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On Weak Solutions to the Linear Boltzmann Equation with
Inelastic Coulomb Collisions

Rolf Pettersson

Department of Mathematics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

Abstract. This paper considers the time- and space-dependent linear Boltzmann equation with general boundary conditions
in the case of inelastic (granular) collisions. First, in the (angular) cut-off case, mildL1-solutions are constructed as limits
of the iterate functions and boundedness of higher velocitymoments are discussed in the case of inverse power collisions
forces. Then the problem of the weak solutions, as weak limitof a sequence of mild solutions, is studied for a bounded body,
in the case of very soft interactions (including the Coulombcase). Furthermore, strong convergence of weak solutions to the
equilibrium, when time goes to infinity, is discussed, usinga generalized H-theorem, together with a translation continuity
property.
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INTRODUCTION

The linear Boltzmann equation is frequently used for mathematical modelling in physics, (e.g. for describing
the neutron distribution in reactor physics, cf. [1]–[3]).In our earlier papers [4]–[6] we have studied the linear
Boltzmann equation, both in the angular cut-off case and theinfinite range case, for a functionf (x,v,t) representing
the distribution of particles with massm undergoing elastic binary collision with other particles with massm∗ and
with a given (known) distribution functionY(x,v∗). In recent years there has been a significant interest in the study of
kinetic models for granular flows, mostly with the non-linear Boltzmann equation; see ref. [7] for an overview, with
many further references, and also [8]–[9]. Our papers [10] and [11] consider respectively the time-dependent and the
stationary linear Boltzmann equation for inelastic (granular) collisions, both papers in the angular cut-off case, but the
paper [12] studies the (granular) infinite range case.

The purpose of this paper is to generalize our earlier results in [13] on existence of weak solutions for very soft
elastic collisions (including the Coulomb forces), in the Cauchy problem case, to inelastic (granular) collisions in a
bounded body, and (for simplicity) without external forces.

So we will study collisions between particles with massm and particles with massm∗, such that momentum is
conserved,mv +m∗v∗ = mv′ +m∗v′∗, wherev,v∗ are velocities before andv′,v′∗ are velocities after a collision.

In the elastic case, where also kinetic energy is conserved,one finds that the velocities after a binary collision
terminate on two concentric spheres, so all velocitiesv′ lie on a sphere with radiusm∗w

m+m∗
around the center of mass,

v̄ = (mv +m∗v∗)/(m+m∗), wherew = |v−v∗|, and all velocitiesv′∗ lie on a sphere with the same centerv̄ and with
radius mw

m+m∗
, cf Figure 1 in [4].

In the granular, inelastic case we assume the following relation between the relative velocity components normal to
the plane of contact of the two particles,

w′ ·u = −a(w ·u), (1)

wherea is a constant, 0< a≤ 1, andw = v−v∗,w′ = v′−v′∗ are the relative velocities before and after the collision,
andu is a unit vector in the direction of impact,u = (v−v′)/|v−v′|. Then we find thatv′ = v′a lies on the line between
v andv′1, wherev′1 is the postvelocity in the case of elastic collision, i.e. with a = 1, andv′∗a lies on the (parallel) line
betweenv∗ andv′∗1.

Now the following relations hold for the velocities in a granular, inelastic collision

v′ = v− (a+1)
m∗

m+m∗
(w ·u)u, v′∗ = v∗+(a+1)

m
m+m∗

(w ·u)u, (2)

wherew ·u = wcosθ , w = |v−v∗|, if the unit vectoru is given in spherical coordinates,

u = (sinθ cosφ ,sinθ sinφ ,cosθ ), 0≤ θ ≤ π/2, 0≤ φ < 2π . (3)



Moreover, if we change notations, and let′v,′ v∗ be the velocities before, andv,v∗ the velocities after a binary inelastic
collision, then by (1) and (2), cf. [7]–[12],

′v = v−
(a+1)m∗

a(m+m∗)
(w ·u)u, ′v∗ = v∗ +

(a+1)m
a(m+m∗)

(w ·u)u. (4)

PRELIMINARIES

We consider the time-dependent transport equation for a distribution function f (x,v,t), depending on a space
variablex = (x1,x2,x3) in a bounded convex bodyD with (piecewise)C1-boundaryΓ = ∂D, and depending on a
velocity variablev = (v1,v2,v3) ∈ V = R

3 and a time variablet ∈ R+. Then the linear Boltzmann equation is in the
strong form

∂ f
∂ t

(x,v,t)+ v gradx f (x,v,t) = (Q f)(x,v,t),

x ∈ D, v ∈V = R
3, t ∈ R+,

(5)

supplemented by initial data
f (x,v,0) = f0(x,v), x ∈ D, v ∈V. (6)

The collision term can, in the case of inelastic (granular) collision, be written, cf. [7]–[12],

(Q f)(x,v,t) =

∫

V

∫

Ω

[

Ja(θ ,w)Y(x,′v∗) f (x,′v,t)−Y(x,v∗) f (x,v,t)
]

B(θ ,w) dv∗dθdφ (7)

with w = |v− v∗|, whereY ≥ 0 is a known distribution,B ≥ 0 is given by the collision process, and finallyJa is a
factor depending on the granular process (and giving mass conservation, if the gain and the loss integrals converge
separately). Furthermore,′v, ′v∗ in (7) are the velocities before andv, v∗ the velocities after the binary collision, cf.
(4), andΩ = {(θ ,φ) : 0≤ θ < θ̂ , 0≤ φ < 2π} represents the impact plane, whereθ̂ < π

2 in the angular cut-off case,
andθ̂ = π

2 in the infinite range case. The collision functionB(θ ,w) is in the physically interesting case with inverse
k-th power collision forces given by

B(θ ,w) = b(θ )wγ , γ =
k−5
k−1

, w = |v−v∗|, (8)

with hard forces fork > 5, Maxwellian fork = 5, and soft forces for 3< k < 5, whereb(θ ) has a non-integrable
singularity forθ = π

2 , of orderα = −(k+1)/(k−1). So in the angular cut-off case one can chooseθ̂ < π
2 , and then

the gain and the loss terms can be separated(Q f)(x,v,t) = (Q+ f )(x,v,t)− (Q− f )(x,v,t), where the gain term can
be written (with a kernelKa)

(Q+ f )(x,v,t) =

∫

V
Ka(x, ′v → v) f (x,′v,t) d ′v, (9)

and the loss term is written with the collision frequencyL(x,v) as (Q− f )(x,v,t) = L(x,v) f (x,v,t). In the case of
non-absorbing body we have thatL(x,v) =

∫

V Ka(x,v → v′) dv′. Furthermore, equation (5) is in the space-dependent
case supplemented by ( general) boundary conditions

f−(x,v,t) =

∫

|n · ṽ|
|n ·v|

R(x, ṽ → v) f+(x, ṽ,t)dṽ,

n ·v < 0, n · ṽ > 0, x ∈ Γ = ∂D, t ∈ R+,

(10)

wheren = n(x) is the unit outward normal atx ∈ Γ = ∂D. The functionR≥ 0 satisfies (in the non-absorbing boundary
case)

∫

V R(x, ṽ → v)dv ≡ 1, and f− and f+ represent the ingoing and outgoing trace functions corresponding to f . In
the specular reflection case the functionR is represented by a Dirac measureR(x, ṽ → v) = δ (v− ṽ +2(n · ṽ)n), and
in the diffuse reflection caseR(x, ṽ→ v) = |n ·v|W(x,v) with some given functionW ≥ 0, (e.g. Maxwellian function).

Let tb ≡ tb(x,v) = infτ∈R+{τ : x− τv /∈ D}, andxb ≡ xb(x,v) = x− tbv, wheretb represents the time for a particle
going with velocityv from the boundary pointxb to the pointx.

Then, using differentiation along the characteristics, equation (5) can formally be transformed to amild equation,
and also to anexponentialform of equation in the angular cut-off case, cf. [10] and also [4]–[6].



CONSTRUCTION OF SOLUTIONS IN THE CUT-OFF CASE

We constructL1-solutions to our problems as limits of iterate functionsf n, whenn→ ∞. Let first f−1(x,v,t) ≡ 0.
Then define for givenf n−1 the next iteratef n, first at the ingoing boundary (using the appropriate boundary condition),
and then insideD and at the outgoing boundary (using the exponential form of the equation),

f n
−(x,v,t) =

∫

V

|n · ṽ|
|n ·v|

R(x, ṽ → v) f n−1
+ (x, ṽ,t)dṽ, (11)

f n(x,v,t) = f̄ n(x,v,t)exp
[

−

∫ t

0
L(x−sv,v)ds

]

+ (12)

+
∫ t

0
exp

[

−
∫ τ

0
L(x−sv,v)ds

]

∫

V
Ka(x− τv, ′v → v) f n−1(x− τv, ′v,t − τ) d′vdτ,

where

f̄ n(x,v,t) =

{

f0(x− tv,v), 0≤ t ≤ tb,
f n
−(xb,v,t − tb), t > tb.

(13)

Let also f n(x,v,t)≡ 0 for x ∈ R
3\D. Now we get a monotonicity lemma,f n(x,v,t)≥ f n−1(x,v,t), which is essential

and can be proved by induction.
Then, by differentiation along the characteristics and integration (with Green’s formula), we find (using the equa-

tions above, cf. [10]), that
∫

D

∫

V
f n(x,v,t) dxdv ≤

∫

D

∫

V
f0(x,v) dxdv, (14)

so Levi’s theorem (on monotone convergence) gives existence of (mild)L1-solutions

f (x,v,t) = lim
n→∞

f n(x,v,t)

to our problem with granular gases (almost in the same way as for the elastic collision case). Furthermore, if
L(x,v) f (x,v,t) ∈ L1(D×V), then we get equality in (14) for the limit functionf , giving mass conservation together
with uniqueness in the relevant function space (cf [4]–[6],[10], [11], and also Proposition 3.3, chapter 11 in [3]).

Remark 1The assumptionL f ∈ L1(D×V) is, for instance, satisfied for the solutionf in the case of inverse power
collision forces, cf. (8), together with e.g. specular boundary reflections. This follows from a statement on global
boundedness (in time) of higher velocity moments, (cf. Theorem 4.1 and Corollary 4.1 in [10]).

Remark 2There holds also in the granular inelastic collision case anH-theoremfor a general relative entropy
functional

HΦ
F ( f )(t) =

∫

D

∫

V
Φ

( f (x,v,t)
F(x,v)

)

F(x,v) dxdv, (15)

giving that this H-functional is nonincreasing in time, ifΦ = Φ(z), R+ →R, is a convexC1-function, and if there exists
a corresponding stationary solutionF(x,v) with the same total mass as the initial dataf0(x,v) for the time-dependent
solution f (x,v,t); cf. Theorem 5.1 in [10]. By using this H-functional one can prove that every time-dependent solution
f (x,v,t) converges to the corresponding stationary solutionF(x,v), as time goes to infinity; cf. Remark 5.1 in [10]
and further references.

WEAK SOLUTIONS IN THE COULOMB CASE

In this section the linear Boltzmann equation for granular inelastic collisions is considered with a weak form of
angular cut-off, (cf. (16) below), in the collision term forvery soft forces, i.e. with 9/5 < k ≤ 3, so−4 < γ ≤ −1 in
equation (8). We will here (for simplicity) consider the Coulomb forces, i.e. withk= 2 andγ =−3 in (8). The problem



is studied in the following weak integral form, which can formally be derived from equation (5) with (6) and (7):
∫

D

∫

V

g(x,v,t) f (x,v,t)dxdv =
∫

D

∫

V

g(x,v,0) f0(x,v)dxdv+

t
∫

0

∫

D

∫

V

[v ·gradxg(x,v,τ)+
∂

∂τ
g(x,v,τ)] f (x,v,τ)dxdvdτ+

t
∫

0

∫

D

∫

V

∫

V

∫

Ω

[g(x,v′,τ)−g(x,v,τ)]B(θ ,w)Y(x,v∗) f (x,v,τ)dxdvdv∗dθdφdτ,

(16)

for all test functionsg∈C1,∞
0;σ = {g∈C1,∞

σ : g(x,v,t)= 0,x∈ Γ = ∂D}, which (for simplicity) are zero on the boundary.

HereC1,∞
σ = {g∈C1(D×V ×R+) : ‖g‖σ < ∞}, where

‖g‖σ = sup[(1+v2)−σ/2|g(x,v,t)|]+sup[(1+v2)−σ/2|
∂

∂τ
g(x,v,t)|]

+sup[(1+v2)−(σ−1)/2|∇xg(x,v,t)|]+sup[(1+v2)−(σ−1)/2|∇vg(x,v,t)|],
(17)

(giving a wider class of test functions than used in a similarcontext, cf. e.g. [12]).
We start our calculations with a lemma, estimating the difference between the test functions in the collision term(16);

cf. Lemma 2.3. in [13].

Lemma 1. Let g= g(v) be a continuously differentiable function. Then forσ ≥ 0 there holds that|g(v′(θ ))−g(v)| ≤

const×sup[(1+u2)−σ/2|∇g(u|] ·wcosθ (1+v2)σ/2(1+v2
∗)

σ/2.

Proof. |g(v′(θ ))−g(v)|= |
π/2
∫

θ
∇g(v′(ψ)) ∂

∂ψ v′(ψ)dψ | ≤ sup
u

[(1+u2)−σ/2|∇g(u)|]
π/2
∫

θ
(1+(v′(ψ))2)σ/2| ∂

∂ψ v′(ψ)|dψ ,

where (2) (in the granular case) gives| ∂
∂ψ v′(ψ)|= (a+1)m

(m+m∗)
w, w= |v−v∗|, and 1+(v′)2 ≤max(1, m∗

m ) ·(1+v2)(1+v2
∗),

so the lemma follows.

Next we will formulate a proposition on estimates of velocities after and before a binary (elastic or inelastic)
collision; cf. also ref. [4], where the negative term (on right hand side below) is used to get boundedness in time
of higher velocity moments.

Proposition 2. Let v′a(θ ,φ) andv be the velocities after and before a collision. Then for allσ > 0 there are positive
constants K1 and K2 (depending onσ ,m,m∗, and a) such that

(1+ |v′a(θ ,φ)|2)σ/2− (1+ |v|2)σ/2 ≤ K1(wcosθ )(1+v∗)
max(1,σ−1)(1+v2)(σ−2)/2−K2(wcos2 θ )(1+v2)(σ−1)/2.

Now we will study the case with a sequence of bounded collision functions; cf. (8) fork= 2,γ =−3, in the Coulomb
case. Let for positive integersN

BN(θ ,w) = min(N,B(θ ,w)), (18)

and letQN be the corresponding collision term with mild solutionsfN. Then we can formulate a proposition of
existence of the solutions with mass conservation and localboundedness in time of higher velocity moments, for
the case with some weak angular cut-off (independent ofN).

Proposition 3. A) Let for the Coulomb case (k= 2,γ = −3), BN be given by (18), and assume that
sup

x
(
∫

Y(x,v∗)dv∗) < ∞. Then, for every initial function f0 ∈ L1
+(D × V) and general boundary function R,

there exists (for inelastic or elastic collisions) a uniquemild solution fN to the problem (5)-(7) with non-absorbing
boundary, giving mass conservation.

∫

D

∫

V

fN(x,v,t)dxdv =

∫

D

∫

V

f0(x,v)dxdv,t ∈ R+. (19)



B) Furthermore, assume that
π/2
∫

0
b(θ )cosθdθ = b0 < ∞, and that(1+v∗)max(1,σ0−1) sup

x
Y(x,v∗)∈Lq(V) for 3< q≤∞

and someσ0 > 0, and suppose a "non-heating" boundary (e.g. specular reflection). Then, if(1+ v2)σ/2 f0(x,v) ∈
L1(D×V) there holds a (local) boundedness of higher velocity moments,0 < σ ≤ σ0, t ∈ R+:

∫

D

∫

V

(1+v2)σ/2 fN(x,v,t)dxdv ≤ eAσ t
∫

D

∫

V

(1+v2)σ/2 f0(x,v)dxdv,

where Aσ is a positive constant depending on B only through b0.

Proof. Proposition A follows from the discussion in the section above. To get Proposition B, start with differentiation
along the characteristics of iterate functionsf n

N in (16)-(18), multiply by(1+v2)σ/2 and integrate, with some change
of variables, cf. [13]. Then, by the proposition (above) on velocities after a binary collision, using only the positive
part (at the right hand side) of the estimate, one get the integrals of type

t
∫

0

∫

D

∫

V

∫

V

∫

Ω

wcosθ (1+v∗)
max(1,σ−1)BN(θ ,w)Y(x,v∗) f n

N(x,v,τ)dxdvdv∗dθdφdτ

≤ 2πb0

t
∫

0

∫

D

∫

V

[sup
x

∫

V

wγ+1(1+v∗)
max(1,σ−1)Y(x,v∗)dv∗] · (1+v2)(σ−2)/2 f n

N(x,v,τ)dxdvdτ,

whereγ = −3 for k = 2. Thus
∫

V
w−2G(v∗)dv∗ ≤

∫

w<1
w−2G(v∗)dv∗ +

∫

V
G(v∗)dv∗,

where Hölder inequality (for the first integral on r.h.s.), gives
∫

V
w−2G(v∗)dv∗ ≤

(

∫

w<1
w−2q′G(v∗)dv∗

)1/q′(∫

V
(G(v∗))qdv∗

)1/q
,

if 3 < q < ∞, and 1/q+ 1/q′ = 1, i.e. 1< q′ < 3/2. Now, using a Gronwall type estimate, the (local) boundedness
of velocity moments are reached for the iteratesf n

N, and finally the monotonicity propertyf n
N ↑ fn, n→ ∞, gives the

result; cf. [13] and further references.

The existence theorem for very soft solutions to the linear Boltzmann equation is based on a compactness lemma,
which is analogous to that given by Arkeryd in [14], (cf, alsoLemma 4.1 in [5]). The proof is omitted here; see Lemma
2.5 in [13].

Lemma 4. Let{ fN}∞
N=1 be a sequence of nonnegative integrable functions on D×V, such that for someσ0 > 0

∫ ∫

(1+v2)σ0/2 fN(x,v)dxdv ≤Cσ0

with a constant Cσ0 independent of N. Let E= E(x,v) be a positive measurable function satisfying

sup
x,v

[

E(x,v)(1+v2)−σ̄/2
]

< ∞

for someσ̄ < σ0, and let the H-functional in (15) withΦ = zlogz, z = f/E, satisfies an inequality HE fN ≤ CE

with a constant CE independent of N. Then there exists a subsequence{ fNi}
∞
i=1 ⊂ { fN}∞

N=1 converging weakly to a
nonnegative integrable function on D×V, such that

∫ ∫

g(x,v) fNi (x,v)dxdv →

∫ ∫

g(x,v) f (x,v)dxdv, i → ∞

for every measurable g satisfying

sup
x,v

[

|g(x,v)|(1+v2)−σ/2
]

< ∞

with some0≤ σ < σ0.



Then we come to the main result in this section concerning theexistence of weak solutions and local boundedness
(in time) of higher velocity moments in the case of unboundedscattering factorB in equation (8) with some (angular)
cut-off, weaker than the cut-offs needed in the theory of mild solutions to the Boltzmann equation. We will formulate
the result for the Coulomb case, i.e. withk = 2 (andγ = −3).

Theorem 5. Let the assumptions in the Lemma above hold, and suppose thatthe mild solution f satisfies the H-
theorem(HE f )(t) ≤ HE( f0) < ∞, t ∈ R+. Then there exists a nonnegative solution function f= f (x,v,t) to the linear
Boltzmann equation in the weak form (16) for every test function g∈C1,∞

0;σo
, giving mass conservation and also local

boundedness of higher moments.

Proof. (Sketch) See mainly the paper [13]. Define first a sequence of functions by (18) and then use the weak
compactness lemma together with boundedness of higher moments. Then prove an equicontinuous property for the
sequence

{
∫ ∫

g(x,v,t) fN(x,v,t)dxdv}∞
N=1,

on every time interval[0,T], first for rational times, and then for irrational times. Now prove that the functionf satisfies
the weak equation (16); for details, see [13].

CONVERGENCE TO EQUILIBRIUM

For the weak solution in (16) we can prove strong convergenceto equilibrium, when time goes to infinity, using a
generalized H-theorem, cf.(15), with the functionΦ(z) = (z− 1)2, z = f/E, if the collision functionY = Y(v∗) is
independent of the space-variable, andE = E(x,v) is a Maxwellian function. Then we first use a cut-off in the initial
function, f0,p = min( f0, pE) together with a translation property and the weak convergence theorem for a sequence of
functions fN(x,v,t); for details, see our paper [13].

RemarkThe assumptiong(x,v,t) = 0, x ∈ Γ = ∂D, on the test functions can be weakened, and general boundary
cases can be studied, e.g. specular reflections, cf. [12].

Final remarkGranular inelastic collisions can also be studied using transformation of masses and velocities to the
problem of elastic collisions, cf. ref. [15].
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