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Time-adaptive FEM for distributed parameter
identification in biological models

Larisa Beiling and Irina Gainovha

Abstract We propose a time-adaptive finite element method for thdisolof a pa-
rameter identification problem for ODE which describes dyital systems of bio-
logical models. We present framework of a posteriori ergtingate in the Tikhonov
functional, Lagrangian and in the reconstructed functWe also present time-mesh
relaxation property in the adaptivity, formulate the timesh refinement recom-
mendation and an adaptive algorithm which can be used to fitichal values of
the distributed parameters in biological models.

1 Introduction

In the present state of the art, disease control over suchvidespread infections
as HIV, hepatitis C, tuberculosis, etc. calls for intergiinary approaches and joint
efforts of researchers and clinicians all over the worldhaugh a highly efficient
antiretroviral therapy (HAART) was developed about 20 geago, a number of
problems still remain to be solved concerning its applamain the case of HIV-1
infection caused by an etiological agent (human immunoigeidy virus type 1)
[1, 2].

Study of biological systems using analysis of mathemaitrcadels of these sys-
tems is important and difficult task. These models are paw#obl to understand
behavior of the complex biological systems or processe Blallenging problem
in the study of the mathematical models is estimation of tilenown parameters of
ODE of these models from observed clinical data. Identidfyttre model parameters
using solution of the corresponding inverse problem in the@mables one to eval-
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uate the drug efficiency, to strike a composite between ansetend dose applied
in the disease course. This also makes allowance for theidudil peculiarities of
a patient and eventually permits an optimum personal treatno be developed.

In this paper we propose time-adaptive finite element metbothe solution of
a Parameter Identification Problem for system of ODE whidsearin description
of different biological processes, for example, see [3] eefdrences therein. To do
that we utilize recent results on the Adaptive Finite Eletdethod (adaptivity)
for solution of hyperbolic coefficient inverse problem, $ée11, 12, 13, 14, 15, 17,
18, 19, 21] and chapter 4 of [16]. We also present relaxatiopgrty in adaptivity
in time which is based on results of [21] and reformulate teew of [21] for our
specific case of system of ODE.

By the relaxation property we understand that the accurddype computed
solution in time improves with the refinements of the initi@he-mesh. Recently
the relaxation property in the adaptive finite element méthospace applied to
the solution of CIPs was observed numerically in many palilbns, see, e.g.
[4, 11, 12, 13, 14, 15, 17, 18, 19]. Analytically this propgewas proved for the
first time in [21]. In the current paper we present the relexaproperty on the
time-dependent meshes for system of ODE.

The adaptive finite element method for CIPs was develope8,ii], 12, 13,
14, 15], and for the parameter identification problem, s¢aif@ references therein,
which are different from CIPs, to some other ill-posed peoh$, see, e.g. [23, 25,
26].

The idea of adaptivity consists in the minimization of thehonov functional on
alocally refined finite element meshes using a postericor@stimates for the finite
element approximation of the problem under investigati®ince we are working
with a finite number of a locally refined meshes then the cpoeding finite ele-
ment space is a finite dimensional one. Thus, all norms irefaiinensional spaces
are equivalent, then we use the same norm in the TikhonoVaggation term as the
one in the original space. Because of that we are usjagorm in the regularization
term of the Tikhonov functional and derive a posteriori erstimates also in this
norm. A posteriori error estimates inp-norm are more efficient from the computa-
tional point of view than the standard case of a stronger r{@r6, 27, 30, 31] in
this term.

The proposed a posteriori error estimate for the Tikhonacfional is used in
the time-adaptive algorithm of section 7. We are planningheck this estimate
in numerical experiments on implementation of a parametentification problem
for the ODE system which describes the HIV infection dynanjfj in the future
research.



Time-adaptive FEM for distributed parameter identificatin biological models 3

2 Forward and Parameter Identification Problems in biological
models

2.1 Statements of the forward and parameter identification
problems with applications in biology

Let us denote by2t = (0,T) the time domain fofT > 0, whereT is the final
observation time in some mathematical model arisen in gknd governed by
the system of ODE

= 1xW.a0), te @) )
x(0) = 0. 2)

Here x(t) € C1(Qr) is a given state variable in tintec Qt. Problems governed
by the system of ODE (1)-(2) arises in different mathematicadels for the pa-
rameter estimation(t) which depends on the time varialileThese mathematical
models describes different biological dynamic systems, && example, [3] and
references therein.

The right hand side of equation (1) depends on the vector rainpetersy(t) €
CY(Qr). Further we assume thétc C1(Qr) with respect to state(t) and param-
etersq(t). In our consideration the functiog(t) € C (R') belongs to the set of
admissible function®lq such that

Mg ={q(t):q(t) € (0,d) in Qr, q(t) = 0 outside ofQt } 3)

with d > 1 be a number. Usuallyd = 1 and in this case function € q(t) <1
represents the maximal efficiency of the biochemical precescribed by system
of ODE. For example, in [3] system of ODE (1)-(2) presentstiahematical model
for the progression of HIV infection and treatment, and tinection 0< q(t) < 1in
this system represents the drug efficiency.

Parameter Identification Problem (PIP). Let conditions (3) hold. Assume that
the functionq(t) is unknown inside the domaif@rt. Determine this function for
t € Qt, assuming that the following functiagt) is known

X(t)=9(t), te(0,T). 4)

The functiong(t) represents measurements of the functi¢r) inside the time in-
terval Q.
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2.2 The Tikhonov functional

LetH be the Hilbert space of functions defined?y. Let{ € (0, 1) be a sufficiently
small number. Consider the functiap € C* [0, T] such that

1te[0, T —2(],
ZZ(t): Oate[T_ZyT]7 (5)
€10,1], for t € [0,T —2¢, T —{].

The Tikhonov regularization functional for the above folatad PIP correspond-
ing to the following state problem of system of ODE

= fw.aw), te©OT) ©
u(0) =0 (7)
is
Ea(0) =5 [ (u) - 90’z () dt+ 50 / ~ o),
4 ®)

Eqa:H—R qo€eH,

Here,qq is the initial guess for the parameter veoydr) anda is the small regular-
ization parameter.

Our goal is to find functiom(t) € H which minimizes the Tikhonov functional
(8). To do that we seek for a stationary point of (8) with redfge g which satisfies

vgeH
Eq(a)(@) =0. ©)

It is well-known [5] that the functional (8) has the Frécluerivative and it is
strongly convex [21, 16] such that

(Eq () —Eq(¥),x—Y) = al[x—y||. (10)

2.3 The Lagrangian

To find minimum of the Tikhonov regularization functional) (&e construct the
corresponding Lagrangian. To do that first we introduce tlewing spaces,

Hi(Qr) = {f e HY(Qr): f(0) =0},
Hi(Qr) = {f e HY(Qr): f(T) =0}, (11)
U= H&(_QT) X H/‘;L(.QT) X LZ(QT),
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where all functions are real valued. To compute the Frédbavative of the func-
tional E4(q), we introduce the Lagrangidr(v) :=L(A,u,q),

— Eq(q +/ <——f )q(t)))dt. (12)

whereA is the Lagrange multiplier and= (A (t),u(t),q(t)) € U. We note that if
u(t) is a solution of the system of ODE (6)-(7), thetv) = E4(Q).

We derive the Fréchet derivative of the Lagrangian (12) Inearistic approach
where we assume that the functiaris), A (t), andq(t) can be varied independently.
However, when the Fréchet derivative is calculated, werassthat the solutions
of the forward and adjoint problems dependah). A rigorous derivation of the
Fréchet derivative requires some smoothness assumgtotise solutions of the
state and adjoint problems and will be presented in the anetbrk.

Integration by parts in the second part of the equation (@g@¢ther with (7) and
conditionA (T) = 0 leads to

L(v) = Eq(q) — /u—dt—//\f (13)

We search for a stationary point of the Lagrandidw) which satisfies to the equa-
tion _

L'(v)(V) =0, W= (0,A,q) €U, (14)
wherel’(v) is the Fréchet derivative of the Lagrangiarat v. Now we consider
L(v+Vv)—L(v), VW e U, and single out the linear part of this expression with re-
spect tov. Hence, from equations (13) and (14) we obtain

L'(V)(v) = f uu—g)z (t)dt+a f a(d— go)dt
+ f )\( — f(u,q))dt— f J%)\t dt (15)
- f UA f1(u,q)dt — f q7\ fz(U q)dt.

Here, functionsf; (u,q) and f2(u, q) are obtained after taking the Fréchet derivative

of the Lagrangiarh.( V) with respect tas andg, correspondingly, and are derived as
f1(u,q) = afe ”q ,To(u,q) = df¢ ”q) . Bringing outv we get following expression for

the Fréchet derlvatlve of the Lagranglhratv
L)W = J A (G - f(u.a)dt
T
+ [ 0((u=g)z )~ % —Afaua)dt (16)

Qr
+Qf a(a(g—qo) — A f2(u,qg)) dt.
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From equations (14) and (15) we observe that every integrai in equation
(16) equals zero. This means that in equation (16) the teritisAvcorrespond to
the forward problem (6)- (7), the terms withare the weak form of the following
adjoint equation

—% = Afi(u,q) — (U—0)z(t), t € QF, a7)
A(T)=0. (18)

The terms withq'in (16) correspond to the derivative of the Lagrangian with
respect to the functioq, or to the equatioi(q) = 0. Thus, we can find(t) from
the equation

a(q - qO) —A fz(U,CI) =0, (19)
or

q(t)

To find the functiom(t) from (20), we need first to solve the state problem (6)-(7)
to get functionu € H! and then, by knowing the solution of the state problem, we
need to solve the adjoint problem (17)- (18) to get the funrchi € H/\l.

We note, that the adjoint problem (17)-(18) should be sohackwards in time
(T,0). Uniqueness and existence theorems for the equationg )@)€ (17)-(18),
including weak solutions, can be done similarly with Chagtef [29].

Af
_ARNY g e o (20)

3 A Finite Element Method to solve equation (14)

For discretization of (13) we use the finite element method. afyproximate so-
lutions of state (6)-(7) and adjoint (17)- (18) problemshaébntinuous piecewise
linear basis functions in time. I21 we use a partition#; = J of the time interval

I =(0,T) into time intervals) = (tx_1,t] of the lengthry = tx — tx_1. We associate
with the partition_¢; the piecewise-constant time-mesh functiosuch that

T(t) =135, VJel. (21)

We introduce the finite element spast¥ c H! (Qr) andw} ¢ HAl (Qr) foru
andA, respectively, as

WY = {f eH}: fl; e PHI)VI € Jr},

W = {f eH}: fl; e PYI)VI € I} (22)

For the functiong(t) we also introduce the finite element spageC Lz (Q7)
consisting of piecewise constant functions

W = {f € Lo(Qr): fly € PPAVI € I} (23)
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Next we denot&y, = WY x W x W such that, C U.
The finite element method for (14) now is to fimgle Uy, such that

L' (Vy;V) =0, W e Uy, (24)

More specifically, equation (24) expresses that the fingeneiht method for (14)
is to findvy = (Un, Ap, 0h) € Uy such that'v = (u,A,q) € Uy

St = [ o) Tl (25)
Qr dt Qr
[T dt= [ dnfu(nan) Adt- [ (-0 () Adt, (26)
o dt Qr Qr
_ An fon(Un, _
/ qh.th:/ (M-FQO) qgdt. 27)
Ot Q1 a

4 An a Posteriori Error Estimate for the Lagrangian

In this section we briefly present main steps in the derivatiba posteriori error
estimate in the Lagrangian (13).

We consider the functiome U as a minimizer of the Lagrangidn andvy, € Uy,
and a minimizer of this functional ody,. In this consideration the functionis a
solution of (14) andy, is a solution of (24).

We assume that we know good approximation to the exact salutic U. Since
measurementg(t) in (4) are always given with some noise level (smalljve as-
sume that

9(t) =g"(t) +9s(t); 9°,95 € L2(Q1), 195l () < 9. (28)

whereg”(t) is the exact data and the functigg(t) represents the error in these data.
Thea posteriorierror estimate := L(v) — L(v,) for the Lagrangian is based on
the consideration

L(v) — L(vh) = fg &L(sv+ (1—s)vp)ds (29)
= Jo L'(sv+ (1= V) (V— Vi) ds= L' (Vi) (v— Vi) + R,

whereR= ¢ (0?). We assume that is small and then we can ignoRdn (29). We
refer to [21] and [7] for similar results in the case of a gat@onlinear operator
equation.

Using Galerkin orthogonality (24) together with the sfigtv — vi, = (v—V},) +
(W}, — Vh), WhereV}, is an interpolant of/ € V, see section 76.4 of [22]. It can be
easily derived from formula (76.3) of [22] that

dv
— V.
Tdt ,WeEV, (30)

vV—\ <G
H hHLz(QT) = Ly(@r)
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whereC =C; (Qr) = const> 0 is the interpolation constant. By one of well known
properties of orthogonal projection operators,

V=P < [[v—w|, WeV. (31)

Hence, from (30) and (31) follows that

V=PV, <G , YV eV. (32)

L2(Q)

o
dt

Recalling (29) we obtain the following error representatior the Lagrangian
L(v) —L(vn) & L' (V) (V— V). (33)

In (33) termsL’ (v,) represents residuals arfd— v},) - interpolation errors. Next,
vV— v{1 can be estimated in terms of derivatives/@nd the mesh parameteusing
formulas (31)-(32). Finally, we approximate the derivaswfv by the correspond-
ing derivatives ofs,, similarly with [11, 14].

The dominating contribution to the error in the Lagrangiaowrs in the residuals
of the reconstruction adj(t), which can be estimated by

A(t) = |a(q—ao) — A f2(u,q). (34)

Thus, the errorin the Lagrangian may be decreased by refih@igme mesh locally
in the regions where the absolute value of thé) attains its maximum.

Theorem 4.1 can be easily derived from a combination of Téwesr4.7.1, 4.7.2
and 4.8 of [16] as well as from Theorems 3.1, 3.2 of [18].

Theorem 4.1 Let Q C R™. For every function ¢ Mg functions yA € H(Qr),
where uA are solutions of state and adjoint problems (6)-(7) and {{I8). Next,
for every ge My there exists Rechet derivative f(q) of the Tikhonov functional
Eq(q) in (8) and

Eq(a) (t) = a(a(t) —ao) — A f2(u(t),q(t)). (35)

The functional of the Frchet derivative (q) acts on any function B H(Qr) as
Ea(q) (b) =Qf Ea(a) () b(t)dt.
T

5 An a posteriori error estimate for the Tikhonov functional

In the Theorem 5 we derive an a posteriori error estimate lier eérror in the
Tikhonov functional (8) on the finite element time-mekh

Theorem 5

Suppose that there exists minimizgrqH*(Qr) of the functional & (q). Sup-
pose also that there exists finite element approximation wfiEmizer g € Wr?
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of E4. Then the following approximate a posteriori error estimdbr the error
e=|Eq(qa) — Ex(gn)| in the Tikhonov functional (8) holds

e=|Eq(da) —Ea(dh)| <CGC HEQ(Qh)HLz(Qﬂ ”}?XTIlH[Qh]HLZ(QT) (36)

with positive constant§;,C > 0 and where

Eq (Gh) (t) = a(an(t) — do) — Anf2(un(t),an(t)). (37)

Proof
By definition of the Frechét derivative we can write that ba meshl we have
Ea(9a) — Ea(th) = Eq(Gh)(da — Gh) + R(Ga, 0h), (38)

whereR(da, gn) = O((da —dn)?), (da —Gh) — O Vda, G € W The termR(qq, )

is small since we assume ttgatis the minimizer of the Tikhonov functional on the
meshJ and this minimizer is located in a small neighborhood of tegutarized
solutionqy . Because of that we negleRtin (38). Next, we use the splitting

Ja — Oh = Ga — Oy + 0y — Gh (39)

and the Galerkin orthogonality

E; (Gh) (Al — 0h) = 0 V0, Gh € W (40)

to get
Eq(0a) — Ea(th) < E4(0h) (da — ) (41)

whereq'a is a standard interpolant gf, on the meshd [22]. We have that
|Ea(da) — Ea(an)] < |[Eq (an)llL2(ar)| 100 — Galliziar) (42)

where the ternqq — | |L2(q;) Can be estimated via the interpolation estimate with
the constant

a9
0o — qla||L2(QT) <Gt d—taHLZ(QT)'

Now we substitude above estimate into (42) to get

0
Ea(0a) ~ Ea(an)] < Gt [[Eq ()| ziap) T 5 liziar): (43)
Using that
99a, _ |[on]]
| <
et (44)

where[qp] is the jump of the functiony, over the time intervalffy_1,t] and[ty, tx. 1]
defined as

[an] = g —a,
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with functionsq, , g computed orfty_1,t] and|ty,t: 1], respectively, we can get
from (45) with a constan€ > 0 (see details in [28] for a similar derivation on the
space mesh)

|Eq(da) —Ea(an)| <CC ||E&(Qh)H|_2(QT) mTJaXTJ_l||[Qh]||L2(QT)~ (45)

6 Relaxation property for the functional E,(q)

In this section we specify the relaxation property of [21] foe functionalE,(q)
defined in (8). LeMMq be the set of admissible parameters defined in (3)loe
the finite dimensional space of finite elements. We definedh® asG := MgNUp.
We consider the sé as the subset of the spaldg with the same norm as idy,.
We define the operatét as

F:G—L2(Qr).F(a)(t) =2z (t)[g(t) —u(t,q)], te Qr, (46)

where the functiou := u(t,q) is the weak solution of the state problem (6)-@),
is the function in (4) and; (t) is the function defined in (5).

To make sure that the operateris one-to-one, we need assume that there exists
unique solution of our PIP. Therefore, we introduce Asstomp®.1.

Assumption 6.1.The operator Kc) defined in (46) is one-to-one.

Theorem 6.3 follows from Theorems 3.3 of [20], 4.1 and 6.2.

Theorem 6.3.Let Q1  RY. Let Assumptior6.1and condition(28) hold. Let the
function u=u(t,q) € H'(Qr) in (8) be the solution of the state problem (6)-(7) for
the function ge G. Assume that there exists the exact solutioa 6,q* () € [1,d]
of the equation Fq*) = O for the case when in (28) the function g is replaced with
the function ¢. Letin (28) a = a (6) = %X, u = const € (0,1/4). Letin (8) the
function @y € G be such thatl|go — g*|| < %. Then there exists a sufficiently small
numberd = & (Q2r,d,z;, 1) € (0,1) such that for alld € (0, &) the neighborhood
Vsau (€*) of the function ¢ is such that Ysu (g*) C G and the functional E(q) is
strongly convex in Y4 (") with the strong convexity constamy4 :

2
o — || < 52 (Ea (0) —Eq (B2) 61— @), Y1, 02 € G, (47)

where(-,-) is the scalar product in £(Q7) and the Fechet derivative E is cal-
culated using (35). Next, there exists the unique regwdrigolution g s), and
a(s) € Vaau/3(d”). In addition, the gradient method of the minimization of the
functional & (q), converges to gs). Let& € (0,1) be an arbitrary number. Then
there exists a numbeh = & (Qr,d,zz, i, &) € (0,8) such that ||qg(5) —0*|| <
Ellao—a’||, Vo € (0,01). Next, (47) implies that
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||Ez (g (48)

||q Ua(s HLZQT —52u HLz(QT)'

Theorem 6.4 presengsposteriorierror estimate between the computed function
gn obtained on the mesh aftarmesh refinements and the regularized solutign
Theorem 6.4 follows from Theorems 5.1 of [20] and 6.3 as welffram Theorem
4.11.3 of [16].

Theorem 6.4.Let conditions of Theorem 6.3 hold. Lgt"|| < A, where the con-
stant A is given. Let MC Uy be the subspace obtained after n mesh refinements.
Let hr, be the maximal time step of the subspage Met G be the constant in

(32). Then there exists a constas such that if 1, < Aﬁ‘é , then there exists the

unique minimizer gof the functional (8) on the set@M, 0 € V3. (9°) "My and
the following a posteriori error estimate holds

Eq(s) (Gn)

[Gn — das)|| < 52 ‘ L) (49)

Theorem 6.5 presents relaxation property of the adaptivityme. It follows
from Theorems 5.2, 5.3, 6.4 as well as from Theorem 4.11.46)

Theorem 6.5(relaxation property of the adaptivity in time)ssume that condi-
tions of Theorem 6.4 hold. Leh & Vsau (X*) N M, be the unique minimizer of the
Tikhonov functional (8) on the set@M,, (Theorem 6.4). Assume that the regular-
ized solution g5y # On, i-€. Gy(5) & Mn. Letn € (0,1) be an arbitrary number. Then
one can choose the maximal time s@p1 = Thy1 (A, N2,Ci, 8,2, 14,n) € (O, Ty
of the mesh refinement numier+ 1) so small that

(5) (Qn) (50)

[|Gn1—da(s)|| <N lloh—da(s)|| < 52u‘ o
Let & € (0,1) be an arbitrary number. Then there exists a sufficiently smain-
berdy =&y (A,NZ,Q 10,27, 1, r]) € (0,1) and a decreasing sequence of maximal

time stepg k}j' 1, T = Tk (A,N2,C, 8,2, &, 1.n7) such that ifd € (0,&), then

k1 — ) < n*|dr — das) || + € ldo— 0" .k =1,...,n. (51)

Theorem 6.6 follows from Theorems 5.4 of [20] and 6.5 and gmesrelaxation
property of the adaptivity for local mesh refinements.

Theorem 6.6 Assume that conditions of Theorem 6.5 hold.Q@et Q11U Qt».
Suppose that mesh refinements in time are performed onlgisubdomairQr,.
Let 7M be the maximal grid step size {r,. Then there exists a sufficiently small
numberdy = &y (A, N,,Ci, 0, Zz,&, 1, n) € (0,1) and a decreasing sequence of max-
imal time steps{'fk}'k‘j,'fk =Tx (AN2,C,08,2;,&,,n) of time-meshes i1,
such that if

2C N3
S2H

dda(s)
dt

%qu—qa J[.k=1,....n andd € (0,&), (52)
Lw(QTl)
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then (51) holds with the replacementpn‘k}'k‘:% with local time steps in the refined

mesheg T} s.

7 The Time-Mesh Refinement Recommendation and the
Adaptive Algorithm

We now present recommendation for mesh refinementin timelwkibased on the
Theorem 5.

The Time Mesh Refinement Recommendation.

Refine the time-mesh J in neighborhoods of those time-measts pa&e Qr,
where the functionE} (qy) (t)| attains its maximal values. Here, the function
E, (gn) (t) is given by formula (38). More precisely, |8t € (0,1) be the tolerance
number. Refine the time-mesh in such subdomairefwhere

|Eg (an) (t)] > Ba r%ax|eg (an) (1)) (53)

Now we will present our adaptive algorithm which uses abdneetmesh re-
finement recommendation. On every time-méske find an approximate solution
of the equatiorE/, (q) = 0. Hence, on every mesh we should find an approximate
solution of the equation (19).

For each newly refined time-mesh we first linearly interpoldie initial guess-
functiongo (t) on it and iteratively update approximatiog$ of the functiongp,
wherem is the number of iteration in optimization procedure. Letdenote the
gradient with respect to the functi@non the iteratiormin the gradient method by
g™(t) = a (ol — qo) (t) — AN(t) f2, (U, Gff") where functionsi, (t,qff") , An (t,0) are
calculated finite element solutions of state and adjoinblemms with the computed
alreadyq, andfy,, is the computed approximation of the functiésfu,h) = %‘.

Using the above mesh refinement recommendation we propesilitbwing
time-adaptive algorithm in computations:

Time-Adaptive algorithm

e Step 0. Choose an initial time partitidp k = 0 of the time interval0, T) . Start
with the known initial approximatioqﬂ and compute the sequencegifvia the
following steps:

e Step 1. Compute solutiong = un (t,q") andAn = Ay (t, q") of state (6)- (7) and
adjoint (17)- (18) problems, respectively, on the time-mé&s

e Step 2. Update the functiog, := qh"“rl on Jk using the gradient method as
qhm+1 =gy + yg™(t), wherey is the step-size in the gradient update given by
one-dimensional search algorithm [24].

e Step 3. Stop computing' and obtain the functiogy, if either [|g™|[ (o) < 6
or norms||g"||.,(q,) are stabilized. Otherwise set:= m+ 1 and go to step 1.
Here@ is the tolerance in gradient method.
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e Step 4. Compute the functidy, (t), By(t) = ’a (0h — o) (t) — Anfa(un,gn)(t)|.
Next, refine the mesh at all points where

B (X) > 1 maxBy (x) (54)

Q

Here the tolerance numbgs € (0,1) is chosen by the user.

e Step 5. Construct a new time partitidp of the time interval0, T). Interpolate
the initial approximatioryy from the previous time-mesh to the new time-mesh.
Next, return to step 1 and perform all above steps on the maerthesh.

e Step 6. Stop time-mesh refinements if norms defined in stefh8rencrease or
stabilize, compared with the previous mesh.
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