case ρ ≤ 2, we give
a scetch of that part of the proof.

Lemma 3.1. Let f satisfy (A) with ρ < ρ∗ = n+2
n−2

, and δ ≤ 1
n−1

, with strict
inequality for n = 3. Assume that 1 ≥ s, s′ > 0 real with s−s′ = (n+1+θ)δ−1,
θ ∈ [0, 1], and ǫ ≥ 0. Let 1 − ρ < η < 1. Then

‖f(u)‖Bs+ǫ
p

≤ C‖u‖ρ−1+η

H1
2

‖u‖1−η

Bs′

p′

(3.7)

where for ρ ≤ 2,
s + ǫ− s′

1 − s′
+ 1 − η ≤ ρ ≤ 2 − η (3.8)

provided

1 + 4δ − 2δη ≤ ρ ≤ ρ(n, δ) − 2η
n+ δ + s′

n− 2
− 2θ

δ

n− 2
− 2ǫ

1

n− 2
(3.9)

ρ(n, δ) =
n+ 2(n− 1)δ

n− 2

Remark For suitable choice of s, and ǫ small, any positive s′ ≤ s′0 = 1− 1
2
(n+1)δ is

allowed: in fact, a strightforward computation shows that we may take s′ ≤ s′0+σ
with σ < 1

2
− δ for ρ ≥ 2, i.e n=3,4 and 5 (notice that δ(n − 1) < 1 for n = 3),

and with σ < 3
2
δ, for ρ < 2, i.e. n ≥ 6 (and partly for n = 5).

Proof: Assume first that η = 0 and that ρ ≤ 2.Let s̄ = s+ ǫ.
We shall use (3.1) and (3.2) to prove (3.7). With uh = u(·+h), and wh = w(uh, u),

|h|−s̄|f(uh) − f(u)| ≤ |h|−s̄|f ′(wh)||uh − u|

where
|f ′(wh)| ≤ C(|uh| + |u|)ρ−1

Let a = (ρ − 1)s′, b = (ρ − 1)(1 − s′) and c = 2 − ρ, so that a + b + c = 1 and
a+ b = ρ− 1. By (3.8) we have s̄ ≤ s′ + (ρ− 1)(1 − s′), and so,

|h|−s̄|uh − u| ≤ |h|−s′|h|(ρ−1)(1−s′)|uh − u|

≤ (|h|−1|uh − u|)a(|h|−1|uh − u|)b(|h|−s′|uh − u|)c

Taking L2-norm in space of the two first factors on the right, and the Lp′-norm
of the third factor, we get using (3.1) and Hölder’s inequality that

‖f(u)‖Bs+ǫ
p

≤ C‖u‖a+b

H1
2
‖u‖c

Bs′

p′
‖u‖ρ−1

Lr
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with 1
r
≥ 1

p′
− s′

n
, provided (3.9) with η = 0 holds.

Next replace ρ by ρ + η ≤ 2 in the above argument and we get (3.7), provided
(3.8) and (3.9) hold.
The proof of (3.7) for ρ > 2, ρ+ η > 2 is strightforward application of Hölder’s
inequality and (3.1). �

We will also need a counterpart of Lemma 3.1 in case 0 ≥ s′ ≥ 1 − nδ. In that
case (2 + θ)δ + ǫ ≥ s ≥ (1 + θ)δ + ǫ, and so s < ρ− 1. Splitting |h|−s|uh − u| =
(|h|−

s
ρ−1 |uh − u|)ρ−1|uh − u|2−ρ we now get:

Lemma 3.2. . Under the assumptions of Lemma 3.1, assume now that 0 ≥ s′ ≥
1 − nδ. Then

‖f(u)‖Bs
p
≤ C‖u‖ρ−1+η

H1
2

‖u‖1−η
Lr

(3.10)

with
1

r
=

1

p′
−
s′

n

Comment Since s′ ≤ 0 we have 2 < r ≤ p′, with equality only for s′ = 0, we can’t
use Sobolev embedding. The following partial substitute will prove sufficient,

however. Let s′ ≤ 0, B
s′(θ)
r(θ,s′) = (H1

2 , B
s′

p′)θ be the interpolation space between

H1
2 = B1

2 and Bs′

p′ . Let r(s′) = r(θ, s′) for θ such that s′(θ) = θ + (1 − θ)s′ = 0.
Then B0

r(s′) ⊆ Lr(s′), and, a strightforward computation shows that

1

r(s′)
=

1

p′
−
s′

n

nδ

1 − s′
. (3.11)

In particular, 2 < r(s′) ≤ r, with equality only for s′ = 0 and, for n ≥ 4, also for
s′ = 1 − nδ.
The following consequence of (3.11) will be useful later: We compute r(s′) in
(3.11) with s′ replaced by s′ + ǫ, ǫ > 0:

1

r(s′)
=

1

p′
−
s′ + αǫ

n
(3.12)

α(s′) =
nδ

1 − s′ − ǫ
(1 +

s′

n

1

1 − s′ − ǫ
)

. Then α(s′) is increasing on [1 − nδ, 0] and so α ≥ α(1 − nδ) ≥ 1 − 1
n
δ ≥ 5

6
for

n ≥ 3 and ǫ small enough . In addition α ≥ 1 for s′ ≥ −2
3
δ and α(0) = nδ

1−ǫ
.

Summing up this discussion for future reference, we have the following lemma. .

Lemma 3.3. Let n ≥ 3, δ ≤ 1
n−1

, and let 0 ≥ s′ ≥ 1− nδ (by which nδ ≥ 1).Let

ǫ = ǫ(n) be small (depending on n). Define r(s′) by (H1
2 , B

s′

p′) = B0
r(s′) where

θ+(1−θ)s′ = 0. Then r(s′) is given by(3.11), B0
r(s′) ⊂ Lr(s′). If u ∈ Lloc

2 (Lr(s′))∩

Lloc
2 (Bs′+ǫ

p′ ) then u ∈ Lloc
2 (Lr(s′+ǫ′)) for 0 ≤ ǫ′ ≤ αǫ, with α ≥ 1− 1

n
δ for s′ ≥ 1−nδ,

and α ≥ 1 for s′ ≥ −2
3
δ.
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3.3 Spacetime integral estimates of u 7→ f(u)

We shall establish Time Space Integral (STI) estimates of u 7→ f(u), as they
appear e.g. in Propositions 2.3 and 2.4 and their corollaries, in terms of the
norms of u given in Proposition 2.1.
We assume throughout that (A) holds, that n ≥ 3, and that 1+ 4

n
< ρ < 1+ 4

n−2
=

ρ∗.
We use the standard notation of this paper. Then let γ̄ = 1− γ, with γ ≤ 1

2
− δ,

with equality for (n− 1)δ = 1 and with γ < 1
2
− δ otherwise, to be choosen close

to this upper limit. We also define

1

r(θ)
= 1 −

1

2
θ,

1

p(θ)
= 1 + δθ, 0 ≤ θ ≤ 1

Define the integer β = ρ + θ − 2, 0 ≤ θ < 1. Then β = 0 for ρ ≤ 2, and in
particular for n ≥ 6 (when ρ∗ ≤ 2).
Notice that γ̄ − γ ≈ 2δ, with equality for (n− 1)δ = 1.
Let I ⊆ R+ be an interval, and let s and s′ be real. We will for short write

B(s; I) = Lr(θ)(I;B
s
p(θ)),

and
A(s′; I) = L2(I;B

s′

p′)

and also X1
e (I) = L∞(I;H1

2 ) for the first component of the energy space Xe(I) =
L∞(I;H1

2 ×L2) over I. We let ‖ · ‖e(I) and ‖ · ‖e1(I) denote the norm in Xe(I) and
X1

e (I), respectively.
If s = θγ̄ and s′ = γ, we write B(s; I) = B(I) and A(s′; I) = A(I), respectively.
If I = R+, we drop I in the notation.
As in the previous section we use (3.1) and (3.2) to estimate f(u) in Bs

p(θ. As

before, let h > 0, uh = u(· + h) and wh = w(uh, u). Then by (3.2) and condition
(A),

|f(uh) − f(u)| ≤ |f ′(wh)|uh − u| ≤ C(|uh| + |u|)ρ−1|uh − u|

Assume that ǫ ≥ 0 and 0 ≤ θ < 1.With s = θγ̄ + ǫ and γ̃ = γ for ρ < 2, and
γ̃ = 1 otherwise, we get, provided s ≤ γ̃ (see [d], [d’] below)

|h|−s|uh − u| ≤ (|h|−γ̃|uh − u|)
s
γ̃ |uh − h|1−

s
γ̃

and so for h small

|h|−s|f(uh) − f(u)| ≤ C|u|ρ−
s
γ̃ (|h|−γ̃|uh − u|)

s
γ̃

Then by (3.1), with a constant C independent of u and I,

‖f(u)‖B(θγ̄+ǫ;I) ≤ C‖u‖ρ−β

A(γ;I)‖u‖
β

e1(I) (3.13)

provided, efter some (strightforward) reductions of “standard” Sobolev and Hölder
estimates, that
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[a ] n+ 2 ≥ ρ(n− 2) + 2ǫ+ 4(1 − (n− 1)δ)

[b ] 1 + 4δ ≤ ρ

[c ] 2 + β − θ = ρ

[d ] ǫ+ (2 − ρ)γ̄ < γ̃, that is with [c]

[d’ ] ǫ < (ρ− 1)γ̄ − 2δ if β = 0

If we let δ = ρ−1
4

for 1
n
< δ < 1

n−1
, and take (n−1)δ = 1 for ρ ≥ 1+ 4

n−1
for n > 3,

while for n = 3 take (n− 1)δ less than and sufficiently close to 1 for ρ ≥ 1 + 4
n−1

,
then [a] through [c] can be satisfied for ǫ = ǫ(n, ρ) > 0 small enough, where in
case β = 0, we assume that [d’] holds. Notice that the right hand side of [d’] is
positive under our assumptions and [b]. The conditon [d] for β ≥ 1 is θγ̄+ ǫ ≤ 1,
which holds for all ǫ ≤ 1 − γ̄ = γ.
Also notice that if β > 1 we may replace β − 1 of the factors ‖u‖e1(I) by the
corresponding L∞(I;Lr̄) for any r̄ such that H1

2 ⊆ Lr̄.
The estimate (3.13) is known in various forms - the one presented here will suit
our purposes: The choice of γ and γ̄ according to Proposition 2.1 rather than
the Strichartz estimate Proposition 2.2, is caused by the use of the L2-norm in
time - which is not possible for (n− 1)δ < 1 in the clasical Strichartz estimates.
The choice made here gives slightly better estimates for 1

n
< δ < 1

n−1
then the

use of the classical Strichartz estimate would give (the lover bound for n = 6,
for example). For global non-uniform estimates (i.e estimates over compact time
intervals), the choice of (r′, p′, γ) as in the Strichartz estimate is optimal, using
that Lloc

r′ ⊆ Lloc
2 , however.

If I is a compact subinterval of R+, formally [c] can be relaxed. If we want esti-
mates for ρ close to ρ∗, however, we not only have to take (n− 1)δ close to 1 and
ǫ close to 0, but we will be forced by [a] (most easily seen before simplification)
to have essentially [c] satisfied. The restrictions in case ρ close to ρ∗ will thus be
the same as in the uniform case.

3.4 Lipschitz estimates of u 7→ f(u)

We keep the notation of the preceeding section. This time we use (3.1) and (3.4)
to estimate the Bs

p(θ)-norm of f(u)−f(v). With wh = w(uh, wh) and w = w(u, v)

we have by (3.2)

(f(uh)−f(vh)−(f(u)−f(v))) = (f ′(wh)−f
′(w))(u−v)+f ′(wh)(uh−vh−(u−v))

Let s ≥ σ ≥ 0. Write

|h|−(s−σ)|uh − u|(ρ−1)− = (|h|
− s−σ

(ρ−1)
− |uh − u|)(ρ−1)−
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and correspondingly for vh− v. By (3.3) and (3.4) we then get

|h|−(s−σ)|f(uh) − f(vh) − (f(u) − f(v))|

≤ C(|h|
− s−σ

(ρ−1)
− (|uh − u| + |vh − v|))(ρ−1)−(|u| + |uh| + |vh| + |v|)(ρ−2)+ |u− v|

+ C(|uh| + |vh|)
ρ−1|h|−(s−σ)|(uh − u) − (vh − v)|

Let s = θγ + ǫ′, ǫ′ > 0. Application of (3.1) and strightforward use of Hölder’s
and Sobolev’s inequalities give,

‖f(u) − f(v)‖B(s−σ,I) ≤ C(‖u‖ρ−β−1
A(γ,I) ‖u‖

β

e1(I) + ‖v‖ρ−β−1
A(γ,I) ‖v‖

β

e1(I))‖u− v‖A(γ−σ,I)

(3.14)
provided, as in Section 3.3, conditions [a] through [d] there hold with ǫ replaced
by ǫ′, and in addition (as before with γ̃ = γ for ρ < 2, and equal to 1 otherwise)

[e ] θγ̄ − σ + ǫ′ ≤ γ̃(ρ− 1)−, and so if β = 0, with [c],

[e’ ] σ ≥ γ̄ − (ρ− 1) + ǫ′

By the discussion in section 3.3, conditions [a] through [d’] hold under our as-
sumptions on ρ, δ, γ and γ̄ for ǫ′ > 0 small enough.
Hence for β = 0 (3.14) holds if σ ≥ 0, such that also [e’] is satisfied for sufficiently
small ǫ′ > 0. If β ≥ 1 we get instead of [e’] that θγ̄ − 1 + ǫ′ ≤ σ, which holds for
σ = 0, again with ǫ′ > 0 sufficiently small.
Thus for n = 3, 4 and 5 and for ρ > 2 and 1 + 4

n
< ρ < 1 + 4

n−2
= ρ∗ we have

that σ = 0, i.e. A(I) ∋ u 7→ f(u) ∈ B(I) is Lipschitz continuous. This is also
the case if 0 > γ̄ − (ρ − 1), i.e. if n ≤ 6. In addition σ = 0 also for n = 7 and
8 with lower bounds of ρ equal to 1 + 4

n−1
and 1 + 4.5

n−1
, respectively, and so we

have Lipschitz continuity also in this case.
Let us point out that (even with additional regularity of f at 0) a limitation of
the dimension n for which the mapping A(I) ∋ u 7→ f(u) ∈ B(I) is Lipschitz
continuous is expected in a qualitative sense from the results in [10]. See also the
discussion in [17] on p. 549, related to Lemma 2.3 in that paper.
In [10] it was also proved that for large dimensions n, in case of Hölder continuity
of the mapping of order α, one should expect α = O( 1

n
). A step towards this

result is the following crude but useful estimate, which is an immediate conse-
quence of (3.13) and (3.14). We again give the uniform global estimate in time;
the corresponding estimates for subintervals I of R+ are the same (with constants
independent of I). Since we have Lipschitz estimates for n ≤ 6, we assume that
n > 6 and so in particular the integer β = 0.

‖f(u) − f(v)‖B(θγ̄+ǫ′) ≤ C(‖u‖ρ−α
A + ‖v‖ρ−α

A )‖u− v‖A(γ−σ) (3.15)

where α = ǫ
σ+ǫ

, with ǫ > 0, with ǫ′ > 0 sufficiently small satisfying the assump-
tions of (3.13) and σ those of (3.14), that is, spelling out the choice of γ and
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γ̄,

ǫ = min(
(n− 2)(ρ∗ − ρ)

2
− 2(1 − (n− 1)δ), (ρ− 1)(

1

2
+ δ) − 2δ)

and

σ = max(
1

2
+ δ − (ρ− 1) + ǫ′, 0)

In particular, σ = 0 implies α = 1 in (3.15), which in view (3.14) of is at least
one redeeming fact in the choice of α.
The derivation of (3.15) is short: To simplify the notation, write s = θγ̄ + ǫ′. By
convexity

‖f(u) − f(v)‖B(s) ≤ ‖f(u) − f(v)‖1−α
B(s+ǫ)‖f(u) − f(v)‖α

B(s−σ)

with α = ǫ
σ+ǫ

. Next estimate the first factor by (3.13) and the second by (3.14).
This proves (3.15) and gives the conditions on ǫ and σ as stated above.
Notice that, as expected, α = O( 1

n
) as n tends to ∞.

3.5 Comments on the critical case ρ = ρ∗

In the critical case ρ = ρ∗ the estimates (3.7), (3.13), and (3.14) hold with some
restrictions: The parameters θ, ǫ in (3.7) have to be 0, and η has to be ≤ 0. In
the estimate (3.13)and (3.14,) necessarily ǫ = 0, ǫ′ = 0 and β(1 − (n− 1)δ) = 0.
The Hölder estimate (3.15) is then of no interest, since α becomes 0 for σ > 0.
In addition, in the Strichartz estimates the endpoint case n = 3 and (n−1)δ = 1
is excluded, and so (3.13) is of little interest for the critical case for n = 3.
To obtain Lipschitz estimates for the solution operator of the NLKG/NLWE for
n = 3 in the critical case ρ = 5 more refined estimates are necessary (see Bahouri
and Gerard [1]).
The following are simple inequalities which can be used to obtain global (not
necessarily uniform) estimates of the solution for the NLKG/NLWE.
Let 1

q′
= 1

2
− 1

n+1
, n = 3 and 1 < ρ ≤ 5. I will be a compact interval in R+, C(·)

a continuous function of |I|. Then

‖f(u) − f(v)‖L1(I;L2) ≤ C(I)‖u‖ρ−1

Lq′(I;B
1
2
q′

)
‖u− v‖L∞(I;H1

2 )

If n = 4, 1 < ρ ≤ 3 and we use A(I) in the notation above,we get

‖f(u) − f(v)‖L1(I;L2) ≤ C(I)‖u‖ρ−1
A(I)‖u− v‖L∞(I;H1

2 )

We will not pursue these questions further in this paper.
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4 STI estimates, uniqueness and endpoint esti-

mates

4.1 Global non-uniform STI estimates

As pointed out in Section 2, the endpoint estimates in the STI estimates in
the subcritical case follow directly from Theorem 1 in [8]. We will, however, as
promised, include a proof, partly following the exposition in [8], but using the
non-endpoint STI estimates of [8] and Ginibre and Velo, [13], [14].
We will to this end first prove a global non-uniform STI estimate, which includes
(by the endpoint Strichartz estimates) the endpoint estimates in this setting (i.e
in Lloc

2 in time).
We introduce the condition

(∗) (n− 1 + θ)δ > 1 > (n− 1 − θ)δ, , some θ ∈ (0, 1],

s− s′ ≥ (n + 1 + θ)δ − 1, s, s′ real, s ≤ 1

We denote by (*)’ condition (*) without the upper bound (n− 1 + θ)δ > 1.
We then prove the following special case of Corollary 1 in [8].

Proposition 4.1. Assume that (*)’ holds and that s−s′

1−s′
< ρ − 1 if ρ ≤ 2, and

let r′, p′, s′ satisfy the conditions (2.8) in the Strichartz estimate, where r′ =
2, (n − 1)δ = 1 is not allowed for n = 3. Let f satsify condition (A) with
1 + 4δ < ρ < ρ∗ = n+2

n−2
and let u be a solution of the NLKG with finite energy

data. Then u ∈ Lr′(I;B
s′

p′), with a bound continuously depending on I ⊂⊂ R+

and the energy of the data.

Let KM denote the M-fold konvolution with the kernel K1 of Section 2, and KM

the kernel of KM . If we assume that (*) holds,then K1 ∈ L1 ∩ L1+ǫ, some ǫ > 0
by (2.4). If instead only (*)’ holds, then K1 ∈ Lloc

1 ∩ Lloc
1+ǫ.

Let u0 be a solution of the Klein-Gordon equation with finite energy data. Then
by the Strichartz estimate u0 ∈ Lr′(B

s′

p′). For M large enough, if (*) or (*)’ holds,

then KM ∗ ‖u‖
Bs′

p′
∈ L∞ or KM ∗ ‖u‖

Bs′

p′
∈ Lloc

∞ , respectively.

We will also use an elementary estimate:

Lemma 4.1. Let U(t) be an increasing non-negative function for t ≥ 0, with
U(0) = 0, and let A and B be non-negative. Assume that

U(t) ≤ A+BU(t)α, t ≥ 0, α < 1.

Then

U(t) ≤
1

1 − α
A +B

1
1−α
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Using these observations, we prove the following version of Lemma 1.1 in [8]:

Lemma 4.2. Assume that the conditions of Proposition 1 hold. Then there is
an integer M0 such that for M ≥M0

KM‖u(t)‖Bs′

p′
=

∫ t

0

KM(t− τ)‖u(τ)‖Bs′

p′
dτ ∈ Lloc

∞ (R+)

with a bound depending continuously on t and on the energy norm of the initial
data. If (*) holds, and if 1 + 4δ+ < ρ < ρ∗, then

KM‖u(t)‖
Bs′

p′
∈ L∞(R+)

with a bound depending continuously on the energy of the initial data.

Remark In view of Lemma 3.1, the norm of u could be taken in Lr̄ instead, with
1
r̄

= 1
p′
− s′

n
.

To see that the quantities used in the proof of Lemma 4.2 make sense, we first
prove a crude version of Proposition 4.1. In the proof we use a bootstrapping
device introduced in a more precise and complex setting by Ginibre and Velo [13]
used by them to prove a result corresponding to Proposition 4.1. Since we want
to include the global result in Lemma 4.2 we are satisified with the following
result:

Lemma 4.3. Let u satisfy the conditions of Lemma 4.2. Then u ∈ Lloc
2 (Bs′

p′).

Proof: We assume for simplicity that σ = 0 in (2.8).The changes for σ > 0
should be obvious.
Let 0 < δ ≤ 1

n−1
, with sharp upper inequality for n = 3. Define Zs′

p′ by

Zs′

p′ =

{

Lr(s′) ,
1

r(s′)
= 1

p′
− s′

n
, s′ ≤ 0

Bs′

p′ , s′ > 0
(4.1)

Since

u(t) = u0(t) +

∫ t

0

E1(t− τ)f(u(τ))dτ

we get by (2.2), (2.4), Lemma 3.1 and Lemma 3.2,

‖u‖
Bs′+ǫ

p′
≤ ‖u0‖Bs′+ǫ

p′
+ C(t, ‖u‖H1

2
)‖u‖Zs′

p′
(4.2)

Here C(·, H1
2 ) ∈ Lloc

∞ . Assume first that nδ > 1. Here u0 ∈ Lr′(B
s′+ǫ
p′ ) for some

r′ > 2 if s′ + ǫ ≤ 1− 1
2
(n+ 1)δ, and so to Lloc

2 (Bs′+ǫ
p′ ) by the Strichartz estimates,

and Zs′

p′ = Lr(s′) ⊇ H1
2 for s′ = 1 − nδ < 0, and so u ∈ L∞(H1

2 ) ⊂ Lloc
2 (Zs′

p′ ), and
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thus for ǫ > 0 small enough, (4.2) shows that u ∈ Lloc
2 (Bs′+ǫ

p′ ). Invoking Lemma

3.3 we find that u ∈ Lloc
2 (Lr(s′′) with s′′ = s′ + αǫ. Thus, again by Lemma 3.3,

we find that u ∈ Lloc
2 (Bs′′

p′ ). If s′′ < 0, we repeat this argument. Since α ≥ 5
6
> 1

2

we reach either a value of s′′ ≥ 0 or else s′ + ǫ. In the latter case we restart the
process replacing s′ by s′ + ǫ.
In a finite number of steps we reach that u ∈ Lloc

2 (Lp′). If nδ ≤ 1, then s′ = 1 −
nδ ≥ 0, and in that case u ∈ Lloc

2 (Lp′). From then on Zs′

p′ = Bs′

p′ , and with suitable

choice of ǫ we reach by (4.2) in a finte number of steps that s′ + ǫ = 1− 1
2
(n+1)δ,

which proves the lemma. �

Proof: [of Lemma 4.2] Let ‖·‖ denote the norm in Bs′

p′ . Let u0 be the solution of
the Klein-Gordon equation with the same initial data as u. The by the Strichartz
estimates u0 ∈ Lr′(B

s′

p′) with 2
r′

= (n − 1)δ. Then as in (4.2) using Lemma 3.1
with η > 0, we get

‖u(t)‖ ≤ ‖u0‖ + C

∫ t

0

K1(t− τ)‖u(τ)‖1−ηdτ

Multiplying with KM(σ − τ) and integrate over (0, σ):
∫ σ

0

KM(σ − t)‖u(t)‖dt ≤

∫ σ

0

KM(σ − t)‖u0(t)‖dt+ sup
t≤σ

C(

∫ t

0

KM(t− τ)‖u(τ)‖dτ)1−η (4.3)

since
∫ σ

0

KM(σ − t)

∫ t

0

KM(t− τ)‖u(τ)‖1−ηdτdt ≤

∫ σ

0

KM(σ − t)(

∫ t

0

KM(t− τ)‖u(τ)‖dτ)1−η(

∫ t

0

KM(τ)dτ)ηdt

Define

g(t) =

∫ t

0

KM(t− τ)‖u(τ)‖dτ

g0(t) =

∫ t

0

KM(t− τ)‖u0(τ)‖dτ

Then by (4.3)
g(t) ≤ g0(t) + C(t, ‖u‖L∞(H1

2 )) sup
τ≤t

g(τ)1−η

where C(·, ·) is an increasing continuous function in each of the variables By
assumption, g0(t) is uniformly bounded on R+ by the energy norm of the initial
data, and hence the energy bound for u and Lemma 4.1 completes the proof
of Lemma 4.2. If (*) holds, and if 1 + 4δ+ < ρ < ρ∗ then C() can be taken
independent of t ∈ R+, and the uniform version of Lemma 4.2 follows. �
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We are now in position to prove Proposition 4.1

Proof: [ of Proposition 4.1] Again, let ‖ · ‖ denote the norm in Bs′

p′ . By the
Strichartz estimate

‖u0‖ ∈ Lr′ ,
2

r′
= (n− 1)δ

and by Lemma 4.2

KM ∗ ‖u‖ ∈ L∞ ⊆ Lloc
r′ , M ≥M0.

Thus
Kj−1 ∗ ‖u‖ ≤ Kj−1 ∗ ‖u0‖ + CKj ∗ ‖u‖ (4.4)

If Kj ∗ ‖u‖ ∈ Lloc
r′ then by (4.4) Kj−1 ∗ ‖u‖ ∈ Lloc

r′ . Recursion over j now proves
Proposition 4.1. �

4.2 Uniqueness

Neither uniqueness nor energy conservation was assumed in the proof of Propo-
sition 4.1, only the energy inequality providing uniform energy bound on R+.
Uniquness is however an important ingredience in the proof of the uniform STI
estimates (originally in the non-endpoint estimates) and implies energy conserva-
tion. We will here give a proof of the uniqueness of (weak) finite energy solutions
of the NLKG under the assumption (A) and for 1 ≤ ρ < ρ∗ = n+2

n−2
, n ≥ 3, i.e.

the subcritical case, based on Proposition 4.1.
The result as such is due to Ginibre and Velo [13] (for earlier results, see Glassey
and Tsusumi [19]).

Theorem 3 (Uniquness). Let 1 ≤ ρ < ρ∗ and assume that condition (A) holds.
Then for any finite energy initila data, the NLKG has a unique weak finite energy
solution.

Proof: Existence (without limitations on ρ ≥ 1) for finite energy solutions was
proved by Segal already 1962-63 ([37], [38]). The argument (and later modifica-
tions) is a compactness argument that doesn’t imply uniqueness.
Let u and v be finite energy solutions of the NLKG with the same initial data. For
the validity of the inequalities which will follow, notice that for u, v ∈ L∞(H1

2 ) ⊆
L∞(Lp′).
For 1 + 4

n−1
≤ ρ ≤ ρ∗ = 1 + 4

n−2
,

‖f(u) − f(v)‖Lp
≤ h(u, v)‖u− v‖Lp′
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where

h(u, v) ≤ C(‖u‖ρ−1
B + ‖v‖ρ−1

B ), C = C(n, p′) constant

B = Bs′

p′ , δ =
1

n + 1
, s′ =

1

2
−

1

2
δ

which is easily verified by strightforward application of Hölder’s inequality and
Sobolev embedding. The Strichartz estimates and Proposition 4.1 show that
u ∈ Lr′(B), 1

r′
= 1

p′
− 1

2
δ. This part of Proposition 4.1 can be proved without the

use of Lemma 3.2 and Lemma 3.3. Hence for t ≤ 1

‖u(t) − v(t)‖Lp′
≤

∫ t

0

K(t− τ)h(u(τ), v(τ))‖u(τ) − v(τ)‖Lp′
dτ

where
K(t) ≤ Ct−

n−1
n+1 , 0 < t ≤ 1

Since
n− 1

n+ 1
+
ρ− 1

r′
< 1 for ρ− 1 <

4

n− 2
Young’s inequality shows that

I(t) =

∫ t

0

K(t− τ)h(u(τ), v(τ))dτ

is continuous and I(0) = 0. It follows that

‖u(t) − v(t)‖Lp′
≤ I(t) sup

0≤τ≤t

‖u(τ) − v(τ)‖Lp′
(4.5)

If ρ ≤ 1 + 4
n−1

, we apply Lemma 3.2 with η = 0, θ = 0, and ǫ = 0. Then
first take nδ = 1 and s = δ, s′ = 0; the estimate (4.5) follows as above for
1 + 4

n
≤ ρ ≤ 1 + 4

n−1
. If ρ ≤ 1 + 2

n−2
, then δ = 0, i.e. p′ = 2 is allowed, and we

get the lower bound 1 ≤ ρ in (4.5). Hence if we have (4.5) for 1 + 4δ′ ≤ ρ < ρ∗,
and if 4δ′ ≤ 2

n−2
, we may take δ = 0 in the next step, and (4.5) follows for the

whole range 1 ≤ ρ < ρ∗. If 4δ′ > 2
n−2

, we have δ = αδ′, where by Lemma 3.2

4δ′ ≤ ρ− 1 <
2(n− 2)δ + 2

n− 2

and so a strightforward computation gives

α =
2(n− 2)δ′ − 1

(1 + δ′)(n− 1)δ′

by which 1
2
> α > 0. After a finite number of steps we then reach 4δ ≤ 2

n−2
.

Thus (4.5) is proved with I(0) = 0, I(t) continous and increasing. It follows that
for 0 < t ≤ 1,

sup
0≤τ≤t

‖u(τ) − v(τ)‖Lp′
≤ I(t) sup

0≤τ≤t

‖u(τ) − v(τ)‖Lp′

and letting t→ 0 the Proposition is proved. �
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4.3 Endpoint STI estimates for the NLKG

Proof: [ of Proposition 2.7] As mentioned the proof of (i) can be found in [39],
[40] and for the estimate over all of R+ in time, in Bahouri and Shatah [2],
formally stated only for n = 3, but as commented in the end of that paper, easily
extended to all n ≥ 3. The uniform energy bound for n= 3 in (i) is due to Bahouri
and Gerard [1]. It remains to prove (ii):
The Shatah - Struwe solution of the critical NLKG:
Let u0 be a solution of the Klein-Gordon equation. Then there is a solution uk

of the NLKG (1.1) with critical nonlinearity (i.e. ρ = ρ∗) with the same initial
data as u0, but with f satisfying (C) replaced by fk:

fk(z) = zmin(|z|, k)ρ∗−1

Notice that fk satisfy conditions (A) and (B) for ρ < ρ∗,and in particular uk

satisfies the endpoint STI of Proposition 2.6, though of course not uniformly
in k. A (subsequence of) uk converges weakly to a finite energy solution u -
the Shatah - Struwe solution - of the NLKG (1.1): This solution u is unique in

C(H1
2 × L2) ∩ L

loc
q′ (B

1
2

q′).The (given sub-) sequence uk can be shown to converge
to u in H1

2 and has the same (conserved) energy as u (and u0). We first treat the
case n ≥ 6: Let ρ = ρ∗ in the remainder of this proof.
Let I = (t0, t0+t) ⊆ R+, t > 0 finite. Then by Corollary 2.1, and the STI applied
to uk (which, together with the above remark on fk, ensures the boundedness of
the norms)

‖uk‖L2(I;Bγ

p′
) ≤ C‖u0‖L∞(I;H1

2 ) + ‖fk(u
k)‖

Lr(θ)(I;Bθγ̄

p(θ
)

with
1

r(θ)
=

1

2
+ (1 − θ)

1

2
, δp(θ) = θδp′, p(θ) ≤ 2, 0 ≤ θ ≤ 1.

By a variation of (2.1) we have (with ρ = ρ∗),for ǫ > 0 choosen such that ρ−ǫ < 1,

‖fk(u
k)‖

Lr(θ)(I;Bθγ̄

p(θ
) ≤ C0‖u

k‖ǫ

Lq′ (I;B
1
2
q′

)
‖uk‖ρ−ǫ

L2(I;Bγ

p′
)

(4.6)

where
1

2
+ θδp′ ≥ (ρ− ǫ)

n− 3

2n
+ ǫ(

n− 3

2n
+

1

n(n+ 1)
) + θ

γ̄

n

and
1

2
+ θδp′ ≤ (ρ− ǫ)(

1

2
− δp′) + ǫ(

1

2
− δq′)

and additionally (for the time integrals),

1

r(θ)
= 1 − θ

1

2
=
ρ− ǫ

2
+
ǫ

q′
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which are satisfied if with θ̄ = θ − ǫ 2
n+1

,

2 − θ̄ = ρ (4.7)

n + θ̄ ≥ ρ(n− 3)

n− 1 + 2θ̄ ≤ ρ(n− 3)

with the restrictions

0 ≤ θ ≤
γ

γ̄
=
n− 3

n+ 1

The last two inequalities in (4.7) become

n+ 2

n− 2
≥ ρ ≥ 1 +

4

n− 1

which is obviously satisfied for ρ = ρ∗ = n+2
n−2

. For ǫ > ρ − 1 sufficiently close to

ρ − 1 we may choose θ in the allowed range 0 ≤ θ ≤ γ

γ̄
= n−3

n+1
, with θ̄ satisfying

(4.7).
Let

Uk(t) = ‖uk‖L2(I;Bγ

p′
)

and let
Dk = C0‖u

k‖
Lq′ (R+;B

1
2
q′

)

Then U(0) = 0 and by (4.6)

Uk(t) ≤ C‖u0‖L∞(R+;H1
2 ) +Dǫ

kUk(t)
ρ−ǫ

and since by our choice of ǫ, α = ρ− ǫ < 1 close to 1, it follows using Lemma 4.1
above and the uniqueness of the Shatah - Struwe solution, and the convergence
properies of uk,

Uk(t) ≤
1

1 − α
C‖u0‖L∞(R+;H1

2 ) + (C0‖u
k‖

Lq′(R+;B
1
2
q′

)
)

1
1−α

Thus

‖u‖L2(I;Bγ

p′
) ≤ lim

k
‖uk‖L2(I;Bγ

p′
)

≤
1

1 − α
C‖u0‖L∞(R+;H1

2 ) + (C0‖u‖
Lq′(R+;B

1
2
q′

)
)

1
1−α , (4.8)

which proves (ii) for n ≥ 6. The proof of (4.8) for n = 4 and n = 5 are similar,
now using a variant replacing ρ by ρ− 1 in the above argument for n ≥ 6 in the
following way: Again taking the time integrals over I, we this time estimate f(u)
by

‖fk(u
k)‖

Lr(θ)(B
θγ̄

p(θ
) ≤ C0‖u

k‖ǫ

Lq′ (B
1
2
q′

)
‖uk‖ρ−1−ǫ

L2(B
γ

p′
)
‖uk‖L∞(H1

2 )
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where now

1

2
+ θδp′ ≥ (ρ− 1 − ǫ)

n− 3

2n
+ ǫ(

n− 3

2n
+

1

n(n+ 1)
) +

1

2
−

1

n
+ θ

γ̄

n

and
1

2
+ θδp′ ≤ (ρ− 1)

n− 3

2(n− 1)
+ ǫ(

1

n− 1
−

1

n+ 1
) +

1

2

and additionally for the time integrals,

1

r(θ)
= 1 − θ

1

2
=
ρ− 1 − ǫ

2
+
ǫ

q′

which are satisfied (again with θ̄ = θ − ǫ 2
n+1

) if

3 − θ̄ = ρ, (4.9)

2 + θ̄ ≥ (ρ− 1)(n− 3),

2 + 2θ̄ ≤ (ρ− 1)(n− 1),

now with the restriction 0 ≤ θ ≤ 1, the differentiation this time included in the
H1

2 -term.
Clearly the first equation in(4.9)can be satisfied for ǫ with ρ − 1 − ǫ < 1 close
to 1, i.e ǫ > ρ − 2 close to ρ − 2. Substituting the first equation in the last two
equations, we get

4 ≥ (ρ− 1)(n− 2),

4 ≤ (ρ− 1)(n− 1),

which are both satisfied for ρ− 1 = ρ∗ − 1 = 4
n−2

. With α = ρ− 1 − ǫ the proof
of (4.8) is then completed as for n ≥ 6.
Part (iii) follows by interpolation between (ii) and the energy estimate. �

The following is a slight, but natural, extension of the original STI-estimates
(which are assumed - i.e the non-endpoint estimates) in Proposition 2.6, allowing
endpoint estimates as in the Strichartz estimate for the Klein-Gordon equation.

Proposition 4.2. Let n ≥ 4 and u a solution of the NLKG with finite energy
data, and let (n− 1)δp′ = 1, p′ > 2, and γ = 1

2
− δp′. Then

u ∈ L2(B
γ
p′), 1 +

4

n− 1
< ρ < ρ∗

The norms are bounded by an increasing function of the energy of u(0), i.e of the
initial data.
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Proof: Let p̃′ > 2, δ̃ = 1
2
− 1

p̃′
with (n−1)δ̃ < 1 close to 1, to be choosen below.

Let (r̃′, p̃′, s̃′ be the corresponding tripple in the Strichartz estimates. We also
let δ = 1

2
− 1

p′
= 1

n−1
with γ̄ = 1

2
(n + 1)δ = 1

2
+ δ and γ = 1 − γ̄; as before p

denotes the dual of p′, 1
p

+ 1
p′

= 1. Let u be a solution of the NLKG with initial

data in H1
2 × L2, and let u0 be the corresponding solution of the Klein-Gordon

equation with the same initial data.Then (by Theorem 3 ) u is the unique finite

energy solution of NLKG, and if B̃ = Lr̃′(B
s̃′

p̃′
), then by the STI estimate in the

non-endpoint case, u ∈ B̃ and ‖u‖B̃ is bounded by an increasing function of the
energy of u (which is constant in t ∈ R). Let

1

r(θ)
= 1 −

1

2
θ,

1

2
−

1

p(θ)
= δp(θ) = θδ, 0 ≤ θ < 1

and define
Aθ(T ) = Lr(θ)(0, T ;Bγ̄θ

p(θ)), Aθ = Aθ(+∞)

Then
‖f(u)‖Aθ

≤ C‖u‖ρ

B̃
(4.10)

provided

n+ θ ≥ ρ(n− 3) + ρ(1 − (n− 1)δ̃) (4.11)

2 − θ = ρ− ρ(1 − (n− 1)δ̃)

n− 1 + 2θ ≤ ρ(n− 3) + 2ρ(1 − (n− 1)δ̃)

(4.12)

Let θ̄ = θ−ρ(1− (n−1)δ̃). Then (4.11) is the same as (4.7) and holds for θγ̄ ≤ γ

if ǫ = ρ(1− (n− 1)δ̃) is sufficiently small, i.e. (n− 1)δ̃ < 1 is sufficiently close to
1. This is verified in the same way as (4.7).
If n = 4 or 5, then replace (4.10) by

‖f(u)‖Aθ
≤ C‖u‖ρ−1

B̃
‖u‖L∞(H1

2 ) (4.13)

and, again with θ̄ = θ−ρ(1− (n−1)δ̃) = θ− ǫ, we this time see that (4.13) holds
if (4.9) is valid for ǫ small enough, which was verified in the previous proof.
Since, by the energy inequality and the STI estimate Proposition 2.6, in the
non-endpoint case, the norms on the right hand side of (4.10) and (4.13) are all
bounded by an increasing function C0(·) of the energy of u, i.e. the H1

2 × L2 of
the initial data, we have

‖f(u)‖Aθ
≤ C0(‖u(0)‖L∞(H1

2 )) (4.14)
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Next, by Proposition 4.1, u ∈ Lloc
2 (Bγ

p′). Thus with B(T ) = L2(0, T ;Bγ
p′) we get

from (4.14) and Proposition 2.5 that for any finte T > 0,

‖u‖B(T ) ≤ C1‖u0‖L∞(H1
2 ) + C‖f(u)‖Aθ(T )

≤ C1‖u0‖L∞(H1
2 ) + C0(‖u(0)‖L∞(H1

2 ))

≤ C2(‖u0‖L∞(H1
2 ))

. Hence u ∈ B, and the endpoint estimate for the (unique) finite energy solution
of the NLKG is proved. �

5 Proof of the main results

In this section we will prove Theorems 1 and 2. In order to do this we need a
uniform decay result which we state and prove in the first part of this section.
As before u and v will denote finite energy solutions of the NLKG, u0, v0 the
corresponding solutions of the Klein - Gordon equation (with the same initial
data as u and v, respectively). We assume in this section, if nothing else is said,
that n ≥ 3 and 1 + 4

n
< ρ < ρ∗ = 1 + 4

n−2
, and that f satisfies conditions (A)

and (B). A and A(I) will denote any of the spaces used in the formulation of the
space time estimates in Proposition 2.6.
Let E0 = E0(u0). Then conservation of energy for the NLKG implies that (for
ρ < ρ∗) E(u(t)) = E(u) and E0(u0) are equibounded. As before, Xe will denote

the energy space with norm ‖ · ‖e = E0(.)
1
2 . The norm of u0 in A(I) is continuous

on the energy space, since

‖u0 − v0‖A(I) ≤ C‖u0 − v0‖e

by the Strichartz estimates, Propositions 2.1 and 2.2.

5.1 Uniform decay in space-time

Lemma 5.1. Let a, 1
ǫ

be positive (and large). Then there is a continuous and
increasing function b = b(a, 1

ǫ
, E0) > a such that

‖u‖A(t≥b) ≤ ‖u0‖A(t≥a) + ǫ (5.1)

In view of the comment on the continuous dependence of the A(I) norm on the
energy, we get the following uniform decay estimate in space-time:

Corollary 5.1. Let ǫ > 0. The there is a continuous function b = b(1
ǫ
, u0) on

R+ ×E such that
‖u‖A(t≥b) ≤ ǫ (5.2)
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Proof: [of Lemma 5.1] The proof consists of three basic steps:

a) ‖u‖A ≤ C(E0)

b) Let a, T and 1
ǫ

be positve (and large). Then there is a b(a, T, 1
ǫ
, E0) >

a increasing and continuous in each variable, and an interval I = (t∗ −
2T, t∗) ⊆ [a, b] such that

‖u‖A(I) < ǫ

c) Let I∗ = (t∗ − 2T,∞). Then, under the assumptions of b),

‖u‖A(I∗) < ‖u0‖A(I∗) + ǫ (5.3)

Since a ≤ t∗ − 2T < t∗ ≤ b, (5.1) follows from c).
Claim a) is the STI estimates in Proposition 2.6, since as mentioned, E(u) and E0(u0) =
E0 are equibounded.
Next, a) implies b):
Let A = Lr′(I;B

s′

p′) and define

In = (a+ 2t(n− 1), a+ 2Tn) and an = ‖u‖r′

A(In)

If an ≤ ǫr
′

for some n ≤ N , then b) follows. If this is not the case then an ≥ ǫr
′

for
n = 1, .., N , and Nǫr

′

≤ C(E0), that is N ≤ ǫ−r′C(E0). Thus 2TN ≤ b− a− 2T
with b ≥ 2Tǫ−r′C(E0) + a + T . This proves b).
We may then in a fairly standard fashion prove c):
Assume that t∗∗ is the largest t for which (5.3) holds with I∗ replaced by I =
(t∗ − 2T, t). Clearly t∗∗ ≥ t∗. We may assume that t∗∗ is finte, since otherwise
there is nothing to prove. Let t > t∗∗. Then, applying (3.13), and using a)

‖u‖A(I) ≤ ‖u0‖A(I) + (

∫ ∞

T

K(τ)dτ)C(E0) + C(E0)‖u‖
(2−θ)
A((t∗−2T,t∗∗)

+ (

∫ t−t∗∗

0

K(τ)dτ)C(E0)‖u‖A(t∗∗,t)

≤ ‖u0‖A(I) + C(E0)(

∫ ∞

T

K(τ)dτ)

+ C(E0)ǫ
2−θ + C(E0)(t− t∗∗)

α (5.4)

By choosing T, and ǫ large and small enough, respectively, we find that for t− t∗∗
small enough, we obtain the estimate (5.3) for some t > t∗∗. Here we used that
K(τ) ≤ Cτα−1, α > 0, 0 < τ < 1, and that 2 − θ > 1. The estimate (5.4)
contradicts the existence of a finite t∗∗, and the proof of c) is completed. �
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5.2 Lipschitz and Hölder estimates for Et

We first provide a global, non-uniform Lipschitz estimate on A(s′ − σ; I) over
compact intervals I ⊂⊂ R+ with Lipschitz constants depending on I (and the
energy E). We then extend this to a uniform estimate on A(s′ −σ;R+) by use of
Lemma 5.1.
Let, in the notation of Section 3, s′ ≥ σ ≥ 0, s′ = γ and σ > γ̄ − (ρ − 1)
(sufficiently) close to this lower bound if n > 6 and σ = 0 if n ≤ 6. By Proposition
2.3 and 2.6, and by the Lipschitz estimate (3.14) for f(u) we then get,

‖u− v‖A(s′−σ;I) ≤ ‖u0 − v0‖A(s′−σ;I) + (

∫ |I|

0

K(τ)dτ)θC(E0)‖u− v‖A(s′−σ;I)

Thus for |I| small enough, depending only on the energy E0,

‖u− v‖A(s′−σ;I) ≤ ‖u0 − v0‖A(s′−σ;I) , |I| < ǫ(E0).

Hence by translation invariance and energy conservation, for each bounded in-
terval I there is a continuous function C(I, E0) such that

‖u− v‖A(s′−σ;I) ≤ C(I, E0)‖u0 − v0‖A(s′−σ;I)

Next, let Ī = R+ \ I = (2T,∞). Write for t ≥ 2T ,

u(t) − v(t) = u0(t) − v0(t) +

∫ T

0

E1(t− τ)f(u(τ))dτ +

∫ t

T

E1(t− τ)f(u(τ))dτ

and then take the A(s′−σ : Ī)-norm of each term on the right hand side. Let C1

be a constant only depending on A, i.e on r′, s′, n and δ. By Proposition 2.3 and
the (uniform) STI estimate we get for the second term an estimate

C1(

∫ ∞

T

K(τ)dτ)θE
ρ−1
0 ‖u− v‖A(s′−σ;(T,∞)) (5.5)

and for the third term

C1(‖u‖
ρ−1
A(T,∞) + ‖v‖ρ−1

A(T,∞))‖u− v‖A(s′−σ;(T,∞)) (5.6)

Let ǫ > 0 such that 2ǫ < 1
2
.Then choose T depending on ǫ and E0 such that by

(5.5) and (5.6),

‖u− v‖A(s′−σ,Ī) ≤ ‖u0 − v0‖A(s′−σ,Ī) + ǫ‖u− v‖A(s′−σ) + ǫ‖u− v‖A(s′−σ;(T,∞))

Thus

‖u− v‖A(s′−σ) ≤ ‖u− v‖A(s′−σ;I) + ‖u− v‖A(s′−σ;Ī)

≤ C(I, E0)‖u0 − v0‖A(s′−σ;I) + ‖u0 − v0‖A(s′−σ;Ī) + 2ǫ‖u− v‖A(s′−σ)
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and we conclude that

‖u− v‖A(s′−σ) ≤ C(E0)‖u0 − v0‖A(s′−σ) (5.7)

Proposition 2.3 and Corollary 2.1, the Lipschitz estimate (3.14) and the STI
estimate (Proposition 2.6), then give with our choice of s′ = γ and σ that

‖u− v‖H1−σ
2

≤ ‖u0 − v0‖H1−σ
2

+ C1(‖u‖
ρ−1
A + ‖v‖ρ−1

A )‖u− v‖A(s′−σ)

≤ C(E)‖u0 − v0‖H1−σ
2

(5.8)

This proves the first and, since γ̄−(ρ−1) < 1
2
+δ−4δ < 1

2
, for σ sufficiently close

to γ̄ − (ρ − 1), also the third part of Theorem 1. To prove the Hölder estimate
in Theorem 1, simply use (3.15) to replace this last estimate by

‖u− v‖H1
2
≤ ‖u0 − v0‖H1

2
+ C1(‖u‖

ρ−1
A + ‖v‖ρ−α

A )‖u− v‖α
A(s′−σ)

≤ C(E)(‖u0 − v0‖H1
2

+ ‖u0 − v0‖
α
H1

2
)

This estimate completes the proof of Theorem 1.
Let us collect the relevant assumptions (besides the standard notation and as-
sumptions of this paper and in particular of this section) in a theorem which
using (5.8) slightly generalizes Theorem 1, parts (i) and (iii).

Theorem 4. Let γ, γ̄ be defined as in Section 3.3. Assume that γ ≥ σ ≥ 0, with
σ = 0 for n ≤ 6 and σ > γ̄ − (ρ− 1). Then

‖u− v‖H1−σ
2

≤ C(E(u0, v0))‖u0 − v0‖H1−σ
2

where C(·, ·) is continuous on R2
+.

In particular, Et : H1
2 × L2 7→ H1−σ

2 is Lipschitz continuous.

Theorem 4 is a considerable improvment of Theorem 1 (iii) for small values of
n > 8 and ρ close to ρ∗. For example, for n = 9 and ρ ≈ ρ∗ we may take any
1 − σ < 53

56
, rather than 1 − σ = 1

2
.

It follows from the remarks in Section 3.4 and the above derivation that Theorem
4 can’t be improved by the method used in this paper in the case of global non-
uniform or local estimates when ρ is sufficiently close to ρ∗ .

5.3 The existence of an everywhere defined scattering op-
erator S on the energy space

Let u− be a finite energy solution of the Klein - Gordon equation and define the
mapping

A ∩ E ∋ u 7→ Fu(t) = u−(t) +

∫ t

−∞

E1(t− τ)f(u(τ))dτ ∈ A ∩Xe
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which is well defined by Proposition 2.3 and (3.13). Let I = (−∞,−T ) , T > 0.
If u and v belong to A ∩ Xe the ‖u‖A(I), ‖v‖A(I) tend to 0 as T → ∞. Now by
(3.15)

‖Fu−Fv‖A(I) + ‖Fu− Fv‖E(I)

≤ ‖

∫ t

−∞

E1(t− τ)(f(u(τ)) − f(v(τ)))dτ‖E(I)

≤ C‖f(u) − f(v)‖B(I)

≤ C(‖u‖ρ−α

A(I) + ‖u‖ρ−α

A(I))‖u− v‖α
A(I)

By choosing T large enough, we can apply Tychonoff’s fixed point theorem in
a standard fashion for hyperbolic problems, i.e. problems with a finite speed of
propagation (cf. [12] and Pecher [34]), and conclude that there is at least one
u ∈ A ∩Xe such that

u(t) = u−(t) +

∫ t

−∞

E1(t− τ)f(u(τ))dτ, (5.9)

for t ≤ −T .
Remark The method referred to can be scetched as follows: Assume that u− has
compactly supported initial data, so that u− has support in a truncated cone.
Let us consider the subset of A∩Xe of fuctions u with supp(u) ⊆ supp(u−). Then
supp(Fu) ⊆ supp(u−), too. Tychonoff’s fixpoint theorem now can be applied.
Since the estimates are independent of the support of the functions involved, a
compactness and strightforward limiting argument removes the assumption of
compact supports, and (5.9) follows.
Now u will be a weak finite energy solution of the NLKG on I, and so unique. By
uniqueness and conservation of energy, u can be extended to a solution of (5.9)
on all of R.
Then define

u+(t) = u−(t) −

∫ +∞

−∞

E1(t− τ)f(u(τ))dτ

so that

u(t) = u+(t) +

∫ +∞

−t

E1(t− τ)f(u(τ))dτ

Then
‖u− u+‖E(t≥T ) ≤ C‖u‖ρ

A(t≥T
→ 0 as T → ∞ (5.10)

and
‖u− u−‖E(t≤−T ) ≤ C‖u‖ρ

A(t≤−T
→ 0 as T → −∞ (5.11)

In conclusion, we have defined the scattering operator S : u− 7→ u 7→ u+ on all
of the energy space.
We also have

E(u) = E0(u+) = E0(u−) (5.12)
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To see this, notice that by linearity and energy conservation ‖u±(t)‖H1
2

is uni-
formly continuous on R. By Sobolev embedding,

Lq′(Lρ+1) ⊃ Lq′(B
1
2

q′), δq′ =
1

2
−

1

n + 1
.

Thus ‖u±(t)‖H1
2
∈ Lq′ , and the uniform continuity implies that ‖u±(t)‖ρ+1 → 0

as t → ±∞. By (5.10) and (5.11) then also ‖u(t)‖ρ+1 → 0 as t → ±∞. Hence
E(u(t)) − E0(u(t)) = 1

2
‖u(t)‖ρ+1 → 0 as t → ±∞. Then (5.10) and (5.11) and

energy conservation for solutions of the NLKG completes the proof of (5.12).

5.4 The Lipschitz continuity of the scattering operator

We will prove Theorem 2 using a slight variation of the proof of the Lipschitz
estimates for the solution operator Et.We assume that ρ < ρ∗ and n satisfy the
restrictions for the validity of the Lipschitz estimates in Theorem 2 (i).
Let u−, u, u+ and v−, v, v+ be sequences defined by the scattering operator on
the energy space. Then we will prove that

‖u+ − v+‖e ≤ C‖u− v‖e ≤ C‖u− − v−‖e (5.13)

which proves Theorem 2 (i). The proof of the Hölder estimate is similiar to the
proof of the Lipschitz estimate, and is omitted.
Proof of the second inequality in (5.13):
Let ǫ > 0. Then Lemma 5.1 provides the exitstens of a T = T (ǫ, E(u), E(v))
such that

‖u‖A(t≤−T ) + ‖u‖A(t≥T ) < ǫ

‖v‖A(t≤−T ) + ‖v‖A(t≥T ) < ǫ

Now on any finite interval I we have ( as in ...) that by (5.9)

‖u− v‖A(I) ≤ C‖u− − v−‖A(I)

with a continuous function C = C(|I|, E(u), E(v)). Let I = (−T, T ). Then

‖u− v‖A = ‖u− v‖A(I) + ‖u− v‖A(R\I).

The last term is, using (5.9), estimated by

‖u− v‖A(R\I) ≤

2‖u− − v−‖A(R\I) + C(E(u), E(v))(

∫ infty

T

K(τ)dτ‖u− v‖A + ǫ‖u− v‖A)

≤ 2‖u− − v−‖A + 2C(E(u), E(v))ǫ‖u− v‖A
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taking if necessary a larger value of T. Hence

‖u− v‖A ≤ C‖u− − v−‖A + ǫ′‖u− v‖A

with ǫ′ < 1 for ǫ, T small enough depending possibly on E(u), E(v), equal to
E0(u−) and E0(v−), respectvely, by(5.12). Thus by the Strichartz inequality,

‖u− v‖A ≤ C‖u− − v−‖e

with C = C(E0(u−), E0(v−)). But then Proposition 2.3 and the Lipschitz esti-
mate for f(u) gives via (5.9) that

‖u− v‖E ≤ ‖u− − v−‖e + C‖f(u) − f(v)‖B

≤ ‖u− − v−‖e + C(‖u‖ρ−1
A + ‖v‖ρ−1

A )‖u− v‖A

≤ ‖u− − v−‖e + C(E0(u−), E0(v−))‖u− − v−‖e

which proves the second inequality in (5.13).
Since,

u+(t) − v+(t) = u(t) − v(t) +

∫ infty

t

E1(t− τ)(f(u(τ)) − f(v(τ))dτ

the first estimate in (5.13) follows in the same way from Proposition 2.3 and the
Lipschitz estimate ( 3.14) for f(u).
This completes the proof of Theorem 2. The Hölder estimate follows with obvious
changes in the above proof.

6 Appendix: On uniform bounds for STI esti-

mates in the energy space

We will make explicit the energy bounds of the STI estimates in the slightly more
general situation treated in [8], mainly by referring to the proof in that paper.
Since [8] is out of print, we will make references to Blomqvist thesis [5], which
(intentionally,since the proofs were need to prove the decay results in [5]) gives
a detailed account of the proof of the STI in [8], and is available online (see the
references).This said, we turn to the estimates.
We keep the notation of section 5. In addition K denotes the kernel defined in
section 2 after formula (2.4), where we assume that θδ > 0 in (2.5), so that there
is an α > 0 such that

K(t) ≤ C

{

t−1+α 0 < t < 1,
t−1−α 1 ≤ t

(6.1)
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We also denote, as in section 4, the M-fold convolution with K by KM with kernel
KM . With u and u0 the solutions of the NLKG and the Klein-Gordon equation,
respectively, with the same initial data, we write for short U(t) = ‖u(t)‖Bs′

p′
and

U0(t) = ‖u0(t)‖Bs′

p′
. We also assume that(r′, p′, s′) to be a tripple satisfying (2.7)

(or, slightly more restrictive, (2.8)). Then the energy bound in the STI (in the
non-endpoint case) follows from the following Proposition.

Proposition 6.1. Assume in the above notation that for some ǫ > 0 and η0 > 0
small enough,

U(t) ≤ U0(t) +

∫ t

0

K(t− τ)U(τ)1+ηdτ, 0 ≤ |η| < η0 (6.2)

∫ t

0

KM(t− τ)U(τ)dτ ≤ C(E0(u0)) (6.3)

sup
t≥t∗

∫ t

t∗
KM(t− τ)U(τ)dτ < ǫ, t∗ ≥ b(ǫ, u0) (6.4)

where C and b are continuous functions on R+ and R+ ×Xe, where as before Xe

is the energy space.
Then U ∈ Lr′ with a bound depending continuously on u0 in the energy space.

Remark The estimate (6.4) is a consequence of

sup
t≥t∗

∫ t

t∗
KM(t− τ)U(τ)dτ < C‖u0‖A(t≥a) + ǫ, t∗ ≥ b0(ǫ, E0(u0), a) (6.5)

with b0 depending continuously on ǫ, E0(u0), and a. As the estimate of u0 in
A(t ≥ a) is continuous on the energy space ( as noticed in the introduction to
section 5), (6.4) follows from (6.5).
The estimates (6.2) and (6.3) follow from Lemma 3.1 and Lemma 4.2, respec-
tively. We will come back to the estimate (6.4), or equivalently (6.5), after an
indication of the proof of Proposition 6.1.

Proof: [scetched] For a detailed proof of the proposition, without the uniform
energy bound, se [5], Chapter I:9, Theorem 9.1, p.33 ff. We will thus here only
indicate how the uniform energy bound follows for STI estimate from the uniform
bounds in estimates (6.2) through (6.5).
The proof is carried out by estimates depending on K (i.e. α), on the estimates
(6.3) and (6.4), and in addition estimates of U0 in Lr′ on R+ and on {t ≥ a} for
a large, i.e estimates with bounds that are continuous functions of the energy of
u0.
In this way, using (6.2) it is proved step by step that

U ∈ Lr′ + o(1)L r′

jη

∩ L∞, j = 1, ..J
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where (J − 1)η < 1 < Jη, with the o(1) factor is a continuouos function of the
energy of u0. This then completes the proof of the proposition. �

We now turn to a scetch of the proof of (6.4) (or equivalently,(6.5)). The proof of
(6.4) is based on two results.The first is Lemma 4.2, the second is an inequality
due to Morawetz for solutions u of the NLKG

∫ ∫

F (u(x, t))

1 + |x|
dxdt ≤ C(E(u)) (6.6)

from which Morawetz and Strauss [33] derived a crucial asymptotic result:
Let ǫ, T , a > 0. Then there exist a b depending continuously on ǫ, T, a and the
energy E(u), and an interval I = (t∗ − 2T, t∗) ⊂ [a, b] such that

∫ ∫

Rn×I

F (u(x, t))dxdt < ǫ (6.7)

(In fact, valid for u with compactly supported data, with b independent of the
support of the data - this restriction can be shown to be disregarded in our
application of the estimate).
Using (6.3) and the assumption (B) on f, strightforward estimates give (cf. [5]
I:7, Lemma 7.2) with I∗ = (t∗ − T, t∗),

∫

I∗

KM(t− τ)‖u(τ)‖dτ < ǫ for t∗ ≥ b (6.8)

By a slightly complex convexity argument (see [5] I:7), deriving from estimates
of

∫

I∗

K ∗ (KM−1U)1+η

estimates of
∫

I∗

K ∗ (KM(U1+η)) =

∫

I∗

KM ∗ (U1+η)

in each step using bounds for t∗ only depending, besides on ǫ, T, a and the
energy E(u), on η and the kernel K (or rather, α in (6.1)). Using these estimates
we conclude (cf. [5] I:7, Lemma 7.7 and 7.8) that if

∫

I∗

KM ∗ U0 <
1

3
ǫ,

∫

I∗

KM ∗ U < ǫ, t∗ ≥ b

then
∫

I∗

KM ∗ U1+η < ǫ1+η, t∗ ≥ b.

With a slight variation of the argument of the proof of c) in Lemma 5.1, this
proves (6.4) using (6.2) (cf. [5] I:8)
This completes the scetch of the proof of the proposition.
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hyperbolic problems, Göteborg 1985 (thesis).

[27] Kumlin, P.:Analyticity of the Scattering Operator for the Nonlinear Klein-
Gordon Equation with Cubic Nonlinearity, Commun. Math. Phys. 144
(1992), 257-278

[28] Kumlin, P.: A Note on Maximal Rate of Decay for Solutions to Some Semi-
linear Wave Equations, Math. Z. 197 (1988), 465-481.

[29] Klainerman, S., Ponce, G.: Global small amplitude solutions to nonlinear
evolution equations, Commun. Pure Appl. Math. 36 (1983), 144-141.

39
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