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PREDICTION OF CATASTROPHES IN SPACE OVER TIME

ANASTASSIA BAXEVANI, RICHARD WILSON, AND MANUEL SCOTTO

Abstract. Predicting rare events, such as high level up-crossings, for spatio-temporal pro-

cesses plays an important role in the analysis of the occurrence and impact of potential

catastrophes in, for example, environmental settings. Designing a system which predicts

these events with high probability, but with few false alarms, is clearly desirable. In this

paper an optimal alarm system in space over time is introduced and studied in detail. These

results generalize those obtained by de Maré [12] and Lindgren ([17], [18]) for stationary

stochastic processes evolving in continuous time and are applied here to stationary Gaussian

random fields.

1. Introduction

It is widely believed that the frequency of extreme environmental events, such as heat

waves and floods, is increasing due to global warming arising from escalating greenhouse

gas concentration and other environmental changes. These events can have potentially cat-

astrophic consequences for human activities, through their impact on health, on natural

environments, such as coral reefs, and constructed environments, such as coastal installa-

tions and offshore structures. In some situations, such extreme events may occur due to

their natural (though rare) occurrence for the process of interest, while in other situations,

they may be due to changes in underlying factors, such as a change point or a trend (as is

thought with global warming), and hence are becoming more frequent. In either case, the

frequency and the impact of extreme events are hard to predict and is of major interest. In

this paper, we shall consider the development of models for the detection and warning of the

occurrence of future rare events and their magnitudes for the former case, with the potential

to be extended to the latter.
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There is also a continually increasing capacity to collect data across space and time for

many situations, including those in climatology and environmental science, leading to a

considerable increase in the amount and complexity of available data. This is driving the

development and fitting of complex random spatio-temporal models, based, for instance, on

random fields (see, for example, Baxevani et al [5] and [7]). Furthermore, with recent devel-

opments in statistical methods for modelling spatial extremes and in multivariate statistical

techniques for discrimination, clustering and dimension reduction for spatio-temporal series,

and the increasing availability of relevant high-quality data, there is the potential both to

deepen understanding of underlying physical phenomena and to aid in the construction of

models and tools for forecasting the occurrence and impact of rare events (see, for example,

Buishand et al [10], Scotto et al [20], and Friederichs [13]).

The construction of optimal alarm processes to predict potential catastrophes based on level

crossings for a random process over time was considered by de Maré [12] and Lindgren ([17],

[18]) who described a set of principles for the construction of optimal alarm systems in the

continuous time-domain and used it to obtain results for the optimal prediction of level

crossings for Gaussian processes. These results were used to develop optimal alarm systems

to predict high water levels in the Baltic by Svensson et al [23]. A limitation of the alarm

system introduced by Lindgren and de Maré is that it ignores the variation in the model

parameters over time. Addressing this issue, Turkman [26] suggested a Bayesian approach

with (discrete-time) autoregressive models of order one. Antunes et al [3] extended the

results given in [26] to discrete-time autoregressive models of order p and showed how the

alarm characteristics can be numerically obtained. A related problem, which is addressed in

this paper, is the development of optimal alarm systems for spatial processes evolving over

continuous time.

The possible applications of optimal alarm systems are extensive and include such areas as

environmental economics and econometrics. For instance, it is desirable to optimally predict

upcrossings of critical levels of random processes giving concentrations of air pollutants, such

as ozone, carbon monoxide or sulfur dioxide. Such crossings have implications for, amongst

other aspects, public health (for example, see Smith et al [22], Koop and Tole [16] and Tobias

and Scotto [25]). In risk management in econometrics, the assessment and forecasting of
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market risks or credit risks using probabilistic models is mandatory; for example, forecasting

financial risk of lending to customers (Thomas [24]), forecasting the arrival of guests at

hotels (Weatherford and Kimes [27]) and forecasting daily stock volatility for option pricing,

asset allocation and value-at-risk (Fuentes et al [14]). However, these references do not

consider the prediction of future upcrossings or downcrossings. More recently, Costa et

al [11] considered optimal alarm systems for financial time series modeled via Fractionally

Integrated Asymmetric Power ARCH processes. Further implementation of optimal alarm

systems for such situations would be useful.

Potential applications of optimal alarm systems for spatio-temporal settings can be found

in short-term forecasting of sea levels; for example, in the planning of offshore operations

that have a duration of a few days and on long-term predictions of extreme waves. The

latter play a central role for the design of most marine systems, both offshore and coastal,

as their design needs to take into account the most severe wave conditions which they need

to withstand during their lifetime. Further examples can be found in Niedzielski and Kosek

[19], Baxevani and Rychlik [8], and Hopkinson et al [15].

Following a brief review of the principles for the construction of temporal optimal alarm

systems introduced by de Maré [12] and Lindgren ([17], [18]), a suitable framework is in-

troduced to transfer their results to spatio-temporal optimal alarm systems in Section 2.

Formal definitions of the concepts of catastrophe, alarm systems and optimal alarm regions

are also given. Section 3 presents important results which are crucial for deriving the general

expressions in Section 4, which is devoted to providing explicit general expressions for the

optimal alarm regions and a specific case. In Section 5, an example based on Gaussian ran-

dom fields exhibiting a Gaussian covariance function is investigated. Finally, some ancillary

results related with the theory of multivariate normal densities and matrix theory, useful in

proving the main results of the paper and simulating the involved processes, are given in

appendices.

2. Catastrophes and Alarms

In this section, the framework and theoretical concepts related to optimal event prediction

of level crossings in spatio-temporal processes will be discussed, following the approach taken
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by de Maré [12] and Lindgren ([17], [18]), with some modifications and obvious extensions to

random fields. Formal definitions of the concepts of catastrophes, alarm systems and optimal

alarm regions are given below.

Throughout the following, consider the (potentially catastrophic) spatio-temporal process

of interest as a family of spatial random fields indexed by time. Hence, let {ξ(s, t), s ∈

R2, t ∈ R} denote a zero-mean random field over R3, where s usually stands for location in

(two-dimensional) space and t for time. In addition, assume there is a multivariate alarm

random field, {η(s, t) = (η1(s, t), . . . , ηk(s, t)), s ∈ R2, t ∈ R}, for some k ∈ N, and which

may, for instance, simply be ξ and possibly its derivatives. It will be assumed that (ξ,η)

is (separable) strictly stationary and ergodic over t, with all components of (ξ,η) having

finite variances. Assume further that the first order derivatives of all components of (ξ,η)

with respect to t exist and are continuous with probability one, and have finite variances.

Finally, assume that all joint finite dimensional distributions of (ξ,η) and their first order

derivatives exist and are non-degenerate. Later, it will be assumed that (ξ,η) are Gaussian

random fields and conditions will be stated to ensure all first order derivatives exist and are

continuous with probability one.

Suppose that there are a number of spatial locations from which η can be observed in order

to give an alarm at a number of spatial locations for a catastrophe for the field ξ; that is,

assume there are two sets of spatial locations: (s1j, j = 1, 2, . . . , n) are those at which the

alarm process η is observed and (s0i, i = 1, 2, . . . , r) are those at which a catastrophe for the

random field ξ is of interest.

The first objective is to choose an alarm process η which predicts h-time units in advance

whether a catastrophe will occur or not. A naive alarm system is obtained by basing η on

the predictor random field

ξ̂h(s, t) = E
[
ξ(s, t) ξ(s1j, t

∗),−∞ < t∗ ≤ t− h; j = 1, 2, . . . , n
]
,

for h > 0, and where an alarm is given every time the predictor exceeds a given level for

at least one location in some set of given locations s0i, i = 1, 2, . . . , r. This alarm system,

however, is far from optimal as it does not perform well at detecting level crossings, at

locating them accurately in time or in giving as few false alarms as possible. To resolve this
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issue for one-dimensional processes, de Maré [12] and Lindgren [18] introduced an optimal

alarm system, in the sense that it has a high ability of detecting catastrophes over all alarm

systems having the same overall alarm probability. Furthermore, it also predicts the time

for an upcrossing better than other possible alarm systems. Their approach is generalised

below.

Firstly, what is meant by a catastrophe and an alarm need to be defined. Suppose that a

catastrophe is said to be occurring at time t if ξr(t) ∈ C, where ξr(t) = (ξ(s01, t), . . . , ξ(s0r, t))

and C ∈ Rr. Similarly, suppose that an alarm is being given at time t if ηm(t) ∈ A, where

ηm(t) = (η(s11, t), . . . ,η(s1n, t)), A ∈ Rm (the Borel sets in Rm) and m = nk. Assume that

both C and A are such that each is the union of their respective interiors and boundaries,

and are connected. Furthermore, it will be assumed that ∂C, the boundary of C, is (r− 1)-

dimensional, everywhere continuous and possesses continuous first order derivatives almost

everywhere with respect to Lebesgue measure (on Rr−1).

The context of interest would usually determine both sets of spatial locations and the choice

of C. As well, it may be that some or all of the locations for the alarm process coincide

with those for the catastrophe process. The form of the catastrophe set C would reflect the

occurrence of high levels of the random field ξ at those locations chosen for ξ. For example,

C could consist of those points in Rr for which at least one of the ξ(s0j, t)’s is above some

level:

C = {x ∈ Rr : max(x1 − u1, . . . , xr − ur) ≥ 0},(1)

where u1, . . . , ur are (usually high) levels which may vary according to the spatial location.

The choice of A would reflect information which gives a higher probability of a catastrophe

and should be chosen according to some optimality criteria.

The times at which catastrophes and alarms commence is of interest since the optimal alarm

region will be derived by conditioning the alarm process η on the event that a catastrophe

has commenced at a fixed time. Similarly, the risk of a catastrophe will be defined in terms

of the distribution of the catastrophe process ξ conditioned on the event that the alarm has

commenced at a fixed (earlier) time. Hence, the events that ξr enters C and that ηm enters
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A at a fixed time t ∈ R will be denoted by

(2) C(t) = {ξr(·) enters the set C at time t}

and

(3) A(t) = {ηm(·) enters the set A at time t}.

For the following discussion, assume that (ξ,η), C and A are such that points at which these

events occur are isolated in time and that the probabilities of the events A(t) and C(t) are

zero for a fixed time t (these will follow from natural assumptions for the random fields and

the catastrophe and alarm regions).

As the conditioning events C(t) and A(t) have zero probability, it is necessary to indicate how

the conditional distributions will be obtained and how they should be interpreted. Under

the assumption that (ξ,η) is ergodic and that the point processes over time of entries into

C by ξr and into A by ηm have finite but non-zero intensities, these probabilities can be

defined using Palm distributions. The conditional distributions for ξ and η thereby obtained

can then be interpreted as the distribution for ξ around points in time at which the alarm

process ηm enters the set A and the distribution for η around points in time at which the

catastrophe process ξr enters the set C respectively. The general results from which the

Palm distributions for the conditional processes can be defined are given in Section 3. These

will be denoted by P 0(η ∈ · C(t)) and P 0(ξ ∈ · A(t)) respectively, and derived in Section 3.

The probabilities of interest in this setting are: how likely a catastrophe is to occur; how

likely an alarm is to occur; how likely a catastrophe is to be occurring at some time given

that an alarm commenced at some fixed lag earlier; and how likely an alarm was occurring

at some fixed lag earlier given that a catastrophe commenced at some fixed time. Following

Lindgren [18], define the following probabilities:

Definition 1. Suppose that C ∈ Rr is a given catastrophe region and A ∈ Rm is a given

alarm region.

(a) The catastrophe size of C is given by the probability γ = P (ξr(t) ∈ C).

(b) The alarm size of A is given by the probability α = P (ηm(t) ∈ A).

(c) The risk of a catastrophe C at lag h for an alarm region A is given by the probability



PREDICTION OF CATASTROPHES IN SPACE OVER TIME 7

ρh = P 0(ξr(t+ h) ∈ C A(t)).

(d) The detection probability with warning time h of an alarm A for a catastrophe C is given

by the probability δh = P 0(ηm(t) ∈ A C(t+ h)).

It is clear that the catastrophe size γ indicates the proportion of time the catastrophe process

is in the catastrophe state, while the alarm size α indicates the proportion of time the alarm

process is in the alarm state. Similarly, the risk ρh indicates the proportion of time the

catastrophe process is in the catastrophe state at lag h after the alarm process entered the

alarm state, giving a measure of how accurate the alarm process is. Finally, δh indicates the

proportion of time that the start of a catastrophe had an alarm associated with it exactly h

time units earlier (and hence that the alarm commenced prior to h time units earlier), giving

a measure of how many catastrophes were detected. Note that, as (ξ,η) is stationary, the

dependence on t in Definition 1 can be dropped.

Of additional interest are the distributions for the lengths of time for each period of alarm

and each period of catastrophe, and the distribution of the time from the start of an alarm till

the start of the next catastrophe period, though, of course, there may be a high probability

that no catastrophe is associated with a given alarm period. These are not considered here.

As in any diagnostic setting, it is desirable that the detection probability is as close to one as

possible while also keeping the risk probability as high as possible (so keeping the number of

false alarms low). One way of achieving the first would be to set the alarm region large, but

this would clearly decrease the risk probability and lead to a larger number of false alarms.

Fixing the size of the alarm region and then choosing the best alarm region in the sense of

maximising the detection probability is one way of achieving a compromise.

Definition 2 (Optimal alarm region). An alarm region Ah is said to be optimal for lag h

with associated alarm size αh, if it satisfies

P 0(ηm(t) ∈ Ah C(t+ h)) = sup
B

P 0(ηm(t) ∈ B C(t+ h)),(4)

where the supremum is taken over all Borel subsets B in Rm such that P (ηm(t) ∈ B) ≤ αh.

As it is important to consider all lags, an alarm system will be defined to be a collection of

alarm sizes (which may change with lag) and corresponding alarm regions given over all lags



8 A. BAXEVANI, R.J. WILSON, AND M. SCOTTO

h > 0: {αh, Ah;h > 0} with αh = P (ηm(t) ∈ Ah). Definition 2 can then be extended to an

alarm system:

Definition 3 (Optimal alarm system). An alarm system {αh, Ah;h > 0} is said to be optimal

if each alarm region Ah is optimal for alarm size αh and lag h.

The definitions above, however, do not easily translate into clear guidelines on how to choose

the optimal alarm region Ah for given lag h with associated alarm size αh. The next result,

based on the same principles as those used to obtain “most powerful tests” ’(see Section 4 of

Lindgren [18]), provides an explicit method for deriving the optimal alarm regions:

Lemma 1 (Optimal alarm regions). For a given lag h with associated alarm size αh, the

alarm region given by

Ah =

{
y ∈ Rm :

f 0
ηm(t)(y C(t+ h))

fηm(t)(y)
≥ kh

}
,

is optimal of size αh, where f 0
ηm(t)(· C(t + h)) denotes the appropriate density function for

the Palm distribution for the conditional process ηm C(t + h) (that is, the density function

for the Palm distribution for ηm(t) given a catastrophe commences at time t + h), fηm(t)(·)

is the unconditional multivariate density of the random vector ηm(t) and the nonnegative

constants kh are such that P (ηm(t) ∈ Ah) = αh.

This result indicates little about the form of the optimal alarm with regard to boundedness,

connectivity and so on.

Note: Throughout the paper, f·(·) will denote the probability density function of the sub-

scripted random variable.

3. Palm Distributions and Slepian Models

In order to obtain the results of Sections 4 and 5, the conditional distribution for a multi-

variate one-dimensional process given a second multivariate one-dimensional process enters

a specified region at a given time is required. In this section, this conditional distribution

will be derived in terms of Palm distributions. From this, the conditional probability density

function and the Slepian model representation for the first process can be obtained. To avoid
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introducing new notation, similar notation to that used in earlier sections (and returned to

in Section 5) will be modified and used. As the spatial locations considered earlier were

fixed, these are incorporated through the multivariate nature of the processes.

Let {(ξ(t),η(t)), t ∈ R} now denote r-dimensional and m-dimensional (separable) strictly

stationary and ergodic zero-mean random processes over time respectively, with all compo-

nents of (ξ(t),η(t)) having finite variances. Assume further that the first order derivatives

of all components of (ξ,η) exist and are continuous with probability one, and have finite

variances. Finally, assume that all joint finite dimensional distributions of (ξ,η) and their

first order derivatives exist and are non-degenerate.

Let C be some region in Rr. Assume that its boundary, ∂C, is (r − 1)-dimensional, is

everywhere continuous and possesses continuous first order derivatives almost everywhere

with respect to Lebesgue measure (on Rr−1). Assume further that every point in ∂C can be

obtained as a limit point of an infinite sequence contained in the interior of C.

To obtain the required results, it is necessary to define the conditional distribution of η given

that ξ enters C at some fixed time point, which can be taken to be t = 0 without loss of

generality since the processes are stationary over time. However, the conditioning event has

probability zero and so care needs to be taken in defining the conditional distribution. Since

it is assumed that the process is strictly stationary and ergodic, the definition used here will

be that given by Palm distributions as this has a natural relative frequency interpretation.

Note that, under the assumptions above, the probability is zero that, in a finite interval of

time, ξ(t) takes a value on the boundary of C at which the first order derivatives do not

exist.

The methods required here are very similar to those in Lindgren [17] to obtain the Palm

distribution, and subsequently the Slepian model, for the catastrophe process given the alarm

process enters the alarm region at a given time point. Consequently, only the key features

will be given here. Since entry into the region C by the process ξ corresponds to a one

dimensional restriction on the process for a fixed time point, the probability that there is an

entry into C by the process ξ in a non-degenerate interval of time is greater than zero.
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To obtain the Palm distribution for η given the event C(0) occurs, where

C(t) = {ξ(·) enters C through ∂C at time t},

the following point processes need to be defined. Let

NT = #{t ∈ [0, T ] : C(t) occurs}

and

NT (Bτ ) = #{t ∈ [0, T ] : C(t) occurs and η(t + ·) ∈ Bτ}

for the number of entries into C by ξ through the boundary ∂C over the interval [0, T ] and

the number of such entries for which η(t + ·) ∈ Bτ respectively, where η(t + ·) denotes the

process {η(t+ s), s ∈ R} and Bτ is a finite dimensional set of the form

Bτ = {{y(t), t ∈ R} : (y(τ1), . . . ,y(τn)) ∈ B}(5)

for which τ = (τ1, . . . , τn) ∈ Rn, B is a Borel set in Rm×n and n ∈ N. Assuming the

expectations in the following exist (to be shown below), the conditional finite dimensional

(Palm) distributions of η given the event C(0) are defined as

P 0
(
η(τ ) ∈ Bτ C(0)

)
=

E [N1(Bτ )]

E[N1]
.(6)

Since the finite dimensional distributions are measure determining, these are all that are

required in order to define the conditional process.

In order to find the expectations on the right side of (6), it is simplest to use the argument

taken by Lindgren [17]. Hence, let M be a real valued function satisfying

x ∈ ∂C ⇐⇒ M(x) = 0

x ∈ C ⇐⇒ M(x) > 0,

and M(x) < 0 otherwise, where x = (x1, . . . , xr) ∈ Rr. Since the boundary of C is smooth

almost everywhere, it can be assumed that M(x) is continuously differentiable with respect

to all components of x, at least for x near the boundary ∂C and except possibly for a set of

((r − 1)-dimensional) Lebesgue measure zero on ∂C. This would be true, for instance, if C

is the region similar to that given by (1).
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For each point x on the surface determined by M(x) = c, where c is a fixed constant, and

at which M(x) is continuously differentiable, denote by νx the unit vector normal to the

surface at the point x:

νx =
Ṁ(x)

|Ṁ(x)|
,

and for which the gradient Ṁ(x) = (∂M
∂x1

, . . . , ∂M
∂xr

) ̸= 0. Thus, for x such that M(x) = 0,

νx is in the direction of increasing values of M; that is, for x on the boundary of C, νx is

in the direction of entry into C.

Define a new one-dimensional process by Mt = M(ξ(t)). Since ξ is stationary and ergodic,

it immediately follows that {Mt, t ∈ R} is also stationary and ergodic. In addition to the

conditions given above for (ξ,η), assume that, by an appropriate choice of M(·), these

processes are such that the conditions of Theorem 11.2.1 of Adler and Taylor [1] are satisfied

for {(Mt,Ṁt,η(t)), t ∈ R}, where

Ṁt =
∂M(ξ(t))

∂t
= ξ̇(t) · Ṁ(ξ(t)), ξ̇(t) =

∂ξ(t)

∂t
.

These restrictions are not onerous and, for Gaussian processes, are satisfied by the earlier

conditions above and appropriate conditions on their covariance functions (such as (11.2.5)

on p. 268 of Adler and Taylor [1]). Of course, {Mt, t ∈ R} will not be Gaussian even if

ξ is. However, given the assumptions on (ξ,η) and ∂C, there exists M(·) such that these

conditions are satisfied.

Hence, since ξ(t) is a continuously differentiable r-variate process, the entries into C through

∂C by ξ(t) can be expressed by means of zero-upcrossings by Mt. Under the above assump-

tions on ξ and C, these points are isolated, lie on ∂C and are points at which {Mt, t ∈ R} is

continuously differentiable with probability one. Thus, the event that ξ(·) enters C at time

t is given by

C(t) = {Mt = 0,Ṁt > 0}.

If γξ denotes the intensity of such entries through ∂C, then it is simply the expected number

of zero up-crossings in [0, 1] for M. Hence, similarly to Theorem 4.2 of Lindgren [17], it is

given by Rice’s formula (see Theorem 11.2.1 of Adler and Taylor [1])):
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Theorem 1. The mean number of entries into C from Cc across the boundary ∂C per time

unit is given by:

γξ = E(N1) = fM0(0)E
[
(Ṁ0)

+ M0 = 0
]

=

∫ ∞

z=0

zfM0,Ṁ0
(0, z)dz

=

∫
x∈∂C

q(x)fξ(0)(x)ds(x)(7)

where

q(x) = |Ṁ(x)|−1E
[
[(Ṁ0)

+ ξ(0) = x
]
= E

[
(νx · ξ̇(0))+ ξ(0) = x

]
and ds(x) is the surface element on ∂C.

Note that ∂C may include regions on which M(·) is not differentiable. However, these are

of Lesbegue measure 0 and are hence of no concern. Strictly speaking, the integral in (7)

above should be written as a (possibly countably infinite) sum of integrals over the disjoint

regions of ∂C for which M(·) is differentiable in order to exclude those regions on which

M(·) is not differentiable. For ease of notation and explanation, this will not be done.

Hence, from the ergodic theorem and in a similar fashion to Theorem 4.4 of Lindgren [17], the

conditional finite dimensional distributions for η given C(0) defined by (6) can be obtained

in terms of the random process Mt = M(ξ(t)) (again, the expressions for the expected

values follow immediately from Theorem 11.2.1 of Adler and Taylor [1]):

Theorem 2. Under the above assumptions on (ξ,η), C and M, it follows that, with prob-

ability one,

lim
T→∞

NT (Bτ )

NT

=
E [N1(Bτ )]

E[N1]

=
fM0(0)E

[
I{η(0 + ·) ∈ Bτ}(Ṁ0)

+ M0 = 0
]

fM0(0)E
(
(Ṁ0)+ M0 = 0

)
=

1

γξ

∫ ∞

z=0

zP
(
η(0 + ·) ∈ Bτ M0 = 0,Ṁ0 = z

)
fM0,Ṁ0

(0, z)dz

=
1

γξ

∫ ∞

z=0

∫
y∈B

zfM0,Ṁ0,ητ (0)
(0, z,y)dzdy.
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where

ητ = (η(τ1), . . . ,η(τn))

and Bτ , (τ1, . . . , τn), B and n are as in (5). Here, I{·} denotes the indicator function of the

contained event (and equals one when the contained event occurs and is zero otherwise).

Following Lindgren [17], the above integrals, which involve the joint density of (M0,Ṁ0)

and the conditional density of ητ (0) given {M0 = 0,Ṁ0 = z} (which usually do not have

simple closed forms), can be written as surface integrals in terms of the distribution of ξ and

its derivative:

Theorem 3. Under the above assumptions on (ξ,η) and C, and assuming Bτ given by (5)

is open, then

E [N1(Bτ )]

E[N1]
=

1

γξ

∫
x∈∂C

∫
z∈Rr

(
νx · ξ̇(0)

)+
P
(
η(0) ∈ Bτ ξ(0) = x, ξ̇(0) = z

)
×fξ(0),ξ̇(0)(x, z)dzds(x),

=
1

γξ

∫
x∈∂C

∫
z∈Rr

∫
y∈B

(νx · z)+ fξ(0),ξ̇(0),ητ (0)
(x, z,y)dydzds(x),(8)

where ds(x) is the surface element on ∂C (see previous note).

In order to obtain the optimal alarm region, the probability density function of the condi-

tional process is required. This is obtained simply from the above result:

Corollary 1. The conditional probability density function for the process at (τ1, . . . , τn) is

1

γξ

∫
x∈∂C

∫
z∈Rr

(νx · z)+ fξ(0),ξ̇(0),ητ (0)
(x, z,y)dzds(x).(9)

An immediate consequence of Theorem 3 is the joint long-run distribution of the process ξ

and its derivative at its entries into C. To obtain this result, simply take η as (ξ, ξ̇) with

n = 1 and τ1 = 0 in Theorem 3:

Corollary 2. Let {t̂j, j ∈ Z} denote the times at which ξ(·) enters C. Under the above

assumptions on ξ and C, the long-run joint distribution of the height ξ(t̂j) and the directional

derivative ξ̇(t̂j) at the entries of ξ(·) across the boundary ∂C into C is given by

(νx · z)+

γξ
fξ(0),ξ̇(0)(x, z)dzds(x).
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This follows from the fact that q(·,x) is absolutely continuous with respect to p(·,x) with

density
dq(·,x)
dp(·,x) = (νx · z)+,

where

q(B,x) = E

[
I{ξ̇(0) ∈ B}

(
νx · (ξ̇(0))

)+
ξ(0) = x

]
,

for B a Borel set in Rr, and dp(·,x) = fξ̇(0)|ξ(0)=x(·).

From this point on, assume that (ξ,η) are jointly Gaussian and that the covariance functions

of the components of ξ, ξ̇ and η satisfy condition (11.2.5) on p.268 of Adler and Taylor [1].

To obtain the multivariate version of the long-run Rayleigh distribution of the derivative of

a Gaussian process at an upcrossing (classical theory), the following results are needed from

the theory of multivariate normal random variables.

Lemma 2. Under the above assumptions on (ξ,η), the conditional distribution of

η(t)
(
ξ(0) = x, ξ̇(0) = z

)
is m-variate normal with mean vector

(10) mη
x,z(t) =

[
rξ,η(t)

T − ṙξ,η(t)
T
]
rξ,ξ̇(0)

−1

 x

z


and covariance matrix function

rηx,z(t1, t2) = Cov(η(t1),η(t2)|ξ(0) = x, ξ̇(0) = z)(11)

= rη(t1 − t2)−
[
rξ,η(t1)

T − ṙξ,η(t1)
T
]
rξ,ξ̇(0)

−1

 rξ,η(t2)

−ṙξ,η(t2)

 ,

where rξ,ξ̇(0) is the covariance matrix of (ξ(t), ξ̇(t)), rη(t1 − t2) is the covariance matrix

function of η and rξ,η(t) is the cross covariance matrix of ξ and η, and are matrices of

dimensions 2r × 2r, m×m and m× r respectively. As (11) does not depend on either x or

z, it will written as rη(t1, t2) = rηx,z(t1, t2).

The Slepian model representation for the conditional process η|C(0) can now be stated.

Firstly, let κ(t) denote a non-stationary m-dimensional normal process with mean zero and
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the covariance matrix rη(t1, t2) given in (11). Additionally, let (χ, ζ) be a 2r-dimensional

random variable independent of κ, taking values on

{(x, z) ∈ ∂C− × Rr : νx · z > 0 for each x ∈ ∂C−}

and with distribution given by

fχ,ζ(x, dz)ds(x) =
νx · z
γξ

fξ̇(0)|ξ(0)(z|x)fξ(0)(x)dzds(x),

where ∂C− denotes all those points in ∂C at which ∂C possesses all first order derivatives.

Define the process {ηm
∂C(t), t ∈ R} by

η∂C(t) = mη
χ,ζ(t) + κ(t)

where mη
χ,ζ(t) is defined in (10).

The following theorem can be obtained using the characteristic functions for the finite di-

mensional distributions given by (8) and those for η∂C :

Theorem 4. Under the conditions on (ξ,η) and C (and its boundary) given in this section,

the finite dimensional distributions given by (6) for the conditional process η|C(0) are the

same as those for the process η∂C.

Under ergodicity, Theorem 3 motivates the use of the process η∂C as a model vector process

for η “around” entries of ξ into C. It can be used to obtain model vector processes for

the alarm process around entries of the catastrophe process into the catastrophe region

and for the catastrophe process around entries of the alarm process into the alarm region.

These model vector processes can then be used to calculate the different probabilities in

definition 1.

4. Optimal Alarms and Slepian Models

The results of Section 3 will be used in this section to obtain the densities required to de-

termine the optimal alarm regions given in Lemma 1 for both a general setting and a specific

case. Assume that the notation for the catastrophe and alarm processes of Section 2 again

applies. The results of Section 3 can also be used to obtain Slepian model representations for

the conditional (or Palm) processes η C(0) and ξ Aopt(0), where Aopt denotes the optimal



16 A. BAXEVANI, R.J. WILSON, AND M. SCOTTO

alarm region. The Slepian model representations can be used to obtain the probabilities

given by (c) and (d) in Definition 1.

Assume that, in addition to being stationary and ergodic over t, (ξ,η) is a multi-variate

Gaussian random field for which all associated covariance matrices are non-degenerate and

all associated covariance functions are twice differentiable and continuous with respect to t.

Suppose as well that

(12) maxr|r(s1, s2, 0)− r(s1, s2, t)| ≤ K| ln |t||−(1+α)

for some finite K > 0, α > 0 and t small enough, and where r runs over the second order

derivatives with respect to t of all covariance and cross-covariance functions of (ξ,η). It

follows from Corollary 11.2.2 of Adler and Taylor [1] that the conditions of Theorem 11.2.1

of Adler and Taylor [1] hold. Hence, the finite dimensional distributions of the conditional

random fields η C(0) and ξ A(0) in the sense of Palm distributions are given by Theorem 3

with the appropriate changes in notation provided C and A satisfy the conditions given in

Section 2. Note that it has not been assumed that (ξ,η) are stationary and ergodic in s,

and that the Gaussian assumption can be dropped, but then condition (12) becomes much

less succinct!

It follows that the (Palm) probability density function for ηm|C(0), where the event C(0) is

given by (2) for C satisfying the conditions given in Section 2, is given by Corollary 1. Hence,

taking into account that (ξ,η) is stationary over time so the dependence on t in Lemma 1

can be dropped, the optimal alarm region is as follows:

Theorem 5. For a given lag h with associated alarm size αh, the alarm region given by

(13) Ah =

{
y ∈ Rm :

∫
x∈∂C

∫
z∈Rr

(νx · z)+ fξr(h),ξ̇r(h) ηm(0)(x, z y)dzds(x) ≥ kh

}
,

is optimal of size αh, where ξ̇r denotes the derivative of ξr with respect to t, νx is the unit

vector normal to the surface ∂C at the point x in the direction of entry into C and the

nonnegative constants kh are such that P (ηm(t) ∈ Ah) = αh.

The integral in (13) with respect to x should really be written as a sum of integrals over

those regions for which ∂C is smooth (see cases below and note after Theorem 1), where

ds(x) is the surface element on ∂C.
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The region given by (13) is difficult to interpret for the general case, so for the remainder of

this section it will be assumed that C takes the form given by (1). Thus,

∂C = {x ∈ Rr; max
i

xi = ui} = ∪r
i=1∂Ci

where ∂Ci = {x ∈ Rn;xi = ui, xj ≤ uj, j ̸= i} for i = 1, 2, . . . , r, and the integral with

respect to x can be written as a sum of integrals over the ∂Ci’s. As well, the unit vector

normal to ∂Ci at x in the direction of entry into C is then simply the ith unit vector

νx = δi = (0, . . . , 1, . . . , 0) for all x ∈ ∂Ci; that is, a zero vector with a one in the ith

position. Hence, the optimal alarm region can be written as follows:

Corollary 3. For a given lag h with associated alarm size αh, the alarm region given by

Ah =

{
y ∈ Rm :

r∑
i=1

∫
x∈∂Ci

∫
{z∈Rr:zi>0}

zifξr(h),ξ̇r(h)|ηm(0)(x, z|y)dzdx
i ≥ kh

}

=

{
y ∈ Rm :

r∑
i=1

(∏
j ̸=i

∫ uj

−∞

)[∫ ∞

0

zifξ̇i(h)|ξr(h),ηm(0)(zi|x
i
u,y)dzi

]

×fξr(h)|ηm(0)(x
i
u|y)dxi ≥ kh

}
,

=

{
y ∈ Rm :

r∑
i=1

(∏
j ̸=i

∫ uj

−∞

)[
σ̇i(h)Ψ

(
µ̇i(x

i
u,y;h)

σ̇i(h)

)]
fξr(h)|ηm(0)(x

i
u|y)dxi ≥ kh

}
,(14)

is optimal of size αh, where xi
u = (x1 . . . , xi−1, ui, xi+1 . . . xr), dxi = dx1 . . . dxi−1dxi+1 . . . dxr,

(15) µ̇i(x
i
u,y;h) = µξ̇i(h)|ξr(h),ηm(0)(x

i
u,y;h) and σ̇2

i (h) = σ2
ξ̇i(h)|ξr(h),ηm(0)

(h)

are the conditional mean and variance respectively of ξ̇i(h) given ξr(h) = xi
u and ηm(0) = y,

(16) Ψ(z) = ϕ(z) + zΦ(z),

with ϕ(z) and Φ(z) the standard normal probability density function and distribution function

respectively, and the nonnegative constants kh are such that P (ηm(t) ∈ Ah) = αh. Here, (16)

arises from
∫∞
0

xfX(x)dx = σΨ(µ/σ) for X ∼ N(µ, σ2).

The conditional mean and variance given by (15) can be obtained using multi-variate normal

theory (see Lemma 3 and the cases in the next section), with the mean but not the variance

depending on the values of the conditioning variables. The integrals in (14) are non-trivial to
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evaluate and so will only be done here numerically for the examples in the following section.

Note that the results of Lindgren [18] are a special case of the above result, with r = 1 (see

Cases 1 and 2 below), so that the optimal alarm region is then just

Ah =

{
y ∈ Rm : σ̇(h)Ψ

(
µ̇(u,y;h)

σ̇(h)

)
fξ(h)|ηm(0)(u|y) ≥ kh

}
,(17)

where u = u1, ξ(t) = ξ(s01, t) and µ̇ and σ̇ are defined similarly as in (15).

To illustrate the form of the optimal alarm region, four simple cases will be considered and

discussed. (To simplify further, it will be assumed that the catastrophe and alarm fields are

the same (so k = 1).) The cases considered are for when there are (1) single locations for

both the catastrophe and alarm processes, (2) a single location for the catastrophe process

and two locations for the alarm process, (3) two locations for the catastrophe process and

a single location for the alarm process and (4) two locations for both the catastrophe and

alarm processes. All locations in space will be assumed to be distinct.

5. Special Cases

The special cases described at the end of the previous section are used in this section

to illustrate both the characteristic features of the optimal alarm regions and the related

probabilities through a simulation study. For simplicity, it is assumed that the alarm and

catastrophe random fields are the same random field (though observed at distinct locations).

It is also assumed that this random field is stationary Gaussian with zero mean and covariance

function given by

(18) r(x, y, t) = λ0 exp

(
− 1

2λ0

(x, y, t)Λ(x, y, t)′
)
,

(a Gaussian covariance function) with

Λ =


λ200 λ110 λ101

λ110 λ020 λ011

λ101 λ011 λ002


where λ0 > 0 is the variance of the random field and Λ, the matrix of second order spectral

moments, is positive definite. Amongst other applications, this covariance function has been

used to model the spatio-temporal variability of significant wave height (see Baxevani et al
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[7] and [6]). For the simulations (see Appendix 2 for the simulation procedure), it will be

assumed that the variance is one (λ0 = 1) and that

Λ =


0.9 0.3 0.09

0.3 0.5 −0.3

0.09 −0.3 0.8

 .

Case (1) In the first case, single spatial locations are considered for both the alarm and

catastrophe processes. Without loss of generality, the location considered for the catastrophe

process will be assumed to be at s01 = 0 and it will be assumed that a catastrophe is occurring

at time t if the level u = 2 is exceeded: ξ(0, t) ≥ 2. Hence, a catastrophe starts with an

upcrossing of the level u = 2. In order to compare different scenarios for a single time lag h,

four different locations will be considered for the alarm process. As the optimal alarm region

is dependent on the interplay (measured through the covariance) between the catastrophe

process and the alarm process and between the (time) derivative of the catastrophe process

and the alarm process at the chosen time lag, these were chosen on the basis of different

combinations of covariances as in the following table:

Alarm Location: s11 Cov(ξ(0, h), η(s11, 0)), Cov(ξ̇(0, h), η(s11, 0))

(-1,2) 0.4274 -0.2949

(-0.4,1) 0.8171 -0.2745

(0.2,-0.4) 0.9666 0.1334

(2.25,-3) 0.0818 0.0902

Table 1

To illustrate the form of these pairs of covariances for different lags, the covariance func-

tions Cov(ξ(0, t), η(s11, 0)) and Cov(ξ̇(0, t), η(s11, 0)) have been plotted in Figure 1 (top and

bottom respectively) for s11 = (−1, 2), where the other combinations of locations are similar.

Note that, in all cases, the greatest correlation between ξ(s01, t) and η(s11, 0)) is at the same

lag as when ξ̇(s01, t) and η(s11, 0)) are uncorrelated.

For each of the chosen combinations of locations and for the catastrophe as given above, the

optimal alarm regions of nominal size α = 0.05 were determined using (14) to obtain alarm
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Figure 1. Covariance functions between ξ(0, t) and η((−1, 2), 0) (top) and

between ξ̇(0, t) and η((−1, 2), 0) (bottom).

regions and their corresponding alarm size. The optimal alarm region was then taken to be

the region for which α ∈ [0.045, 0.055] was closest to 0.05. The regions have been plotted

in Figure 2 against their spatial location. For this case, the alarm region takes the form

of a bounded interval since the catastrophe starts with an upcrossing and hence the alarm

process cannot be “too high” for a close earlier time. Consequently, by considering Table 1, it

can be seen that the greater the correlation between the catastrophe process and the alarm

process, the smaller the alarm region (as might be expected). The correlation between the

derivative of the catastrophe process and the alarm process seems to play a lesser role.

The risk and detection probabilities for a catastrophe occurring at s01 = 0, an alarm

located at s11 = (−1, 2) and with alarm size α ∈ [0.045, 0.055] have been computed using 10

day simulations of the alarm and catastrophe processes. These have been plotted in Figure 3

(top and bottom respectively) for warning times between 0 and 5, and time step of 0.25.

To illustrate the interplay between the alarm and catastrophe processes, simulations for the

alarm location s11 = (−1, 2) were obtained using the procedure outlined in Appendix 2:

see top two graphs in Figure 4. The red sections highlight the times when a catastrophe is

occurring (the times the catastrophe process exceeds level u = 2), while the green sections

indicate the alarm times for a possible catastrophe h = 0.5 time units later, where the optimal

alarm region was obtained for an alarm size of α ∈ [0.045, 0.055]. In Figure 4 (Bottom), the
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Figure 2. Optimal alarm regions for each of the four alarm locations with

catastrophe location at s01 = 0.
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Figure 3. Risk probability (top) and detection probability (bottom) by warn-

ing times for catastrophe location s01 = 0, alarm location s11 = (−1, 2) and

alarm size α ∈ [0.045, 0.055].

same information is indicated without the sample paths so that the relationship can be seen

more clearly.

Case (2) In this case, there are two locations at which an alarm may be given for a catas-

trophe at a single location. The same location for a catastrophe as in Case (1) is used here

(s01 = (0), with the same definition of a catastrophe (ξ(0, t) ≥ 2). Each one of the locations
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Figure 4. Top: Simulation of the alarm process η((−1, 2), t), with green in-

dicating that an alarm is in progress. Middle: Simulation of the catastrophe

process ξ(0, t − 0.5), with red indicating a catastrophe is occurring. Bottom:

Green lines indicate when an alarm is in progress and red lines when a catas-

trophe is occurring.

considered for the alarm process in Case (1) will be considered here, giving six different

scenarios.

The cross-covariance functions between the catastrophe process and the two alarm processes

and between the time derivative of the catastrophe process and the two alarm processes will

obviously interplay to determine the shape of the optimal alarm region, which in this case

seems to be elliptical. Again, the region is bounded as the alarm processes can not take

on high values with an upcrossing (for the start of a catastrophe) occurring at a later time

not far into the future. These cross-covariance functions are similar to those illustrated in

Figure 1. Naturally, the scaling and the location will be different for the different pairs.

The optimal alarm regions for different combinations of possible alarm locations were deter-

mined in a similar manner to Case (1) and are given in Figure 5. The plotted regions from top

left to bottom right correspond to the different combinations as follows: ((−1, 2), (−0.4, 1)),

((−1, 2), (0.2,−0.4)), ((−1, 2), (2.25,−3)), ((−0.4, 1), (0.2,−0.4)), ((−0.4, 1), (2.25,−3)) and

((0.2,−0.4), (2.25,−3)). Again, the relative width seems to reduce as the correlation between

the catastrophe process and the corresponding alarm process seems to increase (so the alarm
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Figure 5. Optimal alarm regions for six different pairs of alarm locations.

process located at (0.2,−0.4) seems to have the narrowest region and that at (2.25,−3) the

widest). In addition, as the alarm size is now “shared” between the two alarm processes,

there is, in some sense a narrowing of the alarm “interval” from Case (1) to Case (2) for the

individual alarm processes.

The risk and detection probabilities for a catastrophe occurring at s01 = 0, and alarms

located at s11 = (−1, 2) and s11 = (−0.4, 1) and with alarm size α ∈ [0.0425, 0.0575] have

been computed using 10 day simulations of the alarm and catastrophe processes. These have

been plotted in Figure 6 (top and bottom respectively) for warning times between 0 and 3,

and time step of 0.25.

Again, simulations of the alarm and catastrophe processes were obtained (see Figure 7)

for illustrative purposes. The locations for the alarm processes are (−1, 2) and (−0.4, 1),

with the catastrophe process at s01 = 0. As before, the red sections indicate the times a

catastrophe is occurring, while the green sections indicate the alarm times for a possible

catastrophe h = 0.5 time units later, using an alarm size of α ∈ [0.0425, 0.0575].

Case (3) For this case, the reverse setting to Case (2) is considered. Hence, there are two

locations for the catastrophe process and a single location for the alarm process. The same

four locations as previously for the alarm process are considered. The previous location for

the catastrophe process is considered, paired with either s02 = (0.4, 0.7) or s02 = (1.2, 2). For
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Figure 6. Risk probability (top) and detection probability (bottom) by warn-

ing times for catastrophe location s01 = 0, alarm locations s11 = (−1, 2) and

s11 = (−0.4, 1), and alarm size α ∈ [0.0425, 0.0575].

this case, a catastrophe occurs if a catastrophe occurs at either location, with a catastrophe

occurring at s01 = 0 if the process exceeds u1 = 2 and a catastrophe occurring at s02 if the

process exceeds u2 = 1.7. Results are presented for both cases, with s02 = (0.4, 0.7) first.

The optimal alarm regions have been obtained as before and are shown in Figure 8, with

the catastrophe locations indicated by an asterisk. As with Case (1), the regions are again

bounded intervals. As the alarm process now has to compromise between the two catastrophe

processes, while retaining the same alarm size, the intervals, for these locations, have changed

by having a smaller lower bound and, consequently, a shorter interval as compared to Case

(1).

The risk and detection probabilities have been computed as earlier. These have been plotted

in Figure 9 (top and bottom respectively) for warning times between 0 and 3, and time step

of 0.25.

For this case, an alarm indicates a potential catastrophe at either of the two catastrophe

locations, without indicating at which the catastrophe is likely to occur. In the simulations of

the alarm process (top panel) and the catastrophe processes (middle two panels) in Figure 10,

a sense of how this works is given. In the bottom panel of Figure 10, the red sections
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Figure 7. First two panels: Simulation of alarm processes η((−1, 2), t) and

η((−0.4, 1), t), with green indicating when an alarm is in progress. Third panel:

Simulation of the catastrophe process ξ(0, t− 0.5) , with the red indicating a

catastrophe is occurring. Bottom: Green lines indicate when an alarm is in

progress and red lines when a catastrophe is occurring.

indicate the times at which a catastrophe is occurring, with black indicating those times

that this occurs at the first location and with blue the times that this is at the second

location. As before green was used to indicate an alarm is in progress, using an alarm size

of α ∈ [0.0425, 0.0575].

The above investigation was repeated for s02 = (1.2, 2). The optimal alarm regions are given

in Figure 11, with the location of the two catastrophe processes indicated by an asterisk.

The risk and detection probabilities are given in Figure 12. Finally, simulations of the alarm

process and catastrophe processes (as in 10) are given in Figure 13. Although the second

catastrophe process is located a little further away from the first location (at s01 = 0) for

this case, the results have changed little.
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Figure 8. Optimal alarm regions for each of the four alarm locations with

catastrophe locations at s01 = 0 and s02 = (0.4, 0.7).
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Figure 9. Risk probability (top) and detection probability (bottom) by warn-

ing times for catastrophe locations s01 = 0 and s02 = (0.4, 0.7), alarm location

s11 = (−1, 2) and alarm size α ∈ [0.0425, 0.0575].

Case (4) This case combines the settings in Cases (2) and (3) with the alarm process

observed at two locations s1i, i = 1, 2, using the same combinations of locations as in the

previous cases, and with two locations at which catastrophes are of interest, s0i, i = 1, 2, using

the same two pairs of locations as in Case (3), with results presented for both. The same
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Figure 10. First panel: Simulation of the alarm process η((−1, 2), t), with

green indicating that an alarm is in progress. Second and third panel: Simula-

tion of the catastrophe processes ξ(0, t−0.5) and ξ((0.4, 0.7), t−0.5), with the

red indicating a catastrophe is occurring. Bottom: Green lines indicate when

an alarm is in progress and red lines when a catastrophe is occurring, while

black indicates those catastrophes at the first location and blue indicates those

catastrophes at the second location.
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Figure 11. Optimal alarm regions for each of the four alarm locations with

catastrophe locations at s01 = 0 and s02 = ((1.2, 2)).
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Figure 12. Risk probability (top) and detection probability (bottom) by

warning times for catastrophe locations s01 = 0 and s02 = (1.2, 2), alarm

location s11 = (−1, 2) and alarm size α ∈ [0.0425, 0.0575].
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Figure 13. First panel: Simulation of the alarm process η((−1, 2), t), with

green indicating that an alarm is in progress. Second and third panel: Simula-

tion of the catastrophe processes ξ(0, t− 0.5) and ξ((1.2, 2), t− 0.5), with the

red indicating a catastrophe is occurring. Bottom: Green lines indicate when

an alarm is in progress and red lines when a catastrophe is occurring, while

black indicates those catastrophes at the first location and blue indicates those

catastrophes at the second location.
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Figure 14. Optimal alarm regions for six different combinations of alarm

locations and catastrophe locations at s01 = 0 and s02 = (0.4, 0.7).

catastrophe setting as in Case (3) is used (with levels u1 = 2 and u2 = 1.7) and the optimal

alarm region was computed using a time lag of h = 0.5 hours and for α ∈ [0.045, 0.055].

The optimal alarm regions for the six combinations of alarm locations have been determined

as before and are given in Figure 14 for s02 = (0.4, 0.7) and in Figure 15 for s02 = (1.2, 2),

with the location of the two catastrophe processes indicated by an asterisk. Here, the two

alarm processes are indicating potential catastrophes at two locations and the optimal alarm

region can be more complicated than for the previous cases, with the possibility of consisting

of disjoint regions, as seen in both these sets of plots.

The risk and detection probabilities have been computed as earlier. These have been plotted

(top and bottom respectively) in Figure 16 for catastrophe locations at s01 = 0 and s02 =

(0.4, 0.7) and in Figure 17 for catastrophe locations at s01 = 0 and s02 = (1.2, 2), with alarm

locations at s11 = (−1, 2) and s11 = (−0.4, 1), warning times between 0 and 3, and time step

of 0.25.

As before, simulations can give some indication of how the two alarm processes give alarms

for the two catastrophe processes. These simulations are given in Figure 18 and Figure 19

for s01 = 0 and s02 = (0.4, 0.7), and in Figure 20 and Figure 21 for s01 = 0 and s02 = (1.2, 2),

and for both, s11 = (−1, 2) and s11 = (−0.4, 1).
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Figure 15. Optimal alarm regions for six different combinations of alarm

locations and catastrophe locations at s01 = 0 and s02 = (1.2, 2).
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Figure 16. Risk probability (top) and detection probability (bottom) by

warning times for catastrophe locations s01 = 0 and s02 = (0.4, 0.7), alarm

locations s11 = (−1, 2) and s11 = (−0.4, 1), and alarm size α ∈ [0.045, 0.055].
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6. Appendix 1

In this section, some results from the theory of multivariate normal densities used in the

previous sections are presented. For convenience, the notation of Section 3 will be used.

Recall that (ξ,η) is assumed to have a zero mean multivariate normal distribution and is
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stationary over time, with the components having dimensions r and m respectively. Denote

the covariance matrix of the vector
(
ξ(h), ξ̇(h),η(0)

)
by :


Σ11 Σ12 Σ13(h)

Σ21 Σ22 Σ23(h)

Σ31(h) Σ32(h) Σ33

 ,

where Σij denotes the covariance matrix or cross-covariance matrix of the (i, j)th component

vector of
(
ξ(h), ξ̇(h),η(0)

)
. Below, x and y denote column vectors of length r and m respec-

tively. The following lemma provides the conditional densities used earlier (for derivations

of these, see, for example, p.28 of Anderson [2]):

Lemma 3. a) ξ(h) given η(0) = y has a multivariate normal distribution with mean

mξ·η = Σ13(h)Σ
−1
33 · y

and covariance matrix

Σξ·η = Σ11 − Σ13(h)Σ
−1
33 Σ31(h).

b) ξ̇(h) given that ξ(h) = x and η(0) = y has mean

mξ̇·ξη = (Σ21 Σ23)

 Σ11 Σ13(h)

Σ31(h) Σ33

−1 x

y

T

and variance

Σξ̇·ξη = Σ22 − (Σ21 Σ23)

 Σ11 Σ13(h)

Σ31(h) Σ33

−1 Σ12

Σ32

T

where T denotes transpose.

7. Appendix 2

In this section, a method for simulating multi-variate stationary Gaussian processes using

their cross-spectral density matrix is presented. Consider a set of n stationary Gaussian

processes ξi(t), for i = 1, . . . , n, with mean zero and with a specified cross-spectral density

matrix S(ω) = [Sij(ω)], where Sij(ω) is the mean square spectral density of ξi if i = j and

the mean square cross-spectral density of ξi and ξj if i ̸= j. Moreover the spectra have been
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standartised so that the variances are equal to one. Following Shinozuka [21], suppose that

one can find a matrix H(ω) which possesses Fourier transforms and satisfies

S(ω) = H(ω)H(ω)T .

Then ξi(t), i = 1, 2, . . . , n can be simulated by filtering,

(19) ξi(t) =
n∑

k=1

∫
hik(t− τ)dBk(τ)

where Bk(τ) are independent Brownian motions and hik(t) are the Fourier transforms of

Hik(ω).

To find the matrix H(ω) in an efficient way, one can assume that H(ω) is a lower triangular

matrix:

H(ω) =


H11(ω) 0 . . . 0

H21(ω) H22 . . . 0
...

... . . . 0

Hn1(ω) Hn2(ω) . . . Hnn(ω)


Hence,

S11(ω) = |H11(ω)|2

S21(ω) = S12(ω) = H21(ω)H11(ω)(20)

S22(ω) = |H21(ω)|2 + |H22(ω)|2

and so on. These equations can be sequentially solved for Hik(ω):

H11(ω) = S11(ω)
1/2

H21(ω) =
S21(ω)

S11(ω)1/2
(21)

H22(ω) = (S22(ω)− |H21(ω)|2)1/2

and so on.

After solving for the Hik(ω)’s, their Fourier transforms are taken to obtain the hik(t)’s, which

can then be used together with (19) to simulate the processes.
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7.1. Special cases. At a fixed spatial location s, the Gaussian covariance function given in

(18) becomes a function of time only. This covariance function is the Fourier transform of

the spectrum

(22) S(ω) =
λ0√

2πλ002/λ0

exp

[
− ω2

2λ002/λ0

]
.

As well, the cross-covariance function for two processes over time for fixed spatial locations,

which differ by s = (s1, s2), has Fourier transform

Sc(ω) = S(ω) exp

(
iω(

s1λ101 + s2λ011

λ002

)

)
× exp

(
1

λ0λ002

{
s21(λ

2
101 − λ200λ002) + s22(λ

2
011 − λ020λ002)

+ 2s1s2(λ101λ011 − λ110λ002)
})

.(23)
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