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Abstract 

 

The contents of these notes were presented during ten lectures, in November 2011, by Peter 

Sjögren in Gothenburg. The text was written by Adam Andersson who participated and is 

improved after the careful reading by Peter Sjögren. Ornstein-Uhlenbeck theory can be 

described as a model of harmonic analysis in which Lebesgue measure is everywhere replaced 

by a Gaussian measure. The theory has applications in quantum physics and probability 

theory. If one passes to infinite dimensions and places the theory in a probabilistic context, 

one gets the Malliavin calculus. In Chapter 1, the basic theory is developed. This concerns the 

Hermite polynomials, the Ornstein-Uhlenbeck operator and most importantly its semigroup. 

The Hermite polynomials form an orthogonal system with respect to the Gaussian measure in 

Euclidean space. It turns out that they are the eigenfunctions of the Ornstein-Uhlenbeck 

operator, and since this operator is self-adjoint and positive semidefinite, the semigroup can 

be defined spectrally. An explicit kernel is derived for the semigroup, known as the Mehler 

kernel. It will be of central importance in this text. In Chapter 2, boundary convergence for 

the semigroup is considered, i.e., the limiting behavior of the semigroup as the “time” tends to 

zero. This is done by introducing a maximal operator for the semigroup and proving that it is 

of weak type (1,1). This result implies almost everywhere convergence for integrable 

boundary functions. In Chapter 3, first-order Riesz operators related to the Ornstein-

Uhlenbeck operator are treated. Explicit off-diagonal kernels for these operators are found. It 

is finally proved that the Riesz operators are of weak type (1,1). 
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CONTENTS 3

Notation

γ ... Gaussian measure on Rd or R.
Lp(γ) ... Lp with respect to γ.
Lp(dx) ... Lp with respect to Lebesgue measure.
C∞0 (Rd) ... smooth functions with compact support.
F or̂... Fourier transform.∫
... integration on the whole of Rd or R.

di
dxi and Di ... derivatives.
∂i, ∂ij , ∂i

∂xi ,
∂

∂xi∂xj
... partial derivatives.

∂∗i ... L2(γ) adjoint of ∂i.
α, β ... multi-indices in Nd.
|α| =

∑d
i=1 αi.

α! =
∏d
i=1 αi!.

(ei)di=1 standard basis in Rd.
. ... less than or equal, up to a constant factor C = C(d) > 0.
& ... greater than or equal, up to a constant factor C = C(d) > 0.
∼ ... relation when both . and & satisfied.
a ∧ b ... minimum of a and b in R.
a ∨ b ... maximum of a and b in R.
B(x, r) ... open ball centered at x ∈ Rd with radius r > 0.
|B| ... Lebesgue measure of a measurable set B ⊂ Rd.



CHAPTER 1

Basics of Ornstein-Uhlenbeck theory

In this first chapter, the basic framework of the theory will be developed. The Gaussian
measure and the Hermite polynomials are introduced in the first section. The Hermite poly-
nomials form a complete orthogonal system in the weighted L2 space over Rd with respect to
the Gaussian measure. In Section 2, a second-order differential operator, called the Ornstein-
Uhlenbeck operator is defined. It plays the role of the Laplace operator in the Gaussian setting.
The corresponding Ornstein-Uhlenbeck semigroup is defined spectrally. It turns out that this
semigroup has an explicit integral kernel, which was found already 1866 by Mehler. All results
of this chapter are well known; nevertheless, the rigorous derivation of these facts seems hard
to find in the literature.

1. Gaussian measure and Hermite polynomials

Define on Rd the normalized Gaussian measure

dγ(x) = 1
πd/2 e

−|x|2 dx.

Consider first the case d = 1. The Taylor expansion of e−x2 at the point x, with increment t is

e−(x−t)2
=
∞∑
n=0

ant
n,

where
an = (−1)n

n!
dn

dxn e
−x2

= polynomial× e−x
2
.

This series is convergent for all real or complex values of x and t, since we are dealing with an
entire function. Multiply both sides by ex2 to get

e2xt−t2 =
∞∑
n=0

1
n! (−1)nex

2 dn

dxn e
−x2

tn.

It is clear that the coefficient of tn here is a polynomial in x. We define the n:th Hermite
polynomial Hn by

Hn(x) = (−1)nex
2 dn

dxn e
−x2

.

Then

(1.1) e2xt−t2 =
∞∑
n=0

1
n!Hn(x)tn.

The function e2xt−t2 is called the generating function of (Hn)∞n=0. By differentiation, we see
that Hn is of the form

Hn(x) = 2nxn + lower order terms

and in particular
H0 = 1.

4



1. GAUSSIAN MEASURE AND HERMITE POLYNOMIALS 5

Proposition 1.1. The polynomials (Hn)∞n=0 form a complete orthogonal system in L2(γ),
and ‖Hn‖L2(γ) = 2n/2

√
n!.

Proof. Let m ≤ n. Using the definition of Hn and integrating by parts, we get, with
D = d/dx, ∫

Hm(x)Hn(x) dγ(x) = (−1)n√
π

∫
Hm(x)ex

2
(Dne−x

2
)e−x

2
dx

= (−1)n√
π

∫
Hm(x)Dne−x

2
dx

= (−1)n√
π

(−1)n
∫

(DnHm(x))e−x
2

dx,

and this vanishes if m < n. For m = n the same calculation yields

1√
π

∫
DnHn(x)e−x

2
dx = 2nn!,

and thus
‖Hn‖L2(γ) = 2n/2

√
n!,

as claimed.
It remains to prove the completeness. Since any polynomial can be expressed as linear

combinations of Hermite polynomials, it suffices to show that the set of all polynomials is dense
in L2(γ). Assume that f ∈ L2(γ) ⊂ L1(γ) is orthogonal to all polynomials. If f can be shown
to be zero, completeness is proved. The product f(x)e−x2 is in L1( dx), so it has a well-defined
Fourier transform. Calculating this Fourier transform, expanding eiξx in a Taylor series and
assuming that we can interchange the order of summation and integration, we get that

(1.2)
∫
eiξxf(x) dγ(x) =

∫ ∞∑
n=0

inξn

n! xnf(x) dγ(x) =
∞∑
n=0

inξn

n!

∫
xnf(x) dγ(x) = 0, ∀ξ ∈ R.

We conclude that f = 0.
Finally, we must verify that the order of summation and integration in (1.2) can be switched.

We shall majorize
N∑
n=0

|ξ|n

n! |x|
n|f(x)|

by an L1(γ) function, uniformly in N ∈ N. But

N∑
n=0

|ξ|n

n! |x|
n|f(x)| ≤

∞∑
n=0

|ξ|n

n! |x|
n|f(x)| = e|ξ||x||f(x)|,

and by the Cauchy-Schwarz inequality∫
e|ξ||x||f(x)|dγ(x) ≤

(∫
|f(x)|2 dγ(x)

)1/2(∫
e2|ξ||x| dγ(x)

)1/2
<∞.

�

To compute the derivative H ′n, we assume for the moment that we can differentiate termwise
with respect to x in the series in (1.1), so that

(1.3) 2te2xt−t2 =
∞∑
n=1

1
n!H

′
n(x)tn.
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Using (1.1) again, we also get

2te2xt−t2 = 2
∞∑
n=0

1
n!Hn(x)tn+1 = 2

∞∑
n=1

1
(n− 1)!Hn−1(x)tn.

By the uniqueness of the Taylor expansion, we can compare terms to see that

(1.4) H ′n(x) = 2nHn−1(x).

It remains to verify (1.3). For this purpose we use once more the generating function. The
Taylor expansion of the function −2xe−x2 = De−x

2 at x is

−2(x− t)e−(x−t)2
=
∞∑
n=0

bnt
n

with

bn = (−1)n

n! Dn+1e−x
2

= (−1)n

n! D
(
e−x

2
ex

2
Dne−x

2)
= 1
n!D(e−x

2
Hn(x)) = 1

n!
[
(−2x)e−x

2
Hn(x) + e−x

2
H ′n(x)

]
.

Summing in n and using (1.1) yields

−2(x− t)e2xt−t2 = −2x
∞∑
n=0

1
n!Hn(x)tn +

∞∑
n=0

1
n!H

′
n(x)tn

= −2xe2xt−t2 +
∞∑
n=0

1
n!H

′
n(x)tn.

We have proved (1.3) and thus also (1.4).
Now, let d ≥ 1. Hermite polynomials over Rd are defined by

Hα(x) =
d∏
i=1

Hαi(xi), x = (x1, . . . , xd) ∈ Rd,

where α ∈ Nd is a multi-index. Then Hα = ⊗di=1Hαi is a polynomial of degree |α|. An easy
check shows that (Hα)α∈Nd is a complete orthogonal system in L2(γ). It is a direct consequence
of (1.4) that for d ≥ 1

∂iHα(x) = 2αiHα−ei(x),
where (ei)di=1 is the standard basis of vectors in Rd.

Finally, define the normalized Hermite polynomials

(1.5) hn(x) = 1
2n/2
√
n!
Hn(x).

They will sometimes be used.

2. The Ornstein-Uhlenbeck operator and its semigroup

Let ∂i = ∂/∂xi. The operator ∂i is unbounded on L2(γ). We will explore its adjoint operator
∂∗i in L2(γ). For this purpose, take f, g ∈ C∞0 (Rd), i.e., infinitely many times differentiable
functions with compact support. Then

〈∂if, g〉L2(γ) = 1
πd/2

∫
∂if(x)g(x)e−|x|

2
dx

= 1
πd/2

∫
f(x)[2xig(x)− ∂ig(x)]e−|x|

2
dx

= 〈f, (2xi − ∂i)g〉L2(γ).
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We see that
∂∗i = 2xi − ∂i,

where the first term is a multiplication operator. Define a second-order differential operator by

L = 1
2

d∑
i=1

∂∗i ∂i = −1
2∆ + x · grad.

It is positive and symmetric and plays the role of the Laplacian on L2(γ). Symmetry is shown
by

〈Lf, g〉 = 1
2

d∑
i=1
〈∂∗i ∂if, g〉 = 1

2

d∑
i=1
〈∂if, ∂ig〉 = 1

2

d∑
i=1
〈f, ∂∗i ∂ig〉 = 〈f, Lg〉.

Positivity follows by setting f = g in the middle expression above. The operator L is called the
Ornstein-Uhlenbeck operator.

Proposition 2.1. The Hermite polynomials are eigenvectors for the Ornstein-Uhlenbeck
operator. Moreover, for any multi-index α ∈ Nd,

LHα = |α|Hα.

Proof. Again consider d = 1. We first explore the action of D∗ on Hn.

〈D∗Hn−1, Hj〉 = 〈Hn−1, DHj〉 = 2j〈Hn−1, Hj−1〉 = 0, j 6= n.

So, D∗Hn−1 is a multiple of Hn. Take j = n.

〈D∗Hn−1, Hn〉 = 2n〈Hn−1, Hn−1〉 = 2n2n−1(n− 1)! = 2nn! = 〈Hn, Hn〉.

Thus D∗Hn−1 = Hn and it follows that ∂∗iHα−ei = Hα, for d ≥ 1. We are ready to compute
the action of L on Hα:

LHα = 1
2

d∑
i=1

∂∗i ∂iHα = 1
2

d∑
i=1

∂∗i 2αiHα−ei =
d∑
i=1

αiHα = |α|Hα.

�

We now turn to the Ornstein-Uhlenbeck semigroup, i.e., the semigroup generated by L. For
this purpose we use our spectral decomposition of L2(γ). Let (Tt)t≥0 = (e−tL)t≥0 be the family
of bounded linear operators acting on

(1.6) f =
∑
α∈Nd

aαHα ∈ L2(γ)

by

(1.7) e−tLf =
∑
α∈Nd

e−t|α|aαHα.

In particular

(1.8) e−tLHα = e−t|α|Hα.

It follows that e−tL is a bounded operator on L2(γ) for any t ≥ 0 and that

e−tLe−sL = e−(s+t)L, s, t ≥ 0.

Since T0 is the identity, (Tt)t≥0 forms a semigroup.
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Before continuing, we give a short review of Hilbert-Schmidt integral operators and their
kernels. Any Φ ∈ L2(γ × γ) defines a bounded linear operator on L2(γ) by

(1.9) Tf(x) =
∫

Φ(x, y)f(y) dγ(y).

It is not essential here that we work in our Gaussian setting. Any L2-space would do fine. We
verify the boundedness. The Cauchy-Schwarz inequality gives that

(Tf(x))2 ≤
∫
|Φ(x, y)|2 dγ(y)

∫
|f(y)|2 dγ(y).

Integrating both sides in x leads to

(1.10) ‖Tf‖2 ≤ ‖Φ‖2
L2(γ×γ)‖f‖

2.

We now leave the general situation.
The operator Tt, for t > 0, is given by a kernel in the sense that

(1.11) Ttf(x) =
∫
Rd
Mγ
t (x, y)f(y) dγ(y).

The explicit expression for this kernel was found already in 1866 by Mehler, [3]. It is named
the Mehler kernel. Using the normalized Hermite polynomials hα, we shall first verify that the
kernel can be expressed in the form

(1.12) Mγ
t (x, y) =

∑
α∈Nd

e−t|α|hα(x)hα(y).

It is easy to check that this series converges in L2(γ × γ). Consider, for N ∈ N, the truncated
kernel ∑

|α|<N

e−t|α|hα(x)hα(y).

For |β| < N , the corresponding operator acts on Hβ as∫ ∑
|α|<N

e−t|α|hα(x)hα(y)Hβ(y) dγ(y)

= e−t|β|〈hβ , Hβ〉hβ(x) = e−t|β|‖Hβ‖hβ(x) = e−t|β|Hβ = TtHβ .

(1.13)

Since the truncated kernels converge in L2(γ × γ), the corresponding operators converge in the
operator norm, by (1.10). We conclude that (1.11) holds.

We next want to compute a closed expression for Mγ
t . Let d = 1. Since F(e−ξ2)(x) =√

πe−x
2/4, where F denotes the Fourier transform, Hn can be written

Hn(y) = (−1)ney
2
( d
dy

)n
e−y

2
= (−1)ney

2
( d
dy

)n 1√
π

∫
e2iyξ−ξ2

dξ

= (−1)ney
2 2nin√

π

∫
ξne2iyξ−ξ2

dξ.

Assuming that the order of summation and integration can be switched, we get using (1.5)

Mγ
t (x, y) =

∞∑
n=0

e−tnhn(x)hn(y)

=
∞∑
n=0

e−tn
1

2nn!Hn(x)(−1)ney
2 2nin√

π

∫
ξne2iyξ−ξ2

dξ

= 1√
π
ey

2
∫ ∞∑

n=0

1
n! (−iξe

−t)nHn(x)e2iyξ−ξ2
dξ.



2. THE ORNSTEIN-UHLENBECK OPERATOR AND ITS SEMIGROUP 9

The expansion (1.1) of the generating function gives that

∞∑
n=0

1
n! (−iξe

−t)nHn(x) = e−i2ξe
−tx+ξ2e−2t

.

Hence,

Mγ
t (x, y) = ey

2

√
π

∫
e2iξ(y−e−tx)−ξ2(1−e−2t) dξ.

Let ξ′ = ξ
√

1− e−2t. Then, taking the inverse Fourier transform yields

Mγ
t (x, y) = 1√

π

ey
2

√
1− e−2t

∫
e

2iξ′ y−e
−tx√

1−e−2t
−ξ′2

dξ′

= ey
2

√
1− e−2t

e
− (y−e−tx)2

1−e−2t .

This is a closed expression for the kernel, but it remains to verify the switch of order above. For
this we use dominated convergence. Introduce s = −iξe−t. Now, two Taylor expansions give

e2xs−s2
=
∞∑
k=0

1
k! (2xs)

k
∞∑
l=0

1
l! (−s

2)l =
∞∑
k=0

∞∑
l=0

ckl(x)sk+2l =
∞∑
n=0

1
n!Hn(x)sn.

for some coefficients ckl. The last equality is nothing but (1.1). For any N ≥ 0,

∣∣∣ N∑
n=0

1
n!Hn(x)sn

∣∣∣ ≤ ∞∑
n=0

1
n! |Hn(x)|s|n

≤
∞∑
k=0

∞∑
l=0
|ckl(x)||s|k+2l

=
∞∑
k=0

1
k!
(
2|x||s|

)k ∞∑
l=0

1
l! |s|

2l

= e2|x||s|e|s|
2
.

Then, for all N ≥ 0,

∣∣∣ N∑
n=0

1
n! (−iξe

−t)nHn(x) e2iξy−ξ2
∣∣∣ ≤ e2|x||ξ|e−t+|ξ|2e−2t−|ξ|2 .

But the right hand side here is in L1(dξ). Thus, a majorizing function of the partial sums has
been found. We are done for the one-dimensional case.

Let d ≥ 1. Then

Mγ
t (x, y) =

∑
α∈Nd

e−t|α|hα(x)hα(y)

=
d∏
i=1

∞∑
αi=0

e−tαihαi(xi)hαi(yi)

=
d∏
i=1

ey
2
i

√
1− e−2t

e
− (yi−e

−txi)2

1−e−2t

= e|y|
2

(1− e−2t)d/2 e
− |y−e

−tx|2

1−e−2t .
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Notice that Mγ
t is symmetric, since

(1.14) Mγ
t (x, y) = 1

(1− e−2t)d/2 e
−e−2t|x|2+2e−t〈x,y〉−e−2t|y|2

1−e−2t = Mγ
t (y, x).

The kernel Mt, for integration against Lebesgue measure, is

Mt(x, y) = 1
πd/2(1− e−2t)d/2 e

− |y−e
−tx|2

1−e−2t ,

in the sense that
Ttf(x) =

∫
Mt(x, y)f(y) dy.

Integration against Mγ
t is well defined for f ∈ L1(γ), so we use (1.11) to extend the domain of

Tt to L1(γ), which of course contains Lp(γ) for 1 ≤ p ≤ ∞. We summarize the main result of
this section in the following theorem.

Theorem 2.2. Let 1 ≤ p ≤ ∞. For each f ∈ Lp(γ), t > 0 and x ∈ Rd, the function
Ttf = e−tLf is given by

(1.15) Ttf(x) =
∫
Mt(x, y)f(y) dy,

where
Mt(x, y) = 1

πd/2(1− e−2t)d/2 e
− |y−e

−tx|2

1−e−2t .

Notice that, since Tt1 = TtH0 = H0 = 1 we have∫
Mγ
t (x, y) dγ(y) = 1 =

∫
Mγ
t (x, y) dγ(x).

Now, let f ∈ L1(γ). Then, by Tonelli’s theorem and the fact that Mγ
t is positive,

‖Ttf(x)‖L1(γ) =
∫ ∣∣∣ ∫ Mγ

t (x, y)f(y) dγ(y)
∣∣∣dγ(x)

≤
∫
|f(y)|

∫
Mγ
t (x, y) dγ(x) dγ(y)

= ‖f‖L1(γ).

Hence, Tt is non-expansive on L1(γ). By duality Tt = T ∗t is also non-expansive on L∞ = L∞(γ).
For 1 < p <∞ we let q be the dual exponent of p. Then by Hölder’s inequality for f ∈ Lp(γ)

|Ttf(x)|p =
∣∣∣ ∫ Mγ

t (x, y)1/q+1/pf(y) dγ(y)
∣∣∣p

≤
(∫

(Mγ
t (x, y)1/q)q dγ(y)

) p
q

∫
(Mγ

t (x, y)1/p)p|f(y)|p dγ(y)

= Tt|f |p(x).

Integrating both sides yields

‖Ttf‖pLp(γ) ≤ ‖Tt|f |
p‖L1(γ) ≤ ‖f‖pLp(γ).

Thus Tt is non-expansive on every Lp(γ).

Remark 2.3. The function
u(x, t) = (Ttf)(x)
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solves the heat equation

(1.16) ∂

∂t
u+ Lu = 0, t > 0,

with

(1.17) u(x, 0) = f(x)

for f ∈ L2(γ). This will not be of essential interest for us, and we only observe that it follows
by termwise differentiation in (1.7) and Proposition 2.1.

We end this section with a remark concerning the case d =∞.

Remark 2.4. Making the change of variable

z = y − e−tx√
1− e−2t

in (1.15), we get

Ttf(x) =
∫
Mt(x, y)f(y) dy =

∫
f(e−tx+ z

√
1− e−2t ) dγ(z).

This is sometimes called Mehler’s formula. In this form, the semigroup can be defined in infinite
dimension. If γ1 is the Gaussian measure on R, the measure

γ∞ =
∞∏
i=1

γ1

is a well-defined Gaussian measure on RN. Mehler’s formula still holds in this case. Much of the
theory developed so far holds in infinite dimension. The Hermite polynomials on RN are defined
by

Hα =
∞∏
i=1

Hαi ,

where α ∈ NN is a multi-index with no more than finitely many non-zero elements, i.e., with
|α| <∞. This will be all about the case d =∞ in this course.



CHAPTER 2

Boundary convergence and maximal functions

In this chapter, the action of the semigroup as t → 0 will be explored. The goal is to
prove almost everywhere pointwise convergence Ttf → f as t→ 0. The first section contains a
somewhat elementary result for smooth functions with compact support. The convergence is in
this case pointwise. In the second section, maximal functions are introduced. They will be of
central importance in the third section. A lemma, relating boundary convergence and maximal
functions, will be proved. Also a convolution inequality involving the Hardy-Littlewood maximal
operator is proved. In Section 3, which forms the core of this chapter, it is proved that the the
maximal operator for the semigroup is of weak type (1, 1). In terms of boundary convergence,
this implies almost everywhere convergence for Lp(γ)-functions, for 1 ≤ p ≤ ∞. The proof is
carried out by considering a local and a global part of the maximal operator. The first proof was
given for d = 1 by Muckenhoupt in 1969, [4], and for d <∞ by Sjögren in 1983, [7]. The proof
presented here is from 2003 and due to García-Cuerva, Mauceri, Meda, Sjögren and Torrea, [2].

1. Boundary convergence for smooth functions

What happens with Ttf if we let t → 0? Recall that T0 = I. In what sense will Ttf → f?
Convergence holds in L2(γ) for f ∈ L2(γ). To see this, let

f =
∑
α∈Nd

aαHα ∈ L2(γ).

Parseval’s identity and dominated convergence imply

‖Ttf − f‖2
L2(γ) =

∑
α∈Nd

(e−t|α| − 1)2|aα|2‖Hα‖2 → 0.

Lemma 1.1. Let f ∈ C∞0 (Rd). Then Ttf → f pointwise as t→ 0.

Proof. Recall that Mγ
t integrates to one. Fixing x, we write the difference as

Ttf(x)− f(x) =
∫
Mγ
t (x, y)(f(y)− f(x)) dγ(y)

=
(∫
|y−x|<δ

+
∫
|y−x|≥δ

)
Mγ
t (x, y)(f(y)− f(x)) dγ(y),

where δ > 0 is chosen as follows. For a given ε > 0, take δ so that

|f(y)− f(x)| < ε for |x− y| < δ.

We estimate the first integral.∣∣∣ ∫
|y−x|<δ

Mγ
t (x, y)(f(y)− f(x)) dγ(y)

∣∣∣ ≤ ε ∫ Mγ
t (x, y) dγ(y) = ε.

Now, consider |y − x| ≥ δ. For t > 0 small enough, one has by the triangle inequality

|y − e−tx| = |y − x+ x− e−tx| ≥ |y − x| − |x|(1− e−t) ≥ δ

2 .

12
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Using the explicit expression for the kernel and making the change of variable z = y − e−tx
followed by w = z/

√
1− e−2t we get that∣∣∣ ∫
|y−x|≥δ

Mt(x, y)(f(y)− f(x)) dy
∣∣∣

.
1

πd/2(1− e−2t)d/2

∫
|z|> δ

2

e
− |z|2

1−e−2t dz ‖f‖L∞

.
∫
|w|> δ

2
√

1−e−2t

e−|w|
2

dw ‖f‖L∞

→ 0, as t→ 0.

The lemma is proved. �

2. Maximal functions

We define the Ornstein-Uhlenbeck maximal function as

T∗f(x) = sup
t>0
|Ttf(x)|.

for f ∈ L1(γ).
The operator T∗ is sublinear, i.e., for all α, β ≥ 0

T∗(αf + βg) ≤ αT∗f + βT∗g.

What are the Lp(γ)-properties of T∗? In order to get sharp results, we need the notion of weak
Lp(γ). This is the space of all measurable functions f satisfying, for all λ > 0, the condition

γ{x : |f(x)| > λ} . 1
λp
.

Weak Lp(γ) contains Lp(γ), since

(2.1) λpγ{x : |f | > λ} ≤
∫
|f |p dγ = ‖f‖pLp(γ).

This is nothing but Chebyshev’s inequality. For example, in case of Lebesgue measure and d = 1,
the function x−1 ∈ weakL1 \ L1 by a simple calculation. Then, for our Gaussian measure, the
function x−1ex

2 ∈ weakL1(γ) \L1(γ). A sublinear operator S is said to be of weak type (p, p) if

S : Lp → weakLp(γ)

boundedly, or, differently stated, if for all f ∈ Lp(γ) and λ > 0

γ{x : Sf > λ} .
‖f‖pLp(γ)

λp
,

From Chebyshev’s inequality, it follows that Lp boundedness implies weak type (p, p). The
converse implication is not true in general. For maximal operators in general and for T∗ in
particular L1 boundedness does not hold. The sharpest result of this kind we can get for T∗
in our setting is weak type (1, 1). By the Marcinkiewicz Interpolation Theorem and the easily
verified L∞ boundedness, T∗ is bounded on Lp, for 1 < p ≤ ∞. The next lemma gives an
implication, in terms of boundary convergence.

Lemma 2.1. Let 1 ≤ p < ∞. If T∗ is of weak type (p, p) for γ, then Ttf(x) → f(x) for
γ-almost all x ∈ Rd if f ∈ Lp(γ).
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Proof. Let f ∈ Lp(γ). With δ > 0, we take g ∈ C∞0 (Rd) such that ‖f −g‖Lp(γ) < δ. Then

Ttf(x)− f(x) = Tt(f − g)(x) + Ttg(x)− g(x) + g(x)− f(x).

By Lemma 1.1 and the sublinearity of lim sup, we get

lim sup
t→0

|Ttf(x)− f(x)| ≤ T∗(f − g)(x) + |g(x)− f(x)|.

Thus

{x : lim sup
t→0

|Ttf(x)− f(x)| > λ}

⊂
{
x : T∗(f − g)(x) > λ

2

}
∪
{
x : |g(x)− f(x)| > λ

2

}
.

The weak type (1, 1) assumption for T∗ and Chebyshev’s inequality lead to

γ{x : lim sup
t→0

|Ttf(x)− f(x)| > λ}

≤ γ
{
x : T∗(f − g)(x) > λ

2

}
+ γ
{
x : |g(x)− f(x)| > λ

2

}
.
‖f − g‖pLp(γ)

λp

≤
( δ
λ

)p
.

For any λ > 0 we can choose δ > 0 so that this quantity is arbitrarily small. It follows that

γ{x : lim sup
t→0

|Ttf(x)− f(x)| > λ} = 0,

for all λ > 0, and consequently Ttf → f except on a γ-null set of Rd. �

Before ending this section, we consider Rd with Lebesgue measure and the Hardy-Littlewood
maximal operator M . It is defined, for f ∈ L1

loc(dx), by

Mf(x) = sup
r>0

1
|B(x, r)|

∫
B(x,r)

|f(y)|dy.

Here B(x, r) is the ball of radius r centered at x and |B(x, r)| its Lebesgue measure. It is known
that M is of weak type (1, 1).

Theorem 2.2. Let ϕ ∈ L1(Rd) be non-negative, radial and decreasing, i.e., ϕ(x) = ψ(|x|)
for some decreasing function ψ : R+ → R+. Set

ϕt(x) = t−dϕ
(x
t

)
.

Then
sup
t>0

ϕt ∗ |f | ≤
∫
ϕ(x) dx Mf.

The operator defined by Mϕf = supt>0 ϕt ∗ |f | is of weak type (1, 1).

Proof. We will use the fact that, for almost all |z| > 0,

ϕ(z) = ψ(|z|) = −
∫ ∞
|z|

dψ(s).
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Let f ≥ 0. Then, by a change of variable and Fubini’s theorem, we have

ϕt ∗ f(x) =
∫
t−dϕ

(y
t

)
f(x− y) dy

=
∫
ϕ(z)f(x− tz) dz

= −
∫ ∫ ∞

|z|
dψ(s)f(x− tz) dz

= −
∫ ∞

0

∫
|z|<s

f(x− tz) dz dψ(s).

Consider the inner integral here. Changing the variable back to y, we get the estimate∫
|z|<s

f(x− tz) dz = t−d
∫
|y|<st

f(x− y) dy

= |B(x, s)|
|B(x, st)|

∫
B(x,st)

f(y) dy

≤ |B(x, s)|Mf(x).

Thus

(2.2) ϕt ∗ f(x) ≤ −
∫ ∞

0
|B(x, s)|dψ(s) Mf(x).

Repeating the calculations with f = 1 yields

(2.3) −
∫ ∞

0
|B(x, s)|dψ(s) = (ϕt ∗ 1)(x) =

∫
Rd
ϕ(z) dz.

Combining (2.2) and (2.3) gives the result, since the weak type (1, 1) of Mφ follows from that
of M . �

3. The weak type (1, 1) property of the Ornstein-Uhlenbeck maximal operator

Theorem 3.1. Let d < ∞. The Ornstein-Uhlenbeck maximal operator T∗ is of weak type
(1, 1) for γ, i.e.,

γ{x : T∗f(x) > λ} .
‖f‖L1(γ)

λ
, λ > 0,

for f ∈ L1(γ).

For the proof of the weak type estimate we will split T∗ into a local and a global part. Local
here means that integration is done in suitable “local balls” where the Gaussian density e−|x|2

has constant order of magnitude. This leads to the condition

e−|x+h|2 = e−|x|
2−2〈x,h〉−|h|2 ∼ e−|x|

2
,

which is certainly fulfilled if |h| < C/|x| and |h| < C, for some C > 0, and thus if |h| <
C(1 + |x|)−1. Define

m(x) = 1
1 + |x| .

Our “ local balls” will be of the type B(x,m(x)) or more generally B(x, am(x)), for a > 0. In
such balls, the Gauss measure is essentially proportional to Lebesgue measure.

Let |x− x0| ≤ a, for a > 0. Then, since

m(x)
m(x0) = 1 + |x0|

1 + |x| ≤
1 + |x|+ a

1 + |x| ≤ (1 + a)(1 + |x|)
1 + |x| = 1 + a
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we have the important relations

(2.4) 1
1 + a

≤ m(x)
m(x0) ≤ 1 + a.

These will frequently be used. The following lemma will be of importance in the coming proof.

Lemma 3.2 (Covering Lemma). Given a > 0, one can cover Rd with a sequence of open
balls B(xj , am(xj)) so that for any b > 0 the balls B(xj , bm(xj)) have bounded overlap, i.e., the
function ∑

j

χB(xj ,bm(xj))

is uniformly bounded in Rd.

Proof. For some δ > 0, take a maximal family of pairwise disjoint open ballsB(xj , δm(xj)).
This is possible since one can squeeze in a maximal number of such balls in any ball B(0, R),
for R > 0. Then one can double the radius and continue iteratively, adding balls at each step,
and finally fill Rd in the limit.

Then for any point x ∈ Rd, the ball B(x, δm(x)) must intersect some B(xj , δm(xj)), by
maximality. For such xj we have, by simple geometry and (2.4), that

|x− xj | ≤ δm(x) + δm(xj) ≤ δ(1 + δ)m(xj) + δm(xj) ≤ 2δ(1 + δ)m(xj).

Thus x ∈ B(xj , am(xj)), if we choose δ so that 2δ(1 + δ) ≤ a. Hence we have a covering of Rd

with balls B(xj , am(xj)). Fix b > 0 and x ∈ Rd. For how many xj can x ∈ B(xj , bm(xj))? If
x ∈ B(xj , bm(xj)) then, using (2.4),

B(xj ,
δ

1 + b
m(x)) ⊂ B(xj , δm(xj)) ⊂ B(x, (b+ δ)m(xj)) ⊂ B(x, (b+ δ)(1 + b)m(x)).

The first inclusion here implies that the balls B(xj , δ(1 + b)−1m(x)) are pairwise disjoint as j
varies. The number of such balls that can be included in B(x, (b+δ)(1+b)m(x)) is thus bounded
by the volume quotient (

(b+ δ)(1 + b)
δ/(1 + b)

)d
.

�

Define the local maximal operator

T loc
∗ f(x) = sup

t>0
Tt(|f |χB(x,m(x))) = sup

t>0

∫
B(x,m(x))

Mt(x, y)|f(y)|dy,

and the global maximal operator

T glob
∗ f(x) = sup

t>0
Tt(|f |χRd\B(x,m(x))) = sup

t>0

∫
|y−x|>m(x)

Mt(x, y)|f(y)|dy.

Theorem 3.1 will be proved by showing that T loc
∗ and T glob

∗ are of weak type (1, 1) separately.

Proof of Theorem 3.1, local part. The strategy is to estimate the Mehler kernel

Mt(x, y) = 1
πd/2(1− e−2t)d/2 e

− |y−e
−tx|2

1−e−2t

in a local ball, by an expression of the type ϕ√τ (x− y) for τ = 1− e−t, where ϕ is a function
to which Theorem 2.2 applies. For the first factor we have 1− e−2t = (1 + e−t)τ ∼ τ .
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We continue with the exponent, getting

|y − e−tx|2

1− e−2t = |y − x+ τx|2

1− e−2t

= |y − x|2

(1 + e−t)τ + 2τ〈y − x, x〉
(1 + e−t)τ + τ2|x|2

1− e−2t

≥ |y − x|
2

2τ − 2|x|m(x).

The last inequality follows since y − x ∈ B(0,m(x)). With the notation of Theorem 2.2 and
using the fact that |x|m(x) ≤ 1, we conclude that

Mt(x, y) . 1
τd/2 e

− |y−x|
2

2τ = ϕ√τ (x− y),

for y ∈ B(x,m(x)), where ϕ(z) = e−|z|
2/2 ∈ L1(dz).

Choose a covering, according to Lemma 3.2, with a = 1. If x ∈ B(xj ,m(xj)) and y ∈
B(x,m(x)), then by (2.4),

|y − xj | ≤ |y − x|+ |x− xj | ≤ m(x) +m(xj) ≤ 2m(xj) +m(xj) = 3m(xj).

Thus, the values of T loc
∗ f in B(xj ,m(xj)) depends only on the restriction of f to the ball

B(xj , 3m(xj)). Take f ∈ L1(γ) with f ≥ 0. Then for x ∈ B(xj ,m(xj)), using Theorem 2.2,∫
B(x,m(x))

Mt(x, y)f(y) dy .
∫
B(xj ,3m(xj))

ϕ√τ (x− y)f(y) dy

= ϕ√τ ∗ (fχB(xj ,3m(xj)))(x)

≤
∫
ϕ(z) dz M(fχB(xj ,3m(xj)))(x).

This inequality holds for all t and hence for the supremum, i.e., for T loc
∗ f . Since M is of weak

type (1, 1),

|{x ∈ B(xj ,m(xj)) : T loc
∗ f(x) > λ}|

≤
∣∣∣{x ∈ B(xj ,m(xj)) :

∫
ϕ(z) dz M(fχB(xj ,3m(xj)))(x) > λ

}∣∣∣
.

1
λ

∫
B(xj ,3m(xj))

f(x) dx.

In B(xj , 3m(xj)), we know that γ is essentially proportional to Lebesgue measure. Therefore,

γ({x ∈ B(xj ,m(xj)) : T loc
∗ f(x) > λ})

.
1
λ

∫
B(xj ,3m(xj))

f(x) dγ(x).

Summing in j and using the bounded overlap of the B(xj , 3m(xj)) gives us

γ({x ∈ Rd : T loc
∗ f(x) > λ})

.
1
λ

∫
f(x)

∑
j∈N

χB(xj ,3m(xj))(x) dγ(x)

.
1
λ

∫
f(x) dγ(x).

Thus T loc
∗ is of weak type (1, 1). �
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Proof of Theorem 3.1, global part. By moving the supremum inside the integral, we
make the crude estimate

T glob
∗ f(x) ≤

∫
|y−x|>m(x)

sup
t>0

Mγ
t (x, y)|f(y)|dγ(y)

Remarkably enough, this estimate is sufficient for our purpose. Let

e−t = 1− τ
1 + τ

= 2
1 + τ

− 1.

Clearly t 7→ τ(t) is an increasing function from (0,∞) onto (0, 1). A simple calculation shows
that

1− e−2t = 4τ
(1 + τ)2 .

Remember that the kernel is symmetric. We write the kernel in terms of τ as

Mγ
t (x, y) = 1

(1− e−2t)d/2 exp
(
|x|2 − |x− e

−ty|2

1− e−2t

)
= (1 + τ)−d/2

2d τ−d/2e|x|
2

exp
(
− |(1 + τ)x− (1− τ)y|2

4τ

)
.

The first factor satisfies (1 + τ)−d/22−d ∼ 1 so that causes no problems. Define

Q(x, y, τ) = τ−d/2 exp
(
− |(1 + τ)x− (1− τ)y|2

4τ

)
.

Lemma 3.3 and Proposition 3.4 below finish the proof of the global part. �

Lemma 3.3. If |y − x| > m(x), then

sup
0<τ<1

Q(x, y, τ) . (1 + |x|)d ∧ (|x|θ)−d,

where θ = θ(x, y) is the angle between x and y.

Proof. Since, for any ρ > 0, there exists a constant C > 0 such that exp(−a) ≤ Ca−ρ, for
a > 0, we have that

τ−d/2 exp
(
− |(1 + τ)x− (1− τ)y|2

4τ

)
. τ−d/2

(
4τ

|(1 + τ)x− (1− τ)y|2

)d/2

. |(1 + τ)x− (1− τ)y|−d.

Now, let x and y be such that 0 < θ(x, y) < π/2. Then the length of (1 + τ)x − (1 − τ)y is
greater than the length of the projection of (1 + τ)x onto the plane perpendicular to y. This
observation leads to

|(1 + τ)x− (1− τ)y| ≥ (1 + τ)|x| sin θ & |x|θ.
Next, let π/2 ≤ θ ≤ π. Trivially the distance between (1 + τ)x and (1− τ)y is then greater than
the length of (1 + τ)x, i.e.,

|(1 + τ)x− (1− τ)y| ≥ (1 + τ)|x| & |x|θ.

Thus in both cases, Q(x, y, τ) . (|x|θ)−d.
To compare Q with (1 + |x|)d, consider first the case τ > (1 + |x|)−2/4. Then clearly

Q(x, y, τ) ≤ τ−d/2 . (1 + |x|)d. In the opposite case τ ≤ (1 + |x|)−2/4 ≤ 1/4, the triangle
inequality yields

|(1 + τ)x+ (1− τ)y| = |(1− τ)(y − x)− 2τx| ≥ 3
4 |y − x| −

|x|
2(1 + |x|)2

≥ 3
4(1 + |x|) −

1
2(1 + |x|) = 1

4
1

1 + |x| .

So Q(x, y, τ) . (1 + |x|)d also for small τ . �
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Proposition 3.4. The operator

Sf(x) = e|x|
2
∫ (

(1 + |x|)d ∧ (|x|θ)−d
)
f(y) dγ(y),

is of weak type (1, 1).

To prove Proposition 3.4 we use the following lemma, dealing with the γ-measure outside
large balls around the origin.

Lemma 3.5. For r0 > 1 it holds that γ{x ∈ Rd : |x| > r0} ∼ rd−2
0 e−r

2
0 .

Proof. Let ωd be the area of the unit sphere in Rd. Then

γ{x ∈ Rd : |x| > r0} = ωd

∫ ∞
r0

rd−1e−r
2

dr.

Making the changes of variable r = r0 + s and t = r0s, we get that∫ ∞
r0

rd−1e−r
2

dr =
∫ ∞

0
(r0 + s)d−1e−r

2
0−2r0s−s2

ds

. e−r
2
0

∫ ∞
0

(rd−1
0 s+ sd)e−2r0s

ds
s

.
(
e−r

2
0rd−1

0 r−1
0 + e−r

2
0r−d0

)
. rd−2

0 e−r
2
0 .

(2.5)

�

Proof of Proposition 3.4. Let f ≥ 0 with
∫
f dγ = 1. We shall prove that

(2.6) γ{x : Sf(x) > λ} . 1
λ

for all λ > 0. For λ small this is trivial, since γ is finite. Clearly,

Sf(x) ≤ e|x|
2
(1 + |x|)d.

Thus Sf(x) ≤ e2d for |x| < 1. Fix λ > e2d, so that the unit ball is disjoint from the level set of
(2.6). Let r0 > 1 be the unique positive solution of the equation

er
2
(1 + r)d = λ.

Then B(0, r0) will not intersect the level set. We will see that we can reduce the region of
interest to the ring r0 ≤ |x| ≤ 2r0. By the previous lemma

γ{x : |x| > 2r0} . rd−2
0 e−4r2

0 . (1 + r0)−de−r
2
0 = 1

λ
.

The case r0 ≤ |x| ≤ 2r0 requires some more work. Let

H = {x′ ∈ Rd : |x′| = 1, {ρx′, r0 < ρ < 2r0} ∩ {x : Sf > λ} 6= ∅}.

The set H contains the rays which have a non-void intersection in r0 ≤ |x| ≤ 2r0 with the level
set of (2.6). For x′ ∈ H, let

r(x′) = inf {ρ ∈ (r0, 2r0) : Sf(ρx′) > λ}.

In words, r(x′) is the distance from the origin to the level set in the direction x′. Then, by
continuity Sf(r(x′)x′) = λ.
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For r0 < |x| < 2r0

Sf(x) ∼ e|x|
2
∫

(rd0 ∧ (r0θ)−d)f(y) dγ(y)

= e|x|
2
r−d0

∫
(r2d

0 ∧ θ−d)f(y) dγ(y).

It follows that, for x′ ∈ H and θ being the angle between y and x′,

(2.7) λ = Sf(r(x′)x′) ∼ er(x′)2
r−d0

∫
(r2d

0 ∧ θ−d)f(y) dγ(y).

We estimate the measure of the intersection of the level set and the ring r0 < |x| < 2r0
together with its “shadow”, seen from the origin. Let dx′ denote the area measure on the unit
sphere. Using (2.5), we get

γ{x : r0 < |x| < 2r0, Sf(x) > λ}
≤ γ{ρx′ : x′ ∈ H, ρ > r(x′)}

=
∫
H

∫ ∞
r(x′)

ρd−1e−ρ
2

dρdx′

.
∫
H

r(x′)d−2e−|r(x′)|2 dx′

∼ r−2
0

∫
H

rd0e
−|r(x′)|2 dx′

∼ r−2
0

∫
H

1
λ

∫
|y−x|>m(r(x′))

(r2d
0 ∧ θ−d)f(y) dγ(y) dx′.

In the last step we used (2.7). Changing the order of integration and extending the integration
to the whole unit sphere Sd−1 leads to

γ{x : r0 < |x| < 2r0, Sf(x) > λ}

. r−2
0

1
λ

∫
f(y) dγ(y)

∫
Sd−1

r2d
0 ∧ θ−d dx′.

The last integral here is independent of y, by rotation, and behaves essentially as an integral in
Rd−1, so let z be a variable in Rd−1. Then∫

Sd−1
r2d

0 ∧ θ−d dx′ ∼
∫
|z|<π

r2d
0 ∧ |z|−d dz ∼ r2

0.

The last relation easily follows by integration over {|z| < r−2
0 } and {r

−2
0 < |z| < π} separately.

�



CHAPTER 3

Riesz operators related to the Ornstein-Uhlenbeck
operator

In this chapter, we consider first-order Riesz operators for the Ornstein-Uhlenbeck operator.
The first section recalls Riesz operators in Euclidean space. Some facts about singular integrals
are also stated. In Section 2, kernels are found for Riesz operators. Those kernels are well
known, but our detailed derivations seem to be lacking in the literature. In Section 3, we prove
that the Riesz operators are of weak type (1, 1). This was proved by Muckenhoupt in 1969 for
d = 1, see [5]. The case d <∞ was obtained by Fabes, Gutierrez and Scotto in 1994, [1], but it
is still unknown for d =∞. Riesz operators of higher order was considered by Pérez and Soria
in 2000, see [6].

As in the previous chapter, the proof of our result will split into a local and a global part.

1. Euclidean Riesz operators and singular integrals

The theory of Riesz operators is a widely studied subject within harmonic analysis. They
form useful tools for estimating derivatives related to partial differential and pseudo-differential
equations. The first- and second-order Euclidean Riesz operators in Rd are

Ri = ∂

∂xi
(−∆)− 1

2 and Rij = ∂2

∂xi∂xj
(−∆)−1,

where the operators (−∆)− 1
2 and (−∆)−1 are defined via Fourier multipliers. The operators Ri

and Rij are singular integrals. Their actions on f ∈ Lp(dx) are

Rif(x) = cd p.v.
∫

ξi
|ξ|d+1 f(x− ξ) dξ

and for i 6= j

Rijf(x) = c̃d p.v.
∫

ξiξj
|ξ|d+2 f(x− ξ) dξ.

Here cd and c̃d are constants and the integrals are taken in the principal value sense, i.e.,

p.v.
∫
·dx = lim

ε→0

∫
|x|>ε

·dx.

In this way, the non-integrable singularities can be handled, due to cancellations. It is well
known that that the Riesz operators are bounded on Lp(dx) for 1 < p < ∞ and of weak type
(1, 1).

We now give some brief motivation why Riesz operators are important. Consider the equation

−∆u = f.

Then, at least formally,
∂i∂ju = Rijf.

Thus ∂i∂ju = Rij(−∆)u, and since Rij is bounded on Lp, we have for suitable u, that

‖∂i∂ju‖Lp . ‖(−∆)u‖Lp .

21
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So the second derivatives can be estimated by means of the Laplacian.
The first-order Riesz operators can be used to obtain the two-sided inequality

‖(−∆)− 1
2u‖Lp . ‖gradu‖Lp . ‖(−∆)− 1

2u‖Lp .

In Section 3 we will need a general result for singular integrals. We state this here. Assume
that T is a bounded linear operator on L2(Rd,dx) with off-diagonal kernel k. This means that
for f ∈ C∞0 (Rd),

Tf(x) =
∫
k(x, y)f(y) dy, x /∈ supp(f).

If the kernel k is of class C1 in {(x, y) : x 6= y} and satisfies

(3.1) |k(x, y)| . 1
|x− y|d

and

(3.2) |gradx,yk(x, y)| . 1
|x− y|d+1 ,

then k is said to satisfy the standard estimates. These holds for Ri and Rij . The following
theorem is well known, see for instance [9], Chapter II, Section 2, Theorem 1.

Theorem 1.1. If the operator T is linear and bounded on L2(Rd,dx) and has an off-diagonal
kernel satisfying the standard estimates, then T is of weak type (1, 1).

2. First-order Gaussian Riesz operators

A first try to define Riesz operators for the Ornstein-Uhlenbeck operator L would be to let
Ri = ∂iL

− 1
2 . But LHα = |α|Hα and in particular LH0 = 0, so L− 1

2 does not exist. Let P0 be the
orthogonal projection in L2(γ) onto the span of H0, i.e., onto the subspace of constant functions.
Then I − P0 is the projection onto the orthogonal complement H⊥0 . Define L− 1

2 (I − P0) by∑
α∈Nd

aαHα 7→
∑
|α|6=0

1√
|α|

aαHα

for ∑
α∈Nd

|aα|2‖Hα‖2
L2(γ) <∞.

It is well defined and bounded on L2(γ). Recall that ∂iHα = 2αiHα−ei if αi 6= 0. Define Ri by

Ri :
∑
α∈Nd

aαHα 7→
∑
αi 6=0

2αi√
|α|

aαHα−ei .

We first verify that Ri is bounded on L2(γ). Since ‖Hα‖L2(γ) = 2|α|α!, we have ‖Hα−ei‖L2(γ) =
‖Hα‖L2(γ)/2αi. Parseval’s identity implies∥∥∥ ∑

αi 6=0

2αi√
|α|

aαHα−ei

∥∥∥2

L2(γ)
=
∑
αi 6=0

4α2
i

|α|
|aα|2

1
2αi
‖Hα‖2

L2(γ) ≤ 2
∑
αi 6=0

|aα|2‖Hα‖2
L2(γ),

and the L2(γ) boundedness of Ri follows.
Observe that any function in L2(γ) defines a distribution in D′. Recall that distributions

in D′ are those acting on test functions with compact support. Convergence in L2(γ) implies
convergence in D′.

Proposition 2.1. For f ∈ L2(γ) one has Rif = ∂iL
− 1

2 (I − P0), where ∂i = ∂ distr
i is taken

in the sense of distributions.
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Proof. Let f =
∑
α aαHα ∈ L2(γ). Then

L−
1
2 (I − P0)f =

∑
α6=0

1√
|α|

aαHα

with both L2(γ) and D′ convergence. Since differentiation in the distribution sense can always
be made termwise, we get that

∂ dist
i L−

1
2 (I − P0)f =

∑
αi 6=0

1√
|α|

aα∂
dist
i Hα =

∑
αi 6=0

2αi√
|α|

aαHα−ei = Rif.

�

Our aim for the rest of this section will be to find the kernels of L− 1
2 (I −P0) and Ri. Notice

that

(3.3) λ−1/2 = 1√
π

∫ ∞
0

t−1/2e−tλ dt, λ > 0.

It is tempting to write
L−1/2 = 1√

π

∫ ∞
0

t−1/2e−tL dt, λ > 0,

with kernel
1√
π

∫ ∞
0

t−1/2Mγ
t (x, y) dt.

But Mγ
t is close to 1 for large t so the integral diverges at infinity. This is not surprising since

we saw that L−1/2 does not exist. But (ε + L)−1/2 exists and is bounded on L2(γ), for ε > 0.
We also have that

(ε+ L)−1/2 − ε−1/2P0 → L−1/2(I − P0)

as ε→ 0, in the strong operator topology. This means that(
(ε+ L)−1/2 − ε−1/2P0

)
f → L−1/2(I − P0)f in L2(γ)

for all f ∈ L2(γ), which is easily verified from our definitions. Write formally

(ε+ L)−1/2 = 1√
π

∫ ∞
0

t−1/2e−εte−Lt dt

with kernel
1√
π

∫ ∞
0

t−1/2e−εtMγ
t (x, y) dt.

The kernel of P0 is 1 = H0 so that the kernel of ε−1/2P0 is

ε−1/2 = 1√
π

∫ ∞
0

t−1/2e−εt dt.

Thus, (ε+ L)−1/2 − ε−1/2P0 should have the kernel

1√
π

∫ ∞
0

t−1/2e−εt(Mγ
t (x, y)− 1) dt.

This gives hope sinceMγ
t (x, y)−1→ 0 as t→∞, for all x and y. We conjecture that the kernel

of L−1/2(I − P0) is

(3.4) K(x, y) = 1√
π

∫ ∞
0

t−1/2(Mγ
t (x, y)− 1) dt
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and that of Ri is

(3.5) kγi (x, y) = 1√
π

∫ ∞
0

t−1/2∂iM
γ
t (x, y) dt.

Here and in the sequel, ∂i means ∂/∂xi, also for functions depending on x and y.
Consider first K. We verify that the integral converges. Recall that the Mehler kernel is

given by

Mγ
t (x, y) = 1

(1− e−2t)d/2 e
|y|2− |y−e

−tx|2

1−e−2t .

For t small we have (1− e−2t)−d/2 ∼ t−d/2. Also, since 1− e−2t ≤ 2t,

|y − e−tx|2

1− e−2t = |y − x+ (1− e−t)x|2

1− e−2t ≥ |y − x|
2

2t + 2(1− e−t)〈y − x, x〉
1− e−2t + (1− e−t)2|x|2

1− e−2t

≥ |y − x|
2

2t − C(x, y),
(3.6)

for x 6= y, where C(x, y) is bounded on compact sets. Then, for a new C(x, y),

|Mγ
t (x, y)| . C(x, y)t− d2 exp

(
− |y − x|

2

2t

)
.

Making the change of variable s = |y − x|2/t, we get that∫ 1

0
t−1/2Mγ

t (x, y) dt . C(x, y)e|y|
2
∫ 1

0
t−

d
2−

1
2 e−c

|y−x|2
t dt

. C(x, y)e|y|
2
|y − x|1−d

∫ ∞
0

s
d
2−

3
2 e−cs ds

. C(x, y)e|y|
2
|y − x|1−d.

(3.7)

Notice that the integral diverges on the diagonal. For t large enough so that e−t(|x|2 + |y|2) is
small, we use the fact that 〈x, y〉 ≤ |x|2 + |y|2 and make a first-order Taylor expansion. Using
the expression (1.14) for the kernel we get

Mγ
t (x, y)− 1 = (1 +O(e−2t)) exp

(−e−2t(|x|2 + |y|2) + 2e−t〈x, y〉
1− e−2t

)
− 1

= (1 +O(e−2t))(1 +O(e−t(|x|2 + |y|2)))− 1
= O(e−t(|x|2 + |y|2)).

(3.8)

Thus, K(x, y) exists for x 6= y.
Theorem 2.2. (a) For any f ∈ L2(γ) the map y 7→ K(x, y)f(y) is in L1(γ) for a.a. x,

where K is given by (3.4), and the integral∫
K(x, y)f(y) dγ(y)

defines a bounded linear operator on L2(γ).
(b) This operator coincides with L− 1

2 (I − P0).

Proof. With T = T (x, y) = max(10, log(|x|2 + |y|2)), we write K as

√
πK(x, y) =

∫ 10

0
t−

1
2Mγ

t (x, y) dt+
∫ T (x,y)

10
t−

1
2Mγ

t (x, y) dt

−
∫ T (x,y)

0
t−

1
2 dt+

∫ ∞
T (x,y)

t−
1
2 (Mγ

t (x, y)− 1) dt

= K1 +K2 +K3 +K4,
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where Ki = Ki(x, y) for each i. We shall prove that each Ki satisfies (a).
Let f ∈ L2(γ). For K1 we apply Tonelli’s theorem and Minkowski’s inequality, getting

∥∥∥ ∫ K1(x, y)|f(y)|dγ(y)
∥∥∥
L2(γ)

=
∥∥∥∫ 10

0
t−

1
2

∫
Mγ
t (x, y)|f(y)|dγ(y) dt

∥∥∥
L2(γ)

≤
∫ 10

0
t−

1
2

∥∥∥∫ Mγ
t (x, y)|f(y)|dγ(y)

∥∥∥
L2(γ)

dt

=
∫ 10

0
t−

1
2 ‖Tt|f |‖L2(γ)

. ‖f‖L2(γ)

Thus (a) holds for K1.
In K2 we have t > 10 and thus 1−e−2t ∼ 1 andMγ

t (x, y) . exp(4e−t|x||y|) in view of (1.14).
Then

0 ≤ K2(x, y) .
∫ T (x,y)

10
exp(4e−t|x||y|) dt ≤

∫ T (x,y)

10
exp

(
4e−10 |x|2 + |y|2

2

)
dt

≤ exp
( |x|2

4 + |y|
2

4

)(
10 ∨ log(|x|2 + |y|2)

)
∈ L2(γ × γ).

Therefore, K2 defines a Hilbert-Schmidt operator in L2(γ), and (a) follows for K2.
The kernel K3 is 2

√
T (x, y), which is another Hilbert-Schmidt kernel.

To deal with K4, we apply (3.8) to get

|K4(x, y)| ≤
∫ ∞
T (x,y)

t−
1
2 |Mγ

t (x, y)− 1|dt . (|x|2 + |y|2)
∣∣∣ ∫ ∞
T (x,y)

e−t dt
∣∣∣ = (|x|2 + |y|2)e−T (x,y) ≤ 1.

With this we have proved (a).
The proof of (a) also shows that the L2(γ × γ) norm of

∫∞
t′
t−

1
2 (Mγ

t (x, y)− 1) dt tends to 0
as t′ →∞. The operator obtained in (a), call it momentarily A, is thus the limit in the operator
norm as t′ →∞ of the operator defined by the kernels

1√
π

∫ t′

0
t−

1
2 (Mγ

t (x, y)− 1) dt.

To prove (b), it is enough to verify that A coincides with L−
1
2 (I − P0) on each Hermite

polynomial Hα. Now AHα is the limit as t′ →∞ of∫ 1√
π

∫ t′

0
t−

1
2 (Mγ

t (x, y)− 1) dt Hα(y) dγ(y).

Here we can apply Fubini’s theorem, in view of the above estimates. Using also (1.8), we see
that the expression equals

1√
π

[∫ t′

0
t−

1
2

∫
Mγ
t (x, y)Hα(y) dγ(y) dt− 1√

π

∫ t′

0
t−

1
2

∫
Hα(y) dγ(y) dt

]

= 1√
π

[∫ t′

0
t−

1
2 e−t|α| dt Hα(x)−

∫ t′

0
t−

1
2 dt 〈Hα, 1〉

]
.

For α 6= 0, the second term in this last expression vanishes, and the first term tends to
|α|−1/2Hα(x). If α = 0, the whole expression vanishes. Thus the limit, as t′ → ∞, is
L−1/2(I − P0)Hα(x) in both cases. �
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Theorem 2.3. The off-diagonal kernel of Ri is kγi (x, y) = ∂iK(x, y), in the sense that for
f ∈ C∞0 (Rd) and x /∈ supp(f)

Rif(x) =
∫
kγi (x, y)f(y) dγ(y).

Moreover, kγi is given by (3.5), for x 6= y.

Proof. We start by verifying that

(3.9) ∂iK(x, y) = 1√
π

∫ ∞
0

t−
1
2 ∂iM

γ
t (x, y) dt.

Differentiation gives us

(3.10) ∂iM
γ
t (x, y) = 1

(1− e−2t) d2
2e−t(yi − e−txi)

1− e−2t exp
(
|y|2 − |y − e

−tx|2

1− e−2t

)
.

Thus,

|∂iMγ
t (x, y)| ≤ 2e−t

(1− e−2t) d2 + 1
2

|y − e−tx|√
1− e−2t

exp
(
|y|2 − |y − e

−tx|2

1− e−2t

)
.

e−t

(1− e−2t) d2 + 1
2

exp
(
|y|2 − 1

2
|y − e−tx|2

1− e−2t

)
.

(3.11)

For small t we have
|∂iMγ

t (x, y)| . C(x, y)t− d2− 1
2 e−c

|y−x|2
t ,

where C(x, y) is locally bounded; cf. (3.6). As in (3.7), for a new C(x, y),∫ 1

0
t−

1
2 |∂iMγ

t (x, y)|dt . C(x, y)
∫ 1

0
t−

d
2−1e−c

|y−x|2
t dt . C(x, y)|x− y|−d.

For t large, (3.11) implies |∂iMγ
t (x, y)| . e−t(|x|+ |y|)e|y|2 , and so∫ ∞
1

t−
1
2 |∂iMγ

t (x, y)|dt . C(x, y).

Thus

(3.12)
∫ ∞

0
t−

1
2 |∂iMγ

t (x, y)|dt . C(x, y)|x− y|−d <∞,

for x 6= y, and so the integral in (3.9) is well defined.
The equality (3.9) follows if

(3.13)
∫ a1

a0

1√
π

∫ ∞
0

t−
1
2 ∂iM

γ
t (x, y) dtdxi =

[
K(x, y)

]a1

xi=a0
,

by differentiation with respect to a1. Here a0 and a1 must be chosen so that y is not in the
segment {(x1, . . . , xi−1, a, xi+1, . . . , xd) : a0 ≤ a ≤ a1}. Indeed, if Fubini can be applied, then
the left-hand side becomes, after a suitable choice of primitive function,

1√
π

∫ ∞
0

t−
1
2
[
Mt(x, y)− 1

]a1

xi=a0
dt =

[
K(x, y)

]a1

xi=a0
.

To verify the use of Fubini, we apply (3.12) to see that∫ ∞
0

t−
1
2

∫ a1

a0

|∂iMγ
t (x, y)|dxi dt ∼ (a1 − a0)

∫ ∞
0

sup
x
t−

1
2 |∂iMγ

t (x, y)|dt <∞,
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where the supremum is taken over x in the segment mentioned above.
We now prove that, for x /∈ supp f ,∫

kγi (x, y)f(y) dγ(y) = ∂i

∫
K(x, y)f(y) dγ(y),

or equivalently, ∫ a1

a0

∫ ∫ ∞
0

t−
1
2 ∂iM

γ
t (x, y) dt f(y) dγ(y) dxi

=
[∫ ∫ ∞

0
t−

1
2 (Mγ

t (x, y)− 1) dt f(y) dγ(y)
]a1

xi=a0

,

for a0 and a1 such that (x1, . . . , xi−1, a, xi+1, . . . , xd) /∈ supp(f) for all a0 ≤ a ≤ a1. This follows
from Fubini by the same calculation and the same justification as above.

We now know that ∫
kγi (x, y)f(y) dγ(y) = ∂iL

− 1
2 (I − P0)f(x),

for x /∈ supp f . But Ri = ∂distr
i L−

1
2 (I − P0). �

3. The weak type (1, 1) property

Theorem 3.1. For d <∞, each Ri is of weak type (1, 1), with respect to γ.

We start with some proof preparations. Using (3.11) and making the change of variable
r = e−t yields

|kγi (x, y)| .
∫ ∞

0
t−

1
2

e−t

(1− e−2t) d2 + 1
2

|y − e−tx|√
1− e−2t

exp
(
|y|2 − |y − e

−tx|2

1− e−2t

)
dt

=
∫ 1

0

( 1− r2

log r−1

) 1
2 1

(1− r2) d2 +1
|y − rx|√

1− r2
exp

(
|y|2 − |y − rx|

2

1− r2

)
dr.

(3.14)

Let
v(r) = |y − rx|

2

1− r2 .

Since (1− r2)/ log(1/r) ≤ 2 for 0 < r < 1, we get

(3.15) |kγi (x, y)| .
∫ 1

0

√
v(r)

(1− r2) d2 +1
exp(|y|2 − v(r)) dr = pγi (x, y).

We will also need the kernels ki and pi for integration against Lebesgue measure, i.e., with the
factor e−|y|2 removed.

We will now split Ri into a global and a local part as in Chapter 2. For this purpose
a smooth cutoff function is needed, since we are working with derivatives. Take a function
0 ≤ N(x, y) ∈ C∞(Rd × Rd) satisfying

N(x, y) =
{

1 if |x− y| ≤ m(x)
0 if |x− y| ≥ 2m(x)

and for all y the condition

|gradx,yN(x, y)| . 1
m(x) = 1 + |x|.

We hint how N can be constructed. Let 0 ≤ φ ∈ C∞(R+) such that φ(x) = 1 for 0 ≤ x ≤ 1,
decreasing for 1 < x < 2 and with φ(x) = 0 for x ≥ 2. Then N(x, y) = φ(|x− y|/m(x)) is such
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a function except that it lacks differentiability at x = 0. By a smoothing argument this can be
overcome.

Define
Rglob
i f(x) =

∫
kγi (x, y)(1−N(x, y))f(y) dγ(y).

and
Rloc
i = Ri −Rglob

i .

We will prove separately that Rloc
i and Rglob

i are of weak type (1, 1). For the local part, we use
the results stated in Section 1 about singular integrals. For the global part, we use techniques
like those applied to the maximal operator in Chapter 2.

proof of theorem 3.1, local part. The off-diagonal kernel of Rloc
i is

ki(x, y)N(x, y), which is supported in {(x, y) : |x − y| ≤ 2m(x)}. Notice here that we work
with the kernel ki for integration against Lebesgue measure. The strategy for the local proof is
to verify the standard estimates (3.1) and (3.2) for ki(x, y)N(x, y) and then prove the L2(dx)
boundedness of Rloc

i , in order to conclude, by Theorem 1.1, the weak type (1, 1) property with
respect to Lebesgue measure. The result will then follow in our Gaussian setting.

We shall estimate the kernel ki(x, y)N(x, y), so assume that |y − x| ≤ 2m(x). By (3.15)

|ki(x, y)| .
∫ 1

0

√
v(r)

(1− r2) d2 +1
e−v(r) dr .

∫ 1

0

1
(1− r2) d2 +1

e−
1
2v(r) dr.

Using the fact that 1− r ≤ 1− r2 ≤ 2(1− r), we estimate

v(r) = |y − x− (1− r)x|2

1− r2 ≥ |y − x|
2

1− r2 −
2(1− r)
1− r2 〈y − x, x〉

≥ |y − x|
2

2(1− r) − 2|y − x||x| ≥ |y − x|
2

2(1− r) − 4,
(3.16)

the last step since |x− y| ≤ 2m(x). Then the change of variable s = |x− y|2/(1− r) yields

|ki(x, y)N(x, y)| .
∫ 1

0

1
(1− r) d2

exp
(
− |x− y|

2

4(1− r)

) dr
1− r

. |x− y|−d
∫ ∞

0
s
d
2 e−

s
4

ds
s

. |x− y|−d.

(3.17)

Hence the first standard estimate is satisfied. It remains to bound the gradient by |x− y|−d−1.
In view of (3.10) and (3.14) a second differentiation gives

|∂xjki(x, y)| .
∫ 1

0

(
1− r2

log( 1
r )

) 1
2
∣∣∣∣∣− rδij

(1− r2) d2 + 3
2

+ 2r(yi − rxi)(yj − rxj)
(1− r2) d2 + 5

2

∣∣∣∣∣e−v(r) dr.

This can be verified using Fubini as in (3.13). Clearly, using (3.16) and our usual change of
variable, we get as before

|∂xjki(x, y)| .
∫ 1

(1− r) d2 + 1
2

exp
(
− |x− y|

2

4(1− r)

) dr
(1− r) . |x− y|

−d−1.

The derivatives ∂yjki satisfy the same estimate. Now,

|gradx,ykiN | ≤ N |gradx,yki|+ |ki||gradx,yN |.

But, by the properties of on N and since |y − x| ≤ 2m(x),

|gradx,yN(x, y)| . 1
m(x) . |x− y|

−1,
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and so
|gradx,ykiN(x, y)| . |x− y|−d−1.

The standard estimates are satisfied.
Aiming at the L2 estimate, we take a covering Bj = B(xj ,m(xj)) according to Lemma 3.2

of Chapter 2. Then the balls B̃j = B(xj , 5m(xj)) have bounded overlap. Let x ∈ Bj , so that
2−1m(xj) < m(x) < 2m(xj) in view of (2.4). Take f ∈ L2(γ) with compact support. We have
that

Rloc
i f(x)−Rloc

i (fχB̃j )(x) = Rloc
i (fχRd\B̃j )(x) =

∫
Rd\B̃j

ki(x, y)N(x, y)f(y) dy = 0.

The last conclusion follows since for y /∈ B̃j

|y − x| ≥ |y − xj | − |xj − x| ≥ 5m(xj)−m(xj) ≥ 2m(x)

and so N(x, y) = 0. Thus Rloc
i f = Rloc

i (fχB̃j ) in Bj , and then

(3.18)
∫
Bj

∣∣Rloc
i f(x)

∣∣2 dx .
∫
Bj

∣∣Ri(fχB̃j )(x)
∣∣2 dx+

∫
Bj

∣∣Ri(fχB̃j )(x)−Rloc
i f(x)

∣∣2 dx.

The difference D(x) = Ri(fχB̃j )(x)−Rloc
i f(x) appearing here satisfies

D(x) = Ri(fχB̃j )(x)−Rloc
i (fχB̃j )(x) = Rglob

i (fχB̃j )(x) =
∫
B̃j

ki(x, y)(1−N(x, y))f(y) dy.

For x ∈ Bj and 1 − N(x, y) 6= 0 it holds that |x − y| ≥ m(x) > 2−1m(xj). So we have, using
(3.17), that |ki(x, y)| . m(xj)−d ∼ |B̃j |−1. Hence

|D(x)| . 1
|B̃j |

∫
B̃j

|f(y)|dy,

and by the Cauchy-Schwarz inequality∫
Bj

|D(x)|2 dx .
∫
B̃j

|f(y)|2 dy.

Thus (3.18) implies∫
Bj

∣∣Rloc
i f(x)

∣∣2 dx .
∫
Bj

∣∣Ri(fχB̃j )(x)
∣∣2 dx+

∫
B̃j

|f(y)|2 dy.

Since γ is essentially proportional to Lebesgue measure in our local balls, the same inequality
holds with the three integrals taken with respect to γ. But Ri is bounded on L2(γ), as verified
in the beginning of Section 2, and it follows that∫

Bj

∣∣Rloc
i f(x)

∣∣2 dγ(x) .
∫
|fχB̃j (x)|2 dγ(x) +

∫
B̃j

|f(y)|2 dγ(y)

.
∫
B̃j

|f(y)|2 dγ(y).

Switching back to Lebesgue measure, summing over all j and using the bounded overlap we
conclude ∫

|Rloc
i f(x)|2 dx .

∫
|f(x)|2 dx.

Thus Rloc
i is of weak type (1, 1) for Lebesgue measure, by Theorem 1.1. On the local balls, we

thus have that

|{x ∈ Bj : |Rloc
i f(x)| > λ}| = |{x ∈ Bj : |Rloc

i (fχB̃j )(x)| > λ}| . 1
λ

∫
B̃j

|f |dx
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and hence

γ{x ∈ Bj : |Rloc
i f(x)| > λ} . 1

λ

∫
B̃j

|f |dγ(x).

Summation in j finishes the proof. �

proof of theorem 3.1, global part. We shall estimate pγi (x, y), defined in (3.15), for
|x− y| > m(x). For this purpose we first determine the minimum of v(r) in 0 < r < 1. Write

v(r) = |x|
2 + |y|2 − 2r〈x, y〉

1− r2 − |x|2.

Differentiation gives

v′(r) = −2〈x, y〉r2 + 2(|x|2 + |y|2)r − 2〈x, y〉
(1− r2)2 .

If 〈x, y〉 ≤ 0 then v′(r) > 0 for all 0 ≤ r ≤ 1. Assume that 〈x, y〉 > 0. Then v′(r) = 0 for

r = r0,1 =
|x|2 + |y|2 ∓

√
(|x|2 + |y|2)2 − 4〈x, y〉2
2〈x, y〉 ,

and r0 is a minimum of v. Notice also that r0r1 = 1, so that 0 < r0 < 1 < r1. An easy
calculation shows that

(3.19) |x+ y|2|x− y|2 = (|x|2 + |y|2)2 − 4〈x, y〉2,

and thus
r0 = |x|

2 + |y|2 − |x+ y||x− y|
2〈x, y〉 .

In order to compute v(r0) we calculate, using (3.19) and the relationship r0r1 = 1,

1− r2
0 = 4〈x, y〉2 − (|x|2 + |y|2)2 − |x+ y|2|x− y|2 + 2(|x|2 + |y|2)|x+ y||x− y|

4〈x, y〉2

= 2|x+ y||x− y| |x|
2 + |y|2 − |x+ y||x− y|

4〈x, y〉2 = 2|x+ y||x− y|r0

2〈x, y〉

= 2|x+ y||x− y|
2〈x, y〉r1

= 2|x+ y||x− y|
|x|2 + |y|2 + |x+ y||x− y|

.

For 〈x, y〉 > 0, one has |x+ y|2 ∼ |x|2 + |y|2 ∼ |x|2 + |y|2 + |x+ y||x− y|, so that

(3.20) 1− r2
0 ∼
|x+ y||x− y|
|x|2 + |y|2 ∼ |x− y|

|x+ y|
.

Using the exact expression for 1− r2
0, we get that

v(r0) = −|x|
2 + |y|2 + |x+ y||x− y|

2 .

So

pγi (x, y) =
∫ 1

0

√
v(r)

(1− r2) d2 +1
e−(v(r)−v(r0)) dr exp

( |x|2 + |y|2 − |x+ y||x− y|
2

)
.

The weak type (1, 1) of Rglob
i is a consequence of the following theorem, in view Proposition 3.4

of Chapter 2.

Theorem 3.2. Assume that |x− y| > m(x).
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a: Let 〈x, y〉 > 0. Then

∫ 1

0

√
v(r)

(1− r2) d2 +1
ev(r0)−v(r) dr .

(
|x+ y|
|x− y|

) d
2

and (
|x+ y|
|x− y|

) d
2

e
1
2 (|x|2+|y|2−|x−y||x+y|) . e|x|

2
(

(1 + |x|)d ∧ (|x|θ)−d
)
,

where θ = θ(x, y) is the angle between x and y.

b: Let 〈x, y〉 ≤ 0. Then

pγi (x, y) . 1 . e|x|
2
(

(1 + |x|)d ∧ (|x|θ)−d
)
.

Proof. To prove a, we assume 〈x, y〉 > 0. First we notice that (3.19) implies

(3.21) −|x|2 + |y|2 = (|x|+ |y|)(−|x|+ |y|) ≤ |x+ y||x− y|

and this last quantity stays away from 0, in view of the globality assumption |x − y| > m(x).
Then

v(r0) = |x+ y||x− y| − |x|2 + |y|2

2 . |x+ y||x− y|

and √
v(r)e−(v(r)−v(r0)) ≤ (

√
v(r0) +

√
v(r)− v(r0) )e−(v(r)−v(r0))

.
√
|x+ y||x− y| (1 +

√
v(r)− v(r0) )e−(v(r)−v(r0))

.
√
|x+ y||x− y| e− 1

2 (v(r)−v(r0)).

So we see that, in order to prove the first inequality in a, it suffices to verify that

(3.22)
√
|x+ y||x− y|

∫ 1

0

1
(1− r2) d2 +1

e−
1
2 (v(r)−v(r0)) dr .

( |x+ y|
|x− y|

) d
2
.

Consider the case r0 > 1/2. Then

1
2 < r0 = 1

r1
= 2〈x, y〉
|x|2 + |y|2 + |x+ y||x− y|

≤ 2〈x, y〉
|x|2 + |y|2 .

So 〈x, y〉 ≥ (|x|2 + |y|2)/4 and

|x− y|2 = |x|2 + |y|2 − 2〈x, y〉 ≤ 1
2(|x|2 + |y|2) ≤ 1

2 |x+ y|2.

Writing x and y as (x + y ± (x − y))/2, we conclude that |x| ∼ |y| ∼ |x + y|. It is easy to see
that also 〈x, y〉 ∼ |x+ y|2.

Now, consider the case r0 ≤ 1/2. Then 3/4 ≤ 1− r2
0 ∼ |x− y|/|x+ y| by (3.20), and hence

|x− y| & |x+ y|.
We will write

(3.23) v(r)− v(r0) =
∫ r

r0

v′(s) ds
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and use the fact that

v′(r) = −2〈x, y〉 (r − r0)(r − r1)
(1− r2)2 ∼ 〈x, y〉 (r − r0)(r1 − r)

(1− r2)2 .

To prove (3.22), we divide the interval of integration into three parts. Consider first

I0 = [0, 1] ∩ [r0 −
1− r0

2 , r0 + 1− r0

2 ] = [r−, r+],

where r− = max(0, 2r0 − 1) and r+ = (1 + r0)/2. For r ∈ I0, we have 1 − r ∼ 1 − r0 and
r1 − r ∼ 1− r0. If also r0 > 1/2, then r1 − r ∼ 1− r0, so that

(3.24) v′(r) ∼ |x+ y|2 r − r0

1− r0
.

Let instead r0 ≤ 1/2. Then r1 > 2 and for r ∈ I0

r1 − r ∼ r1 ∼
|x|2 + |y|2

〈x, y〉
∼ |x+ y|2

〈x, y〉
.

Thus,
v′(r) ∼ |x+ y|2 r − r0

(1− r0)2 ∼ |x+ y|2 r − r0

1− r0
,

and we have (3.24) again.
Now (3.23), (3.24) and (3.20) give us

(3.25) v(r)− v(r0) ∼ |x+ y|2 1
1− r0

(r − r0)2 ∼ |x+ y|3

|x− y|
(r − r0)2.

The change of variable s =
√
|x+ y|3/|x− y|(r − r0) yields the estimate√

|x+ y||x− y|
∫
I0

1
(1− r2) d2 +1

e−
1
2 (v(r)−v(r0)) dr

.
√
|x+ y||x− y| 1

(1− r0) d2 +1

∫ ∞
−∞

exp
(
− c |x+ y|3

|x− y|
(r − r0)2

)
dr

∼
√
|x+ y||x− y|

( |x+ y|
|x− y|

) d
2 +1( |x− y|

|x+ y|3
) 1

2

∼
( |x+ y|
|x− y|

) d
2
,

for some c = c(d) > 0.
Next, consider the left interval I− = [0, r−], assuming r0 ≥ 1/2 since otherwise I− is empty.

For r ∈ I− it is easy to see that r0 − r ∼ 1− r and r1 − r ∼ 1− r. So

−v′(r) ∼ |x+ y|2 (1− r)2

(1− r)2 = |x+ y|2

and thus
v(r)− v(r−) = −

∫ r−

r

v′(s) ds ∼ |x+ y|2(r− − r).

From (3.25) we have, since 1− r0 ∼ r0 − r−,

v(r−)− v(r0) ∼ |x+ y|2(r0 − r−).

Thus, for r ∈ I−,

v(r)− v(r0) = [v(r)− v(r−)] + [v(r−)− v(r0)]
& |x+ y|2(r0 − r)
∼ |x+ y|2(1− r).
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Now, making the change of variable s = |x+ y|2(1− r), we get√
|x+ y||x− y|

∫
I−

1
(1− r2) d2 +1

e−
1
2 (v(r)−v(r0)) dr

.
√
|x+ y||x− y|

∫
I−

1
(1− r) d2

e−c|x+y|2(1−r) dr
1− r

.
√
|x+ y||x− y| |x+ y|d

∫ ∞
c′|x+y||x−y|

s−
d
2 e−cs

ds
s

.
√
|x+ y||x− y| |x+ y|de−c

′′|x+y||x−y|

.
√
|x+ y||x− y| |x+ y|d(|x+ y||x− y|)− d2− 1

2

=
( |x+ y|
|x− y|

) d
2
,

c, c′, c′′ denoting positive constants.
Here it is essential that |x+ y||x− y| stays away from zero. This is ensured by the globality

assumption.
Finally consider I+ = [r+, 1]. For r ∈ I+ we get

v′(r) & |x+ y|2 (1− r0)2

(1− r)2

when r0 > 1/2 and also when r0 ≤ 1/2, since then r1 − r ∼ |x+ y|2/〈x, y〉. It follows that

v(r)− v(r+) & |x+ y|2(1− r0)2
( 1

1− r −
1

1− r+

)
.

From (3.25) we know that

v(r+)− v(r0) & |x+ y|2 (r+ − r0)2

1− r0
∼ |x+ y|2(1− r0)2 1

1− r+
.

Thus, for r ∈ I+

v(r)− v(r0) = [v(r)− v(r+)] + [v(r+)− v(r0)]

& |x+ y|2(1− r0)2 1
1− r

∼ |x− y|
2

1− r .

Then the change of variable s = |x− y|2/(1− r) yields√
|x+ y||x− y|

∫
I+

1
(1− r2) d2 +1

e−
1
2 (v(r)−v(r0)) dr

.
√
|x+ y||x− y|

∫
I+

1
(1− r) d2

exp
(
− c |x− y|

2

1− r

) dr
1− r

.
√
|x+ y||x− y| |x− y|−d

∫ ∞
c|x+y||x−y|

s
d
2 e−cs

ds
s

. |x− y|−d.

Now, by the globality assumption,

|x− y| ≥ 1
1 + |x| ≥

1
1 + |x|+ |y| ∼

1
|x+ y|

.
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So
|x− y|−d .

( |x+ y|
|x− y|

) d
2
,

and the first inequality of a is proved.
The second inequality of a can be written( |x+ y|

|x− y|

) d
2
e−

A
2 . (1 + |x|)d ∧ (|x|θ)−d

where

A = |x+ y||x− y| − (|y|2 − |x|2) = |x+ y|2|x− y|2 − (|y|2 − |x|2)2

|x+ y||x− y|+ |y|2 − |x|2

= (|x|2 + |y|2)2 − 4〈x, y〉2 − (|y|2 − |x|2)2

|x+ y||x− y|+ |y|2 − |x|2 = 4|x|2|y|2 − 4|x|2|y|2 cos2 θ

|x+ y||x− y|+ |y|2 − |x|2

= 4|x|2|y|2 sin2 θ

|x+ y||x− y|+ |y|2 − |x|2 .

From (3.21) we see that A ≥ 0 and that

A &
|x|2|y|2 sin2 θ

|x+ y||x− y|
,

and thus ( |x+ y|
|x− y|

) d
2
e−

A
2 .

( |x+ y|
|x− y|

) d
2
( |x+ y||x− y|
|x|2|y|2 sin2 θ

) d
2

.
1

(|x| sin θ)d
|x+ y|d

|y|d

.
1

(|x|θ)d ,

except when |y| << |x|. But in that exceptional case the first expression for A implies A ∼ |x|2,
and then |x+ y|/|x− y| ∼ 1, so that( |x+ y|

|x− y|

) d
2
e−

A
2 . |x|−d . (|x|θ)−d.

Next, by the globality assumption we have that( |x+ y|
|x− y|

) d
2
e−

A
2 . (|x+ y|(1 + |x|)) d2 . (1 + |x|)d

except when |y| >> |x|, in which case( |x+ y|
|x− y|

) d
2
e−A/2 . 1 . (1 + |x|)d.

Hence also the second inequality in a holds.
For b let 〈x, y〉 ≤ 0. We need only prove the first inequality, since the second is trivial.

Recalling (3.15), we shall prove that∫ 1

0

|rx− y|
(1− r2) d2 + 3

2
exp

(
|y|2 − |rx− y|

2

1− r2

)
dr . 1.

In this situation |rx− y|2 ≥ r2|x|2 + |y|2 and |rx− y| ≤ |x|+ |y|. Thus

|y|2 − |rx− y|
2

1− r2 ≤ |y|2 − r2|x|2 + |y|2

1− r2 = −r
2(|x|2 + |y|2)

1− r2
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and

pγi (x, y) .
∫ 1

0

|x|+ |y|
(1− r2) d2 + 3

2
exp

(
− r2(|x|2 + |y|2)

1− r2

)
dr.

We split the integral in two: first∫ 1
2

0

|x|+ |y|
(1− r2) d2 + 3

2
exp

(
− r2(|x|2 + |y|2)

1− r2

)
dr

. (|x|+ |y|)
∫ ∞
−∞

e−r
2(|x|2+|y|2) dr

.
|x|+ |y|

(|x|2 + |y|2) 1
2

∼ 1,

and then ∫ 1

1
2

|x|+ |y|
(1− r2) d2 + 3

2
exp

(
− r2(|x|2 + |y|2)

1− r2

)
dr

. (|x|+ |y|)
∫ 1

1
2

1
(1− r) d2 + 1

2
exp

(
− |x|

2 + |y|2

4(1− r)

) dr
1− r

. (|x|+ |y|)(|x|2 + |y|2)− d2− 1
2

∫ ∞
0

s+ d
2 + 1

2 e−s/4 ds
s

. 1,

where we made the change of variable s = (|x|2 + |y|2)/(1− r). �
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