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Abstract

The vertical road input is the most important load for durability assessments of vehicles. We
focus on stochastic modelling of the road profile with the aimto find a simple by still useful
model. The proposed non-stationary Laplace model with ISO spectrum has only two param-
eters, and can be efficiently estimated from a sequence of roughness indicators, such as IRI
or ISO roughness coefficient. Thus, a road profile can be stochastically reconstructed from
roughness indicators. Further, explicit approximations for the fatigue damage due to Laplace
roads are developed. The usefulness of the proposed Laplace-ISO model is validated for eight
measured road profiles.

Keywords: Road surface profile, road roughness, road irregularity, Laplace process, non-
Gaussian process, power spectral density (PSD), ISO spectrum, roughness coefficient, inter-
national roughness index (IRI), vehicle durability, fatigue damage.

1 Introduction

Durability assessment of vehicle components often requires a customer or market specific load
description. It is therefore desirable to have a model of theload environment that is vehicle
independent and which may include many factors, such as encountered road roughness, hilli-
ness, curvature, cargo loading, driver behaviour and legislation. Here we are concerned with
modelling of the road surface roughness with focus on fatigue life prediction. Especially, we
focus on reconstruction of road profiles based on measurements of the so-called International
Roughness Index (IRI), which is often available from road administration data bases.

Traditionally, road profiles have been modelled by using Gaussian processes, see e.g.
(Dodds and Robson, 1973; ISO 8608, 1995; Andrén, 2006). However, it is well known that
measured road profiles contain shorter segments with above average irregularity, which is a
property that can not be modelled by a Gaussian process, and therefore several approaches has
been suggested, see e.g. (Bogsjö, 2007) and the references therein. In (Bogsjö et al., 2012) a
new class of random processes, namely Laplace processes, has been proposed for modelling
road profiles. Simply speaking it is a Gaussian process wherethe variance is randomly chang-
ing. A similar approach has been taken by (Bruscella et al., 1999; Rouillard, 2004, 2009).

In the case when only IRI data available, a simple enough model is required in order to
be able to estimate the model parameters. Therefore, we willuse the non-stationary Laplace
model presented in (Bogsjö et al., 2012), together with the standardized spectrum according
to (ISO 8608, 1995), which gives a Laplace model with only twoparameters to estimate. We
will demonstrate how to efficiently estimate the Laplace parameters, where the first parameter
describes the mean roughness, while the second parameter describes the variability of the
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variance which is the gamma distributed. In the non-stationary Laplace model the variance
is constant for short segments of fixed length (typically oneor some hundred metres). We
will develop a simple but accurate approximation of the fatigue damage due to Laplace road
profiles. The last part is devoted to validating the model using measure road profiles.

List of abbreviations

BSI - British Standards Institution
IRI - International Roughness Index
ISO - International Organization for Standardization
FFT - Fast Fourier Transform
MIRA - Motor Industry Research Association

List of symbols and notation

C - International Roughness Index [m3]
IRI - International Roughness Index [mm/m]
x - position of a vehicle [m]
v - vehicle speed [m/s]
Z(x) - road profile model [m]
L - length of road segments [m]
Lp - length of a road profile [m]
Z̃(x) - normalized road profile model [-]
YIRI(x) - IRI-response of a vehicle [m]
ω - angular frequency [rad/s]
Ω - spatial angular frequency [rad/m]
SZ(Ω) - road profile model spectrum [m3]
S0(Ω) - normalized road profile model spectrum [m]
SY (Ω) - spectrum of vehicle force response [m3]
SYIRI (Ω) - spectrum of vehicle IRI-response [m3]
Hv(Ω) - transfer function of force response filter at speedv
HIRI,v(Ω) - transfer function of IRI-response filter at speedv

g(x) - kernel for moving averages [m1/2]
F - Fourier transform
E[X] - expectation of random variable X
V[X] - variance of random variable X
σ2 - variance of road profile [m2]
κ - kurtosis of road profile
ν - shape parameter in Laplace models

2 Road spectra and roughness coefficient

For stationary loads, power spectra is often used to describe the energy of harmonics that build
a signal. The vertical road variability consists of the slowly changing landscape (topography),
the road surface unevenness (road roughness), and the high variability components (road tex-
ture). For fatigue applications, the road roughness is the relevant part of the spectrum. Often
one assumes that the energy for frequencies< 0.01 m−1 (wavelengths above 100 metres)
represents landscape variability, which does not affect the vehicle dynamics and hence can be
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removed from the spectrum. Similarly high frequencies> 10 m−1 (wavelengths below 10
cm) are filtered out by the tire and thus are not included in thespectrum.

The ISO 8608 standard (ISO 8608, 1995) uses a two parameter spectrum to describe the
road profileZ(x)

SZ(Ω) = C

(

Ω

Ω0

)−w

, 2π · 0.011 ≤ Ω ≤ 2π · 2.83 rad/m, and zero otherwise, (1)

whereΩ is the spatial angular frequency, andΩ0 = 1 rad/m. The spectrum is parameterized
by the degree of unevennessC, here called the roughness coefficient, and the wavinessw. The
ISO spectrum is often used for quite short road section (in the order of 100 metres). For road
classification the ISO standard uses a fixed wavinessw = 2. This simplified ISO spectrum has
only one parameter, the roughness coefficientC. The ISO standard and classification of roads
have been discussed by many authors, e.g. recently in (González et al., 2008; Ngwangwa et al.,
2010).

The simplicity of the ISO spectrum makes it attractive to usein vehicle development. How-
ever, often the spectrum parameterized as in ISO 8608 does not provide an accurate descrip-
tion of real road spectra, and therefore many different parameterizations have been proposed,
see e.g. (Andrén, 2006) where several spectral densitiesSZ(Ω) modelings road profiles were
compared.
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Figure 1: An example of estimated spectra for an observed normalized road profile, showing
the observed spectrum (irregular line) versus the parametric estimates of ISO (thin line) and
MIRA spectra (thick line).

In Figure 1, the observed spectrum (irregular line) based ona 5 km long road segment is
compared with the fitted ISO 8608 spectrum (thin line). One can see that a single slope spec-
trum does not accurately describe the observed spectrum forboth low and high frequencies.
Therefore, a two slope spectrum, known as the MIRA (Motor Industry Research Association)
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spectra, is also employed and considered as another industry standard, see (La Barre et al.,
1969). The fitted MIRA spectrum is also shown in Figure 1 (thick line), with estimated
w1 = 3.71 for low frequencies andw2 = 2.27 for high frequencies, and fits much better
to the observed spectrum than the simpler ISO spectrum.

Note that the simple parametric spectral densities will notaccurately approximate the road
roughness spectrum for whole range frequencies, however, what is important is that they cor-
rectly estimate the energy for frequencies in the range which may excite the vehicle response,
which obviously also depends on the vehicle speed. In the present paper the ISO spectrum will
be used. The choice of the ISO spectra is dictated by its simplicity, as it depends on only one
parameter, which makes it easier to use in classification of large sets of diverse road profiles.
Further, the parameter can be related to IRI, as will be explained below.

3 International roughness index

When monitoring road quality, segments of measured longitudinal road profiles are often con-
densed into a sequence of IRI values, see (Gillespie et al., 1986). They are calculated using a
quarter-car vehicle model, see Figure 2, whose response at speed 80 km/h is accumulated to
yield a roughness index with units of slope (in/mi, m/km, etc.). Since its introduction in 1986,
IRI has become the road roughness index most commonly used worldwide for evaluating and
managing road systems.

Figure 2: Quarter vehicle model.

More precisely, IRI is defined as the accumulated suspensionmotion divided by the dis-
tance travelled. The parameters of the quarter vehicle is defined by the so-called Golden Car
with parameters given in Table 1. The response is the difference between motions of the sprung
and unsprung masses, denoted byYIRI(x) = Xs(x) −Xu(s). This defines a filter of the road
profile, which at speedv has the following transfer function

HIRI,v(Ω) =
−ω2k1

(k2 + iωc)(k2 + k1 + iωc− ω2µ)− (k2 + iωc)
, (2)

whereω = Ω · v is the angular frequency having units rad/s. For a road segment of lengthL,
the IRI can be expressed as the average total variation ofY (x), viz.

IRI = 1000
1

vL

∫ L

0

∣

∣

∣
ẎIRI(x)

∣

∣

∣
dx, (3)

with speedv = 80 km/h = 22.22 m/s. The factor 1000 appears since IRI has units mm/m
andYIRI(x) is in metres. Thus,1000 · ẎIRI(x) is the relative suspension speed in unit mm/s
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computed at locationx. More details on quarter vehicle modelling can be found in e.g.
(Howe et al., 2004).

Table 1: Parameters of quarter vehicle models.
Golden Car

Symbol Value Unit
c = cs/ms 6.0 s−1

k1 = kt/ms 653 s−2

k2 = ks/ms 63.3 s−2

µ = mu/ms 0.15 -

Quarter Truck
Symbol Value Unit
ms 3 400 kg
ks 270 000 N/m
cs 6 000 Ns/m
mt 350 kg
kt 950 000 N/m
ct 300 Ns/m

Next, we will compute IRI, for a Gaussian road model with ISO spectrumSZ(Ω), see
Eq. (1). The responseYIRI(x), for the “Golden Car” has power spectral density given by

SYIRI (Ω) = |HIRI,v(Ω)|2SZ(Ω). (4)

Assuming a Gaussian model for road profile, the expected IRI can then be computed as

E[IRI] = E
[

1000
1

vL

∫ L

0

∣

∣

∣
ẎIRI(x)

∣

∣

∣
dx

]

=
1000

v
E
[
∣

∣

∣
ẎIRI(0)

∣

∣

∣

]

=
1000

v
·
√

2λ2

π
, (5)

whereλi is thei:th spectral moment of the response

λi =

∫ ∞

0

ΩiSYIRI (Ω) dΩ. (6)

It can be shown that the expected “theoretical” IRI can be expressed as

E[IRI] = A(w, v) ·
√
C, (7)

whereA(w, v) is a constant depending on the wavinessw and the speedv. For the Golden car
and ISO spectrum with wavinessw = 2, the formula simplifies to

E[IRI] = 2.21 ·
√
C, (8)

where the roughness coefficientC has units m· mm2. This theoretically derived relation
between IRI andC agrees with the empirically formula by (Kropáč and Mú̌cka, 2004, 2007).

Denote byÎ an estimate ofE[IRI], e.g. the average of observed IRI. In this paper we will
use Eq. (5) whereλ2 will be estimated from the observed power spectral density,see Eq. (6),
or by estimating variance of thėY . The roughness coefficientC will then be estimated from
IRI by

Ĉ =

(

Î

2.21

)2

. (9)

4 Fatigue Damage Index

We will here define a fatigue damage indexDv(k) that is assessed by studying the response
of a quarter-vehicle model travelling at a constant speed onroad profiles, see Figure 2. To
be more precise, the response considered is the force actingon the sprung massms. Such
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a simplification of a physical vehicle cannot be expected to predict loads exactly, but it will
highlight the most important road characteristics as far asfatigue damage accumulation is
concerned. The parameters in the model are set to mimic heavyvehicle dynamics, following
(Bogsjö, 2007). Thus, the values of the parameters differ somewhat form the ones defining the
Golden car, see Table 1.

Neglecting possible “jumps”, which occur when a vehicle looses contact with the road
surface, the response of the quarter-vehicle, i.e. the force Y (x) = msẌs(x), as a function of
vehicle locationx, can be computed through linear filtering of the road profile.The filter at
speedv has the following transfer function

Hv(Ω) =
msω

2(kt + iωct)

kt −
(ks + iωcs)ω

2ms

−msω2 + ks + iωcs
−mtω2 + iωct

(

1 +
msω

2

ks −msω2 + iωcs

)

, (10)

whereω = Ω · v is the angular frequency having units rad/s.

For a stationary road modelZ(x) having power spectral densitySZ(Ω), the responseY (x),
for a vehicle at speedv [m/s], has power spectral density given by

SY (Ω) = |Hv(Ω)|2SZ(Ω), SZ(Ω) = σ2S0 (Ω) , (11)

whereσ2 =
∫∞

−∞
SZ(Ω) dΩ. Note thatσ2 is a variance of the road profile model and it may

not be equal to the measured road profile variance, e.g. whenSZ(Ω) is ISO spectrum.

In general the responseY (x), which is the force acting on the sprung mass, is computed
by means of filtering the signalZ(x) using the filter with transfer functionHv(Ω) given in
Eq. (10), which depends on the vehicle speedv. In the examplev = 10, 15 [m/s] have been
used. The response of the quarter vehicleY (x) is the solution of a fourth order ordinary
differential equation or alternatively a convolution ofZ(x) with the vehicle’s impulse response
hv(x), viz.

Y (x) =

∫ x

−∞

hv(x− u)Z(u)du. (12)

In this paper responses for measured and simulated roads arecomputed using the FFT algo-
rithm. Since the initial conditions of the system att = 0 are unknown the Hanning window
has been used to make the start and the end of the ride smooth. This is necessary or otherwise
the first oscillation of the response may cause all the damage– the car is hitting a wall.

The purpose of this work is to propose models forZ(x) defined by means of few parameters
that could be used to computeY (x) or other more complex and realistic responses in such a
way that the risk for fatigue failure, or extremal responses, could be quantified. Hence the most
important criterion for a good model of a measured road profile is that the rainflow damage of
the response is well represented.

The rainflow damage is computed in two steps. First rainflow ranges∆Srfc,i in the load
Y (x), 0 ≤ x ≤ Lp, are found, then the rainflow damage per metre is computed according to
Palmgren-Miner rule (Palmgren, 1924; Miner, 1945), viz.

Dv(k) =
1

Lp

∑

i

∆Sk
rfc,i, (13)

see also (Rychlik, 1987) for details of this approach. In this paper2 ≤ k ≤ 5, have been
used. The damageDv(k) for higher exponent valuek = 5 depends mostly on the proportion
and size of large cycles, while damage fork = 3, corresponding to the crack growth process,
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depends on the sizes of both large and moderately large cycles. For a stationary load,Dv(k)
converges to a limit asLp increases without bounds. However, for short road profiles,Dv(k)
may vary considerably. For ergodic loads the limit is equal to the expected damageE[Dv(k)].
In Section 6, computations of the expected damage will be further discussed. In these compu-
tations, the response to the normalized road profileZ̃(x) having the spectrumS0(Ω) will be
employed, viz.

Ỹ (x) =

∫ x

−∞

hv(x− u)Z̃(u)du. (14)

The spectrum of̃Y (x) is given by

SỸ (Ω) = |Hv(Ω)|2S0(Ω). (15)

5 Stochastic models for road profiles

Parts of this section follows (Bogsjö et al., 2012). First, the commonly used stationary Gaus-
sian model will be presented. Then, in Section 5.2, we introduce the non-stationary Gaussian
model with variable variances between short sections, but with smooth transitions between the
segments, and then extend it to the non-stationary Laplace model where the variable variance
is modelled by a Gamma distribution. Recall that, for a road profile Z(x) with standard devi-
ationσ, we denote bỹZ(x) the normalized profile, i.e.E[Z̃(x)] = 0 andV[Z̃(x)] = 1. Thus,
for a zero mean profile,Z(x) = σZ̃(x) with spectrumSZ(Ω) = σ2S0(Ω), whereS0(Ω) is
the spectrum of the normalized road profileZ̃(x)

In the following sections we will discuss Laplace models with ISO spectrum and give
means to estimate parameters in the model from an observed IRI sequence. Note that the IRI
is often available in road maintenance databases. MATLAB code to simulate the road models
is given in Appendix B.

5.1 Stationary Gaussian model

A zero mean stationary Gaussian process is completely defined by its mean and power spec-
trum, thus, any probability statement about properties of Gaussian processes can in principle
be expressed by means of the spectrum. This is not always practically possible and hence
Monte Carlo methods are often employed. There are several ways to generate Gaussian sam-
ple paths. The algorithm proposed in (Shinozuka, 1971) is often used in engineering. It is
based on the spectral representation of a stationary process. Here we use an alternative way
that expresses a Gaussian process as a moving average of white noise.

Roughly speaking a moving average process is a convolution of a kernel functiong(x), say,
with a infinitesimal “white noise” process having variance equal to the spatial discretization
step, say dx. Consider a kernel functiong(x), which is normalized so that its square integrates
to one. Then the standardized Gaussian process can be approximated by

Z̃(x) ≈
∑

g(x− xi)Zi

√
dx, (16)

where theZi’s are independent standard Gaussian random variables, while dx is the discretiza-
tion step, here reciprocal of the sampling frequency (dx = 5 cm). An appropriate choice of
the length of the increment dx is related to smoothness of the kernel.

In order to get a Gaussian process with a desired spectral density one has to use an appro-
priate kernelg(x). Consider a symmetric kernel, i.e.g(−x) = g(x). In this case, the spectrum
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S0(Ω) of Z̃(x) uniquely defines the kernelg(x) since

S0(Ω) =
1

2π
|Fg(Ω)|2, (17)

whereFg(Ω) stands for the Fourier transform, and for symmetric kernelstheir Fourier trans-
form is given by

Fg(Ω) =
√

2π S0(Ω). (18)

5.2 Non-stationary models

Stationary Gaussian loads have been extensively studied inliterature and applied as models
for road roughness, see e.g. (Dodds and Robson, 1973) for an early application. However,
the authors of that paper were aware that Gaussian processescannot “exactly reproduce the
profile of a real road”. In (Charles, 1993) a non-stationary model was proposed, constructed
as a sequence of independent Gaussian processes of varying standard deviations but the same
standardized spectrumS0(Ω). Knowing durations and sizes of standard deviations the model
is a non-stationary Gaussian process. Similar approaches were used in (Bruscella et al., 1999;
Rouillard, 2004, 2009). The variability of the standard deviationσ was modelled by a discrete
distribution taking a few number of values (in published work the number of values was six).
In (Rouillard, 2009) random lengths of constant variance sections were also considered. In
those papers one was not concerned with the problem of connecting the segments with con-
stant variances into one signal since the response was modelled as a non-stationary Gaussian
process, i.e. by a process of the same type as the model of the road surface. Such individual
treatment of the constant variance segments is possible only if they are much longer than the
support of the kernelg(x), e.g. in the order of kilometres. However, actual roads contain much
shorter sections with above-average irregularity. These irregularities cause most of the vehicle
fatigue damage, as reported in (Bogsjö, 2007).

Since we are dealing with non-stationary models it is not obvious how the normalized road
profile Z̃(x) should be defined. Here we will assume thatZ̃(x), x ∈ [0, Lp] has mean zero and
variance one, which means that the mean and variance ofZ̃(x) at a pointx chosen at random
from [0, Lp] are zero and one, respectively.

For example suppose that the normalized road profileZ̃(x), x ∈ [0, L], consists ofM
equally long segments of lengthL = Lp/M , where the constant variance of thej:th segment
is equal torj, j = 1, . . . ,M with 1

M

∑M
j=1

rj = 1 sinceZ̃(x) has variance one. However,
such a process is discontinuous at times where the variance is changing. Although formally
correct, the model induces a transient largely contributing to the fatigue damage each time a
vehicle passes these locations. A more realistic approach can be made by continuous tran-
sitions between segments of constant variance. This can be done in different ways but here
we employ moving averages of "non-stationary" white noise to define a smooth version of
Z̃(x). First we present the non-stationary Gaussian model with variable variances but smooth
transitions between the segments, and then extend it to the non-stationary Laplace model.

5.3 Non-stationary Gaussian model

The process consists ofM segments of lengthL = Lp/M and we wish to define a process
on [0, Lp]. We would like that each segment has a prescribed standard deviation σj , j =

1, . . . ,M . Obviously the variance of the process isσ2 = 1

M

∑M
j=1

σ2

j .
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Denote the standardized variance of thej:th segment by

rj = σ2

j/σ
2. (19)

Next we will define thej:th non-stationary Gaussian processZ̃j(x) process for all0 ≤ x ≤
Lp. Let again dx be the sampling step of the process and[sj−1, sj ], sj−sj−1 = L, the interval
where the road profile model would have the varianceσ2

j , viz. s0 = 0 < s1 < . . . < sM = Lp.

Now defineM processes̃Zj(x) as follows

Z̃j(x) ≈
∑

sj−1<xi≤sj

g(x − xi)
√
rj Zi

√
dx, (20)

where theZi’s are independent standard Gaussian variables, and dx is the discretization step.
Finally the road profile modelZ(x) is given by

Z(x) = σZ̃(x) = σ
M
∑

j=1

Z̃j(x). (21)

5.4 Non-stationary Laplace model

A reasonable length of road segments with constant varianceis 200 metres. This would mean
that in order to describe a 10 km long road with ISO spectrum one would need 50σ2

j param-
eters. This is not very convenient and therefore in (Bogsjö et al., 2012) another approach was
taken. Namely, the variability of the standardized variancesrj, defined in Eq. (19), was mod-
elled by means of the Gamma probability distribution, i.e.rj are independent observations of
a random variableR having probability distribution function

fR(r) =
θθ

Γ(θ)
rθ−1 exp(−rθ). (22)

By replacingrj in Eq. (20) by independent Gamma random variablesRj , we get

Z̃j(x) ≈
∑

sj−1<xi≤sj

g(x− xi)
√

Rj Zi

√
dx. (23)

and the road profileZ(x) is given by

Z(x) = σZ̃(x) = σ

M
∑

j=1

Z̃j(x). (24)

Further, for a zero mean Gaussian random variableZj, the product
√

RjZj has a Laplace
distribution, and thus the processZ(x), defined in Eq. (24), has a generalized Laplace distri-
bution, see (Kotz et al., 2001). MATLAB code to simulate thismodel can be found in Ap-
pendix B.

It should be noted that a non-stationary Laplace road model requires only two parameters;
the varianceσ2 of the process and the shape parameterθ of the Gamma distribution. In Laplace
modelling, traditionally another parameterization is used, viz. ν = 1/θ. Now if the shape
parameterν is close to zero then the Laplace process is close to be a Gaussian process. The
shape parameterν of the Laplace process can also be computed from the kurtosisκ of the
processZ(x), namely

ν = (κ− 3)/3. (25)
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Alternatively, if the variances of the road segments with constant variance are known, then
the moment method gives the following estimates

σ̂2 =
1

M

M
∑

j=1

σ̂2

j , ν̂ =
1

M−1

∑M
j=1

(σ̂2

j − σ̂2)2

(σ̂2)2
. (26)

5.5 Road models with ISO spectrum

The kernelg(x) defined by the ISO spectrum, which in the standardized form (variance one
and wavinessw = 2) is given by

S0(Ω) = C0

(

Ω

Ω0

)−2

, C0 = 14.4 m3, 2π · 0.011 ≤ Ω ≤ 2π · 2.83 rad/m, (27)

and zero otherwise. Recall thatΩ0 = 1 rad/m. The stationary Gaussian model with ISO
spectrum has only one parameter, the roughness coefficientC, or alternatively the variance
σ2 = C/C0. It is important to notice thatσ2 is usually smaller than the variance of the
measured road elevation, since it is chosen in such a way thatthe “true” spectrum is well
approximated at the frequency range of interest. In Figure 3the symmetrical kernel defined
by the ISO spectrum is presented.

−200 −150 −100 −50 0 50 100 150 200
−0.2

0

0.2

0.4

0.6

0.8

Figure 3: ISO kernelg(x).

In order to define the non-stationary Gaussian model one needdetermineL, the length of
segments of constant variance, and then estimate the mean roughnessC as well as the sequence
of relative variancesrj. Often a suitable value ofL is chosen by experience, typicallyL = 200
m, whileC and therj ’s can be estimated from a sequence of IRI values by means of Eq. (9).
The procedure results in a large number parameters and therefore we propose to describe
the variability of rj by means a stochastic model. If therj ’s are obtained as independent
values from a gamma distribution thenZ(x) is called Laplace road surface model with gamma
variance of segments.
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In order to define the Laplace model with ISO spectrum, we needtwo parameters, the
mean roughnessC and the Laplace shape parameterν, modelling the gamma variances for the
segments of lengthL. Consequently, by introducing one additional parameterν, the station-
ary Gaussian model is extended to the non-stationary Laplace model. Recall that setting the
parameterν equal zero gives the stationary Gaussian case.

5.6 Estimation of Laplace road models with ISO spectrum

How to estimate the parameters in a Laplace, or a Gaussian model, with ISO spectrum is not
obvious and many possible approaches are possible. The difficulty lies in the fact that an
“useful” ISO model has varianceσ2 and kurtosisκ that differ from the variance and kurtosis
estimated from measured road profile. Consequently, relations (25-26) andC = σ2C0 are no
appropriate estimators when̂σ2

j are estimated variances from measured road profiles.

However, Eq. (26) is still useful if thêσ2

j ’s are replaced by roughness coefficientsĈj ’s,
defining ISO spectra, for short road segments. The roughnesscoefficientsCj could be esti-
mated by means of some statistical procedure if the measuredprofile is available. However,
this is seldom the case, and hence we will propose to estimateCj from a sequence of IRI val-
ues using Eq. (8). Note that IRI parameters are often available from road databases maintained
by road agencies.

Summarizing, we propose to estimateCj by

Ĉj =

(

Îj
2.21

)2

, (28)

whereÎj is an estimate of IRI of thej:th segment, see Eq. (3). Having a sequence of estimates
Ĉj, j = 1, . . . ,M , it is possible to estimateC by the average of̂Cj . Next, sinceCj is pro-
portional to the varianceσ2

j , for Z(x) with ISO spectrum, one can also useĈj/Ĉ as estimates
of rj and, for example, the maximum likelihood method can be used to estimate the shape
parameterν. However, for simplicity of presentation, the moment method will be employed
here, giving the following estimates

Ĉ =
1

M

M
∑

j=1

Ĉj, ν̂ =
1

M−1

∑M
j=1

(Ĉj − Ĉ)2

Ĉ2
. (29)

6 Expected damage index

The purpose of this section is to present a closed form approximation for the expected dam-
age index for the Laplace road profile model with ISO spectrum. The important special case
of Gaussian response,ν = 0, have been intensively studied in the literature and many ap-
proximations are available, see (Bengtsson and Rychlik, 2009) for comparisons of different
approaches. Therefore, we wish to relate the expected damage index for the Laplace model to
the expected Gaussian index.

For the Gaussian model, the damage indexDv(k), defined in Eq. (13), depends on the
following parameters; the speedv, the exponentk in the S-N curve, the road roughness coef-
ficientC, see Eqs. (11) and (27) for ISO spectrum. For the Laplace model, the damage index
depends additionally on the shape parameterν. In order to make the dependence explicit in
the notation we will writeDv(k,C, ν) for Dv(k).
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We turn next to the main result of this section the approximation of E[Dv(k,C, ν)]. The
approximation can be used for a response defined by any linearfilter excited by the random
Laplace road having ISO spectrum, see Eqs. (23-24). The approximation is given by

E[Dv(k,C, ν)] ≈ E[Dv0(k,C0, 0)]

(

C

C0

)k/2( v

v0

)k/2−1

νk/2
Γ(k/2 + 1/ν)

Γ(1/ν)
, (30)

wherev0 > 0 is a suitably chosen reference speed andC0 = 14.4 m3 is the roughness coef-
ficient representing a normalized road profile, see Eq. (27).More details on the derivation of
Eq. (30) is found in Appendix A. In examples we will usev0 = 10 m/s. HereE[Dv0(k,C0, 0)]
is the expected damage index for a Gaussian response, see (Bengtsson and Rychlik, 2009) for
means to compute the index. The approximation is derived under assumption that the road
profile has ISO spectrum. It is accurate if the length of segments of constant varianceL is
long enough so that the influence of transients caused by change of variance can be neglected.
In practice we found thatL about 100 metres or longer is a good choice. Note that for a non-
stationary Laplace model(σ2ν) is equal to the variance of the random variances of Gaussian
segments. In addition, using Stirlings formula one can demonstrate that

νk/2
Γ(k/2 + 1/ν)

Γ(1/ν)
→ 1, (31)

asν tends to zero, i.e. the Laplace model approaches the Gaussian model.

In order to get explicit algebraic approximation for the expected damage index we will
employ the so-called narrow band approximation forE[Dv0(k,C0, 0)] introduced in (Bendat,
1964), which actually is an upper bound for the expected damage, see (Rychlik, 1993) for a
proof and (Bogsjö and Rychlik, 2009) for related results. For a road profileZ̃(x) modelled
as a Gaussian process with standardized ISO spectrum and thequarter vehicle travelling with
speedv0 = 10 m/s with transfer function given by Eq. (10), the narrow bandbound is given
by

E[Dv0(k,C0, 0)] ≤ 0.35 (5.52 · 1010)k/2Γ(k/2 + 1)23k/2. (32)

By combining Eqs. (30) and (32) we obtain the following approximation

E[Dv(k,C, ν)] . 0.35 · (4.615 · 104 ·C)kΓ(k/2 + 1)

(

v

v0

)k/2−1

νk/2
Γ(k/2 + 1/ν)

Γ(1/ν)
. (33)

Similar formulas can be given for any transfer functionHv(Ω), simply the constants0.35 and
4.615 104 need to be modified.

Finally, based on a very long simulation the following relation has been fitted

ln(E[Dv0(k,C0, 0)]) = −2.646 + 13.92 · k. (34)

In Figure 4, the stars are estimates ofln(E[Dv0(k,C0, 0)]) while the solid line is the fitted
regression. As can be seen in the figure, the error is negligible for 2 ≤ k ≤ 7, in fact the error
is less than 0.5%. Note that the regression is only valid for the quarter car response, i.e.Hv(Ω)
given in Eq. (10). For other filters the regression will be different.

Combining Eqs. (30) and (34) lead to the following approximation of the expected damage
index for road with ISO spectrum having average roughness coefficientC approximated by

E[Dv(k,C, ν)] ≈ 0.07093e13.92 k

(

C

C0

)k/2 ( v

v0

)k/2−1

νk/2
Γ(k/2 + 1/ν)

Γ(1/ν)
, (35)

whereC0 = 14.4 m3 andv0 = 10 m/s.
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Figure 4: Stars: observed damage indices in simulated 400 kmlong Gaussian road profiles
with normalized ISO spectrum,C = C0 = 14.4 m3, andv = v0 = 10 m/s. Solid line:
regression line ofln(E[Dv0(k,C0, 0)]) = −2.646 + 13.92 · k.

6.1 Estimation of Laplace road models with ISO spectrum

The relation (35) could also be used to estimate or validate parametersC, ν in Laplace-ISO
road profile models, when the damage indices are available. Anatural approach would be to fit
relation (35) to the estimated damage indices by means of theleast squares method. However,
for simplicity, we will here only give explicit formulas forthe estimates by inverting Eq. (35)
for fixed speedv and damage exponentsk = 2, 4, viz.

E[Dv(2, C, ν)] ≈ 6.108 · 109 C, while E[Dv(4, C, ν)] ≈ 5.254 · 1020(ν + 1)C2
v

v0
, (36)

which are valid for Laplace ISO road profile models. Consequently, if the model is valid and
the damage indices are known then the parameters of the models can be estimated by means
of Eq. (36), viz.

Ĉ = 1.637 · 10−10 ·Dv(2), (37)

ν̂ = 0.07101 · v0
v

· Dv(4)

Dv(2)2
− 1. (38)

6.2 A numerical example

In this example we will illustrate the accuracy of the approximation (30) of the expected dam-
age index as function of the Laplace shape parameterν. Two speedsv = 10, 25 m/s and
fatigue exponentsk = 3, 5 will be considered. The expected damage index for a Gaussian
responseE[Dv0(k, 1, 0)] has been estimated using Eq. (13) for a 400 km long simulated road
profile. Then approximation (30) has been used to estimateE[Dv(k, 1, ν)]. Results of the
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study is presented in Figure 5 as solid lines. In the figure we also show the narrow band ap-
proximation (upper bound), Eq. (33), as the dashed line. As expected the approximation is
bounding the mean damage index. However, it is still possible to get observed indices that
exceeds the bound. Finally, for each value ofν, four damage indicesDv(k, 1, ν) have been
calculated from 20 km long non-stationary Laplace simulations with increasing value of pa-
rameterν. The simulated indices are marked as dots forv = 25 m/s and stars forv = 10 m/s.
The agreement between the approximation of expected damageindex given in Eq. (30) and
the simulated indices is striking. For high values of the Laplace shape parameterν one can see
some bias. The bias can be reduced by simulating road profileslonger than 20 km.
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Figure 5: The expected damage indicesE[Dv(k, 1, ν)], approximation (30), for damage ex-
ponentk = 5 and speedsv = 10, 25 m/s as function of parameterν. The solid lines are the
approximation (30); the upper line is forv = 25 m/s while the lower line is forv = 10 m/s.
The dash-dotted lines are the narrow band bounds, Eq. (33). Again the upper line is forv = 25
m/s while the lower is forv = 10 m/s. The stars and dots are the observed damage indices
from 20 km long simulations of the road profiles having 100 m long segments of constant
variance. The dots are forv = 25 m/s while the stars are forv = 10 m/s.

6.3 The long-term damage index

In Section 5.4 the non-stationary Laplace model for road surface roughness was introduced.
Then in Section 5.6 means to estimate the parameters in the model with ISO spectrum were
presented. The estimates require observations of the IRIs for road segments. Finally in the
previous subsection we have demonstrated that the expecteddamage index can be accurately
approximated, by means of formulas (30,33,35), for non-stationary Laplace model of road
roughness having ISO spectrum.
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Since Eqs. (35) and (33) are given by explicit algebraic functions of model parameters
these are very convenient for estimation of the long-term damage accumulation in a vehicle
component. If the variability of parametersσ2; the shape parameterν in Laplace model and
v driving speed for a population of customers or a market is known and if the response can
be described by means of a linear filter with an appropriate transfer functionH (here approx-
imated by the quarter vehicleHv, Eq. (10)), then the expected long-term damage indexE[D]
can be approximated by means of the following integral

E[D] ≈ d̃k

∫
(
∫

vk/2−1f(v|ν, σ) dv
)

· (ν · σ2)k/2
Γ(k/2 + 1/ν)

Γ(1/ν)
f(ν, σ) dσ dν. (39)

with the damage growth intensitỹdk = E[Dv0(k, 1, 0)]/v
k/2−1

0
, see Eq. (42) in Appendix A, is

easily available, see (Bengtsson and Rychlik, 2009). The density f(ν, σ) characterizes the en-
countered road quality, while the conditional densityf(v|ν, σ) represents the driver behaviour.

7 Validation of the Laplace-ISO model of road profiles

A remaining important question is how well the Laplace-ISO model fits measured road pro-
files. In this section we shall validate the Laplace-ISO roadprofile model by studying the
following issues:

1) Can the non-stationary Laplace model be used to reconstruct road profiles?

2) Can the ISO spectrum give sufficiently accurate approximations of road profiles?

3) Can the IRI be used to estimate the ISO spectrum?

4) What is the suitable length of segments with constant variance?

For the validation a data set of eight sections of roads with measured road profiles will be used.
The eight selected sections represent different types of roads as well as different geographi-
cal locations. The lengths of the sections varies between 14and 45 kilometres, see Table 2
second row. The measurements have been provided by Scania and were standardized to have
zero mean and variance one. The signals are then filtered so that the low frequencies, with
wavelength above 100 metres are removed. In the following the road profile will always mean
the filtered road profile. The third row in the table contains estimates of standard deviations of
the filtered signals, while the fourth row their kurtosis. One can see that the estimates of the
kurtosis are significantly higher than 3 implying that road profiles should not be modelled as a
stationary Gaussian processes.

The accuracy of the model will be validated by means of relative indices, i.e. fractions
of the damage indices derived from a model and the observed indices, for various values of
parameters the speedv the damage exponentk and lengthL of constant variance segments. A
relative index equal to one means that the damage index computed for the model is equal to
the observed index in the measured profile.

7.1 Laplace model with observed spectra

In this section we demonstrate that the general non-stationary Laplace model can be used to
describe the variability of the eight measured road profiles. In the model symmetrical kernels
g are used, which are estimated using Eq. (18) whereS0(Ω) is replaced by empirical spectra.
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Table 2: Rows 2-4; length, standard deviation and kurtosis of eight measured road elevations,
respectively. In the fifth row are estimates of the Laplace shape parameterν computed by
means of Eq. (25);̂ν = (κ̂− 3)/3.

road number 1 2 3 4 5 6 7 8

Length[km] 32.2 13.7 37.0 44.3 44.8 23.1 14.5 39.5

Standard deviation,̂σ 0.34 0.41 0.37 0.29 0.38 0.28 0.37 0.38

Kurtosis,κ̂ 4.23 5.49 8.62 4.88 6.05 6.55 3.79 5.31

Shape parameter,̂ν 0.41 0.83 1.87 0.63 1.02 1.18 0.26 0.77

The parameterσ2 is estimated from the observed variance given in the third row of Table 2.
The parameterν has been estimated using Eq. (25), viz.ν̂ = (κ̂ − 3)/3, see fifth row in
the table. Note that this estimate of parameterν are independent ofσ andL, the length of
constant variance segments. Finally, in order to simulate the non-stationary Laplace model,
also the length of segments of constant variance has to be chosen.

The accuracy of the Laplace model is validated by means of thefollowing Monte Carlo
study. Relative damages, fractions between simulated and observed damage indices, are used
as measures of model accuracy. Three factors are considered; length of the constant variance
segment on three levelsL = 100, 200, 400 m; damage exponent on three levelsk = 3, 4, 5;
and speed on two levelsv = 10, 15 m/s. For each combination of factors and measured
roads one Laplace road profile has been simulated, in total 144 road profiles. (The simulated
profiles were of the same length as the corresponding measured profiles.) In Figure 6 three
box plots are presented for relative damages, fork = 3, 4, 5. (Each box plot is based on 48
reconstructed road profiles.) From the figure one can see thatrelative indices are close to one
which means that damage indices computed for the non-stationary Laplace model agrees very
well with the observed one for wide range of values of the considered factors. Medians of
relative damage indices are about 1.2 indicating that Laplace model is slightly more damaging
than the measured profiles.

7.2 Laplace model with ISO spectrum

In the previous section we have shown that the non-stationary Laplace model having observed
spectrum reproduces the damage indices very well. In this section we turn to the second
problem which is whether the simpler Laplace-ISO model could be used instead. In objective
terms we shall look for eight sets of parameters(C, ν) such that the expected relative damage
indices, denoted byd(C, ν, k, v), are close to one, say, in the interval[0.5, 2], for typical values
of damage exponentsk and vehicle speedsv. The expected relative index is computed using
Eq. (35), viz.

d(C, ν, k, v) =
E[DISO

v (k)]

Dobs
v (k)

≈ 0.07093e13.92 k

Dobs
v (k)

(

C

C0

)k/2 ( v

v0

)k/2−1

νk/2
Γ(k/2 + 1/ν)

Γ(1/ν)
,

(40)
whereC0 = 14.4 m3 andv0 = 10 m/s.

First we check if one could simply replace the general kernels g by the ISO kernels defined
byC = 14.4σ2, whereσ are taken from the third row in Table 2. Parametersν are taken from
the fifth row of the table. The resulting estimatesC and ν̂ are presented in the second and
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Figure 6: Three box plots of relative damages estimated for the general non-stationary Laplace
model, for damage exponentsk = 3, 4, 5, respectively. One relative index is computed for each
of the eight roads and combinations of the following factorsv = 10, 15 m/s,L = 100, 200, 400
m, i.e. each box plot is based on 48 relative indices.

third rows of Table 3. The relative indicesd(C, ν, k, v) were computed forv = 10 m/s and
k = 3, 5 and presented in the fourth and fifth row of the table. One can see that the accuracy
of this Laplace-ISO model is poor. The models are very conservative. In order to judge
the roughness of the measured road profiles the logarithms ofthe observed damage indices
Dobs

v (k), for k = 3, 5, are given in the last two rows in Table 3. One can see that the roads
6,7,8 are smoother (less damaging) than the first five ones.

Table 3: Row 2; estimated parameterC = 14.4σ2, whereσ are taken from the second row in
Table 2. Rows 3-4; relative damage indices, Eq. (40). Rows 5-6; the logarithms of observed
damage indices fork = 3, 5, respectively, for speedv = 10 m/s.

road number 1 2 3 4 5 6 7 8

Ĉ 1.66 2.42 1.97 1.21 2.08 1.13 1.97 2.08

ν̂ 0.41 0.83 1.87 0.63 1.02 1.18 0.26 0.77

d(C, ν, 3, 10) 1.4 2.4 5.1 1.5 3.5 3.6 16.2 7.9

d(C, ν, 5, 10) 0.5 3.0 12.2 0.7 6.2 6.0 44.5 23.4

ln(Dobs
v (3)) 35.7 35.8 35.0 35.2 35.3 34.3 33.4 34.4

ln(Dobs
v (5)) 62.9 62.5 61.3 62.0 61.5 60.2 58.6 60.0

We conclude that replacing the general kernel by the ISO kernel does not lead to a useful
Laplace-ISO model. However, this does not say that such a model does not exist. We shall next
propose a “semi optimal” Laplace-ISO model by estimating(C, ν) employing Eqs. (37-38)
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using the observed damage indicesDobs
v (2),Dobs

v (4). Parameters(C, ν) estimated in this way
will define Laplace-ISO models which have expected damage indices equal to the observed
damage indices fork = 2, 4, see Eq. (35). Unfortunately, the parametersC andν vary withv.
Obviously, one could estimateC andν by means of least square method and get estimates that
are independent ofv, however we will not pursuit this here and just average parameter values
over the speeds. The resulting Laplace-ISO models are presented in Table 4 rows 2 and 3. As
can be seen in rows 4-7 in Table 4 the derived Laplace-ISO models are sufficiently accurate
proving that “useful” Laplace-ISO models are available forthe studied roads.

Table 4: Row 2-3; estimated parametersC, ν employing Eqs. (37-38). Rows 4-7; relative
damage indices, Eq. (40) fork = 3, 5 and speedsv = 10, 15 m/s.

road number 1 2 3 4 5 6 7 8

Ĉ 1.25 1.87 0.88 1.14 1.30 0.62 0.43 0.73

ν̂ 1.88 0.68 1.36 1.22 0.37 0.59 0.32 0.39

d(C, ν, 3, 10) 1.25 1.54 1.40 1.54 1.46 1.28 1.68 1.49

d(C, ν, 5, 10) 0.77 1.35 1.19 1.01 1.00 0.78 1.08 1.15

d(C, ν, 3, 15) 1.02 0.85 1.01 0.93 0.94 1.02 0.85 0.88

d(C, ν, 5, 15) 1.02 0.52 0.41 0.51 0.56 0.80 0.49 0.55

However, in practice the damage indicesDobs
v (2),Dobs

v (4) are not available and hence other
means to estimate parameters(C, ν) are of interest. For many roads the sequence of IRI can be
found in various databases and can be used to estimate the parameters by means of formulas
(28-29). In the following section this approach is validated by studying the relative damage
indices.

7.3 Estimating Laplace-ISO models from IRI sequences

In many countries the sequences of IRI are collected and saved in databases. Therefore, re-
construction of the road profiles from IRI sequences is of practical interest in cases when the
measured profiles are not available. It may not always be clear how the sequence has been
estimated hence the accuracy of the reconstruction can be hard to judge. Here, for validation
purposes, we will estimate the sequence of IRI from the measured data and use these to es-
timate the parameters(C, ν) in Laplace-ISO models. More precisely, the method consistsof
the following two steps:

(I) For a road segment of constant variance, lengthL = 200 m, the spectrum of the golden
car response is estimated and the second order spectral moment λ2 is calculated. Then
the IRI index is evaluated by means of Eq. (5). The reason for choosing Eq. (5) instead
of more general formula (3) is that Eq. (5) is based on the assumption that the road
profile is Gaussian which is also used in the construction of the Laplace model.

(II) The estimated sequence of IRI is then transformed into asequence ofCj by means
of Eq. (28). Finally, the parameterC is estimated by the average ofCj, while ν is
estimated by the square of the coefficient of variation ofCj , see formula (29), or by
fitting a gamma distribution toCj/C. Here the second approach is used.
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The estimated parameters in the Laplace-ISO models, using the two steps procedure, are
given in Table 5, rows 2-3. The accuracy of the models is investigated using the relative
damage indices, Eq. (40), computed fork = 3, 5 and speedsv = 10, 15 m/s. The indices are
presented in Table 5, rows 4-7. Based on the reported values of the relative damage indices
one must conclude that the accuracy of the models, estimatedusing IRI, are in general not
as good as the accuracy of the “semi optimal” Laplace-ISO models presented in the previous
section.

We conclude that the presented approach to estimate Laplace-ISO models from IRI se-
quences is useful for reconstruction of road profiles when measurements are not available. In
the presented validation study only models for the road profiles 6-8, which are not very dam-
aging, give too conservative damage estimates, while for the other roads the estimated damage
is almost within a factor 2. The statistical procedures presented here need further improve-
ments. Particularly the following two problems need further investigations. The first one is the
choice of the length of constant variance segmentL. Here we meet a typical trade of situation;
selecting shorter vales ofL will lead to higher statistical uncertainties of IRI valuesmaking
the proposed estimates ofν biased (too large); choosing longerL values may lead to violation
of the assumption of constant variance in a segment. The second problem is the division of the
long road segments into homogeneous parts to which the Laplace-ISO model could be fitted.
In fact, the eight examined road profiles are not completely homogeneous.

Table 5: Rows 2-3; estimatedC, ν by means of Eqs. (28-29) withCj estimated from IRI using
Eq. (9) with constant variance segmentsL = 200 m. Rows 4-7; relative damage indices,
Eq. (40) fork = 3, 5 and speedsv = 10, 15 m/s.

road number 1 2 3 4 5 6 7 8

Ĉ 1.41 1.87 1.37 1.62 1.74 1.06 0.97 1.12

ν̂ 0.52 0.59 0.84 0.54 0.46 0.52 0.38 0.51

d(C, ν, 3, 10) 1.13 1.51 2.44 2.22 2.33 2.85 5.84 2.93

d(C, ν, 5, 10) 0.36 1.24 2.41 1.33 2.30 2.82 8.96 3.85

d(C, ν, 3, 15) 0.92 0.83 1.76 1.35 1.50 2.27 2.95 1.74

d(C, ν, 5, 15) 0.49 0.48 0.84 0.67 1.30 2.87 4.07 1.84

7.4 Influence on length of constant variance segments

In the previous section we have used the expected damage index for the Laplace-ISO model to
compare with the observed damage index. However, in practical applications often simulated
road profiles are needed. Suppose that one has a 20 km long roadprofile and we choose the
length of the constant variance segment to be 500 m. Then there will be only 40 random
variances in the signal, compared to 200 whenL = 100. Since chances to get very high
variance is much higher in the second case and one has higher frequency of transients when
variance is changing values we expect that whenL = 500 the damage index will be smaller
compared to the index forL = 100. This will be illustrated in the following Monte Carlo
study.

Using Laplace-ISO models, estimated from the IRI sequencesand given in Table 5, 10 road
profiles will be simulated of total length of 249.2 km for three values of parameterL, 100, 200
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and 500 m, i.e. in total 30 road profiles. Note that each simulated road surface consists of
8 shorter segments having different values of parameters. The damage index will be then
estimated for each of the 249 km long simulations and scaled by the observed damage index.
The ratio will be called accumulated relative damage with value one if the damage index in
the simulated road profile is equal to the measured damage index. The result of the simulation
study is presented in Table 6. One can see that the damage varies considerably with the chosen
lengthL demonstrating the importance of proper selection of parameterL.

Table 6: Mean, minimum and maximum values for 10 accumulatedrelative damages, for
the Laplace-ISO models for the eight road sections with parameters given in Table 5. Three
different values of the lengthL has been used in the simulation algorithm.

Model
Speed 10 m/s Speed 15 m/s

k=3 k=5 k=3 k=5

mean min max mean min max mean min max mean min max

L = 500 m 1.19 0.91 1.38 0.59 0.30 0.83 0.81 0.68 0.96 0.34 0.22 0.52

L = 200 m 1.86 1.81 1.93 1.09 1.00 1.23 1.19 1.09 1.29 0.58 0.49 0.70

L = 100 m 3.28 3.00 3.41 3.04 2.57 3.36 2.09 2.01 2.17 1.57 1.39 1.80

8 Conclusions

The main goal has been to find a statistical model for road profiles, which can be estimated
from a sequence of IRI measurements. The road profile can thenbe stochastically recon-
structed. When measured road profiles are not available, butonly condensed roughness data
in the form of IRI values or roughness coefficients, a simple statistical model for the road pro-
file is needed in order to be able to estimate the model parameters. However, the model should
still be useful for durability applications. For this purpose, the Gaussian model has been found
to be too simple, see e.g. (Bogsjö, 2007), since it can not correctly capture the variability of the
roughness. For our setup we have found that the non-stationary Laplace model, (Bogsjö et al.,
2012), with ISO spectrum, (ISO 8608, 1995), is simple enoughbut still useful for durability
evaluations. It can be interpreted as a Gaussian process where the local variance is randomly
varying according to a gamma distribution. The length of constant variance segments is prede-
fined, and for road profiles typically one or some hundred metres. The non-stationary Laplace
process can be modelled by two parameters, either by its variance and kurtosis or equivalently
by its mean roughness and Laplace shape parameter.

A practically important theoretical finding is that the expected damage due to a Laplace
road with ISO spectrum, can be approximated by an explicit algebraic expression, see Eq. (35).
The formula depends on the damage exponentk, the speedv, the mean roughness coefficient
C, and the Laplace shape parameterν. The first three factors corresponds to the damage due
to a Gaussian model, while the last factor is a correction forthe Laplace model, depending on
the Laplace shape parameterν. The approximation has been validated by simulating Laplace
roads, see Figure 5.

An important question is how well the Laplace-ISO model fits measured road profiles.
Therefore, a validation study was conducted, where a data set of measured road profiles were
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used. The eight road sections represent different types of roads as well as different geographi-
cal locations. The conclusions of the study can be summarized as

1. We have demonstrated that the non-stationary Laplace model having observed spectrum
reproduces the damage indices very well.

2. We investigated whether the simpler Laplace-ISO model could be used instead. Simply
replacing the observed spectrum by the an estimated ISO spectrum gave unsatisfactory
accuracy. However, by estimating the parameters from observed damage values, a “use-
ful” Laplace-ISO model was found for the studied roads.

3. We found that the presented approach to estimate Laplace-ISO models from IRI se-
quences is useful for reconstruction of road profiles when profile measurements are not
available.

Some of measured road profiles are not statistically homogeneous and in order to improve a
fit of Laplace modes to data one could consider to split it in shorter segments in which homo-
geneity is more likely, e.g. 5 km long segments. This would result in larger set of estimated
models which would allow to study the long term distributionfor the parametersC andν in
the data and then to validate Eq. (39). However, these investigations are outside of the scope
of the present study and will be conducted in the future.

There are several advantages to use the Laplace road profile model with ISO spectrum

• a small number of parameters are needed to define it (the roughness coefficient,C, the
Laplace shape parameter,ν, and the length of constant variance road segment,L),

• the parametersC andν can be estimated from the sequence of IRI, see Eq. (26) which
is often available, and

• the expected damage of a response of a vehicle, modelled by a linear filter having
Laplace-ISO road as an input, can be accurately approximated by an explicit formula
depending only on the Laplace parameters,(C, ν), the damage exponent,k, and the
speedv, see e.g. Eq. (35).

The last property is particularly convenient for sensitivity studies since lengthy simulations
can be avoided. It can also be used for estimation of Laplace parameters and for classification
purposes.
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Appendix

A Sketch of derivation of approximation (30)

We assume that the rainflow damage can be computed for a response observed for each of the
segments with constant variance separately and then added.(This is a reasonable approxima-
tion if the mean response is constant for longer period of time.) Under this assumption

E[Dv(k, 1, ν)] = E[Dv(k, 1, 0)]E[Rk/2],

by independence of the factorsRj and Gaussianity of road roughness. Next

E[Rk/2] =

∫ ∞

0

rk/2 fR(r) dr = νk/2
Γ(k/2 + 1/ν)

Γ(1/ν)
.

Finally, for a Gaussian model, one can show that for any pair of nonzero speedsv, v0 one has
that

E[Dv(k, 1, 0)]/v
k/2−1 = E[Dv0(k, 1, 0)]/v

k/2−1

0
, (41)

which shows Eq. (30).
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For simplicity Eq. (41) will be demonstrated only for Shinozuka method, (Shinozuka,
1971), to simulate Gaussian processes. Consider the linearresponseYv(x) to Gaussian road
profile having standard ISO spectrum (roughness coefficientC = 14.4);

Yv(x) =
√
C

n
∑

i=1

Ω−1

i |Hv(Ωi)|
√
∆Ωcos(Ωi x+ φi). 0 ≤ x ≤ L.

Employing the relationωi = Ωi v and thatHv(Ω) = H(Ω v) then, witht = x/v, the last
equation can be written as follows

Yv(x) =
√
v
√
C

n
∑

i=1

ω−1

i |H(ωi)|
√
∆ω cos(ωi t+ φi) =

√
vỸ (t), 0 ≤ t ≤ L/v.

Denote byd̃k damage growth intensity iñY (t) then

E[Dv(k, 1, 0)] =
1

L
·
(

L

v
vk/2d̃k

)

, (42)

and henceE[Dv(k, 1, 0)]/v
k/2−1 = d̃k independently ofv proving the relation (41).

B MATLAB code for model simulation

For readers convenience we present the MATLAB codes used to simulate responses to the
Gaussian and the non-stationary Laplace models for the roadprofile. From a sequence of IRI,
code for estimation of the Gaussian and non-stationary Laplace models is given, as well as
directions for simulating the non-stationary Gaussian model. Finally, code for calculation of
the expected damage is given.

In the code some functions from the WAFO (Brodtkorb et al., 2000; WAFO Group, 2011a)
toolbox are used, which can be downloaded free of charge, (WAFO Group, 2011b). The sta-
tistical functionsrndnorm andrndgam are also available in the MATLAB statistics toolbox
throughnormrnd andgamrnd. Note that WAFO also contains functions to find rainflow
ranges used to estimate fatigue damage.

The length of the simulated function will be 5 km and the sampling interval 5 cm. The
following code can be used to compute the spectrum.

>> dx=0.05; Lp=5000; NN=ceil(Lp/dx)+1; xx=(0:NN-1)’*dx;
>> w = pi/dx*linspace(-1,1,NN)’; dw=w(2)-w(1);
>> wL=0.011*2*pi; wR=2.83*2*pi;;
>> S=zeros(size(w));
>> ind=find(abs(w)>=wL & abs(w)<=wR);
>> S(ind)=w(ind).^(-2)/28.8;
>> G=fftshift(sqrt(S))/sqrt(dx/dw/NN);
>> kernel=fftshift(real(ifft(G)));
>> figure, plot(w*dx/dw,kernel)

The kernelg(x) is introduced through its Fourier transformG(Ω) = Fg(Ω). We use
a normalizedg(x) so that the integral

∫

g(x)2 dx = 1, and hence we need an additional
parameterσ, i.e. the standard deviation of the road, in the code denotedby SD. If the load is
Gaussian thenσ is constant for whole lengthLp and need to be estimated from the signal.
This is not a trivial problem since the true spectrum often differs from the ISO one, but we do
not go into details in this issues.

The transfer functionHv(Ω) given by Eq. (10) is computed by
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>> v=5; ms=3400; ks=270000; cs=6000; mu=350; kt=950000; ct=300;
>> wv = w*v; i=sqrt(-1);
>> S0=1+ms*wv.^2./(ks-ms*wv.^2+i*cs*wv);
>> S1=kt-mu*wv.^2+i*ct*wv-ms*(ks+i*cs*wv).*wv.^2./(-ms*wv.^2+ks+i*cs*wv);
>> S2=ms*wv.^2.*(kt+i*ct*wv);
>> H=fftshift(S2.*S0./S1);

We turn now to simulation of Gaussian and Laplace models.

B.1 Gaussian model

First a Gaussian white noise processInpG is generated, then the road profile and quarter
vehicle responsezG andyG, respectively, are computed by means of FFT.

>> InpG=rndnorm(0,1,NN,1); SD=5;
>> zG = SD*sqrt(dx)*real(ifft(fft(InpG).*G));
>> figure, subplot(2,1,1), plot(xx,zG)
>> yG = SD*sqrt(dx)*real(ifft(fft(InpG).*G.*H));
>> subplot(2,1,2), plot(xx,yG)

B.2 Non-stationary Laplace model

In the Laplace model it is assumed that parameterσ is constant for a short segment of a
road, here 200 metres. First the shape parameterν, see Eq. (25), is computed from road
profile kurtosiskurt, here set to 9. This determines the gamma distributed randomvariances
R. Then the modulation processmod is evaluated and finally road elevationzL and quarter
vehicle responseyL are computed.

>> L=200; M=ceil(L/dx); NM=ceil(NN/M);
>> kurt=9; nu=(kurt-3)/3;
>> R=nu*rndgam(1/nu,1,1,NM);
>> mod=[];
>> for j=1:NM;
>> mod=[mod; sqrt(R(j))*ones(M,1)];
>> end
>> zL = SD*sqrt(dx)*real(ifft(fft(InpG.*mod(1:NN)).*G));
>> figure, subplot(2,1,1), plot(xx,zL)
>> yL = SD*sqrt(dx)*real(ifft(fft(InpG.*mod(1:NN)).*G.*H));
>> subplot(2,1,2), plot(xx,yL)

Note that in the code the same sample of a Gaussian white noiseInpG has been used to
generate the Gaussian and non-stationary Laplace models ofthe road profile. This is done to
facilitate visual comparison of the simulated records.

B.3 Estimation of non-stationary Laplace model

Here we assume that from some database the sequence of IRI areavailable sampled also at
200 metres. The sequence is saved in a vectorIRI.

>> Ci=(IRI/2.21).^2;
>> C=mean(Ci);
>> nu=var(Ci)/C^2;
>> SD=28.8*C;
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The estimated parametersC andnu of the non-stationary Laplace model can then be used
for simulating profiles. Note that if the simulated gamma variablesR are replaced by a corre-
sponding vector of observed normalized variancesR=Ci/C, the same simulation code can be
used for simulating a non-stationary Gaussian profile.

B.4 Expected damage

Here we check the result of Eq. (30); compare Figure 5. The following code simulates Laplace
roads with different shape parametersν and calculates the observed the fatigue damage index,
which is compared with the theoretical formula (30).

>> NN=5*10^5; dx=0.05; L=100; Nsim=20; k=5; v0=10; vv=0:0.2:4;
>> nu=0.05:0.05:4; Knu=nu.^(k/2).*gamma(k/2+1./nu)./gamma(1./nu);
>> Dv0 = ISOdam(vv,v0,k,dx,NN,L,Nsim);
>> d_k=mean(Dv0(1,:));
>> figure
>> semilogy(vv,mean(Dv0’),’r’)
>> hold on
>> plot(nu,d_k*Knu,’k’)
>> v=25;
>> Dv = ISOdam(vv,v,k,dx,NN,L,10);
>> plot(vv,mean(Dv’),’g’)
>> plot(nu,(v/v0)^(k/2-1)*d_k*Knu,’k’)
>> Dv_400 = ISOdam(vv,v,k,dx,NN,400,10);
>> plot(vv,mean(Dv_400’),’b--’)

The code needs two functions calledISOdam.m, simulating Laplace roads and calculating
damage

>> function DDk = ISOdam(vv,v,k,dx,NN,L,Nsim)
>> %ISOdam Simulate Laplace roads and calculate damage
>> % Call: DDk = ISOdam(vv,v,K,dx,NN,L,Nsim)
>> % vv = parameter in Gamma model
>> % v = speed
>> % k = exponent in damage
>> % dx = space sampling step
>> % NN = number of simulated points
>> % L = length of the constant variance segment
>> % Nsim = number of simulated damages
>> M=ceil(L/dx); wL=0.011*2*pi; wR=2.83*2*pi; NM=ceil(NN/M);
>> Nhh=200; hh=hann(2*Nhh);
>> w = pi/dx*linspace(-1,1,NN)’; dw=w(2)-w(1);
>> Siso=zeros(size(w));
>> ind=find(abs(w)>=wL & abs(w)<=wR); Siso(ind)=w(ind).^(-2);
>> Siso=Siso/trapz(w,Siso);
>> G=fftshift(sqrt(Siso))/sqrt(dx/dw/NN);
>> H=fftshift(FilterH(w,v));
>> DDk=zeros(length(vv),Nsim);
>> for i1=1:length(vv)
>> vv4=vv(i1);
>> Dk=zeros(1,Nsim);
>> for i2=1:Nsim
>> InpG=rndnorm(0,1,NN,1);
>> R=ones(NM,1);
>> if vv4>0.025
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>> R=vv4*rndgam(1/vv4,1,1,NM);
>> end
>> ONES=ones(M,1);
>> mod=[];
>> for j=1:NM;
>> mod=[mod; sqrt(R(j)).*ONES];
>> end
>> xL = sqrt(dx)*real(ifft(fft(InpG.*mod(1:NN)).*G));
>> xL(1:Nhh)=xL(1:Nhh).*hh(1:Nhh);
>> xL(end-Nhh+1:end)=xL(end-Nhh+1:end).*hh(Nhh+1:end);
>> FInpL = fft(xL).*H;
>> LsimISO4 = real(ifft(FInpL));
>> respISO4=[(0:NN-1)’*dx LsimISO4];
>> tpISO4=dat2tp(respISO4); rfcISO4=tp2rfc(tpISO4);
>> Dam5rfcISO4=sum((rfcISO4(:,2)-rfcISO4(:,1)).^k);
>> Dk(i2)=Dam5rfcISO4;
>> end
>> DDk(i1,:)=Dk/NN/dx;
>> end
>> end

andFilterH.m defining the transfer function.

>> function H0 = FilterH(w,v)
>> %FilterH Calculates transfer function of force response filter
>> % Call: H0 = FilterH(w,v)
>> % w = spacial angular frequency
>> % v = speed
>> ms=3400; ks=270000;cs=6000; mu=350; kt=950000; ct=300;
>> wv = w*v; i=sqrt(-1);
>> S0=1+ms*wv.^2./(ks-ms*wv.^2+i*cs*wv);
>> S1=kt-mu*wv.^2+i*ct*wv-ms*(ks+i*cs*wv).*wv.^2./(-ms*wv.^2+ks+i*cs*wv);
>> S2=ms*wv.^2.*(kt+i*ct*wv);
>> H0=S2.*S0./S1;
>> end
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