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Abstract

The vertical road input is the most important load for duigbassessments of vehicles. We
focus on stochastic modelling of the road profile with the &nfind a simple by still useful
model. The proposed non-stationary Laplace model with Ig€ztsum has only two param-
eters, and can be efficiently estimated from a sequence ghrmass indicators, such as IRI
or ISO roughness coefficient. Thus, a road profile can be aticilly reconstructed from
roughness indicators. Further, explicit approximatiamstiie fatigue damage due to Laplace
roads are developed. The usefulness of the proposed Lagacmodel is validated for eight
measured road profiles.

Keywords: Road surface profile, road roughness, road irregularitpldae process, non-
Gaussian process, power spectral density (PSD), ISO spectoughness coefficient, inter-
national roughness index (IRI), vehicle durability, fatigdamage.

1 Introduction

Durability assessment of vehicle components often regair@istomer or market specific load
description. It is therefore desirable to have a model ofidhe environment that is vehicle

independent and which may include many factors, such asuater@d road roughness, hilli-

ness, curvature, cargo loading, driver behaviour andl&gs. Here we are concerned with
modelling of the road surface roughness with focus on fatigfe prediction. Especially, we

focus on reconstruction of road profiles based on measuitsroéthe so-called International

Roughness Index (IRI), which is often available from roathamstration data bases.

Traditionally, road profiles have been modelled by using <S&mn processes, see e.g.
dDoﬂdiand_RQbsthQﬂi;_BD_&BQ&JMdh;énJZOO6). Mewvé is well known that
measured road profiles contain shorter segments with ab@rage irregularity, which is a
property that can not be modelled by a Gaussian processharefdre several approaches has
been suggested, see e 007) and the referérecemt In (Bogsijo et al., 2012) a
new class of random processes, namely Laplace processesedia proposed for modelling
road profiles. Simply speaking it is a Gaussian process whereariance is randomly chang-

ing. A similar approach has been taken by (Bruscellalet 8891Rouillart| 2004, 2009).

In the case when only IRI data available, a simple enough triedequired in order to
be able to estimate the model parameters. Therefore, weisélthe non-stationary Laplace
model presented ||h_(B_Qg§JQ_eﬂ é_L._ZblZ), together with thedardized spectrum according
to @S), which gives a Laplace model with only paoameters to estimate. We
will demonstrate how to efficiently estimate the Laplaceapagters, where the first parameter
describes the mean roughness, while the second paramest@ibgs the variability of the




variance which is the gamma distributed. In the non-statipriaplace model the variance
is constant for short segments of fixed length (typically onesome hundred metres). We
will develop a simple but accurate approximation of thegia¢éi damage due to Laplace road
profiles. The last part is devoted to validating the modelgisheasure road profiles.

List of abbreviations

BSI - British Standards Institution

IRI - International Roughness Index

ISO - International Organization for Standardization
FFT - Fast Fourier Transform

MIRA - Motor Industry Research Association

List of symbols and notation

C - International Roughness Index {in

IRI - International Roughness Index [mm/m]

x - position of a vehicle [m]

v - vehicle speed [m/s]

Z(x) - road profile model [m]

L - length of road segments [m]

L, - length of a road profile [m]

Z(z) - normalized road profile model [-]

Yiri(2) - IRI-response of a vehicle [m]

w - angular frequency [rad/s]

Q - spatial angular frequency [rad/m]

Sz(9) - road profile model spectrum [t

So(92) - normalized road profile model spectrum [m]
Sy () - spectrum of vehicle force response’[m

Syig (2) - spectrum of vehicle IRI-response {in

H,(Q) - transfer function of force response filter at speed
Hri () - transfer function of IRI-response filter at speed
g(x) - kernel for moving averages [if?]

F - Fourier transform

E[X] - expectation of random variable X

V[X] - variance of random variable X

o? - variance of road profile [#]

K - kurtosis of road profile

v - shape parameter in Laplace models

2 Road spectra and roughness coefficient

For stationary loads, power spectra is often used to destitdbenergy of harmonics that build
a signal. The vertical road variability consists of the dijpshanging landscape (topography),
the road surface unevenness (road roughness), and thearighility components (road tex-
ture). For fatigue applications, the road roughness isdlevant part of the spectrum. Often
one assumes that the energy for frequeneie$.01 m~! (wavelengths above 100 metres)
represents landscape variability, which does not affext/#hicle dynamics and hence can be



removed from the spectrum. Similarly high frequenciesl0 m~! (wavelengths below 10
cm) are filtered out by the tire and thus are not included irsgiectrum.

The 1SO 8608 standarm(h&.__lb%) uses a two paramedeirsm to describe the
road profileZ ()

QN v .
Sz(Q)=C (Q—> , 2m-0.011 <Q < 27r-2.83rad/m and zero otherwise (1)
0

where(? is the spatial angular frequency, aftg = 1 rad/m. The spectrum is parameterized
by the degree of unevenneSshere called the roughness coefficient, and the wavine3he
ISO spectrum is often used for quite short road section @rotider of 100 metres). For road
classification the 1ISO standard uses a fixed waviness2. This simplified ISO spectrum has
only one parameter, the roughness coeffici@nihe ISO standard and classification of roads
have been discussed by many authors, e.g. recently in (@aneal., 2008; Ngwangwa etlal.,
2010).

The simplicity of the ISO spectrum makes it attractive toinseshicle development. How-
ever, often the spectrum parameterized as in ISO 8608 ddagwmade an accurate descrip-
tion of real road spectra, and therefore many differentpatarizations have been proposed,
see e.g.m 6) where several spectral densiti¢Q) modelings road profiles were
compared.

1 (a)

spectrum — logarithmic scale

0 05 i 15
frequency [m_l]

Figure 1: An example of estimated spectra for an observeahalired road profile, showing
the observed spectrum (irregular line) versus the par&anettimates of ISO (thin line) and
MIRA spectra (thick line).

In Figure[1, the observed spectrum (irregular line) based 6rkm long road segment is
compared with the fitted ISO 8608 spectrum (thin line). Onesee that a single slope spec-
trum does not accurately describe the observed spectrubofbrlow and high frequencies.
Therefore, a two slope spectrum, known as the MIRA (MotouBid; Research Association)



spectra, is also employed and considered as another ipditatrdard, sem al.,

). The fitted MIRA spectrum is also shown in Figlie 1 @hiioe), with estimated
wy = 3.71 for low frequencies andv, = 2.27 for high frequencies, and fits much better
to the observed spectrum than the simpler ISO spectrum.

Note that the simple parametric spectral densities willawzurately approximate the road
roughness spectrum for whole range frequencies, howevet, iwimportant is that they cor-
rectly estimate the energy for frequencies in the range lwtmiay excite the vehicle response,
which obviously also depends on the vehicle speed. In theeptgaper the ISO spectrum will
be used. The choice of the ISO spectra is dictated by its giityplas it depends on only one
parameter, which makes it easier to use in classificatioargel sets of diverse road profiles.
Further, the parameter can be related to IRI, as will be @xgtbbelow.

3 International roughness index

When monitoring road quality, segments of measured lodgitl road profiles are often con-
densed into a sequence of IRI values, @%b)l They are calculated using a
quarter-car vehicle model, see Figlite 2, whose respongeati 80 km/h is accumulated to
yield a roughness index with units of slope (in/mi, m/km,et8ince its introduction in 1986,
IRl has become the road roughness index most commonly usedwide for evaluating and
managing road systems.

my sprung mass

unsprung mass

__——~___~road profile

Figure 2: Quarter vehicle model.

More precisely, IRl is defined as the accumulated suspemsimion divided by the dis-
tance travelled. The parameters of the quarter vehiclefisatkby the so-called Golden Car
with parameters given in Tallé 1. The response is the diftar®etween motions of the sprung
and unsprung masses, denotedviyy (z) = Xs(z) — X, (s). This defines a filter of the road
profile, which at speed has the following transfer function

—w2k1
(ko + iwe) (kg + k1 + iwe — w?p) — (ko + iwc)’

wherew = Q) - v is the angular frequency having units rad/s. For a road segafdéengthZ,
the IRI can be expressed as the average total variatidf.of, viz.

HRi () = 2

IRI = 1000%/; (le(x)( dz, 3)

with speedv = 80 km/h = 22.22 m/s. The factor 1000 appears since IRI has units mm/m
andYir(z) is in metres. Thus]000 - Yiri(z) is the relative suspension speed in unit mm/s



computed at locatiorr. More details on quarter vehicle modelling can be found m e.

(Howe et al.| 2004).

Table 1: Parameters of quarter vehicle models.

Golden Car Quarter Truck
Symbol Value Unit Symbol Value Unit
c=cs/ms 6.0 st ms 3400 kg
k1 = ki/ms 653 s? ks 270000 N/m
ko = ks/msg 63.3 s Cs 6000 Ns/m
= My /M 0.15 - mye 350 kg

ky 950000 N/m
ct 300 Ns/m

Next, we will compute IRI, for a Gaussian road model with IS@atrumSz(2), see
Eqg. (). The responsEg(z), for the “Golden Car” has power spectral density given by

Syie () = [Hiri () [*S2(). 4)

Assuming a Gaussian model for road profile, the expecteddRkleen be computed as

E[IRI] = E [1000%/5 (Y'R'(x)( dx] _ &UOOE HY'R'(O)H _ 10000 . \/2772 )

where)\; is thei:th spectral moment of the response

Ai = /0 Q' Syig (Q) de2. (6)

It can be shown that the expected “theoretical” IRI can beesged as
E[IRI] = A(w,v) - VC, )

whereA(w, v) is a constant depending on the wavinesand the speed. For the Golden car
and 1SO spectrum with waviness= 2, the formula simplifies to

E[IRI] = 2.21 - VC, (8)

where the roughness coefficie@it has units m mn?. This theoretically derived relation

between IRI and’' agrees with the empirically formula by (Kropand Mi&ka, 2004, 2007).

Denote byl an estimate oE[IRI], e.g. the average of observed IRI. In this paper we will
use Eq.[(b) where, will be estimated from the observed power spectral dernsity,Eq.[(6),
or by estimating variance of thé. The roughness coefficient will then be estimated from

IRI by )
. I
C = (ﬁ) . ()]

4 Fatigue Damage Index

We will here define a fatigue damage indB¥ (k) that is assessed by studying the response
of a quarter-vehicle model travelling at a constant speedoad profiles, see Figuig 2. To
be more precise, the response considered is the force amtitige sprung massi;. Such



a simplification of a physical vehicle cannot be expectedrémliot loads exactly, but it will
highlight the most important road characteristics as fafaigue damage accumulation is
concerned. The parameters in the model are set to mimic hesdnigle dynamics, following
]EQW). Thus, the values of the parameters diffieresehat form the ones defining the
Golden car, see Tab[é 1.

Neglecting possible “‘jumps”, which occur when a vehiclese® contact with the road
surface, the response of the quarter-vehicle, i.e. thefdfe) = m,X,(z), as a function of
vehicle locationz, can be computed through linear filtering of the road profilbe filter at

speedv has the following transfer function

H,(Q) = msw? (ki + iwey) <1 n mgw? > . (0)

k (ks + iwes )w?ms ks — mew? + iwe,
-

— mypw? + iwey

—mew? + kg + iwes

wherew = ) - v is the angular frequency having units rad/s.

For a stationary road modgl(x) having power spectral densis (€2), the respons& (z),
for a vehicle at speed [m/s], has power spectral density given by

Sy (Q) = [Hy(Q)]?52(2),  Sz(Q) =075 (Q), (11)

wheres? = [* _S7(£2) dQ. Note thato? is a variance of the road profile model and it may
not be equal to the measured road profile variance, e.g. Whéen) is ISO spectrum.

In general the respongé(z), which is the force acting on the sprung mass, is computed
by means of filtering the signd(x) using the filter with transfer functiofi/,(£2) given in
Eqg. (10), which depends on the vehicle speedn the exampley = 10, 15 [m/s] have been
used. The response of the quarter vehicler) is the solution of a fourth order ordinary
differential equation or alternatively a convolution&fz) with the vehicle’s impulse response
hy(x), viz.

Y(x) = / hy(x —u)Z(u) du. (12)
In this paper responses for measured and simulated roademmuted using the FFT algo-
rithm. Since the initial conditions of the systemt¢at 0 are unknown the Hanning window
has been used to make the start and the end of the ride smdnigtis hecessary or otherwise
the first oscillation of the response may cause all the damdlge car is hitting a wall.

The purpose of this work is to propose modelsAdr:) defined by means of few parameters
that could be used to comput&z) or other more complex and realistic responses in such a
way that the risk for fatigue failure, or extremal responsesild be quantified. Hence the most
important criterion for a good model of a measured road gdsithat the rainflow damage of
the response is well represented.

The rainflow damage is computed in two steps. First rainflavgeaA S ; in the load
Y(z),0 <z < L,, are found, then the rainflow damage per metre is computeatdiog to

Palmgren-Miner rule_ (Palmgren, 1924; Miner, 1945), viz.

1
Dy(k) = 7> ASfc,, (13)
L

see alsol (Rychl @7) for details of this approach. I théper2 < k < 5, have been
used. The damagP, (k) for higher exponent valuk = 5 depends mostly on the proportion
and size of large cycles, while damage fo& 3, corresponding to the crack growth process,



depends on the sizes of both large and moderately largescyete a stationary load), (k)
converges to a limit ag,, increases without bounds. However, for short road profilgg/)
may vary considerably. For ergodic loads the limit is equahe expected damadg D, (k)].

In Sectior 6, computations of the expected damage will kbdéudiscussed. In these compu-
tations, the response to the normalized road prcfile) having the spectrunS () will be
employed, viz.

xT

Y (z) = / (@ — u) Z (u) du. (14)

— 00

The spectrum of’ (z) is given by

S¢ () = [Hy () *S0(9). (15)

5 Stochastic models for road profiles

Parts of this section follows (Bogsijo et al., 2012). Firse tommonly used stationary Gaus-
sian model will be presented. Then, in Secfiod 5.2, we intcedthe non-stationary Gaussian
model with variable variances between short sections, kibtsmooth transitions between the
segments, and then extend it to the non-stationary Laplackeimvhere the variable variance
is modelled by a Gamma distribution. Recall that, for a roadfile Z (=) with standard devi-
ation, we denote byZ (z) the normalized profile, i.€E[Z ()] = 0 andV[Z(x)] = 1. Thus,
for a zero mean profileZ(z) = oZ(z) with spectrumSz(Q) = 25,(Q2), whereSy(Q) is
the spectrum of the normalized road profidér)

In the following sections we will discuss Laplace modelshwiBO spectrum and give
means to estimate parameters in the model from an observegdlence. Note that the IRI
is often available in road maintenance databases. MATLAddo simulate the road models
is given in AppendiXB.

5.1 Stationary Gaussian model

A zero mean stationary Gaussian process is completely definés mean and power spec-
trum, thus, any probability statement about properties afisgian processes can in principle
be expressed by means of the spectrum. This is not alwaysigaigcpossible and hence
Monte Carlo methods are often employed. There are sevesa t@agenerate Gaussian sam-
ple paths. The algorithm proposed in (Shinozuka, 1971)tsnofised in engineering. It is
based on the spectral representation of a stationary @otésre we use an alternative way
that expresses a Gaussian process as a moving average ehaisi.

Roughly speaking a moving average process is a convolufiakernel functiory(z), say,
with a infinitesimal “white noise” process having variancpial to the spatial discretization
step, say d. Consider a kernel functiog(x), which is normalized so that its square integrates
to one. Then the standardized Gaussian process can be iapgieck by

Z(x)~ > glw — i) Z; Vda, (16)

where theZ;’s are independent standard Gaussian random variabldg, avhis the discretiza-
tion step, here reciprocal of the sampling frequency £€ 5 cm). An appropriate choice of
the length of the incrementids related to smoothness of the kernel.

In order to get a Gaussian process with a desired spectraitg@me has to use an appro-
priate kernel(x). Consider a symmetric kernel, ig.—z) = g(z). In this case, the spectrum



So() of Z(z) uniquely defines the kerng(x) since
1 2
S0(Q) = o IFg()P, (17)

whereFg(12) stands for the Fourier transform, and for symmetric kertiedg Fourier trans-
form is given by
Fg(Q) = /2w S (). (18)

5.2 Non-stationary models

Stationary Gaussian loads have been extensively studikigriature and applied as models
for road roughness, see e.g. (Dodds and Robson) 1973) faarbnapplication. However,
the authors of that paper were aware that Gaussian procemsast “exactly reproduce the
profile of a real road”. In@l&*@%) a non-stationagdei was proposed, constructed
as a sequence of independent Gaussian processes of vagndgrsl deviations but the same
standardized spectrusy(€2). Knowing durations and sizes of standard deviations theeinod
is a non-stationary Gaussian process. Similar approacbeesuwged in (Bruscella etlal., 1999;
Rouillard LZD_QhL_ZO_dg) The variability of the standardid&en o was modelled by a discrete
distribution taking a few number of values (in published kvtite number of values was six).
In m ) random lengths of constant varianceiges were also considered. In
those papers one was not concerned with the problem of ctingebe segments with con-
stant variances into one signal since the response was lebaasl a non-stationary Gaussian
process, i.e. by a process of the same type as the model addbesurface. Such individual
treatment of the constant variance segments is possibjeifadhkey are much longer than the
support of the kernej(x), e.g. in the order of kilometres. However, actual roadsaarhuch
shorter sections with above-average irregularity. Thesgularities cause most of the vehicle
fatigue damage, as reported 2007).

Since we are dealing with non-stationary models it is noi@lhow the normalized road
profile Z(z) should be defined. Here we will assume thét), = € [0, L,] has mean zero and
variance one, which means that the mean and varianZé-of at a pointz chosen at random
from [0, L,,| are zero and one, respectively.

For example suppose that the normalized road préfile), = € [0, L], consists ofM
equally long segments of length= L, /M, where the constant variance of tfith segment
is equal tor;, j = 1,..., M with +; ij‘il r; = 1 sinceZ(x) has variance one. However,
such a process is discontinuous at times where the variard®anging. Although formally
correct, the model induces a transient largely contrilgutmthe fatigue damage each time a
vehicle passes these locations. A more realistic approactbe made by continuous tran-
sitions between segments of constant variance. This caote id different ways but here
we employ moving averages of "non-stationary" white noseléfine a smooth version of
Z(z). First we present the non-stationary Gaussian model witahia variances but smooth
transitions between the segments, and then extend it tootistationary Laplace model.

5.3 Non-stationary Gaussian model

The process consists 8ff segments of lengtlh, = L,,/M and we wish to define a process
on [0,L,]. We would like that each segment has a prescribed standardtida o;, j =
., M. Obviously the variance of the processs= - Zj]‘il a3



Denote the standardized variance of jtth segment by
T = 0?/02. (29)

Next we will define thej:th non-stationary Gaussian procés,s{x) process for alD < z <
L,. Letagain d be the sampling step of the process &nd, s;|, s; —sj—1 = L, the interval
where the road profile model would have the variam?:,eviz. so=0<s51<...<sym =Ly
Now defineM processes;(z) as follows

Zi(x)~ > glw—x) 15 Zi Ve, (20)

8‘7'_1<$7',§5]'

where theZ;’s are independent standard Gaussian variables, atgltte discretization step.
Finally the road profile modéel (z) is given by

M
Z(x)=0Z(x) =0 Zx). (21)
j=1

5.4 Non-stationary Laplace model

A reasonable length of road segments with constant varisi2@0 metres. This would mean
that in order to describe a 10 km long road with ISO spectrusmwould need 50? param-
eters. This is not very convenient and therefore in (Bogs#ll@2012) another approach was
taken. Namely, the variability of the standardized varémc, defined in Eq.[(T19), was mod-
elled by means of the Gamma probability distribution, #.eare independent observations of
a random variablé? having probability distribution function

0" o
fr(r) = ) ' exp(—r0). (22)
By replacingr; in Eq. (20) by independent Gamma random variatileswe get
Zix)~ Y gle—z)/R; Zi V. (23)
8‘7'_1<2?i§8j
and the road profilé (z) is given by
~ M ~
Z(z)=0Z(x) =0 Zjx). (24)
j=1

Further, for a zero mean Gaussian random varighlethe product,/R;Z; has a Laplace
distribution, and thus the proce&gz), defined in Eq.[(24), has a generalized Laplace distri-
bution, seeL(KQ_tZ_el_élL_Zle). MATLAB code to simulate thisdel can be found in Ap-
pendixB.

It should be noted that a non-stationary Laplace road medglires only two parameters;
the variancer? of the process and the shape paramets#ithe Gamma distribution. In Laplace
modelling, traditionally another parameterization isdjséz. » = 1/6. Now if the shape
parametew is close to zero then the Laplace process is close to be a @aysscess. The
shape parameter of the Laplace process can also be computed from the kurtosfsthe
processZ(x), namely

v=(k—3)/3. (25)



Alternatively, if the variances of the road segments withstant variance are known, then
the moment method gives the following estimates

M
5= L Sz, o= MAEl . (26)
Mj:l J (62)2

5.5 Road models with ISO spectrum

The kernelg(x) defined by the ISO spectrum, which in the standardized folmgrce one
and waviness = 2) is given by
0\ 2

So(Q) = Cy <Q_0> , Co=144m?, 270011 <Q<2r-283radlm  (27)
and zero otherwise. Recall th@ = 1rad/m. The stationary Gaussian model with 1SO
spectrum has only one parameter, the roughness coeffiCieat alternatively the variance
02 = C/Cy. It is important to notice that? is usually smaller than the variance of the
measured road elevation, since it is chosen in such a waythbdtrue” spectrum is well
approximated at the frequency range of interest. In Figlifee3symmetrical kernel defined
by the ISO spectrum is presented.

0.8 1

0.6 1

04F .

0.2 4

_02 L L L L
-200 -150 -100 -50 0 50 100 150 200

Figure 3: 1ISO kerney(z).

In order to define the non-stationary Gaussian model one detedminel, the length of
segments of constant variance, and then estimate the megimes<”' as well as the sequence
of relative variances;. Often a suitable value df is chosen by experience, typically= 200
m, while C' and ther;’s can be estimated from a sequence of IRI values by means.dqBEq
The procedure results in a large number parameters anddrenge propose to describe
the variability of r; by means a stochastic model. If thgs are obtained as independent
values from a gamma distribution théf{z) is called Laplace road surface model with gamma
variance of segments.
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In order to define the Laplace model with ISO spectrum, we needparameters, the
mean roughness and the Laplace shape parametemodelling the gamma variances for the
segments of lengtlh. Consequently, by introducing one additional parametehe station-
ary Gaussian model is extended to the non-stationary Lepteadel. Recall that setting the
parameter equal zero gives the stationary Gaussian case.

5.6 Estimation of Laplace road models with ISO spectrum

How to estimate the parameters in a Laplace, or a Gaussiarlpwith ISO spectrum is not
obvious and many possible approaches are possible. Theutlifflies in the fact that an
“useful” ISO model has variance® and kurtosiss that differ from the variance and kurtosis
estimated from measured road profile. Consequently, oe&f25-26) and’ = o2 C; are no
appropriate estimators Whér@ are estimated variances from measured road profiles.

However, Eq.[(26) is still useful if théj?’s are replaced by roughness coefficied‘gés,
defining ISO spectra, for short road segments. The roughreeficientsC; could be esti-
mated by means of some statistical procedure if the meaguodide is available. However,
this is seldom the case, and hence we will propose to estiaie®m a sequence of IRI val-
ues using Eq[{8). Note that IRl parameters are often avaifabm road databases maintained
by road agencies.

Summarizing, we propose to estimdtg by

~ 2
A I
C; = <2—51> , (28)

wherefj is an estimate of IRI of thg:th segment, see Ed(3). Having a sequence of estimates
Cj,j =1,...,M, itis possible to estimaté' by the average o@j. Next, sinceC} is pro-
portional to the variance]?, for Z () with ISO spectrum, one can also L@p/ C as estimates

of r; and, for example, the maximum likelihood method can be usesktimate the shape
parameter. However, for simplicity of presentation, the moment methall be employed
here, giving the following estimates

M 1 M A 2
A 1 N A_mzjﬂ(cj_c)
C = M jE . CJ, vV = C’2 . (29)

6 Expected damage index

The purpose of this section is to present a closed form appation for the expected dam-
age index for the Laplace road profile model with ISO spectriitme important special case
of Gaussian response, = 0, have been intensively studied in the literature and many ap
proximations are available, see (Bengtsson and RychliR9Peor comparisons of different
approaches. Therefore, we wish to relate the expected damaex for the Laplace model to
the expected Gaussian index.

For the Gaussian model, the damage ind&xk), defined in Eq.[{I13), depends on the
following parameters; the speedthe exponenk in the S-N curve, the road roughness coef-
ficientC, see Eqs[{11) an@(R7) for ISO spectrum. For the Laplace inteedamage index
depends additionally on the shape parametein order to make the dependence explicit in
the notation we will writeD,,(k, C, v) for D, (k).
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We turn next to the main result of this section the approxiomaof E[D,(k, C,v)]. The
approximation can be used for a response defined by any liiftearexcited by the random
Laplace road having I1SO spectrum, see Hqs[{23-24). Thezippation is given by

N O\ (v \**7 T (k/2+1/v)
E[D,(k,C,v)] ~ E[Dy, (k, Cy,0)] <50> <%) S TR (30)

wherewvy > 0 is a suitably chosen reference speed @gd= 14.4 m? is the roughness coef-
ficient representing a normalized road profile, see [Ed. (Rdxe details on the derivation of
Eqg. (30) is found in AppendixJA. In examples we will usg= 10 m/s. HereE[D,, (k, Cy, 0)]

is the expected damage index for a Gaussian response, segg8m and Rychlik, 2009) for
means to compute the index. The approximation is derive@muadsumption that the road
profile has ISO spectrum. It is accurate if the length of segmef constant variancé is

long enough so that the influence of transients caused byel@frvariance can be neglected.
In practice we found that about 100 metres or longer is a good choice. Note that for a non
stationary Laplace modéb2v) is equal to the variance of the random variances of Gaussian
segments. In addition, using Stirlings formula one can destrate that

el (k/2 4 1/0)
Ty "

asv tends to zero, i.e. the Laplace model approaches the Gauasidel.

In order to get explicit algebraic approximation for the esfgd damage index we will
employ the so-called narrow band approximationE@b,, (k, Cy, 0)] introduced inl(Bendat,
), which actually is an upper bound for the expected Q&msaeem «.ﬂ: for a
proof and |(Bogsjo and Rychlik, 2009) for related resultsr &eoad profileZ () modelled
as a Gaussian process with standardized 1SO spectrum agddter vehicle travelling with
speedvy = 10 m/s with transfer function given by Eq. {10), the narrow b&odnd is given

by

(31)

E[D., (k, Co,0)] < 0.35 (5.52 - 10')*/2D(k /2 + 1)23%/2, (32)
By combining Eqgs.[{30) an{B2) we obtain the following apsimeation

T (k/2 4 1))
L(1/v)
Similar formulas can be given for any transfer functiéip(<2), simply the constant8.35 and
4.61510* need to be modified.
Finally, based on a very long simulation the following redathas been fitted

E[Dy(k,C,v)] < 0.35 - (4.615-10% - O)FT(k/2 + 1) (ﬁ) . (33)

Vo

In(E[Dy, (k, Co, 0)]) = —2.646 + 13.92 - k. (34)

In Figure[4, the stars are estimateslofE[D,, (k, Cy,0)]) while the solid line is the fitted
regression. As can be seen in the figure, the error is nelgitpb2 < k& < 7, in fact the error
is less than 0.5%. Note that the regression is only validferquarter car response, i, (€2)
given in Eq. [(ID). For other filters the regression will bdetiént.

Combining Egs.[(30) an@ (B4) lead to the following approxioraof the expected damage
index for road with ISO spectrum having average roughnesficent C' approximated by

CN\F2 (oY T (k)2 + 1))
~ 13.92 k k/2
E[D,(k, C,v)] ~ 0.07093¢ < Co> <vo) v T (35)

whereCy = 14.4 m? andvy = 10 m/s.
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Figure 4. Stars: observed damage indices in simulated 40®RgrGaussian road profiles
with normalized 1SO spectruny’ = Cy = 14.4 m3, andv = vg = 10 m/s. Solid line:
regression line ol (E[D,, (k, Co,0)]) = —2.646 + 13.92 - k.

6.1 Estimation of Laplace road models with ISO spectrum

The relation[(3b) could also be used to estimate or validatarpeters”, v in Laplace-1ISO
road profile models, when the damage indices are availabtatdral approach would be to fit
relation [35) to the estimated damage indices by means déés¢ squares method. However,
for simplicity, we will here only give explicit formulas fahe estimates by inverting E¢.(35)
for fixed speed and damage exponents= 2, 4, viz.

E[Dy(2,C,v)] ~ 6.108 - 10° C, while  E[D,(4,C,v)] ~ 5.254 - 10%°(v + 1) C2—, (36)
Vo

which are valid for Laplace 1SO road profile models. Consetjyeif the model is valid and
the damage indices are known then the parameters of the sncalelbe estimated by means

of Eq. (38), viz.

C = 1.637-10°10. DU(2), (37)
. o DU(4)

= 0.07101 - — - ——=% — 1.
v 0.0710 ” DU(Q)Q (38)

6.2 A numerical example

In this example we will illustrate the accuracy of the appmmation [30) of the expected dam-
age index as function of the Laplace shape parametefwo speedsy = 10,25 m/s and
fatigue exponenté = 3,5 will be considered. The expected damage index for a Gaussian
response&[D,, (k, 1,0)] has been estimated using Hq.l(13) for a 400 km long simulaizd r
profile. Then approximatior (B0) has been used to estirBat®, (k, 1,)]. Results of the
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study is presented in Figuré 5 as solid lines. In the figure la@ show the narrow band ap-
proximation (upper bound), Ed._(33), as the dashed line. Xpe&ed the approximation is
bounding the mean damage index. However, it is still posdiblget observed indices that
exceeds the bound. Finally, for each valuerpfour damage indice®, (k, 1, ) have been
calculated from 20 km long non-stationary Laplace simafatiwith increasing value of pa-
rameterv. The simulated indices are marked as dotsfer 25 m/s and stars for = 10 m/s.
The agreement between the approximation of expected daimdee given in Eq.[(30) and
the simulated indices is striking. For high values of thelaap shape parameteione can see
some bias. The bias can be reduced by simulating road prifilger than 20 km.

31

10

Expected Damage Index

0 1 2 3 4
Laplace shape parameter v

Figure 5: The expected damage indi¢ég®, (k, 1,v)|, approximation[(30), for damage ex-
ponentk = 5 and speeds = 10,25 m/s as function of parametetr The solid lines are the
approximation[(30); the upper line is for= 25 m/s while the lower line is for = 10 m/s.

The dash-dotted lines are the narrow band bounds[Elg. (3@)inshe upper line is for = 25

m/s while the lower is fow = 10 m/s. The stars and dots are the observed damage indices
from 20 km long simulations of the road profiles having 100 mglsegments of constant
variance. The dots are fer= 25 m/s while the stars are far= 10 m/s.

6.3 The long-term damage index

In Section 5.4 the non-stationary Laplace model for roaasarroughness was introduced.
Then in Sectiof 5]6 means to estimate the parameters in tdelmith ISO spectrum were
presented. The estimates require observations of the tRi&d segments. Finally in the
previous subsection we have demonstrated that the expagatedge index can be accurately
approximated, by means of formulds]{30[338,35), for notiestary Laplace model of road
roughness having 1ISO spectrum.
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Since Egs.[(35) and(B3) are given by explicit algebraic fions of model parameters
these are very convenient for estimation of the long-termatge accumulation in a vehicle
component. If the variability of parametes$; the shape parameterin Laplace model and
v driving speed for a population of customers or a market issknand if the response can
be described by means of a linear filter with an appropriatester function/ (here approx-
imated by the quarter vehiclg,,, Eq. [10)), then the expected long-term damage ireléX|
can be approximated by means of the following integral

E[D] ~ cik/ </ Uk/2_1f(v]1/, o) dv> (v 02)k/2%—};1)/y)f(1/,0) dodv. (39)

with the damage growth intensity, = E[D,,, (k, 1, 0)]/1;]0“/2*1, see Eq[(4R2) in AppendixIA, is
easily available, see (Bengtsson and Rychlik, 2009). Theitef (v, o) characterizes the en-

countered road quality, while the conditional dengity|v, o) represents the driver behaviour.

7 Validation of the Laplace-1ISO model of road profiles

A remaining important question is how well the Laplace-ISOdal fits measured road pro-
files. In this section we shall validate the Laplace-ISO rpaafile model by studying the
following issues:

1) Can the non-stationary Laplace model be used to recahstrad profiles?
2) Can the ISO spectrum give sufficiently accurate approtona of road profiles?
3) Can the IRI be used to estimate the ISO spectrum?

4) What is the suitable length of segments with constanawag?

For the validation a data set of eight sections of roads wihsuared road profiles will be used.
The eight selected sections represent different typesaafsras well as different geographi-
cal locations. The lengths of the sections varies betweeanti445 kilometres, see Talile 2
second row. The measurements have been provided by Scahieead standardized to have
zero mean and variance one. The signals are then filterecashth low frequencies, with
wavelength above 100 metres are removed. In the followiagdhd profile will always mean
the filtered road profile. The third row in the table contaigreates of standard deviations of
the filtered signals, while the fourth row their kurtosis. é3ran see that the estimates of the
kurtosis are significantly higher than 3 implying that roadfipes should not be modelled as a
stationary Gaussian processes.

The accuracy of the model will be validated by means of nedatndices, i.e. fractions
of the damage indices derived from a model and the obsendides for various values of
parameters the speedhe damage exponehtand lengthl of constant variance segments. A
relative index equal to one means that the damage index dechjfor the model is equal to
the observed index in the measured profile.

7.1 Laplace model with observed spectra

In this section we demonstrate that the general non-statjobaplace model can be used to
describe the variability of the eight measured road profileshe model symmetrical kernels
g are used, which are estimated using [Eq] (18) wisg(€) is replaced by empirical spectra.
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Table 2: Rows 2-4; length, standard deviation and kurtasggiit measured road elevations,
respectively. In the fifth row are estimates of the Laplacgpshparameter computed by
means of Eq[(25); = (k — 3)/3.

road number 1 2 3 4 5 6 7 8
Length[km] 32.2|13.7| 37.0| 44.3| 44.8| 23.1| 14.5| 39.5
Standard deviatiorg | 0.34| 0.41| 0.37| 0.29| 0.38| 0.28| 0.37 | 0.38
Kurtosis, & 423|549 8.62| 4.88| 6.05| 6.55| 3.79| 5.31
Shape paramete?, | 0.41| 0.83| 1.87| 0.63| 1.02| 1.18| 0.26 | 0.77

The parametes? is estimated from the observed variance given in the thivd abTable[2.
The parameter has been estimated using EQ.1(25), viz= (x — 3)/3, see fifth row in
the table. Note that this estimate of parametere independent of and L, the length of
constant variance segments. Finally, in order to simula¢enbn-stationary Laplace model,
also the length of segments of constant variance has to seho

The accuracy of the Laplace model is validated by means ofdlf@mving Monte Carlo
study. Relative damages, fractions between simulated bseireed damage indices, are used
as measures of model accuracy. Three factors are considiength of the constant variance
segment on three levels = 100, 200,400 m; damage exponent on three levils= 3,4, 5;
and speed on two levels = 10,15 m/s. For each combination of factors and measured
roads one Laplace road profile has been simulated, in totatdaid profiles. (The simulated
profiles were of the same length as the corresponding mehpuoéiles.) In Figurdlo three
box plots are presented for relative damagesifet 3,4,5. (Each box plot is based on 48
reconstructed road profiles.) From the figure one can seegladive indices are close to one
which means that damage indices computed for the nonséajid_aplace model agrees very
well with the observed one for wide range of values of the mred factors. Medians of
relative damage indices are about 1.2 indicating that lcaphaodel is slightly more damaging
than the measured profiles.

7.2 Laplace model with ISO spectrum

In the previous section we have shown that the non-statidregplace model having observed
spectrum reproduces the damage indices very well. In thli8osewe turn to the second
problem which is whether the simpler Laplace-ISO model ddéd used instead. In objective
terms we shall look for eight sets of paramet@rsy) such that the expected relative damage
indices, denoted by(C, v, k, v), are close to one, say, in the inter{@b, 2|, for typical values

of damage exponenisand vehicle speeds The expected relative index is computed using

Eq. (33), viz.

d(Cyv, k,v) =

E[D;%O(k)] _ 0.07093¢!592 (£>’“/2 ( v >k/“ 2L k/2 4 1/v)
Dgbs (k) Dgbs(k) Co T(1/v) (4(’))

Vo

whereCy = 14.4 m3 andvy = 10 m/s.

First we check if one could simply replace the general kerqély the ISO kernels defined
by C = 14.402, whereo are taken from the third row in Taldlé 2. Parameieese taken from
the fifth row of the table. The resulting estimat@sand are presented in the second and
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Figure 6: Three box plots of relative damages estimatedtogeneral non-stationary Laplace
model, for damage exponerits= 3, 4, 5, respectively. One relative index is computed for each
of the eight roads and combinations of the following factoes 10, 15 m/s,L = 100, 200, 400

m, i.e. each box plot is based on 48 relative indices.

third rows of TabldB. The relative indice8C, v, k,v) were computed for = 10 m/s and

k = 3,5 and presented in the fourth and fifth row of the table. One eartlsat the accuracy
of this Laplace-ISO model is poor. The models are very coasige. In order to judge
the roughness of the measured road profiles the logarithnttseabbserved damage indices
D3 (k), for k = 3,5, are given in the last two rows in Talileé 3. One can see thatothesr
6,7,8 are smoother (less damaging) than the first five ones.

Table 3: Row 2; estimated parameter= 14.402, whereo are taken from the second row in
Table[2. Rows 3-4; relative damage indices, Eq] (40). Rowsthe logarithms of observed
damage indices faot = 3, 5, respectively, for speed= 10 m/s.

road number| 1 2 3 4 5 6 7 8
° 1.66|242|1.97|1.21|2.08| 1.13| 1.97| 2.08
7 0.41]|0.83|1.87|0.63| 1.02| 1.18| 0.26 | 0.77
d(C,v,3,10) | 1.4 | 24 | 5.1 | 1.5 | 35| 3.6 | 16.2| 7.9
d(C,v,5,10) | 0.5 | 3.0 | 12.2| 0.7 | 6.2 | 6.0 | 445|234
In(D2*(3)) | 35.7| 35.8| 35.0| 35.2| 35.3| 34.3| 33.4| 344
In(D%*(5)) | 62.9 | 62.5| 61.3| 62.0| 61.5| 60.2 | 58.6 | 60.0

We conclude that replacing the general kernel by the ISOeketoes not lead to a useful
Laplace-ISO model. However, this does not say that such @&hdogs not exist. We shall next
propose a “semi optimal” Laplace-ISO model by estimatingr) employing Eqs.[(37-38)

17



using the observed damage indide®*(2), D%*(4). Parameter§C, v) estimated in this way

will define Laplace-ISO models which have expected damadieds equal to the observed
damage indices far = 2, 4, see Eq.[(35). Unfortunately, the paramet€randv vary withv.
Obviously, one could estimate andv by means of least square method and get estimates that
are independent af, however we will not pursuit this here and just average patanvalues
over the speeds. The resulting Laplace-ISO models arergeesa Tablé ¥ rows 2 and 3. As
can be seen in rows 4-7 in Talile 4 the derived Laplace-1SO Inade sufficiently accurate
proving that “useful” Laplace-ISO models are availabletfe studied roads.

Table 4: Row 2-3; estimated parametéfsy employing Eqs.[(37-38). Rows 4-7; relative
damage indices, EJ.(¥0) fér= 3,5 and speeds = 10, 15 m/s.

road number| 1 2 3 4 5 6 7 8
> 1.25|1.87]0.88| 1.14| 1.30| 0.62 | 0.43| 0.73
v 1.88| 0.68| 1.36| 1.22| 0.37| 0.59| 0.32| 0.39

Q

d(C,v,3,10) | 1.25| 1.54| 1.40| 1.54 | 1.46| 1.28 | 1.68 | 1.49
d(C,v,5,10) | 0.77] 1.35| 1.19| 1.01| 1.00| 0.78 | 1.08 | 1.15
d(C,v,3,15) | 1.02] 0.85| 1.01| 0.93| 0.94| 1.02| 0.85| 0.88
d(C,v,5,15) | 1.02| 0.52| 0.41| 0.51| 0.56| 0.80 | 0.49 | 0.55

However, in practice the damage indide® (2), D2 (4) are not available and hence other
means to estimate parametéfs v) are of interest. For many roads the sequence of IRI can be
found in various databases and can be used to estimate tragtars by means of formulas
(28129). In the following section this approach is validat®y studying the relative damage
indices.

7.3 Estimating Laplace-ISO models from IRI sequences

In many countries the sequences of IRI are collected andisavéatabases. Therefore, re-
construction of the road profiles from IRl sequences is offizal interest in cases when the
measured profiles are not available. It may not always be tlea the sequence has been
estimated hence the accuracy of the reconstruction canrded@dge. Here, for validation
purposes, we will estimate the sequence of IRI from the nredsdiata and use these to es-
timate the parametef&”, ) in Laplace-ISO models. More precisely, the method consists
the following two steps:

(I) For aroad segment of constant variance, length 200 m, the spectrum of the golden
car response is estimated and the second order spectralnmhagris calculated. Then
the IRI index is evaluated by means of EHd. (5). The reasonHoosing Eq.[(b) instead
of more general formuld13) is that Ed. (5) is based on theraption that the road
profile is Gaussian which is also used in the constructiomeLaplace model.

(I) The estimated sequence of IRI is then transformed ingequence of’; by means
of Eq. (28). Finally, the paramete? is estimated by the average 6f, while v is
estimated by the square of the coefficient of variatiorCof see formula[{29), or by
fitting a gamma distribution t6’; /C. Here the second approach is used.
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The estimated parameters in the Laplace-ISO models, usagmo steps procedure, are
given in Table[b, rows 2-3. The accuracy of the models is tiyated using the relative
damage indices, Eq._(#0), computed o= 3,5 and speeds = 10,15 m/s. The indices are
presented in Tablgl 5, rows 4-7. Based on the reported vafutee oelative damage indices
one must conclude that the accuracy of the models, estimetied IRI, are in general not
as good as the accuracy of the “semi optimal” Laplace-ISOatsopresented in the previous
section.

We conclude that the presented approach to estimate Lal8&enodels from IRI se-
guences is useful for reconstruction of road profiles wheasueements are not available. In
the presented validation study only models for the road lpso6-8, which are not very dam-
aging, give too conservative damage estimates, while &other roads the estimated damage
is almost within a factor 2. The statistical procedures gmé=d here need further improve-
ments. Particularly the following two problems need furtineestigations. The first one is the
choice of the length of constant variance segniertiere we meet a typical trade of situation;
selecting shorter vales df will lead to higher statistical uncertainties of IRI valuesking
the proposed estimates mbiased (too large); choosing longewvalues may lead to violation
of the assumption of constant variance in a segment. Thedgoblem is the division of the
long road segments into homogeneous parts to which the ¢eyp®O model could be fitted.
In fact, the eight examined road profiles are not completelndgeneous.

Table 5: Rows 2-3; estimated, » by means of Eqs[(218-P9) withi; estimated from IRI using
Eg. (@) with constant variance segmerits= 200 m. Rows 4-7; relative damage indices,
Eq. (40) fork = 3,5 and speeds = 10,15 m/s.

road number| 1 2 3 4 5 6 7 8

C 1.41)|1.87|1.37|1.62| 1.74| 1.06 | 0.97| 1.12

U 0.52| 0.59| 0.84| 0.54| 0.46| 0.52| 0.38 | 0.51
d(C,v,3,10) | 1.13| 1.51| 2.44| 2.22| 2.33| 2.85| 5.84 | 2.93
d(C,v,5,10) | 0.36| 1.24 | 2.41| 1.33| 2.30 | 2.82| 8.96 | 3.85
d(C,v,3,15) | 0.92| 0.83| 1.76 | 1.35| 1.50| 2.27 | 2.95| 1.74
d(C,v,5,15) | 0.49| 0.48| 0.84 | 0.67 | 1.30| 2.87 | 4.07 | 1.84

7.4 Influence on length of constant variance segments

In the previous section we have used the expected damagefordbe Laplace-ISO model to
compare with the observed damage index. However, in ped@japlications often simulated
road profiles are needed. Suppose that one has a 20 km longnafdd and we choose the
length of the constant variance segment to be 500 m. Thee thidlrbe only 40 random
variances in the signal, compared to 200 wher= 100. Since chances to get very high
variance is much higher in the second case and one has higigelehcy of transients when
variance is changing values we expect that whes 500 the damage index will be smaller
compared to the index fob = 100. This will be illustrated in the following Monte Carlo
study.

Using Laplace-ISO models, estimated from the IRl sequeacdgiven in Tablgl5, 10 road
profiles will be simulated of total length of 249.2 km for terealues of parametdr, 100, 200
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and 500 m, i.e. in total 30 road profiles. Note that each sitadlaoad surface consists of
8 shorter segments having different values of parametere damage index will be then
estimated for each of the 249 km long simulations and scalatidoobserved damage index.
The ratio will be called accumulated relative damage witlueane if the damage index in
the simulated road profile is equal to the measured damagg.ifidhe result of the simulation
study is presented in Tallé 6. One can see that the damags warisiderably with the chosen
length L demonstrating the importance of proper selection of patemnie

Table 6: Mean, minimum and maximum values for 10 accumulatéative damages, for
the Laplace-ISO models for the eight road sections withrpatars given in Tablel5. Three
different values of the length has been used in the simulation algorithm.

Speed 10 m/s Speed 15 m/s

Model k=3 k=5 k=3 k=5

mean| min | max | mean| min | max | mean| min | max | mean| min | max
L=500m | 1.19 | 0.91| 1.38| 0.59 | 0.30| 0.83| 0.81 | 0.68| 0.96| 0.34 | 0.22| 0.52
L=200m | 1.86 | 1.81|193| 1.09 | 1.00| 1.23| 1.19 | 1.09| 1.29| 0.58 | 0.49 | 0.70
L=100m | 3.28 | 3.00| 3.41| 3.04 | 257 | 3.36| 2.09 | 2.01| 2.17| 1.57 | 1.39| 1.80

8 Conclusions

The main goal has been to find a statistical model for roadlpspfivhich can be estimated
from a sequence of IRl measurements. The road profile canktbestochastically recon-
structed. When measured road profiles are not availablegritytcondensed roughness data
in the form of IRI values or roughness coefficients, a simpéistical model for the road pro-
file is needed in order to be able to estimate the model paeamédtiowever, the model should
still be useful for durability applications. For this pug®s the Gaussian model has been found
to be too simple, see e.&ﬁgﬁom), since it can no¢ctly capture the variability of the
roughness. For our setup we have found that the non-stafiduaplace modelal.,
ﬁh), with ISO spectrum|_(ISO 8608, 1895), is simple endagfhstill useful for durability
evaluations. It can be interpreted as a Gaussian processg Wigelocal variance is randomly
varying according to a gamma distribution. The length ofstant variance segments is prede-
fined, and for road profiles typically one or some hundred eseffhe non-stationary Laplace
process can be modelled by two parameters, either by itn@iand kurtosis or equivalently
by its mean roughness and Laplace shape parameter.

A practically important theoretical finding is that the egfml damage due to a Laplace
road with ISO spectrum, can be approximated by an expligékaiaic expression, see Hq.](35).
The formula depends on the damage expotettiie speed, the mean roughness coefficient
C, and the Laplace shape parameteiThe first three factors corresponds to the damage due
to a Gaussian model, while the last factor is a correctiornhferLaplace model, depending on
the Laplace shape parameterThe approximation has been validated by simulating Lagplac
roads, see Figuid 5.

An important question is how well the Laplace-ISO model fitsasured road profiles.
Therefore, a validation study was conducted, where a dataf seeasured road profiles were
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used. The eight road sections represent different typesagolisras well as different geographi-
cal locations. The conclusions of the study can be sumnthege

1. We have demonstrated that the non-stationary Laplacelrhagling observed spectrum
reproduces the damage indices very well.

2. We investigated whether the simpler Laplace-ISO modeldcbe used instead. Simply
replacing the observed spectrum by the an estimated ISGrgpegave unsatisfactory
accuracy. However, by estimating the parameters from gedatamage values, a “use-
ful” Laplace-1ISO model was found for the studied roads.

3. We found that the presented approach to estimate Lap@enodels from IRI se-
quences is useful for reconstruction of road profiles whefilprmeasurements are not
available.

Some of measured road profiles are not statistically hormemenand in order to improve a
fit of Laplace modes to data one could consider to split it ior&r segments in which homo-
geneity is more likely, e.g. 5 km long segments. This wouklilein larger set of estimated
models which would allow to study the long term distributifmn the parameter€’ andv in
the data and then to validate EQ.](39). However, these igatisins are outside of the scope
of the present study and will be conducted in the future.

There are several advantages to use the Laplace road profilel mith ISO spectrum

e a small number of parameters are needed to define it (the mesgtcoefficient,’, the
Laplace shape parameter,and the length of constant variance road segment,

e the parameter§’ andv can be estimated from the sequence of IRI, see[Eq. (26) which
is often available, and

e the expected damage of a response of a vehicle, modelled imgar ffilter having
Laplace-ISO road as an input, can be accurately approxihiatean explicit formula
depending only on the Laplace parametérs,v), the damage exponent, and the
speedv, see e.g. EqL(35).

The last property is particularly convenient for sendiistudies since lengthy simulations
can be avoided. It can also be used for estimation of Laplanpeters and for classification
purposes.
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Appendix

A Sketch of derivation of approximation (30)

We assume that the rainflow damage can be computed for a sespbeerved for each of the
segments with constant variance separately and then afid@d.is a reasonable approxima-
tion if the mean response is constant for longer period oéfirynder this assumption

E[Dy(k,1,v)] = E[Dy(k,1,0)]E[R*/?],
by independence of the factafs and Gaussianity of road roughness. Next

k2 D(k/2 + 1/v)
r(t/v)

Finally, for a Gaussian model, one can show that for any gaioozero speeds, vg one has
that

E[Rk/Q] = /00 k2 fr(r)ydr =v
0

E[D,(k,1,0)] /""" = E[D,, (k,1,0)] /0>, (41)
which shows Eq[{30).
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For simplicity Eq. [41) will be demonstrated only for Shinga method,ma,
), to simulate Gaussian processes. Consider the liesponse’,(x) to Gaussian road
profile having standard 1ISO spectrum (roughness coefficieat14.4);

Yo(z) = VCY Q7 Hy () |VAQeos(Qz + ¢). 0<a< L.
=1

Employing the relationv; = Q; v and thatH,(Q?) = H(Qwv) then, witht = z /v, the last
equation can be written as follows

Y,(x) = ﬁ\/@iw[llH(wi)\\/A—wcos(wit+ ¢;) = VoY (t), 0<t<L/v
i=1

Denote byd;, damage growth intensity il (¢) then

E[D,(k,1,0)] = % : <§vk/2dk) , (42)

and hencé&[D,(k,1,0)]/v*/2~1 = d, independently of proving the relation[(41).

B MATLAB code for model simulation

For readers convenience we present the MATLAB codes usetintdate responses to the
Gaussian and the non-stationary Laplace models for themadite. From a sequence of IRI,
code for estimation of the Gaussian and non-stationarydcapmodels is given, as well as
directions for simulating the non-stationary Gaussian eho#inally, code for calculation of

the expected damage is given.

In the code some functions from the WAFIQ_(B_LlekQLb_éd_a.mt!NAEO_G_LQubLZQlia)

toolbox are used, which can be downloaded free of chd{g_e_E(GMubl 2Q11[b). The sta-

tistical functionsr ndnor mandr ndgamare also available in the MATLAB statistics toolbox
throughnor nt nd andganr nd. Note that WAFO also contains functions to find rainflow
ranges used to estimate fatigue damage.

The length of the simulated function will be 5 km and the sangpinterval 5 cm. The
following code can be used to compute the spectrum.

>> dx=0.05; Lp=5000; NN=ceil (Lp/dx)+1; xx=(0:NN1)’ =dx;
>> w = pi/dxxlinspace(-1,1,NN)’; dw=w(2)-w1);

>> wL=0. 011+ 2*pi; WR=2.83*2pi;;

>> S=zeros(size(w));

>> jnd=find(abs(w) >=wL & abs(w) <=wR);

>> S(ind)=w(ind).”"(-2)/28.8;

>> G=fftshift(sqrt(S))/sqrt(dx/dw NN);

>> kernel =fftshift(real (ifft(Q));

>> figure, plot(wdx/dw, kernel)

The kernelg(z) is introduced through its Fourier transfor@y(2) = Fg(2). We use
a normalizedg(z) so that the integral g(x)>dz = 1, and hence we need an additional
parametew, i.e. the standard deviation of the road, in the code denoyegD. If the load is
Gaussian them is constant for whole lengthp and need to be estimated from the signal.
This is not a trivial problem since the true spectrum oftdfeds from the 1ISO one, but we do
not go into details in this issues.

The transfer functiorff, (2) given by Eq.[(ID) is computed by
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>> v=5; ne=3400; ks=270000; cs=6000; nu=350; kt=950000; ct=300;

>> w = wv; i=sqrt(-1);

>> S0=1+me*wW. "2,/ (Ks-nmB*xwW. "2+ *CS* W) ;

>> S1=Kt - muxwv. "2+ xct *wW- me* (KS+i *cS*w) . *wWw. A2,/ (- nB*wW. A2+KS+i *CcS* W) ;
>> S2=me*wW. M2, * (kt +i xct *w) ;

>> H=fftshift(S2.+S0./S1);

We turn now to simulation of Gaussian and Laplace models.

B.1 Gaussian model

First a Gaussian white noise procdsspGis generated, then the road profile and quarter
vehicle response Gandy G, respectively, are computed by means of FFT.

>> | npG=rndnor m( 0, 1, NN, 1) ; SD=5;

>> 7zG = SDrsqrt(dx)*real (ifft(fft(1npQ.+Q);
>> figure, subplot(2,1,1), plot(xx,zQ

>> yG = SDrsqrt(dx)*real (ifft(fft(lnpGg .G *H));
>> subplot(2,1,2), plot(xx,yQ

B.2 Non-stationary Laplace model

In the Laplace model it is assumed that parametés constant for a short segment of a
road, here 200 metres. First the shape parametsee Eq.[(25), is computed from road
profile kurtosiskur t , here set to 9. This determines the gamma distributed ravaoiances
R. Then the modulation proces®d is evaluated and finally road elevatiah. and quarter
vehicle responsgL are computed.

>> L=200; Me=ceil (L/dx); NMeceil (NN M ;

>> kurt=9; nu=(kurt-3)/3;

>> R=nuxrndgan(1l/nu, 1,1, NM;

>> nod=[];

>> for j=1.NM

>>  nod=[nod; sqrt(R(j))*ones(M1)];

>> end

>> zL = SDrsqrt(dx)*real (ifft(fft(InpG *nmod(1:NN)).*Q);
>> figure, subplot(2,1,1), plot(xx,zL)

>> yL = SDrsqrt(dx)*real (ifft(fft(lnpG +nmod(1:NN)).*G *H));
>> subplot(2,1,2), plot(xx,ylL)

Note that in the code the same sample of a Gaussian white hoj@ has been used to
generate the Gaussian and non-stationary Laplace modeis obad profile. This is done to
facilitate visual comparison of the simulated records.

B.3 Estimation of non-stationary Laplace model

Here we assume that from some database the sequence of IRladiable sampled also at
200 metres. The sequence is saved in a vadrbr.

>> G =(IRI/2.21)."2;
>> C=nean(CG);

>> nu=var (G )/ C\2;
>> SD=28. 8+ C;
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The estimated paramete@saandnu of the non-stationary Laplace model can then be used
for simulating profiles. Note that if the simulated gammaalzlesR are replaced by a corre-
sponding vector of observed normalized variarige€i / C, the same simulation code can be
used for simulating a non-stationary Gaussian profile.

B.4 Expected damage

Here we check the result of E§.{30); compare Figlire 5. Thevihg code simulates Laplace
roads with different shape parameterand calculates the observed the fatigue damage index,
which is compared with the theoretical formulal(30).

>> NN=5%x1075; dx=0.05; L=100; Nsi m20; k=5; v0=10; vv=0:0.2:4;
>> nu=0. 05: 0. 05: 4; Knu=nu. *(k/2).+gammua(k/2+1./nu)./ganma(1l./nu);
>> Dv0 = | SOdan(vv, vO, k, dx, NN, L, Nsi m) ;

>> d_k=nean(DvO(1,:));

>> figure

>> seni | ogy(vv, nean(Dv0’ ), r")

>> hol d on

>> pl ot (nu, d_k+Knu, ' k')

>> v=25;

>> Dv = | SQdan{vv, v, k, dx, NN, L, 10);

>> plot(vv,nmean(Dv’),’ g’ )

>> pl ot (nu, (v/v0)~(k/2-1)*d_k*Knu, ' k')

>> Dv_400 = | SOdan(vv, v, k, dx, NN, 400, 10);

>> pl ot (vv, nean(Dv_400"), ' b--")

The code needs two functions calleBOdam m simulating Laplace roads and calculating
damage

>> function DDk = | SCdan{vv, Vv, k, dx, NN, L, Nsi m
>> 04 SOdam Si nul at e Lapl ace roads and cal cul ate danmage
>> % Call: DDk = | SOdam(vv, v, K, dx, NN, L, Nsi nm)

>> % vv = paraneter in Gama nodel

>> % v = speed

>> % Kk = exponent in danmage

>> % dx = space sanpling step

>> % NN = nunber of sinulated points

>> 0 L = length of the constant variance segnent

>> % Nsim= nunber of sinulated danages

>> Mecei | (L/dx); wL=0.011%2+pi; wR=2.83*2xpi; NM=ceil (NN M;
>> Nhh=200; hh=hann(2*Nhh);

>> w = pi/dxxlinspace(-1,1,NN)’; dw=w(2)-w1);

>> Sj so=zeros(size(w);

>> jnd=find(abs(w)>=wL & abs(w) <=wR); Siso(ind)=w(ind).”"(-2);
>> Si so=Si so/trapz(w, Si so);

>> G=fftshift(sqrt(Siso))/sqrt(dx/dw NN)

>> H=fftshift(FilterHw v));

>> DDk=zer os(| ength(vv), Nsin);

>> for il1l=1:1ength(vv)

>> vva=vv(il);

>> Dk=zeros(1, Nsi m;

>> for i2=1:Nsim

>> I npG=rndnor n( 0, 1, NN, 1) ;
>> R=ones(NM 1) ;

>> if vv4>0.025
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>> R=vv4xrndganm(1/vv4, 1, 1, NM;

>> end

>> ONES=ones(M 1) ;

>> mod=[];

>> for j=1: NM

>> nmod=[ nod; sqrt (R(j)).*ONES]

>> end

>> xL = sqgrt(dx)+real (ifft(fft(lnpG*nmd(1l:NN)).*Q);
>> xL( 1: Nhh) =xL( 1: Nhh) . *hh( 1: Nnhh);

>> xL(end- Nhh+1: end) =xL( end- Nhh+1: end) . *hh( Nhh+1: end) ;
>> FlnpL = fft(xL).*H

>> Lsim SO4 = real (ifft(FlnpL));

>> respl SO4=[ (0: NN-1)’ »dx Lsi m SO4];

>> t pl SO4=dat 2t p(respl SA4); rfcl SO4=tp2rfc(tpl SH);
>> Danbr f cl SO4=sunm((rfcl SA(:,2)-rfcl SO4(:,1))."k);
>> Dk (i 2) =Danbr f cl SH4;

>> end

>> DDk (i 1,:)=Dk/ NN dx;

>> end

>> end

andFi | t er H. mdefining the transfer function.

>> function HO = FilterH(w, v)
>> i lterH Cal cul ates transfer function of force response filter
>> % Call: HO = FilterH(w, v)

>> % w = spaci al angul ar frequency

>> % v = speed

>> ne=3400; ks=270000; cs=6000; mu=350; kt=950000; ct=300;
>> w = wv; i=sqrt(-1);

>> SO0=1+ms*wW. "2,/ (KS-me*wW. "2+ *CS* W) ;
>> S1=kt - nuxw. "2+ *ct *wW-nB* (KS+i *Ccs*w) . *wW. 2./ (- nB*W. A2+KS+i *CcS*wW) ;
>> S2=mre*W. "2, * (Kt +i *ct *w) ;
>> H0=S2.+S0./S1

>> end
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