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Adaptive approximate globally convergent
algorithm with backscattered data

M. Asadzadeh and L. Beilina

Abstract We construct, analyze and implement an approximatellyalglzonver-
gentfinite element scheme for a hyperbolic coefficient isggroblem in the case of
backscattering data. This extends the computational sppioduced in [2], where
using Laplace transformation, the continuous problemdsiced to a nonlinear el-
liptic equation with a gradient dependent nonlinearity. Mieestigate the behavior
of the nonlinear term and discuss the stability issues akagebptimal a posteri-
ori error bounds, based on an adaptive procedure, and dhe toaximal available
regularity of the exact solution. Numerical implementasqgustify the efficiency of
adaptive a posteriori approach in the globally convergettirsy.

1 Introduction

The inverse algorithms have a wide spectrum of applicatteasraging from min-
ing, detecting oil reservoirs, earth layers, explosiveaimports to medical optical
imaging, etc. Efficiency of this problem, througipproximate Globally Convergent
Approximation (AGCA)[22], was recently verified on blind imaging of the exper-
imental data that was measured in picoseconds scale relyirf®d.we performed
adaptive finite element technique directly inside the AGQWA derived optimal a
posteriori error estimates for a finite element approxiorainf a nonlinear ellip-
tic integro-differential equation. To further improvingis efficiency we invoke an
adaptivity procedure inside the AGCA algorithm, introddée [2] for the numer-
ical study of the hyperbolic coefficient inverse problemwotdimensions in the
case of the full data collection.
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A direct numerical approach to solve coefficient inversebpems (CIP) is
through a minimization procedure for the least square tegilinctional. This how-
ever, may lead to multiple local minima for the functiondls.avoid such an ob-
stacle, in [20] a convexification algorithm was introduced $olution of the one-
dimensional CIP in imaging electromagnetic frequencysEigorithm was further
extended in [23] to higher dimensions with applications iifiudive optical mam-
mography. Convexification is the origin of the AGCA metho8sme modified ap-
proaches to the AGCA algorithms were introduced in [6, 7,]8&r8 summarized
in [5], where a layer-stripping procedure was performedwispect to the pseudo-
frequency rather than the spatial variable which is the daske convexification.
The Carleman weight function in [5, 6, 7, 8, 9] depends on theugdo-frequency
and not on the spatial variable, as in [20, 23]. These newcaghies contribute to
improved stability in the globally convergent reconstractalgorithm.

An alternative approach to solve CIP is a synthesis of a AGG&hwod and
a strongly converging, however, local scheme such as thptigddinite element
method. In [7, 8] it was shown that the AGCA method providesadjinitial guess
for the locally convergent adaptive method. A first applimatof these results for
the acoustic wave equation shows a good performance [7, §o9ompare with
[7, 8, 9], the present work introduces extensive implemigraresults for a new
such combination. Here adaptivity is performed directhidie the AGCA algorithm
in the case when we have only backscattered data at the atiserlsoundary.

A concise description of the theoretical procedure is devid: A Laplace trans-
formation in time converts the model problem to a convectidfusion- type equa-
tion. The finite elements perform more accurately for elti@nd parabolic equa-
tions than the hyperbolic ones. Hence, the study of the Giéugh combining a
time transformation followed by a finite element procedunet only reduces the
dimension of the underlying problem, it also shifts the diumto a more desirable
one from the finite element point of view. To our knowledge, tombination of the
AGCA method, for a nonlinear elliptic problem and a postenoocedure, using
adaptive algorithm, is not considered elsewhere.

The paper is organized as follows: In Section 2 we formulat iorward and
inverse problems and transfer the inverse problem to a eicboundary value
problem for a nonlinear integro-differential equation kvé removed unknown co-
efficient. In Section 3 we introduce the layer stripping mdoare with respect to
s> 0, the parameter of the Laplace transform in the originalenigplic PDE. We
point out that here we do not use the inverse Laplace tramsfsince approxima-
tions for the unknown coefficient are obtained in the “Laplaclomain”. In Sec-
tion 4 we describe a finite element method, state bounds fefficents (derived
in [2]) and formulate a corresponding dual problem. Sec&as devoted to deriva-
tion of bounds for the nonlinear operator and a priori erstireates. In Section 6
we develop reliable and efficient a posteriori error estasafor the full problem.
In Section 7 we introduce a new adaptive globally convergégdrithm based on
a posteriori error estimate of Section 6. Finally, in our coding Section 8 we
present the results of reconstruction of the function in timensions based on
adaptive AGCA algorithm.
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2 The forward and inverse problems

Consider the Cauchy problem for the hyperbolic equation

c(X)ut = Au, in R"x (0,00), n=2,3, u(x,0)0=0, u(x0)=23(x—xp).

1)

Equation (1) describes, e.g. propagation of acoustic asatremagnetic waves.

Let Q c R",n= 2,3 be a convex bounded domain with the bounda€y
C",n=2,3. We shall assume thatx) satisfies the following conditions:

c(x) e C?(R"), 2d;<c(x)<2d, dy>0,d>>0, %)
c(x)=2d;, forxeR™Q, QCR", n=23

where,d; andd, are given bounds for the functia(x),

In this work we consider the case of thackscatterediata, or such data which
are given only at a part of the boundary of the computationalain. Let us define
our computational domaif with the backscattered bounddry

Q C {x=(x1,X2,X3) : X3 > 0},
r=00Qn{x3=0}+#2.

In our computations we will consider the case when the wale iienitialized by

the incident plane wave propagating along the positivectioa of thexz—axis in

the half spacéxs < 0} and “falling” on the half spacéxz > 0}. Numerical tests in
section 8 are performed for the given functignandg;, whereu(x,t) = g1(x,t) at

I andu(x,t) = go(x,t) atdQ\I", with u(x,t) satisfying the Cauchy problem

W —Au=0, inQ x(0,0),

u(x,0) =0, w(x,0) = f(x), in Q. 3
Hence, in these tests we set
._ _Ja(xt),(xt) €T x (0,0),
U(X,t) =02 (Xat) - {gO];(Xat) c (dQ\I—) % (0700) (4)

and consider the following Inverse problem:

Inverse Problem with backscattered data (IPB) Suppose that the coefficient
c(x) satisfies conditions (2) and it is unknown in the dom&inDetermine the
function x) for x € Q, assuming that the functiorp¢xt) in (4) is known for a
single direction of the incident plane wave propagating@ohe positive direction
of xz—axis in the half spac¢xs < 0} and falling on the half spacgxz > 0}

We note that our formulation of IPB is for the case of a plangavén the case
of problem (1), with a Dirac delta function as initial dathetformulation of In-
verse Problem IPB is similar. In this case we should replaeewording “for a
single direction of the incident plane wave propagatingnglthe positive direction
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of xg—axis in the half spacgs < 0 and falling on the half spaces > 0}”, by the
expression “for a single source positigfne {x3 < 0}".
Next, we use the Laplace transform

U(x,s) = /u(x,t)e‘Stdt, fors>s>0, (5)
0
wheresis thepseudo-frequenayonstant. Recall that it suffices to chogseich that

the integral (5) and its first partial derivativesimndt converge. ThekJ satisfies

AU —sc(X)U = —5 (Xx—Xp)c(Xp),  Vs>s>0, 5
limy .U (x,8) =0, vs>s> 0. 6)

For everys > s, the equation (6) possesses a positive, unique solution

2.1 The nonlinear integro-differential equation with elimated
unknown coefficient
Introducing the functiow = InU, sincexg ¢ Q, then (6) yields
Av+|0Ov]? = sPc(x), inQ, (7)

v(x,5) =InG(X,s), V(X,5) € 0Q x [s,§, (8)

whereG(x,s) is the Laplace transform of the data funct®fx,t). To single out the
unknown coefficient (x) in (7), we introduce a new function

Hx9) = 5. ©
Assuming certain regularity conditions ( [6]), it followlsatH satisfies
AH 4+ |OH]? = ¢(x). (10)
Next let
q(x,s) = dsH (x,9), (112)
then using (11)
0 S
H(x,s) = —/q(x, 7)d7 = —/q(x,r)dr+W(x,§), (12)
S S

wheres > g is a large number and
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_InU(x3)
-—e
W (x,5) is known as theail function To determin&V we need to choose the param-
eters numerically. We includ&V either on the right hand side in iteration steps as
data, or study it as an unknown in a coupled system of equation

Differentiating (10) with respect tg, from (12)-(13), we obtain the following
nonlinear integro-differential equation fgr= q(x, s),

W (x,8) ~ H (x,3) (13)

S S 2
Aq —ZSZDq-/Dq(x, T)dT+2s {/Dq(x, r)dr]
s s (14)

S
+220q0W — 25W - / g (x, 7) dT + 25(0W)2 = 0.
S

By (8), (9) and (11) we may impose the following Dirichlet balary condition

q(x,s) = Y (x,9), V(x,5) € 9Q x [s,3. (15)
wherey satisfies |
Gs 2InG

Suppose thabdq, |a| < 2 are already approximated. Then the coefficiEr} can
be, approximately, determined using (10), whidres given by (12), which requires
an initial guess fowV as well.

3 A Sequence of elliptic Dirichlet boundary value problems

We approximate (x, s) with a piecewise constant function with respect.tdssume
apartitions=sy <SN-1< ... <S1 < S =S, Si-1— S =kof [s, § with a sufficiently
small and uniform step sidesuch thaty(x,s) = qn (X) for s € (sh,sn—1). Hence,

S n—1
[ DA% 1T = (31 1- 9009 +k 3 O, S€ (S5 1) (1)
S j:l

We approximate the boundary condition (15) as being pieseaodnstant og,
On(X) =T,(X), x€0Q, j=1,...,n, (18)
where

Tn (X) =

|

Sh-1
/ f(x,s)ds (19)
S
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On each subintervals,,s,-1],n > 1, we assume thai; (x), j =1,....n—1 are
known. In this way, for eacim, n=1,...,N, we obtain an approximate equation
for gn(x). Now we insert (17) in (14) and multiply the resulting eqoatiby the
Carleman Weight Function (CWF).

Coa(s)=et™1 se(ss, A>>1 (20)

and integrate oves € (sy,S,-1]. (see Theorem 6.1 [6]). We obtain foe=1,...,N,

n—1
Zn (Qn,Wn) —&Qn =:A0n—Aqn (k'zl DQi) Uon + ArndgnOWh — £0n
i=

I1n 2 2 n—1 2 n—-1 2
~ 23 (Do)~ gk (_zl 061(¥)) "+ 2R2.aWh (k.zl 06 ) — Aga(Wh) .
1= 1=
(21)
The term—e&q, is added for regularizing purpose. The coefficients are agrgpas:

0 = [T cds ni= [l 195 (51— 9)

an S-1 2 [S-1
Ap:= —/ s[s—2(sh-1—9)]Cha(S)ds Aoy = —/ sG(s)ds
lo /sy lo /sy

Thus we have the Dirichlet boundary value problem (21), whik boundary data
(18). In this system the tail functidi¥ is also unknown. Observe that,

lin(A K| _ 48

: -
bR A for min(Ak,s) > 1 (22)

Therefore takingd >> 1 we mitigate the influence of the nonlinear term with
(an)2 in (21), which enables us to solve a linear problem on eachtite step.

4 A finite element discretization

We approximate the solution for (21) by a finite element mdtivith continuous
piecewise linear functions oa partially structured mesh space, and implement
resulting scheme using a hybrid code. More specifically, eeodhpose the com-
putational domaiis into Q C GandQ°® = G\ Q, and discretiz&2 by an unstruc-
tured mesh an@®° by a quasi-uniform mesh. 12, for eachn, we use a partition
Inn = {K}. Hereh = h(x) denotes a piecewise constant mesh funckiea h(x)
representing the diameter of the elemintontainingx, and(-,-) and|| - ||, denote
theL,-inner product and norm, respectively.

Choosinge(x) = 1 forx € Q°€, giveng(x,t) = u |30, we can uniquely determine
the functionu(x,t) as the solution of the boundary value problem for equatign (1
with boundary conditions on both boundari@¢& and dQ. Next, using Laplace
transform ofu(x,t), (9) and (11) one can uniquely determiy();
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G(x) =: % o (23)

heren is the outward unit normal to the boundal{? at the pointx € dQ. In our
computations the functions(x,t), §(x) andg(x,t) are calculated from the solution
of the forward problem (21) with the exact value of the coédfitc(x). A variational
formulation for (21) is: fom=1,...,N; find Vi, g, € H1(Q) such that

F(Un,Vn; ¢) =t (o, 09) + (Al.n(k?ziiDQi)DQna ¢) — (Atndan[Wh, @) + (€0, @)

n—

R (00 9) — (Aok('5. 06 (9)%.6) + (20, Wh(K'S. ). 9)

—(Aon (ML), 9) ~ (Gn, §)aq, V9 € HY(Q). o
24
To formulate a finite element method for (21), we introducettial spacé/,ﬂh,

Vil i={vn € HY(Q) : Vil € PL(K), aVilag = Gnn, YK € Tnn},

wheren=1,...,N, P;(K) denotes the set of linear functions Enanddyp is an
approximation foig(x). We also introduce the test function sp&k@ defined as

Vih := {Vn : Vnis continuous o2, andwy|x € Pi(K), VK e Fhn}.

Vin andvr?’h C HY(Q). The finite element for (21) is formulated as: foe 1,... N,
find gnh andWh , € Vrfh, approximations of, andW,, respectively; such that

F (Ann,Wah; @) = (Gon, @)oo, V9 € Van. (25)
subtracting (25) from (24) we get the classiGalerkin orthogonality:
F(On,Wh; @) — F (Onh, Wan; @) =0, V@ €Vyp. (26)
Now, we introduce the residua@#y := %n (0, Wh,n), for a discrete solution for (21)

as follows: forn=1,...,N; find gy, Wh € Vo, such that

n-1 I
—An0np +Asn (k 2 D%) Ot — AtnOny (b + €0 + 27" (Gnn)?
i=

n-1 2 n-1
—Agnk? <,Zl Udiip (X)> + 2A2 n\[Whn, <k ,Zl DQih) — Ao ((Mh)? = %n,
1= 1=
Onhloo = G,
(27)
whereAdny, denotes the discrete Laplacian defined by

(AhQnm r’) = (anm Drl)v vrl S Wn,h- (28)
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Let nowenh = 0n—0Onh, N=1,...,N, then a modified form of the Galerkin orthog-
onality (26), yields the strong error representation folamu

—Anenp +lienn+ genn+ ZIiL—C’,” [(Oan)? — (Oann)?]
n-1 29
+|2-(k_21 Oeh) + 13- 06 = —Zn. (29)

i=

For each intervals,, s,—1), we rewrite (29) (we suppress and consider the equa-
tion

Fei=—Ae+Cille+ se+ SAe= —Cp (k3 Ta ) % —Col1O

(30)
e|l7_Q = Oa
whereC;j, | = 1,2,3 are corresponding to the spatially continuous versions:sf
0 :=l1n/lp andA, the nonlinear term, is defined by
Ae:= |0gf* — Do . (31)

In (30) the error inV is included in the®-term and the residual terg? satisfies

(%#,¢) =0, V¢ €V (32)

5 Bounds for the nonlinear operator/A and a priori estimates

Below we derive a bound fok, usingf(q) = |0Jg|?,0< 6 < 1, and

7 £(6a+ (1 )aw) = 7(|0(6a -+ (1~ B)an)?)

~2(j0(6a+ (1-O)a)) - (71060 + (- O)a)).

whereZf is given in the Taylor expansion df q,) aboutq, viz:

f(an) = f(@)+ (an—a)Zf(6q+ (1— 6)an). (34)

We may write/Aein a compact form as

Ae:2e(|9E|e+ th|) : (@|D(9q+(1—e)qh)|). (35)

5.1 The dual problem for a linearized approach

Here, we sketch a framework for the dual approach ftmear/linearized versioof
(30). To begin with, we assume thatis a linear operator and let
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¢ . =—Ap—-Cillp+€¢p+0N"p =e¢, n=1...,N, ®loo =0, (36)

with '* andA* being the adjoints of andA, respectively. By (30) we have that

lelt,0) = (&7 *9) = (Fe.d) = —(%.9). (37)
The identity (37) is known aghe error representation formuldsing the identities
_(Xa¢_H"I¢):_(X_H"IX7¢_H"I¢)7 (38)

forx=2,x=C zi";ll Oe, or x =C300, whereR, : Lo(Q) — Wy is thel>(Q)-
projection, and we have used the orthogonalityl. W, n, and the strong stability
estimates for the dual problem, we get from (37) (see [2] &gads) that

lellyq) < CGi||P*(% — %) || < CCGi |W*(% — )] (39)

whereC; andC;s are interpolation and stability constants respectivecdling (35)

(\*9.6) = (¢.Ae) =2(¢, [|60e+ Dol - [7]0(6a+ (1 - O)aw) |e).  (40)

For piecewise linear approximation, successive use ofletdhequality yields

(A*9,8)1 < ClI8ll el g ( Iohllwg + ielhng )- (41)

Thus we get the following estimate for the nonlinear oparato

11 < lalwg (ol + l1ellug )-

Theorem 1 (An a priori error bound). Let ¢y € WZ(Q) and gy, be the solutions
for (24) and (25), respectively. Then for a piecewise linigite element approxi-
mation error @ = 0, — gnh We have (see [2]) that

[[€nll < Chl[anllwz = &'(h). (42)

6 A posteriori error estimation

The a posteriori error analysis is based on representingetite in terms of the
solutiong of the dual problem, related to (21). We recall the proble) ghd write
the dual problem for allsy,sh-1),n=1,...,N, as

A —CiOp+ep+ N9 +3|0¢n*+Cpo=1w,  $log=0,  (43)

whereCy o :=Cok 31 O¢h +C30@ is assumed to be known from the previous iter-
ation steps, an@ = G, =W, — W, . We assume th@ € H[L andgn, € W2 Thus,

ocC
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we wish to control the quantitye, /) with e = q— ¢, in Q, wherey € [L?(Q)]®
is given. For approximations of spectral orderl, (for linear approximation the
Js-term below will vanish) we may write

(.8 ~—(86.0)~ (C109. )+ (6,0~ 3T Z(9).8) 1y
+8(2(00n29).0)+ 5(10¢nl?.0) + Cp.0:) = Ti1

Due to the limited regularity of the approximate solutig{y, the scalar products
lj, j=1,...,7,involvinge = gn — 0o n, should be performed elementwigé; g) :=
Sk(f,9)k. This will introduce accumulative sum of the normal derives over
enter-element boundaries. Taking into account these kayyiridrms, by repeated
use of Green's formula, we can recompute edchj = 1,...,7, separately. In this
way, finally we obtain the following error representatiorguality:

Lemma 1. Let ¢ be the solution of the dual problem (43), q that of (24), apthg
FEM solution of (25). Then the following error representatinequality holds true:

[(w,8)| < (121, 10]) + (%2, |0]) + Cs(|00),|€]) + 5(|T¢nl?, €], (45)
where the residuals are defined as
n—-1

71 =: Ape—Ci0e—ge— dAe—Cok S O 7> = maxhy ! 4
%1 =: Ane—Cille—ce—dNe—Cp i; &, 2= maxhc'|[dsan][. (46)

and interpolation error is
0 = hk [Ondn]. (47)

Now we use, elementwise, Holder inequality and et e to obtain the following
a posteriori error estimate:

Theorem 2.Let ¢ be the solution of the dual problem (43), g the solution of)(24
and g, the FEM solution of (25). Then there is a constant C, indepahdfQ and
h, such that fony — 6|Dq§h|2 = e the following a posteriori error estimate holds:

lel? < ch| (1%lly0) + 122l ) 18 ey +NICS2],  (48)

where h=max (hk ), Z1 = %1(th) = Anth +C100h — 0n— 3Ah — Cok 311 O,
Pr = %, is given in (46),5 = [dndn], and%;;,’K = 00| ‘K can be estimated as
”‘%73H52<9> ~ Cp &2 ~ Ch?, whereas choosing := e+ &|0¢n|? + C3|00| yields

lelf? < Ch( 21|,y + ”%ZHLz(Q)) 161,0) - (49)
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7 The Adaptive Approximate Globally Convergent Algorithm

In this section we present our adaptive globally converghgdrithm, where we use
Theorem 2 which states that the error, between the exactgmdxmate solution
for the functionsg, of the equation (21), depends on the residuals given by (46).
However, in the case of using continuous piecewise line@efielement approx-
imation of functionsgn, only the first residualZ;, will appear. To calculate it we
should find an approximate solutiop of the equation (21) on every mesh. We get
On asgn = limy_ qﬁ, wherek is the number of iterations with respect to the tall
functionWh(x, ).

To solve equation (21) on a new refined mesh we first linearigrpolate the
function ¢, given by (15), for each pseudo-frequency inteffigals,—1). Then, on
every mesh we compute approximatian®of ¢(x) using variational formulation of
the equation (7), see [5] for full details. Thus, we can eifhli compute the function
Cn on every frequency intervés,, s,—1) through the finite element formulation.

We denote the stopping numbldefon which these iterations are stopped)y

7.1 An Approximate Globally Convergent Algorithm

Below, we briefly describe a globally convergent algorithfris 6, 8] which we
use in our computations and in the adaptive globally coremtrglgorithm.

Step 0. ni,n > 1. Stage 1: iterate with respect to the nonlinear term. Assume
that the functionsy, ..., 0n-1,00 1 (:= ga-1) € C**%(Q) and the tail function
Vho(x,5) € C2F9(Q) are already constructed. Then, we solve,iteratively, tie f
lowing Dirichlet boundary value problems: Foe 1,2, ..., find gy 1 such that

n-1
Ady ;A <h Z qu> -0k ; — €0k 1 + Aandl ; - Vo

2
" A2 n—1
n-1
+2AonMho- (h ,ZlDQJ' (X)> ~ Agn ((Mh0)?
=
thzwn(x), xedQ.

As a result, we obtain the functia 1 := limy .. % ; in theC?*9(Q).

Step 1. Compute, 1 via backwards calculations uéing finite element formulatio
of equation (7), see Chapter 3 of [5] for details.

Step 2.  Solve the hyperbolic forward problem witf{x) := ¢, 1 (X) , calculate the
Laplace transform and the functibh 1 (x,3).

Step 3. Find a new approximation for the tail function
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InU 5
W (9 = LS, (51)
Step 4. n;, i > 2. We now iterate with respect to the tails (51). Suppose that-fu
tionsgni—1,Whi—1(x,35) € C**9 (Q) are already constructed.
Step 5. Solve the boundary value problem

n—-1
Adhj — Aan <h .leQj> -0U0n,i — KOn,i +Arndni - DWh -1
i=
2
— 25 (Ogni_1)?— Awl? [ S Ogj (%)
= 27, (L0nji-1 2n jzl qj (52)
1
+2A00nWhj—1 - (h leQj (X)> _A2n(DWn,ifl)2,

Uni (X) =Pp(x),  x€0Q.

Step 6. Compute,; by backwards calculations using finite element formulation
of equation (7), see Chapter 3 of [5].
Step 7.  Solve the hyperbolic forward problem (1) wat{(x) := cn i, compute the
Laplace transform and obtain the functdf 1 (x,S).
Step 8. Find a new approximation for the tail function
I i (X,3
W (9 = XS, 3)
Step 9. lterate with respect toand stop iterations at= my such thatgnm, :=
lim; ... f ;. Stopping criterion for computing functiom; is

eitherFX > FK"LorFK < n, (54)
wheren is a chosen tolerance afif are defined as

ok — A ()

" ol L m)
Step 10. Set
InW X,
0n = Qn,m,; Cn(X) 1= Cnmy(X), Whi10(X) := %()
Step 11. We stop computing functioct% when
either Np>Np_jor Np<n, (55)

where
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k-1
B ||Cﬁ.i— ni (@)

N, = (56)

k—1
||Cn,i ||L2(Q)

7.2 Adaptive Approximate Globally Convergent Algorithm

In computations of section 8 we use the following adaptiveraximate globally
convergent algorithm:

Step 0. Choose an initial megh in Q and an initial time partitiody of the time
interval (0,T). Compute an initial approximatiocﬁrTh using an approximate
globally convergent algorithm described above on thedhitiesh, see [5] for
the details. Compute the sequence of functigps,, wherej > 0 is the number
of mesh refinements, on adaptively refined meshes via fallgwieps:

Step 1. Compute the initial approximation for the tail fuontWh(x,S) on a new
meshK}, using the computed solution of the hyperbolic problem (3).

Step2. Compute the finite element solutiohéx, s) of equation (21) on a refined
meshK}, on the pseudo-frequency internvah, s,-1) using Algorithm of section
7.1.

Step 3. Update the coefficiea} on Ky, using the finite element formulation for
(). . .

Step 4. Stop computing), and obtain the functio), i, using the criterion (55).

Step 5. Refine the mesh at all the points where

Chm, (X) > B mancﬁm. (57)

The tolerance numbg; € (0,1) is chosen by the user.

Step 6. Construct a new refined mdghin Q and a new time partitiod; of the
time interval(0, T) satisfying the CFL condition, and return to step 1 and penfor
all of the above steps on the new mesh. _

Step 7. Stop mesh refinements and obtain the funcfigy if norms defined in
the criterion (55) are fullfilled.

8 Imaging of land mines using an adaptive approximate glob&y
convergent algorithm

In this section we present numerical implementation of aapéde approximate
globally convergent method with backscattered data in tintedsions. Our goal is
reconstruction of land mines from backscattered data wsiregdaptive approximate
globally convergent algorithm of section 7.2.
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Let the ground bgx = (x,2) : z> 0} C R2. Suppose that a polarized electric
field is generated by a plane wave, which is initialized atitie{z= 2 < 0,x € R}
at the moment of time= 0.

In our model we use the well-known fact that the maximal defptin antiperson-
nel land mine does not exceed approximately 10 centimeten$=0.1 meter (m),
and we model these mines as small rectangles with lengtrdef&2 meter and
width of side 01 meter. In our computations we are interested in imagingofl |
mines when one mine is located very close to the other one. i§kan important
case in the real-life military applications.

We have modelled such a problem on a donfairsee Figure 1, viz: We set

Orem = {x=(x,2) € (~0.3,0.3) mx (0.05,0.45)m} ,

and introduce a dimensionless spatial variables x/ (0.1m), so that the domain
Qrewm is transfered into a dimensionless computational domain

Qrem = (—3.0,3.0) x (0.5,4.5).

We choose values of functiarfx) using tables of dielectric constants [35], and
use the fact that in the dry samd= 5 and in the trinitrotoluene (TNT§ = 22.
Thus, the relation of mine/background contrast ig®22 4, hence we consider new
parameters

c
/ _— —
‘TF
to get
c(dry sand)= 1, ¢(TNT) ~ 4. (58)

For simulation of backscattered data for the inverse prodieB, we solve the
forward problem using the software package WavES [36]. Tiheedsionless size
of our computational domain i@ = [—4.0,4.0] x [0,5.0]. This domain is split into
a dimensionless finite element domdgy = [—3.0,3.0] x [0.5,4.5] and a sur-
rounding domaigpy with a structured mesh) = Qrepm U Qrpw, See Figure 1.
The spatial mesh iQrem and inQFpm the mesh consists of triangles and squares,
respectively. The mesh sizelis= 0.125 in the overlapping regions. The boundary
of the domainQ is dQ = 0Q, U0Q, U dQ3. Here,dQ; anddQ, are respectively
top and bottom sides of the domaih, see Figure 1, andQs3 is the union of left
and right sides of this domain. We define the boundary of theao Qrgy as
I = ul,Uls. Here, 1 andl; are respectively top and bottom sides of the do-
main Qre v, see Figure 1, anfk is the union of left and right sides of this domain.

We use the hybrid method of [10]. Since in our applicationskwew value of
the coefficient(x) outside of the domain of intere§rgm such that

C(X) =1in -QFDM7 (59)

hence we need to determing&) only in Qrem.
The forward problem in our computational test is
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T e e

a) Q = QremU Qrpwm b) Qrpm C) Orem

Fig. 1 a) Geometry of the hybrid mesh. This is a combination of treglateral mesh in the
subdomainQgpy b), where we apply FDM, and the finite element mesh in the idoenain

Qrewm C), Where we use FEM. The solution of the inverse problemngpeated inQrgm. The trace

of the solution of the forward problem (60) is recorded attitye boundaryi; of the finite element
domainQggwv.

c(X)wt —Au=0, InQx(0,T),
u(x,0) =0, w(x,0) =0, in Q,
onu=f(t), ondQq x (0,ty],

60
Opu= —0u, ondQ; x (t1,T), (60)

Ohu = —3du, ondQy x (0,T),

ohu=0,0ndQ3x (0,T),
wheref (t) is the amplitude of the initialized plane wave,
(sin(wt—m/2)+1) 2m

f(t) = 0<t<ty:=—. 61
( ) 10 ) I T i w ( )

To compute the data for the inverse problem we solve the fahgaoblem (60)
with w=7.0in (61) and in the tim& = (0,6) with the time steg = 0.01 which is
satisfied the CFL condition, and save the solution of thib@m at the top boundary
1 of the finite element domai@rg \. Figures 2 shows isosurfaces of the computed
solution of the problem (60) in the computational dom@in

In our test we also define the set of admissible coefficientthi functionc(x)
in Qrem as

Mc = {c(x) : c(x) € [L,8], c(x) = 1¥x € RA\ Q,c(x) € C*(R?) .}

8.1 Numerical Results

We have performed two set of tests. In the first test we solBeliging approximate
globally convergent algorithm of section 7.1, and in theosettest we solve IPB
using adaptive approximate globally convergent algoritifreection 7.2. The goal
of both tests was to reconstruct structure given on Figuag. 1-
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X-Displacements

X-Displacements
068941 07229
047178 050804
025416 029319
0.036533 0078332

ety e
Posss |
oo e
Son S
S S
N |A:,m I’;
c)t=5.0 d) t=6.0
Fig. 2 Isosurfaces of the computed exact solution for the forwantlpm (60) at different times
with a plane wave initialized at the top boundary.
-0.446 -0.208
-0.448 -
-0.209
-0.45
-0.452 -0.21
9@ ?
& -0454 2
H $ o2uf
% ~0.456]- %
-0.458 - -0.212
-0.46
-0.2131
-0.462
-0.464 v v - - -0214 v v - -
[ 10 20 30 40 50 60 [ 10 20 30 40 50 60
x=[-3.0, 3.0] x=[-3.0, 3.0]
a)s=2 b)s=3

Fig. 3 Backscattered data for the function g at the top boundargf the computational domain
Qrenm computed for the different values of the pseudo-frequency s
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DISPLACEMENT

41774
. 3.8244
3.4713

3.1183
2.7652
24122
2.0591

1.7061
step 9 1383

1 3
Contour Fill of DISPLACEMENT. lr."

a) Test 1ic;g~4.17

Scalar result
35008

. 3223
29451
26672

. 2.3803

| 21115
1.8336

1.5657
12779

b) Test 2:ci , ~ 3.5

Fig. 4 Computed images using backscattered data obtained frorgetbmetry presented on Fig-
ure 1-a). a) Testl: location and contrast of inclusions acewately imaged. b) Test2: location,
contrast and shape of inclusions are accurately imaged. cdmputed function e 1 outside of
imaged inclusions.

The backscattered data at the boundaryn both tests were computationally
simulated using the software package WavES [36] via solthiedgyperbolic prob-
lem (60) with known values of the coefficiet= 4 inside two inclusions of Figure
1-a) and with 5% additive noise in simulated data.

Figure 3 displays sensitivity of the simulated functiofx,s),x € I for s=2
ands= 3. We observed, that all values of the functjq(x)| for s> 5 are very noisy
and does not show sensitivity to the inclusions. Becauskatfwe decided to take
pseudo-frequency interval= [2,3], where the computed functiag(x,s),x € I7 is
most sensitive to the presence of two inclusions. We run tests with the step in
the pseudo-frequendy= 0.05.
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8.2 Test1

In this test we solve IPB using globally convergent algamtbf section 7.1. The
boundary conditions for the integral-differential eqoati(50) were replaced with
the following Dirichlet boundary conditions

Onlr, = Win(X), Ohlnur = Yon(X),

where functiongyn(x) andyr,(x) are generated by functiomg (x,t) andgo(x,t),
respectively, defined in (4). In this test we simulated thecfiongp(x,t) at U T3
by solution of the forward problem (60) wiit{x) = 1 at every point of the compu-
tational domai2. The Dirichlet boundary condition & U3 is also approximated
and it is necessary to solve the integral-differential eigua(50).

An approximate globally convergent algorithm of sectioh Was used to calcu-
late the image of Figure 4-a). We observe that the locatidyoti mine-like targets
is reconstructed accurately and the contrast [mi@w p(X)] = 4.17 is also accurately
imaged (exact(x) = 4 in both inclusions).

However, in this test we were not able to separate imagesdtr imines. We
could only image them as one big inclusion. In the next testtnweo improve
the result of the reconstruction of the Test 1 using an adigptiechnique inside
approximately globally convergent method.

8.3 Test2

In this test we solve IPB using an adaptive globally convergéyorithm of section
7.2. This algorithm was used to calculate the image of Figubg which was ob-
tained on the one time refined mesh. We observe that not ocdyiémn and contrast
of both mine-like targets are reconstructed accuratelyalso the shape of mines is
imaged more accurately than in the Test 1: in the Test 2 welded@separate these
two mines. Thus, we conclude that an adaptive approximateadjly convergent al-
gorithm of section 7.2 allows better reconstruction of shapinclusions than an
usual approximate globally convergent method of Sectidneven for the case of
backscattered data.
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