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Abstract

This note reviews means for fatigue damage rates estimation using scaled Laplace distributed loads.
The model is suitable for description of stresses containing transients of random amplitudes and loca-
tions. Moment method to estimate model parameters is given. Explicit formulas to compute rainflow
damage rate as a function of excess kurtosis is presented. Laplace model is used to describe variability
of forces measured at some location on a cultivator frame is presented. Validation of the model and
uncertainty analysis in fatigue damage predictions is given.

Keywords: rainflow cycles, Laplace moving averages, cultivator loads, time scaled loads.

1 Introduction

Stochastic modeling of loads and responses is dominated by stationary Gaussian processes. Much
is known about those, and well-developed numerical tools to compute probabilities of interests are
available, see e.g. [8]. However, many of the environmental loads that act on ground vehicles, wind mill
blades and ships in heavy seas are far from being Gaussian. Nevertheless, Gaussian models are often
used, and this sometimes leads to serious underestimation of risks for fatigue or extreme responses. A
popular method to compensate for non-Gaussianity is to memoryless transform a Gaussian process to
achieve "correct", skewness and kurtosis, marginal distribution or level crossing intensity, see e.g. [[4],
[2] and [B] for more recent paper. However there are situations when transformed Gaussian models
are not available for example when stresses contains transients. Transients are often caused by impulse
loads, e.g. when ground vehicle passes a pothole, ship experiences slamming in rough waves or when
a cultivator tine hits a stone in a field.

Durability applications of components often requires a customer or market specific load description.
Hence one is interested in models that are capable of describing variability of loads with a relatively
small number of parameters. These can be then used to describe the long term loading by means of
a distribution of the parameters values in a given market or encountered by specific customers. For
stationary non-Gaussian responses with transients Laplace models, recently introduced in [II], [[Z], are
a possible alternative to the transformed Gaussian modeling. Laplace models are moving averages of
Laplace distributed white noise and hence named as Laplace moving averages (LMA). (Note that LMA
models contain Gaussian processes in the limit.)

Power spectral density (psd) is an important characteristics of stationary responses. For stationary
Gaussian responses the fatigue damage rate is a function of psd alone. Even for LMA psd remains an
important characteristics, however it in general does not determine the damage rate completely. In this
note a very simple, yet often used, parametric model of psd is used

S, (w) =0 a S(aw) a >0, (1)

where [ S(w) dw = 1 and o2 is the variance of the response (may depend on a). LMA responses with
psd given in () can be written as
Xo(t) =0 X(t/a), @)

where X (t) = X;(t)/o, having psd S(w), is a time and scale normalized LMA. The psd (@) and
process () have found applications in road roughness classifications, where a is a velocity a vehicle
travels while S(w) depends on the linear filter that has been used to model responses and the spectral



properties of a road profile, see [B]. In numerical examples in Sections 4 an 5 LMA (0) defined by psd
S(w) = 0.5 exp(—|w]|), which found application to model variability of measured stresses on cultivator
frame [[9], is used.

The note is organized as follows. In Section 2 the damage index is introduced. In Section 3 a
Gaussian process is represented as a moving average and then generalized to LMA. Further in that
section estimation of parameters defining LMA is discussed and means to evaluate the damage indexes
proposed. Section 4 contains example illustrating theory presented in Section 3. Finally, in Section 5,
LMA is applied to predict damage indexes in measured stresses on a cultivator frame. The model is
validated and uncertainty analyzes presented.

2 Damage index

Let s(t), 0 < ¢t < T, be measured or simulated stress. In this note the fatigue damage caused by s is
measured by means of the rainflow damage rate computed in the following two steps. First rainflow
ranges h:f “in s(t), are found, then the rainflow damage is computed according to Palmgren-Miner
rule [9], [8], viz. Dg(s) = Z(hffc)ﬁ, see also 1] for details of this approach. The damage index is
defined as the limit of damage rate as observation length 7" increases without bounds, viz.

dy(s) = tim 260 3)

Often stresses vary in an unpredictable way and are conveniently modeled by means of random
processes. Then s(t) is called a realization of the process S(t), say. If the stationary process S is
ergodic, what is often assumed, than the damage index is independent of the particular realization of
the process and

m ———, “

where for a random variable Z, E [Z] is its expected value. In other words damage index is the expected
increase of damage in time unit. For any stationary process X, (t), defined by (O),

ds(X,) = o’a™tdg(X). 6))

If X is Gaussian having a psd S(w), then X, is ergodic and dg(X) depends only on the psd. There
are many approximations of damage indexes for Gaussian loads proposed in the literature, see e.g. [4]
for comparisons of different approaches.

3 Laplace Moving Average (LMA) process

In this section we review some facts about LMA modeling. In Section Bl the Gaussian moving aver-
ages will be presented. These are then generalized to symmetrical LMA processes in SectionB2 and
to skewed LMAs in Section B3. In Sections B4 and B3 some aspects of fitting LMA to data are
discussed.

3.1 Gaussian Moving Average (GMA) process

A zero mean stationary Gaussian process is completely defined by its spectral density and thus any
probability statement about properties of Gaussian loads can be in principle expressed by means of
the spectral density. This is not always practically possible and hence Monte Carlo (MC) methods
are often employed to estimate probabilities of interest. There are several ways to generate Gaussian
sample paths. The algorithm proposed in [I3] is often used in engineering. It is based on the spectral
representation of a stationary process. Here we use an alternative way to generate Gaussian processes
employing moving averages of a Gaussian white noise. The method will be extended to LMA by simply
replacing the Gaussian noise by Laplace distributed white noise, see e.g. [[], [B], for more details.



Roughly speaking a moving average process is a convolution of a kernel function ¢(t), say, with a
infinitesimal “white noise” process having variance equal to the discretization step, say dt. Consider
a kernel function g, which is normalized so that its square integrates to one. Then the standardized
Gaussian moving average (GMA) with mean zero and variance one can be written as

x0 = [ gt - wan =Ygt~V ®

— 00

where B(t) is a Brownian motion, Z;’s are independent standard Gaussian variables, while dt is the
discretization step, i.e. AB(t;) = B(t; + dt) — B(t;) = V/dtZ;. A choice of appropriate length of the
increment dt is related to smoothness of the kernel.

In order to get the Gaussian process with a desired spectral density one has to use an appropriate
kernel g which has to satisfy the following equality

S(w) = 5= Fol) Folw)" ™

where Fg(w) stands for the Fourier transform of g, while z* is the complex conjugate of z. Obviously
for fixed spectrum S(w) Eq. (@) does not have unique solution. However if one limits to symmetrical
kernels, i.e. g(—t) = g(t) then the spectrum S(w) of X (¢) uniquely defines the kernel g since Fg(w)

is real valued and hence
Fg(w) = /27 S(w). )

For Gaussian processes any kernel satisfying () will define the same GMA. This is not true for LMA.

3.2 Symmetrical LMA

Approximately, LMA is obtained by replacing constant standard deviation of the Gaussian noise v/dt
by random std /K, where K; are iid. gamma distributed variables with shape parameter d¢/v and
scale v, v > 0, viz.

X(t) ~ Zg(t—ti)Zi VK. )

Variables v/ K; Z; have the generalized symmetric Laplace distribution, see [[]. As dt tends to a zero
the limiting (in distribution) process is the Laplace moving average (LMA) given by

X(t) = /+Oog(t—u) dA(w), (10)

—00

where A(t) is the Laplace motion, see [] for further details. Note that when v decreases to zero LMA
converges to GMA. MATLAB code to generate LMA/GMA can be found in [6].

3.3 Asymmetrical LMA

The LMA process defined above is symmetrical having skewness zero. Skewed LMA, defined in this
section, will have asymmetrical (skewed) distribution, i.e. its values are asymmetricaly distributed
around the mean. Further, if the kernel g satisfying (@) is asymmetrical, i.e. g(—t) # g(t) for some
t, then LMA is time asymmetrical, also called time irreversible. (Note that GMA are always value
symmetrical and time reversible.) In the following skewed LMA will be introduced.

Using iid. variables K, introduced in the previous section, a skewed (zero mean variance one)
LMA process X (t) is approximated by

X0~ Yot-t) (VI-AK 2+ L (K-an), -1sg<iap



Obviously if relative skewness parameter ¢ = 0 then the distribution of X (¢) is symmetric and other-
wise it is skewed. The process X (¢) given in () has zero mean and variance one, and, as dt tends to
zero, the skewness

+oo
sk =vq(3—¢°) / g(t)? dt, (12)

and the excess kurtosis .
ke=a2--P) [ gtar (13)

3.4 Fitting LMA to data - moments method

Let consider standardized (zero mean variance one) LMA process X (¢). Suppose that psd of X (¢) and
a kernel g(t) satisfying (@) has been estimated by some method. (Selection of ¢ is a difficult problem
which will not be discussed in this note.) Next, in order to define X one also needs to estimate relative
skewness ¢ and scale v. This can be done if skewness and excess kurtosis of X are available. The two
parameters are functions of ¢, v and the kernel g given in (IZ-I3). The function can be inverted as will
be shown next.

First consider a function
+oo 3 2
22(3 — 22)? (ffoo g(x) dcc)

F(x)=3(2_(1_x2)2) = gride 0<z<1.

The function increases from zero to

2
I OO
3 [Fg(t)rat

The parameter g is estimated by solving the following equation

sk?

Re

= F(|ql)-

. . . . 2
The unique solution exists only if k. > 0 and % < Friaz-
Then, the scale parameter v can be estimated using (I3), viz.

Ke 1

32— (-7 [T gty at (1

V=

3.5 Estimating X, defined by (2).

In the previous subsection means to estimate parameters of LMA process X (t) were presented. The
process X has variance one and psd S(w). It has a kernel g(t), which solves (@), the scale v and the
relative skewness ¢ chosen in such a way that skewness and kurtosis of X is equal to observed values
of these parameters in the response, see (I2-I3). Since X, (t) = 0 X (t/a) hence in order to define X,
one needs to estimate variance o2 and the scale factor a . In this note o2 is estimated by the observed
variance while the scale factor a is estimated by requiring that, in average, X, crosses the mean level
as frequently as it is observed in data.

More precisely, let 1°* be the observed mean stress crossing rate while y(v, ¢) be the mean level
crossings rate by X. Since the intensity of mean level crossings by X, process is equal to u(v,q)/a
hence a is estimated by

a=p(v,q)/pc. (15)

The intensity p(v, ¢) could be estimated by evaluating Rice’s formula [I0] or by means of MC methods.



Next some simple properties of X, will be given. The process ihas variance o and a kernel

9a(t) = a™'?g(t/a). (16)

Since Fga(w) = a'/2Fg(wa), Xa(t) has psd S,(w) given in (M). Tt is easy to see that X, has the
same relative skewness ¢ as the normalized process X while the scale v, say, of X, satisfies v, = av.
Obviously X and X, have the same skewness and kurtosis.

Finally, since LMA is ergodic, see [], the damage index of X is a function of kernel kernel g,
relative skewness ¢ and scale v and damage exponent f3, viz.

dg(X) = fs(v,q), (17)
and hence the damage index of X, (¢) is given by

dg(X,) = P aildg(X) = ailfg(l/, q). (18)

4 Example - LMA with exponential psd

In this section formulas given in Sections B4 and B by means of LMA having the following psd

S, (w) = 0.50% @ exp(—alw|), a>0. (19)

4.1 Kernel g,(t)

For an exponential psd there is a single parameter family of kernels for which moving average process
will have the spectrum (I[9). The kernels are defined by their Fourier transforms

fga(w;b) — /0.5(16—0.5a|w\~(1+ibsgn(w) 1n(|w|)2/7r)7 —1<b<1, (20)

where i = v/—1 and sgn(z) is the sign of z. For b = 0 the kernel is symmetrical and given by

2 a=1/? )1
o) = = ———.
9al) = =TT t/a)? @h
For b # 0 kernels are asymmetrical. In the following two kernels will be used; symmetrical g (a = 1,
b = 0 in (Z0)) and the "most" asymmetrical g defined by parameters a = 1, b = —1. The kernels are

shown in Figure [ as solid, dashed lines, respectively.

4.2 The parameters ¢, v

The relative skewness ¢ and the scale v are evaluated by inverting the relations (I2-I3). For LMA
model with symmetrical kernel (Z11) the equation system reads

sk? 0.3¢%(3 — ¢*)?
= — -1<¢g<1 22
e T oR-U-ey SIS o2
7.5
e = 2—-(1- 2)2 —.
he = v(2—(1-@P)2
Now for the asymmetric kernel, a = 1, b = —1, (IZ-L3) become
sk? 0.3¢%(3 — ¢*)?
= o -1<q¢<1, (23)
re . @-0-¢) !
ke = 2v(2—(1-¢%?).

One can see that ¢, v estimates depend on the chosen kernel g. For example consider a stress having
excess kurtosis K, = 1 and skewness sk = 0, and hence ¢ = 0. Then, time symmetrical LMA
(b = 0) will have the scale v = 7/7.5 while the time asymmetrical LMA, having kernel (Z0) with
a =1,b= —1, will have the scale v = 1/2.
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Figure 1: Two kernels having Fourier transform (P0); symmetrical kernel g(¢), a = 1,b = 0 (solid
line); asymmetrical kernel, « = 1,b = —1 (dashed line).

4.3 The damage index dz(X)

In this section dependence of the damage index on the choice of kernel will be illuminated. As men-
tioned before LMA is an ergodic process and hence the damage index is a deterministic function of
model parameters and the kernel, see (I8). Here MC study and non linear regression is used to estimate
the function. Only the case S = 3 is considered here.

For the exponential spectrum the estimated damage indexes d3(X) = f3(v,q) for ¢ = 0,0.3,0.4
and b = 0, —1, are presented in Figure D. The fitted regressions for symmetrical kernel (b = 0) are

f3(1,0) ~ 4.84+0.06v + 8.32v"/2 — 5.150'/3, (24)
f3(1,0.3) ~ 4.8440.03v +9.2801/2 — 6.5801/3, (25)
f3(1,0.4) =~ 4.84+0.93v + 1.6301/% + 0.160/3, (26)
while for asymmetrical kernel (b = —1) the damage indexes are
f3(1,0) =~ 4.84+0.37v + 3.800/2 — 2.231/3, 27)
f3(1,0.3) =~ 4.84 —0.02v + 6.460/% — 4.8801/3, (28)
f3(r,04) ~ 4.84+0.14v + 4.490/2 — 3.1001/3. (29)

The regression lines are shown in Figure . One can see that LM A with symmetrical kernel is more
damaging than the LMA with asymmetrical kernel.

S Modeling cultivator loads

In this section LMA with exponential spectrum is used to model damage accumulation in a frame of a
cultivator working in a sandy soil. It is assumed that the model is sufficiently accurate if the observed
damage index (estimated from measured stresses) differs by less than factor two from the "theoretical"
damage index (estimated from the model).

The data set consists of 12 measured multi-axial loads. Measurements are about 70 seconds long,
sampled with 500 Hz frequency. Loads are six dimensional, three forces and three moments. Here
only force F, will be modeled. In Figure B (left plot) fitted exponential psd (I9) is compared with the
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Figure 2: Examples of the regression fits for fz(v,q), 8 = 3, as function of v, for the symmetrical
kernel (24-I8) solid lines and dashed lines for time asymmetrical kernel (ZZ2-29). The relative skewness
q=0,0.3,04.

"empirical" psd. The empirical psd differs significantly from the fitted exponential psd, which basically
reflects a general decrease of signals energy with increase of frequency. In Figure B (right plot) a part of
measured force F,(t) is compared with corresponding simulation of fitted LMA. The simulated force
seams to vary in a similar manner as the measured one. Accuracy of prediction of damage indexes by
means of LMA is investigated next.
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Figure 3: Left: Logarithms of empirical psd of F,(t) (irregular line) and fitted exponential psd (solid
line). Right: Plot (a) - one minute of measured force on a cultivator frame. Plot (b) - one minute of
simulated LMA model of the force. Plot (c) - zoomed plot (a). Plot (d) zoomed plot (b).

5.1 Accuracy of LMA model - simulation study

This section is devoted to investigation of availability of LMA with exponential psd to predict amount
of fatigue damage accumulated in cultivator frame caused by experienced environmental loads. The
twelve measured responses are modeled separately. For each of measured forces three models are
fitted. Two of them are LMA with symmetrical and asymmetrical kernels, i.e. b = 0, —1 in (Z0),



respectively, while the third is Gaussian model. In the following simulation study one is investigating
accuracy of the damage index predictions for the three models. The simulation study is performed as
follows.

The total length of the measured signals is about 14 minutes. Fifty signals of that length were
simulated using the fitted models and relative indexes computed. (Note that parameters in LMA, GMA
models change each 70 seconds.) The relative damage index is defined as a ratio between simulated
index and the observed one. Obviously, relative index exceeding one means that a model is conservative
while relative index below one means that a model is underestimating the damage. Next 50 relative
damage indexes were averaged and results are given in Table [. In the table one can see that both LMA
models show good accuracy. LMA with symmetrical kernel is somewhat conservative. The GMA
model severely underestimate the damage for damage exponent 5 = 5.

Each 14 minutes long simulation consists of twelve 70 seconds long simulations of "local" LMA
models. In total 600 LMA samples were generated and damage indexes evaluated. The 600 damage
indexes are presented in Figures B and B for damage exponents 5 = 3, 5, respectively. The indexes
are presented as irregular lines. The solid lines are the observed damage indexes for the corresponding
measured stresses. The solid lines jumps between twelve levels since there were only 12 observed
damage indexes. In the figures one can see that most damaging loads are very well modeled by LMA,
while errors are larger for the less damaging loads. The models are more accurate for the higher damage
exponent as can be seen by comparing the plots in the two figures. Further, one can see that LMA with
asymmetrical kernel (b = —1) is less conservative than LMA with symmetrical kernel (b = 0).

Averages of relative damage indexes

damage exponents | =3 | B =5
LMA,b=0 1.28 1.32
LMA,b= -1 1.08 0.92
GMA 0.78 0.25

Table 1: Averages of 50 relative damage indexes for the proposed three type of models.
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Figure 4: Six hundred simulated damage indexes with damage exponent 3 = 3, the irregular line. The
corresponding observed damage indexes, the solid line. Left: LMA with symmetrical kernels b = 0.
Right: LMA with asymmetrical kernels b = —1.

5.2 Uncertainty analysis

Performing uncertainty analysis when predicting the accumulated fatigue damage is important. The
analysis can help in planning measuring campaigns to limit prediction errors and biases. In this section
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Figure 5: Six hundred simulated damage indexes with damage exponent 3 = 5, the irregular line. The
corresponding observed damage indexes, the solid line. Left: LMA with symmetrical kernels b = 0.
Right: LMA with asymmetrical kernels b = —1.

only two aspects of the analysis will be considered. Firstly main factors influencing the damage pre-
dictions will be found and their variability studied. Secondly, statistical uncertainties in damage index
estimation due to limited length of measured load will be investigated. In order to make presentation
short and transparent several parameters will be kept constant and their uncertainty will be neglected.
These parameters will be presented next.

Assumptions: Measured loads can be modeled by means of LMA having exponential spectrum
and symmetrical kernels, i.e. b = 0. (Results presented in Figures B and B indicates that b is not an
influential factor.) It is assumed that stresses have constant skewness, and hence the average relative
skewness parameter is used, viz. ¢ = 0.4. (Results presented in Figure D indicate that skewness of
response is not very influential factor on damage index.) The damage exponent [ is set to be three.
(This value is often used for welded structures.)

Main factors: Since LMA models with an exponential spectrum and symmetrical kernel (b = 0),
the skewness parameter ¢ = 0.4, are used to model measured response the theoretical damage index
ds3(X,), given by (IR), can be written in an explicit algebraic form

d3(X,) = 0%a"1(4.84 + 0.3k, + 0.93x2/2 +0.11£1/3)
= o3a7! f(ke). (30)

(Equations (Z8) and (Z3) were used to derive (BU). Three main factors influencing the damage index
are 0%, a1 and f(k.). Variability of the factors will be studied next.

Uncertainty of main factors: Using the twelve measure signals a sample of twelve "observed" values
of the factors were estimated. In Table O the variability of the factors is presented in form of means
and variances of natural logarithms of the factors. Sizes of statistical errors of estimates of the observed
factors were evaluated. The statistical uncertainties were negligible. Obviously the estimates of means
and variances of the logarithms of factors are statistically uncertain since these are based only on twelve
observations.

The results shown in the table indicate that the uncertainty of factor f(k.) is negligible and hence
the parameter v can be kept constant in all twelve LMA models. The variability of the factor a1 is
not negligible and contributes to the average damage index by about 7%. (Here, as it is customary
in such rough uncertainty analysis, it is assumed that the factors are independent and log normally
distributed.) Since LMA model is in average about 30% conservative, choosing a constant value for the
factor a~! would decrease the conservatism of LMA to 20%. The conclusion is that only variability
of standard deviation o should not be neglected and suitably modeled, for example by means of a log
normal distribution.

Statistical uncertainties of damage index estimates: As mentioned above the statistical uncertainty
in estimated values of factors in (BI) is negligible. What remains is to investigate statistical uncertainties
of damage index estimates caused by finite length of measured signals. This will be done as follows.

Note that d3(X,) (BO) is the expected damage index. The formula was derived by means of the-
oretical reasoning and a very long simulations of LMA. Now the 70 second long simulation may not



be long enough for accurate estimation of the index. In order to estimate this statistical uncertainty the
relative damage index, i.e. a ratio between estimated damage index from 70 seconds long sample of
LMA and the theoretical damage index (BO), will be used. This relative damage index k, say, is defined
by

dﬁ(xa) =k- dﬁ(Xa)a (3D
where z, is a simulated 70 second long sample of X, .

Employing 600 simulations presented in the previous section the 600 values of the factosr k were
evaluated. In Table D, last row, the mean and the variance of In(k) are given. One can see that vari-
ability of the factor is negligible, however the factors are in average smaller than one indicating a bias.
Conclusion is that measuring only for 70 seconds may lead to underestimation of the observed dam-
ages by about 9%. The reason for this is that the large transients that contributes largely to the damage
occur seldom and can be missed in 70 second long measured signals. This decreases conservatism
of the LMA model to about 10% in average. If this is too low value one could slightly increase the
conservatism of LMA by using symmetrical (skewness zero ¢ = 0) LMA models. This is recommend-
able since the goal of the modeling is to propose sufficiently accurate models with minimal number of
parameters that can change with loading environment.

Factors (BO-BT) | mean of log factor | variance of log factor
o? 1.40 1.462
a=! 4.95 0.132
f(ke) 2.02 0.029
k -0.18 0.005

Table 2: Estimates of mean and variance of natural logarithms of factors defined in equations (BQ - BT).

6 Conclusions

Laplace moving averages has been successfully used to model variability of measured stresses con-
taining transients. A hierarchical LMA model having random variance ¢ and exponentially decaying
spectrum has been proposed for the measured stresses on a cultivator frame. The parameters needed to
define the model are; mean and variance of In(o?); intensity of mean level crossings, giving the relative
time scale a, and the excess kurtosis x.. The model has been validated. It was found that statistical
errors in estimates of the parameters are negligible. However the relative short measuring period (70
seconds) caused systematic underestimation of damage indexes by about 9%. A possible explanation
is that transients with large amplitudes are rare and can be missed in short measured records.
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