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Adaptive approximate globally convergent
algorithm with backscattered data

M. Asadzadeh and L. Beilina

Abstract We construct, analyze and implement an approximatelly globally conver-
gent finite element scheme for a hyperbolic coefficient inverse problem in the case of
backscattering data. This extends the computational aspects introduced in [2], where
using Laplace transformation, the continuous problem is reduced to a nonlinear el-
liptic equation with a gradient dependent nonlinearity. Weinvestigate the behavior
of the nonlinear term and discuss the stability issues as well as optimal a posteri-
ori error bounds, based on an adaptive procedure, and due to the maximal available
regularity of the exact solution. Numerical implementations justify the efficiency of
adaptive a posteriori approach in the globally convergent setting.

1 Introduction

The inverse algorithms have a wide spectrum of application areas raging from min-
ing, detecting oil reservoirs, earth layers, explosives inairports to medical optical
imaging, etc. Efficiency of this problem, throughApproximate Globally Convergent
Approximation (AGCA)[22], was recently verified on blind imaging of the exper-
imental data that was measured in picoseconds scale regime.In [2] we performed
adaptive finite element technique directly inside the AGCA and derived optimal a
posteriori error estimates for a finite element approximation of a nonlinear ellip-
tic integro-differential equation. To further improving this efficiency we invoke an
adaptivity procedure inside the AGCA algorithm, introduced in [2] for the numer-
ical study of the hyperbolic coefficient inverse problem in two dimensions in the
case of the full data collection.
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Department of Mathematics, Chalmers University of Technology and the University of Gothen-
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2 M. Asadzadeh and L. Beilina

A direct numerical approach to solve coefficient inverse problems (CIP) is
through a minimization procedure for the least square residual functional. This how-
ever, may lead to multiple local minima for the functionals.To avoid such an ob-
stacle, in [20] a convexification algorithm was introduced for solution of the one-
dimensional CIP in imaging electromagnetic frequency. This algorithm was further
extended in [23] to higher dimensions with applications in diffusive optical mam-
mography. Convexification is the origin of the AGCA methods.Some modified ap-
proaches to the AGCA algorithms were introduced in [6, 7, 8, 9] and summarized
in [5], where a layer-stripping procedure was performed with respect to the pseudo-
frequency rather than the spatial variable which is the casein the convexification.
The Carleman weight function in [5, 6, 7, 8, 9] depends on the pseudo-frequency
and not on the spatial variable, as in [20, 23]. These new approaches contribute to
improved stability in the globally convergent reconstruction algorithm.

An alternative approach to solve CIP is a synthesis of a AGCA method and
a strongly converging, however, local scheme such as the adaptive finite element
method. In [7, 8] it was shown that the AGCA method provides a good initial guess
for the locally convergent adaptive method. A first application of these results for
the acoustic wave equation shows a good performance [7, 8, 9]. To compare with
[7, 8, 9], the present work introduces extensive implementation results for a new
such combination. Here adaptivity is performed directly inside the AGCA algorithm
in the case when we have only backscattered data at the observation boundary.

A concise description of the theoretical procedure is as follows: A Laplace trans-
formation in time converts the model problem to a convection-diffusion- type equa-
tion. The finite elements perform more accurately for elliptic and parabolic equa-
tions than the hyperbolic ones. Hence, the study of the CIP through combining a
time transformation followed by a finite element procedure,not only reduces the
dimension of the underlying problem, it also shifts the equation to a more desirable
one from the finite element point of view. To our knowledge, the combination of the
AGCA method, for a nonlinear elliptic problem and a posteriori procedure, using
adaptive algorithm, is not considered elsewhere.

The paper is organized as follows: In Section 2 we formulate both forward and
inverse problems and transfer the inverse problem to a Dirichlet boundary value
problem for a nonlinear integro-differential equation with a removed unknown co-
efficient. In Section 3 we introduce the layer stripping procedure with respect to
s> 0, the parameter of the Laplace transform in the original hyperbolic PDE. We
point out that here we do not use the inverse Laplace transform, since approxima-
tions for the unknown coefficient are obtained in the “Laplace’s domain”. In Sec-
tion 4 we describe a finite element method, state bounds for coefficients (derived
in [2]) and formulate a corresponding dual problem. Section5 is devoted to deriva-
tion of bounds for the nonlinear operator and a priori error estimates. In Section 6
we develop reliable and efficient a posteriori error estimates, for the full problem.
In Section 7 we introduce a new adaptive globally convergentalgorithm based on
a posteriori error estimate of Section 6. Finally, in our concluding Section 8 we
present the results of reconstruction of the function in twodimensions based on
adaptive AGCA algorithm.
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2 The forward and inverse problems

Consider the Cauchy problem for the hyperbolic equation

c(x)utt = ∆u, in Rn× (0,∞) , n = 2,3, u(x,0) = 0, ut (x,0) = δ (x−x0) .
(1)

Equation (1) describes, e.g. propagation of acoustic and electromagnetic waves.
Let Ω ⊂ Rn,n = 2,3 be a convex bounded domain with the boundary∂Ω ∈

Cn,n = 2,3. We shall assume thatc(x) satisfies the following conditions:

{
c(x) ∈ C2 (Rn) , 2d1 ≤ c(x) ≤ 2d2, d1 > 0, d2 > 0,
c(x) = 2d1, for x∈ Rn\Ω , Ω ⊂ Rn, n = 2,3,

(2)

where,d1 andd2 are given bounds for the functionc(x),
In this work we consider the case of thebackscattereddata, or such data which

are given only at a part of the boundary of the computational domain. Let us define
our computational domainΩ with the backscattered boundaryΓ :

Ω ⊂ {x = (x1,x2,x3) : x3 > 0} ,

Γ = ∂Ω ∩{x3 = 0} 6= ∅.

In our computations we will consider the case when the wave field is initialized by
the incident plane wave propagating along the positive direction of thex3−axis in
the half space{x3 < 0} and “falling” on the half space{x3 > 0}. Numerical tests in
section 8 are performed for the given functiong0 andg1, whereu(x,t) = g1(x,t) at
Γ andu(x,t) = g0(x,t) at∂Ω�Γ , with u(x,t) satisfying the Cauchy problem

utt −∆u = 0, in Ω × (0,∞),

u(x,0) = 0, ut(x,0) = f (x), in Ω .
(3)

Hence, in these tests we set

u(x,t) := g2 (x,t) =

{
g1 (x,t) ,(x,t) ∈ Γ × (0,∞) ,

g0,(x,t) ∈ (∂Ω�Γ )× (0,∞)
(4)

and consider the following Inverse problem:
Inverse Problem with backscattered data (IPB). Suppose that the coefficient

c(x) satisfies conditions (2) and it is unknown in the domainΩ . Determine the
function c(x) for x ∈ Ω , assuming that the function g2(x,t) in (4) is known for a
single direction of the incident plane wave propagating along the positive direction
of x3−axis in the half space{x3 < 0} and falling on the half space{x3 > 0}

We note that our formulation of IPB is for the case of a plane wave. In the case
of problem (1), with a Dirac delta function as initial data, the formulation of In-
verse Problem IPB is similar. In this case we should replace the wording “for a
single direction of the incident plane wave propagating along the positive direction
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of x3−axis in the half spacex3 < 0 and falling on the half space{x3 > 0} ”, by the
expression “for a single source positionx0 ∈ {x3 < 0}”.

Next, we use the Laplace transform

U(x,s) =

∞∫

0

u(x,t)e−stdt, for s> s> 0, (5)

wheres is thepseudo-frequencyconstant. Recall that it suffices to choosessuch that
the integral (5) and its first partial derivatives inx andt converge. ThenU satisfies

{
∆U −s2c(x)U = −δ (x−x0)c(x0), ∀s≥ s> 0,
lim|x|→∞ U(x,s) = 0, ∀s≥ s> 0.

(6)

For everys≥ s, the equation (6) possesses a positive, unique solutionU .

2.1 The nonlinear integro-differential equation with eliminated
unknown coefficient

Introducing the functionv = lnU , sincex0 /∈ Ω , then (6) yields

∆v+ |∇v|2 = s2c(x) , in Ω , (7)

v(x,s) = lnG(x,s) , ∀(x,s) ∈ ∂Ω × [s,s] , (8)

whereG(x,s) is the Laplace transform of the data functiong(x,t). To single out the
unknown coefficientc(x) in (7), we introduce a new function

H (x,s) =
v
s2 . (9)

Assuming certain regularity conditions ( [6]), it follows thatH satisfies

∆H +s2 |∇H|2 = c(x) . (10)

Next let
q(x,s) = ∂sH (x,s) , (11)

then using (11)

H (x,s) = −

∞∫

s

q(x,τ)dτ := −

s∫

s

q(x,τ)dτ +W(x,s) , (12)

wheres> s0 is a large number and
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W(x,s) ≈ H (x,s) =
lnU (x,s)

s2 . (13)

W(x,s) is known as thetail function. To determineW we need to choose the param-
eters numerically. We includeW either on the right hand side in iteration steps as
data, or study it as an unknown in a coupled system of equations.

Differentiating (10) with respect tos, from (12)-(13), we obtain the following
nonlinear integro-differential equation forq = q(x,s),

∆q −2s2∇q ·

s∫

s

∇q(x,τ)dτ +2s




s∫

s

∇q(x,τ)dτ




2

+2s2∇q∇W−2s∇W ·

s∫

s

∇q(x,τ)dτ +2s(∇W)2 = 0.

(14)

By (8), (9) and (11) we may impose the following Dirichlet boundary condition

q(x,s) = ψ (x,s) , ∀(x,s) ∈ ∂Ω × [s,s] . (15)

whereψ satisfies

ψ
(

x,s
)

=
Gs

Gs2 −
2lnG

s3 . (16)

Suppose thatDα
x q, |α| ≤ 2 are already approximated. Then the coefficientc(x) can

be, approximately, determined using (10), whereH is given by (12), which requires
an initial guess forW as well.

3 A Sequence of elliptic Dirichlet boundary value problems

We approximateq(x,s) with a piecewise constant function with respect tos. Assume
a partitions= sN < sN−1 < ... < s1 < s0 = s, sn−1−sn = k of [s, s] with a sufficiently
small and uniform step sizek such thatq(x,s) = qn (x) for s∈ (sn,sn−1). Hence,

∫ s

s
∇q(x,τ)dτ = (sn−1−s)∇qn(x)+k

n−1

∑
j=1

∇q j(x), s∈ (sn,sn−1). (17)

We approximate the boundary condition (15) as being piecewise constant ons,

qn (x) = qn (x) , x∈ ∂Ω , j = 1, . . . ,n, (18)

where

f n (x) =
1
k

sn−1∫

sn

f (x,s)ds. (19)
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On each subinterval(sn,sn−1] ,n ≥ 1, we assume thatq j (x) , j = 1, ...,n− 1 are
known. In this way, for eachn, n = 1, . . . ,N, we obtain an approximate equation
for qn (x). Now we insert (17) in (14) and multiply the resulting equation by the
Carleman Weight Function (CWF).

Cn,λ (s) = eλ (s−sn−1), s∈ (sn,sn−1], λ >> 1, (20)

and integrate overs∈ (sn,sn−1]. ( see Theorem 6.1 [6]). We obtain forn = 1, ...,N,

Ln

(
qn,Wn

)
− εqn =: ∆qn−A1,n

(
k

n−1
∑

i=1
∇qi

)
∇qn +A1n∇qn∇Wn− εqn

≈ 2
I1,n
I0

(
∇qn

)2
−A2,nk2

(n−1
∑

i=1
∇qi(x)

)2
+2A2,n∇Wn

(
k

n−1
∑

i=1
∇qi

)
−A2,n

(
∇Wn

)2
.

(21)
The term−εqn is added for regularizing purpose. The coefficients are computed as:

I0 : =

∫ sn−1

sn

Cn,λ (s)ds, I1,n :=
∫ sn−1

sn

s(sn−1−s)[s− (sn−1−s)]

A1,n : =
2
I0

∫ sn−1

sn

s[s−2(sn−1−s)]Cn,λ (s)ds, A2,n :=
2
I0

∫ sn−1

sn

sCn,λ (s)ds.

Thus we have the Dirichlet boundary value problem (21), withthe boundary data
(18). In this system the tail functionW is also unknown. Observe that,

|I1,n (λ ,k)|
I0 (λ ,k)

≤
4s2

λ
, for min(λk, s̄) ≥ 1. (22)

Therefore takingλ >> 1 we mitigate the influence of the nonlinear term with
(∇qn)

2 in (21), which enables us to solve a linear problem on each iterative step.

4 A finite element discretization

We approximate the solution for (21) by a finite element method with continuous
piecewise linear functions ona partially structured meshin space, and implement
resulting scheme using a hybrid code. More specifically, we decompose the com-
putational domainG into Ω ⊂ G andΩ c = G\Ω , and discretizeΩ by an unstruc-
tured mesh andΩ c by a quasi-uniform mesh. InΩ , for eachn, we use a partition
Tn,h = {K}. Hereh = h(x) denotes a piecewise constant mesh functionh = h(x)
representing the diameter of the elementK containingx, and(·, ·) and‖ · ‖, denote
theL2-inner product and norm, respectively.

Choosingc(x) = 1 for x∈ Ω c, giveng(x,t) = u |∂Ω , we can uniquely determine
the functionu(x,t) as the solution of the boundary value problem for equation (1)
with boundary conditions on both boundaries∂G and ∂Ω . Next, using Laplace
transform ofu(x,t), (9) and (11) one can uniquely determine ˜q(x),
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q̃(x) =:
∂q
∂n

∣∣∣
∂Ω

, (23)

heren is the outward unit normal to the boundary∂Ω at the pointx ∈ ∂Ω . In our
computations the functionsp(x,t) , q̃(x) andg(x,t) are calculated from the solution
of the forward problem (21) with the exact value of the coefficientc(x). A variational
formulation for (21) is: forn = 1, . . . ,N; find Vn, qn ∈ H1(Ω) such that

F (qn,Vn;ϕ) =: (∇qn,∇ϕ)+ (A1,n(k
n−1
∑

i=1
∇qi)∇qn,ϕ)− (A1n∇qn∇Wn,ϕ)+ (εqn,ϕ)

+(2
I1,n
I0

(∇qn)
2 ,ϕ)− (A2,nk2(

n−1
∑

i=1
∇qi (x))2,ϕ)+ (2A2,n∇Wn(k

n−1
∑

i=1
∇qi),ϕ)

−(A2,n (∇Wn)
2 ,ϕ) ≈ (q̃n,ϕ)∂Ω , ∀ϕ ∈ H1(Ω).

(24)
To formulate a finite element method for (21), we introduce the trial spaceVq

n,h,

Vq
n,h := {vn ∈ H1(Ω) : vn|K ∈ P1(K), ∂nvn|∂Ω = q̃n,h, ∀K ∈ Tn,h},

wheren = 1, . . . ,N, P1(K) denotes the set of linear functions onK and q̃n,h is an
approximation for ˜q(x). We also introduce the test function spaceVn,h defined as

Vn,h := {vn : vn is continuous onΩ , andwn|K ∈ P1(K), ∀K ∈ Tn,h}.

Vn,h andVq
n,h ⊂H1(Ω). The finite element for (21) is formulated as: forn= 1, . . . ,N,

find qn,h andWn,h ∈Vq
n,h, approximations ofqn andWn, respectively; such that

F (qn,h,Wn,h;ϕ) ≈ (q̃n,h,ϕ)∂Ω , ∀ϕ ∈Vn,h. (25)

subtracting (25) from (24) we get the classicalGalerkin orthogonality:

F (qn,Wn;ϕ)−F (qn,h,Wn,h;ϕ) ≈ 0, ∀ϕ ∈Vn,h. (26)

Now, we introduce the residual,Rn := Rn(qnh,Wn,h), for a discrete solution for (21)
as follows: for n = 1, . . . ,N; find qnh, Wn,h ∈Vq

n,h such that

−∆hqnh +A1,n

(
k

n−1
∑

i=1
∇qi h

)
∇qnh−A1n∇qnh∇Wnh + εqnh +2

I1,n
I0

(qnh)
2

−A2,nk2

(
n−1
∑

i=1
∇qi h (x)

)2

+2A2,n∇Wnh

(
k

n−1
∑

i=1
∇qi h

)
−A2,n(∇Wnh)

2 := Rn,

qnh|∂Ω = q̃,
(27)

where∆hqnh denotes the discrete Laplacian defined by

(∆hqnh,η) = (∇qnh,∇η), ∀η ∈Wn,h. (28)
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Let nowen,h = qn−qn,h, n = 1, . . . ,N, then a modified form of the Galerkin orthog-
onality (26), yields the strong error representation formula:

−∆hen,h +I1∇en,h + εen,h+2
I1,n
I0

[
(∇qn)

2− (∇qn,h)
2
]

+I2 · (k
n−1
∑

i=1
∇ei,h)+ I3 ·∇Θn = −Rn.

(29)

For each interval[sn,sn−1), we rewrite (29) (we suppressn) and consider the equa-
tion

Γ e := −∆e+C1∇e+ εe+ δΛe= −C2

(
k∑n−1

i=1 ∇ei

)
−R−C3∇Θ

e|∂Ω = 0,
(30)

whereCj , j = 1,2,3 are corresponding to the spatially continuous versions ofI j :s,
δ := I1,n/I0 andΛ , the nonlinear term, is defined by

Λe := |∇q|2−|∇qh|
2. (31)

In (30) the error inW is included in theΘ -term and the residual termR satisfies

(R,ϕ) ≈ 0, ∀ϕ ∈Vn,h. (32)

5 Bounds for the nonlinear operatorΛ and a priori estimates

Below we derive a bound forΛ , using f (q) = |∇q|2, 0< θ < 1, and

D f (θq+(1−θ )qh) = D

(
|∇(θq+(1−θ )qh)|

2
)

= 2
(
|∇(θq+(1−θ )qh)|

)
·
(
D |∇(θq+(1−θ )qh)|

)
,

(33)

whereD f is given in the Taylor expansion off (qh) aboutq, viz:

f (qh) = f (q)+ (qh−q)D f (θq+(1−θ )qh). (34)

We may writeΛe in a compact form as

Λe= 2e
(
|θ∇e+ ∇qh|

)
·
(
D |∇(θq+(1−θ )qh)|

)
. (35)

5.1 The dual problem for a linearized approach

Here, we sketch a framework for the dual approach for alinear/linearized versionof
(30). To begin with, we assume thatΛ is a linear operator and let
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Γ ⋆ϕ := −∆ϕ −C1∇ϕ + εϕ + δΛ⋆ϕ = e, n = 1, . . . ,N, ϕ |∂Ω = 0, (36)

with Γ ⋆ andΛ⋆ being the adjoints ofΓ andΛ , respectively. By (30) we have that

‖e‖2
L2(Ω) = (e,Γ ⋆ϕ) = (Γ e,ϕ) = −(R̃,ϕ). (37)

The identity (37) is known asthe error representation formula. Using the identities

−(χ ,ϕ −Phϕ) = −(χ −Phχ ,ϕ −Phϕ), (38)

for χ = R, χ = C2 ∑n−1
i=1 ∇ei , or χ = C3∇Θ , wherePh : L2(Ω) →Wn,h is theL2(Ω)-

projection, and we have used the orthogonalityR ⊥ Wn,h, and the strong stability
estimates for the dual problem, we get from (37) (see [2] for details) that

‖e‖L2(Ω) ≤CsCi
∥∥h2(R̃ −PhR̃)

∥∥≤CCsCi
∥∥h2(R−PhR)

∥∥ , (39)

whereCi andCs are interpolation and stability constants respectively. Recalling (35)

(Λ⋆ϕ ,e) = (ϕ ,Λe) = 2
(

ϕ ,
[
|θ∇e+ ∇qn|

]
·
[
D |∇(θq+(1−θ )qh)|

]
e
)
. (40)

For piecewise linear approximation, successive use of Hölder inequality yields

|(Λ⋆ϕ ,e)| ≤C‖ϕ‖‖e‖‖q‖W2
∞

(
‖qh‖W1

∞
+‖e‖W1

∞

)
. (41)

Thus we get the following estimate for the nonlinear operator Λ :

‖Λ‖ ≤ ‖q‖W2
∞

(
‖qh‖W1

∞
+‖e‖W1

∞

)
.

Theorem 1 (An a priori error bound). Let qn ∈W2
2 (Ω) and qnh, be the solutions

for (24) and (25), respectively. Then for a piecewise linearfinite element approxi-
mation error en = qn−qn,h we have (see [2]) that

‖en‖ ≤Ch‖qn‖W2
2

= O(h). (42)

6 A posteriori error estimation

The a posteriori error analysis is based on representing theerror in terms of the
solutionϕ of the dual problem, related to (21). We recall the problem (30) and write
the dual problem for all[sn,sn−1), n = 1, . . . ,N, as

−∆ϕ −C1∇ϕ + εϕ + δΛ⋆ϕ + δ |∇ϕh|
2 +C̃ϕ,Θ = ψ , ϕ |∂Ω = 0, (43)

whereC̃ϕ,Θ :=C2k∑n−1
i=1 ∇ϕi +C3∇Θ is assumed to be known from the previous iter-

ation steps, andΘ =Θn =Wh−Wn,h. We assume thatΘ ∈H1
loc andϕh ∈W1,4

loc . Thus,
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we wish to control the quantity(e,ψ) with e = q− qh in Ω , whereψ ∈ [L2(Ω)]3

is given. For approximations of spectral order> 1, (for linear approximation the
J5-term below will vanish) we may write

(ψ ,e) ≈−(∆ϕ ,e)− (C1∇ϕ ,e)+ (εϕ ,e)− δ (|∇qh|
2
D(ϕ),e)

+δ (D(|∇qh|
2 ϕ),e)+ δ (|∇ϕh|

2 ,e)+ (C̃ϕ,Θ ,e) =: ∑7
k=1Jk.

(44)

Due to the limited regularity of the approximate solutionqn,h, the scalar products
I j , j = 1, . . . ,7, involvinge= qn−qn,h, should be performed elementwise:( f ,g) :=
∑K( f ,g)K . This will introduce accumulative sum of the normal derivatives over
enter-element boundaries. Taking into account these boundary terms, by repeated
use of Green’s formula, we can recompute eachJj , j = 1, . . . ,7, separately. In this
way, finally we obtain the following error representation inequality:

Lemma 1. Let ϕ be the solution of the dual problem (43), q that of (24), and qh the
FEM solution of (25). Then the following error representation inequality holds true:

∣∣(ψ ,e)
∣∣≤ (|R̃1|, |σ |)+ (|R̃2|, |σ |)+C3(|∇Θ | , |e|)+ δ (|∇ϕh|

2 , |e|), (45)

where the residuals are defined as

R̃1 =: ∆he−C1∇e− εe− δΛe−C2k
n−1

∑
i=1

∇ei , R̃2 = max
S⊂∂K

h−1
K

∣∣[∂sqh
]∣∣, (46)

and interpolation error is
σ = hK

[
∂nϕh

]
. (47)

Now we use, elementwise, Hölder inequality and Letψ = e to obtain the following
a posteriori error estimate:

Theorem 2.Let ϕ be the solution of the dual problem (43), q the solution of (24),
and qh the FEM solution of (25). Then there is a constant C, independent ofΩ and
h, such that forψ − δ |∇ϕh|

2 = e the following a posteriori error estimate holds:

‖e‖2 ≤Ch
[(

‖R1‖L2(Ω) +‖R2‖L2(Ω)

)
‖σ̃‖L2(Ω) +h|C3|

2
]
, (48)

where h= maxK(hK), R1 = R̃1(qh)= ∆hqh+C1∇qh−εqh−δΛqh−C2k∑n−1
i=1 ∇qh,i ,

R2 = R̃2 is given in (46),σ̃ =
[
∂nϕh

]
, andR3

∣∣∣
K

:= |∇Θ |
∣∣∣
K

can be estimated as

‖R3‖
2
L2(Ω) ≈CΩ ξ 2 ∼Ch2, whereas choosingψ := e+ δ |∇ϕh|

2 +C3 |∇Θ | yields

‖e‖2 ≤Ch
(
‖R1‖L2(Ω) +‖R2‖L2(Ω)

)
‖σ̃‖L2(Ω) . (49)
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7 The Adaptive Approximate Globally Convergent Algorithm

In this section we present our adaptive globally convergentalgorithm, where we use
Theorem 2 which states that the error, between the exact and approximate solution
for the functionsqn of the equation (21), depends on the residuals given by (46).
However, in the case of using continuous piecewise linear finite element approx-
imation of functionsqn, only the first residualR̃1 will appear. To calculate it we
should find an approximate solutionqn of the equation (21) on every mesh. We get
qn asqn = limk→∞ qk

n, wherek is the number of iterations with respect to the tail
functionWn(x, s̄).

To solve equation (21) on a new refined mesh we first linearly interpolate the
functionψ̄n, given by (15), for each pseudo-frequency interval[sn,sn−1). Then, on
every mesh we compute approximationscn of c(x) using variational formulation of
the equation (7), see [5] for full details. Thus, we can explicitly compute the function
cn on every frequency interval(sn,sn−1) through the finite element formulation.

We denote the stopping numberk (on which these iterations are stopped) bymn.

7.1 An Approximate Globally Convergent Algorithm

Below, we briefly describe a globally convergent algorithm of [5, 6, 8] which we
use in our computations and in the adaptive globally convergent algorithm.

Step 0. n1,n ≥ 1. Stage 1: iterate with respect to the nonlinear term. Assume
that the functionsq1, ...,qn−1,q0

n,1(:= qn−1) ∈ C2+α(Ω) and the tail function

Vn,0(x,s) ∈C2+α(Ω) are already constructed. Then, we solve,iteratively, the fol-
lowing Dirichlet boundary value problems: Fork = 1,2, ..., find qn,1 such that

∆qk
n,1−A1n

(
h

n−1
∑
j=1

∇q j

)
·∇qk

n,1− εqk
n,1+A1n∇qk

n,1 ·∇Wn,0

= 2 I1n
I0

(
∇qk−1

n,1

)2
−A2nh2

(
n−1
∑
j=1

∇q j (x)

)2

+2A2n∇Wn,0 ·

(
h

n−1
∑
j=1

∇q j (x)

)
−A2n(∇Wn,0)

2 ,

qk
n,1 = ψn (x) , x∈ ∂Ω .

(50)

As a result, we obtain the functionqn,1 := limk→∞ qk
n,1 in theC2+α(Ω).

Step 1. Computecn,1 via backwards calculations using finite element formulation
of equation (7), see Chapter 3 of [5] for details.

Step 2. Solve the hyperbolic forward problem withcn(x) := cn,1 (x) , calculate the
Laplace transform and the functionUn,1 (x,s).

Step 3. Find a new approximation for the tail function
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Wn,1(x) =
lnUn,1 (x,s)

s2 . (51)

Step 4. ni , i ≥ 2. We now iterate with respect to the tails (51). Suppose that func-
tionsqn,i−1,Wn,i−1 (x,s) ∈C2+α (Ω

)
are already constructed.

Step 5. Solve the boundary value problem

∆qn,i −A1n

(
h

n−1
∑
j=1

∇q j

)
·∇qn,i −κqn,i +A1n∇qn,i ·∇Wn,i−1

= 2 I1n
I0

(∇qn,i−1)
2−A2nh2

(
n−1
∑
j=1

∇q j (x)

)2

+2A2n∇Wn,i−1 ·

(
h

n−1
∑
j=1

∇q j (x)

)
−A2n(∇Wn,i−1)

2 ,

qn,i (x) = ψn (x) , x∈ ∂Ω .

(52)

Step 6. Computecn,i by backwards calculations using finite element formulation
of equation (7), see Chapter 3 of [5].

Step 7. Solve the hyperbolic forward problem (1) withcn (x) := cn,i , compute the
Laplace transform and obtain the functionWn,1 (x,s) .

Step 8. Find a new approximation for the tail function

Wn,i (x) =
lnUn,i (x,s)

s2 . (53)

Step 9. Iterate with respect toi and stop iterations ati = mn such thatqn,mn :=
lim i→∞ qk

n,i . Stopping criterion for computing functionsqk
n,i is

eitherFk
n ≥ Fk−1

n or Fk
n ≤ η , (54)

whereη is a chosen tolerance andFk
n are defined as

Fk
n =

||qk
n,i −qk−1

n,i ||L2(Γ )

||qk−1
n,i ||L2(Γ )

Step 10. Set

qn := qn,mn, cn(x) := cn,mn(x), Wn+1,0(x) :=
lnWn,mn (x,s)

s2 .

Step 11. We stop computing functionsck
n,i when

either Nn ≥ Nn−1 or Nn ≤ η , (55)

where
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Nn =
||ck

n,i −ck−1
n,i ||L2(Ω)

||ck−1
n,i ||L2(Ω)

. (56)

7.2 Adaptive Approximate Globally Convergent Algorithm

In computations of section 8 we use the following adaptive approximate globally
convergent algorithm:

Step 0. Choose an initial meshKh in Ω and an initial time partitionJ0 of the time
interval (0,T) . Compute an initial approximationc0

n,mn
using an approximate

globally convergent algorithm described above on the initial mesh, see [5] for
the details. Compute the sequence of functionsc j

n,mm, where j > 0 is the number
of mesh refinements, on adaptively refined meshes via following steps:

Step 1. Compute the initial approximation for the tail function Wn(x, s̄) on a new
meshKh using the computed solution of the hyperbolic problem (3).

Step 2. Compute the finite element solutionsq j
n(x,s) of equation (21) on a refined

meshKh on the pseudo-frequency interval(sn,sn−1) using Algorithm of section
7.1.

Step 3. Update the coefficientc j
n on Kh using the finite element formulation for

(7).
Step 4. Stop computingc j

n and obtain the functionc j
n,mn using the criterion (55).

Step 5. Refine the mesh at all the points where

c j
n,mn

(x) ≥ β1max
Ω

c j
n,mn

. (57)

The tolerance numberβ1 ∈ (0,1) is chosen by the user.
Step 6. Construct a new refined meshKh in Ω and a new time partitionJτ of the

time interval(0,T) satisfying the CFL condition, and return to step 1 and perform
all of the above steps on the new mesh.

Step 7. Stop mesh refinements and obtain the functionc j
n,mn if norms defined in

the criterion (55) are fullfilled.

8 Imaging of land mines using an adaptive approximate globally
convergent algorithm

In this section we present numerical implementation of an adaptive approximate
globally convergent method with backscattered data in two dimensions. Our goal is
reconstruction of land mines from backscattered data usingan adaptive approximate
globally convergent algorithm of section 7.2.
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Let the ground be{x = (x,z) : z> 0} ⊂ R2. Suppose that a polarized electric
field is generated by a plane wave, which is initialized at theline

{
z= z0 < 0,x∈ R

}

at the moment of timet = 0.
In our model we use the well-known fact that the maximal depthof an antiperson-

nel land mine does not exceed approximately 10 centimeters (cm)=0.1 meter (m),
and we model these mines as small rectangles with length of side 0.2 meter and
width of side 0.1 meter. In our computations we are interested in imaging of land
mines when one mine is located very close to the other one. This is an important
case in the real-life military applications.

We have modelled such a problem on a domainΩ , see Figure 1, viz: We set

Ω̃FEM = {x =(x,z) ∈ (−0.3,0.3) m× (0.05,0.45)m} ,

and introduce a dimensionless spatial variablesx′ = x/(0.1m), so that the domain
Ω̃FEM is transfered into a dimensionless computational domain

ΩFEM = (−3.0,3.0)× (0.5,4.5) .

We choose values of functionc(x) using tables of dielectric constants [35], and
use the fact that in the dry sandc = 5 and in the trinitrotoluene (TNT)c = 22.
Thus, the relation of mine/background contrast is 22/5≈ 4, hence we consider new
parameters

c′ =
c
5
,

to get
c(dry sand)= 1, c(TNT) ≈ 4. (58)

For simulation of backscattered data for the inverse problem IPB, we solve the
forward problem using the software package WavES [36]. The dimensionless size
of our computational domain isΩ = [−4.0,4.0]× [0,5.0]. This domain is split into
a dimensionless finite element domainΩFEM = [−3.0,3.0]× [0.5,4.5] and a sur-
rounding domainΩFDM with a structured mesh,Ω = ΩFEM∪ΩFDM, see Figure 1.
The spatial mesh inΩFEM and inΩFDM the mesh consists of triangles and squares,
respectively. The mesh size ish̃ = 0.125 in the overlapping regions. The boundary
of the domainΩ is ∂Ω = ∂Ω1∪∂Ω2∪∂Ω3. Here,∂Ω1 and∂Ω2 are respectively
top and bottom sides of the domainΩ , see Figure 1, and∂Ω3 is the union of left
and right sides of this domain. We define the boundary of the domain ΩFEM as
Γ = Γ1∪Γ2 ∪Γ3. Here,Γ1 andΓ2 are respectively top and bottom sides of the do-
mainΩFEM, see Figure 1, andΓ3 is the union of left and right sides of this domain.

We use the hybrid method of [10]. Since in our applications weknow value of
the coefficientc(x) outside of the domain of interestΩFEM such that

c(x) = 1 in ΩFDM, (59)

hence we need to determinec(x) only in ΩFEM.
The forward problem in our computational test is
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a) Ω = ΩFEM∪ΩFDM b) ΩFDM c) ΩFEM

Fig. 1 a) Geometry of the hybrid mesh. This is a combination of the quadrilateral mesh in the
subdomainΩFDM b), where we apply FDM, and the finite element mesh in the innerdomain
ΩFEM c), where we use FEM. The solution of the inverse problem is computed inΩFEM. The trace
of the solution of the forward problem (60) is recorded at thetop boundaryΓ1 of the finite element
domainΩFEM.

c(x)utt −∆u = 0, in Ω × (0,T),

u(x,0) = 0, ut(x,0) = 0, in Ω ,

∂nu = f (t) , on ∂Ω1× (0,t1],

∂nu = −∂tu, on∂Ω1× (t1,T),

∂nu = −∂tu, on∂Ω2× (0,T),

∂nu = 0, on ∂Ω3× (0,T),

(60)

where f (t) is the amplitude of the initialized plane wave,

f (t) =
(sin(ωt−π/2)+1)

10
, 0≤ t ≤ t1 :=

2π
ω

. (61)

To compute the data for the inverse problem we solve the forward problem (60)
with ω = 7.0 in (61) and in the timeT = (0,6) with the time stepτ = 0.01 which is
satisfied the CFL condition, and save the solution of this problem at the top boundary
Γ1 of the finite element domainΩFEM. Figures 2 shows isosurfaces of the computed
solution of the problem (60) in the computational domainΩ .

In our test we also define the set of admissible coefficients for the functionc(x)
in ΩFEM as

Mc = {c(x) : c(x) ∈ [1,8] , c(x) = 1 ∀x ∈ R2�Ω ,c(x) ∈C2(R2) .}

8.1 Numerical Results

We have performed two set of tests. In the first test we solve IPB using approximate
globally convergent algorithm of section 7.1, and in the second test we solve IPB
using adaptive approximate globally convergent algorithmof section 7.2. The goal
of both tests was to reconstruct structure given on Figure 1-a).
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a) t= 3.0 b) t=4.0

c) t=5.0 d) t=6.0

Fig. 2 Isosurfaces of the computed exact solution for the forward problem (60) at different times
with a plane wave initialized at the top boundary.
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Fig. 3 Backscattered data for the function q at the top boundaryΓ1 of the computational domain
ΩFEM computed for the different values of the pseudo-frequency s.
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a) Test 1:c7,9 ≈ 4.17

b) Test 2:c1
5,4 ≈ 3.5

Fig. 4 Computed images using backscattered data obtained from thegeometry presented on Fig-
ure 1-a). a) Test1: location and contrast of inclusions are accurately imaged. b) Test2: location,
contrast and shape of inclusions are accurately imaged. Thecomputed function c= 1 outside of
imaged inclusions.

The backscattered data at the boundaryΓ1 in both tests were computationally
simulated using the software package WavES [36] via solvingthe hyperbolic prob-
lem (60) with known values of the coefficientc = 4 inside two inclusions of Figure
1-a) and with 5% additive noise in simulated data.

Figure 3 displays sensitivity of the simulated functionq(x,s) ,x ∈ Γ1 for s= 2
ands= 3. We observed, that all values of the function|q(x)| for s> 5 are very noisy
and does not show sensitivity to the inclusions. Because of that we decided to take
pseudo-frequency intervals= [2,3], where the computed functionq(x,s),x ∈ Γ1 is
most sensitive to the presence of two inclusions. We run bothtests with the step in
the pseudo-frequencyh = 0.05.
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8.2 Test 1

In this test we solve IPB using globally convergent algorithm of section 7.1. The
boundary conditions for the integral-differential equation (50) were replaced with
the following Dirichlet boundary conditions

qn|Γ1 = ψ1n(x), qn|Γ2∪Γ3 = ψ2n(x),

where functionψ1n(x) andψ2n(x) are generated by functionsg1(x,t) andg0(x,t),
respectively, defined in (4). In this test we simulated the functiong0(x,t) at Γ2∪Γ3

by solution of the forward problem (60) withc(x) = 1 at every point of the compu-
tational domainΩ . The Dirichlet boundary condition atΓ2∪Γ3 is also approximated
and it is necessary to solve the integral-differential equation (50).

An approximate globally convergent algorithm of section 7.1 was used to calcu-
late the image of Figure 4-a). We observe that the location ofboth mine-like targets
is reconstructed accurately and the contrast max[ccomp(x)] = 4.17 is also accurately
imaged (exactc(x) = 4 in both inclusions).

However, in this test we were not able to separate images for both mines. We
could only image them as one big inclusion. In the next test wetry to improve
the result of the reconstruction of the Test 1 using an adaptivity technique inside
approximately globally convergent method.

8.3 Test 2

In this test we solve IPB using an adaptive globally convergent algorithm of section
7.2. This algorithm was used to calculate the image of Figure4-b) which was ob-
tained on the one time refined mesh. We observe that not only location and contrast
of both mine-like targets are reconstructed accurately, but also the shape of mines is
imaged more accurately than in the Test 1: in the Test 2 we are able to separate these
two mines. Thus, we conclude that an adaptive approximate globally convergent al-
gorithm of section 7.2 allows better reconstruction of shape of inclusions than an
usual approximate globally convergent method of Section 7.1 even for the case of
backscattered data.



Adaptive approximate globally convergent algorithm with backscattered data 19

Acknowledgments

The research of the authors was supported by the Swedish Research Council,
the Swedish Foundation for Strategic Research (SSF) in Gothenburg Mathematical
Modelling Centre (GMMC) and by the Swedish Institute, VisbyProgram.

References

1. H. Ammari, E. Iakovleva, and D. Lesselier, Music-type electromagnetic imaging of a collec-
tion of small threedimensional inclusions.SIAM J.Sci.Comp., 29:674 709, 2007.

2. M. Asadzadeh and L. Beilina, A posteriori error analysis in a globally convergent numerical
method for a hyperbolic coefficient inverse.Inverse Problem26 (2010).

3. A.B. Bakushinsky and M.Yu. Kokurin,Iterative Methods for Approximate Solution of Inverse
Problems, Springer, 2005.
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