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Approximate global convergencein imaging of
land mines from backscattered data

Larisa Beilina* and Michael V. KlibanoV

We present new model of an approximate globally convergesthod in the most
challenging case of the backscattered data. In this casefalathe coefficient in-

verse problem are given only at the backscattered side ah#dum which should
be reconstructed. We demonstrate efficiency and robustifebe proposed tech-
nigue on the numerical solution of the coefficient inversebem in two dimensions
with the time-dependent backscattered data. Goal of ots tes$o reconstruct di-
electrics in land mines which is the special case of interestilitary applications.

Our tests show that refractive indices and locations ofedieic abnormalities are
accurately imaged.

1 Introduction

In this paper we present the new model of the recently deeelapproximate glob-
ally convergent method applied [4] for the solution of theolgbolic Multidimen-
sional Coefficient Inverse Problem (MCIP) with backscattidtata. This new model
consists on the new treatment and computation of the seetctdil function which
includes in the integral-differential equation of the appmate globally convergent
method. Our numerical tests show efficiency of the new tepmion the recon-
struction of land mines from backscattered data in two disiars.

We define a MCIP as a problem of the reconstruction of one orymaknown
coefficients of a PDE distributed in space from a boundarysueanents. We con-
sider the problems only with a single measurement data, @r puwoblems which
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use a single source location or a single direction of the ggagion of incident plane
wave to generate the data at the boundary.

Approximate globally convergent method of the first gerierats called con-
vexification algorithm. This method was developed in [17, 28] and references
therein. Approximate globally convergent method of theosekcgeneration is a dif-
ferent approach for solution of MCIP. This method uses |afepping procedure
with respect to the pseudo-frequency for solution of MCIHss approach was de-
velopedin [3, 4,5, 6, 7, 8, 21, 22, 20] with the first publicat{4] on this method.

It is well known that MCIPs are both nonlinear and ill-posedi d is very dif-
ficult answer to the question: how to obtain unknown coefficigf interest in the
small neighborhood of the exact solution without a priohedge of any informa-
tion about this solution ? Approximate globally converger@thod which is exper-
imentally verified in recent works [8, 19] answers to this sfien. We can mention
also a number of efficient one-dimensional algorithms witicot require a good
first approximation, see [12, 13] and references thereimétically verified global
reconstruction algorithms for solution of CIP with the dag¢sulted from multiple
measurements are presented in [1, 11, 15, 23, 24] and refs¢herein. We also
refer to [2] and references cited there for another methachéging of small inclu-
sions.

However, the case of MCIPs is more challenging one. Basedionegent nu-
merical experience we can conclude that approximate dipbahvergent method
is numerically efficient and can be applied in real-life nestouction resulted from
a single measurement data.

In our numerical experiments of this paper we concentratenaging of plastic
land mines inside slowly changing background medium frorckbeattered data.
We are not interested in imaging of slowly changing backgdsuand we do not
usea priori knowledge of the background medium. Our examples show tleat
can reconstruct both locations of land mines and maximalesbf the unknown
coefficient inside of them in two dimensions.

2 Statements of Forward and | nver se Problems with
backscattered data

In this section we briefly outline an approximately globaitynvergent method for
an MCIP for a hyperbolic PDE. For complete definition of apgineate global con-

vergence we refer to Chapter 1 of [9]. In solution of our MCIE use single mea-
sured backscattered data. This means that we will consigesrholic MCIP when

the wave field is initialized by the single source locationacsingle direction of
propagation of a plane wave.

w
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2.1 Statements of forward and inverse problems

We consider the following Cauchy problem as the forward fob

&(X)ut = Au, in R" x (0,00) ,n=2,3, 1)
u(x,0) = 0,ut (x,0) = 0 (X—Xo) . (2

In the 2D case this equation can be derived from Maxwell'sastigus, see [14].
Let us define o

n(x) = o & (X), (3)
wheren(x),x € R",)n = 2,3 is the spatially distributed refractive index of the
medium,cy is the speed of light in the vacuum aa(X) is the speed of propagation
of the electro-magnetic field in the medium.

Let Q c R",n= 2,3 be a convex bounded domain with the bounda€y
C",n=2,3. Let the coefficient; (x) of equation (1) belongs to the set of admissible
parameterd/,, such that

Mg = {&(X): & (X) € [1,d], & (X) = 1¥xe R™Q, & (x) € C*(R"),n=2,3.}
(4)
Here,d > 1 is a given number which represents the upper boundary dtitietion
& (X).
In the case of théackscatteredlata the data are given only at a part of the
boundary of the computational domain. We will specify oumguitational domain
Q with the backscattered bounddry

Q C {x=(x1,%2,%X3) : X3 > 0},
r=0Qn{x3=0}+#a.

In our computations we will consider cases when the wave fgelariginated by
either the point source) € {x3 < 0} at{t = 0} or by the incident plane wave prop-
agating along the positive direction of tlig—axis in the half spacéxz < 0} and
“falling” on the half spacgx3 > 0}. Thus, in the case of the backscattered data we
assume that the following functiagp (x,t) is known,

u(xt) =go(xt),V(xt) el x (0,0). (5)

Some of our numerical simulations of section 3 show thatirggt := 0 at
0O\ I does not affect the quality of reconstruction. Hence, we set

. Jo(X,1),(xt) € x (0,00),
ut) =01 (xt) = {O,O(x,t) c (d.Q\I')Xx (0, ) (6)

and consider following Inverse problem:
I nver se Problem with backscattered data (IPB1). Let both the domai® and
a part of its boundary” C 0Q satisfy the above conditions. Suppose that the coeffi-
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cientg (x) satisfies (4) and it is unknown in the domdin Determine the function
& (x) for x € Q, assuming that the functiony ¢x,t) in (6) is known for a single
source positionxe {xz < 0}.

Another set of our numerical simulations of section 3 we @erfwith the func-
tion u(x,t) = ro(x,t) at dQ\I" such that this function satisfies to the following
Cauchy problem

Wt —Au=0, inQ x (0,0),

u(x,0) =0, u(x,0) = f(x), in Q. "
Hence, in these tests we set
._ _J go(xt),(xt) € x(0,0),
uxt):=g2(xt) = { fo. (1) £ (3T ) x (0.0 (8)

and consider following Inverse problem:

Inver se Problem with backscattered data (1PB2). Let both the domai®2 and
a part of its boundary” C 0Q satisfy the above conditions. Suppose that the coeffi-
cientg (x) satisfies (4) and it is unknown in the domdin Determine the function
& (x) for x € Q, assuming that the functiom¢x,t) in (8) is known for a single
source positionxe {xz < 0}.

Remarks2.1.1:

1. In the case when we initialize a plane wave instead of corisigithe delta-
function in (2) the formulation of IPB1 or IPB2 is similar. We=ed only replace
words “for a single source positio € {X3 < 0}” with “for a single direction of
the incident plane wave propagating along the positivectioa of x3—axis in the
half space{xz < 0} and falling on the half spaciexs > 0} ”.

2. The question of uniqueness of IPB1 or IPB2 is an ipen probléris problem
can be solved via the method of Carleman estimates [16] irtdlse of replacing
of delta-function in (2) with it approximation. Hence, if wéll replace in (2) the
functiond (x— xp) with its approximation

o2
6g(x—xo):(27\/t_[_€>3exp<_|x £;<0| )

for a sufficiently small > 0, then uniqueness will take place from results of [16].
In our considerations we assume that uniqueness holds $eoéapplications.

2.2 The approximately globally convergent method

To obtain the approximately globally convergent method teet svith considering
the Laplace transform of the functions
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W(X,8) = /u(x,t)e‘Stdt, for s> s= const > 0, (9)
0

wheresis a sufficiently large number. We call the paramestpseudo frequen@nd
choose it experimentally, see section 3 for details. Apyliaplace transform to
(2), (2) we get
Aw— g (X)W = —5 (X—Xg) , (10)
lim w(x,s) = 0.

‘X‘*}OO

The condition limy .., w(X,s) = 0 was established in [9, 6] for sugithats > s.

Let us define by a < (0,1),k > 0, Holder spaces. In Theorem 2.7.2 of [6]
was proven that for every> 0 there exists unique solution

w e C* (R¥\ {|x—xo| < 8}),V0 > 0,¥a € (0,1)
which solves the problem (10) with(x) = 1, and

exp( sV o)

exp(—s|x—Xo|)
ATT|X — X0 '

Amt|X—Xo|

< W(X,8) <

< (11)
On the next step in derivation of an approximate globallyvergent method
we eliminate the unknown coefficieat(x) from equation (10). To do that first we
introduce the new function(x, s),
Inw
S) = ——. 12
V(X,9) 2 (12)
We are able to do that since by (Mj)x,s) > 0. We also verified this fact numeri-
cally, see Chapter 3 of [9]. Then

Av+S|IVP = & (X), xe€Q, (13)
V|z9.Q = ¢ (Xv S)v Vse [§,§] ) (14)

where the functio (x,s) is generated by the functian (x,t) in (6) or by ga(x,t)
in (8).

Now we differentiate both sides of (13) with respecst@and eliminate the coef-
ficientg (x) from (13). Denote

g(Xx,s) = 0V (X,S).

To perform next step we need the asymptotic behavior of thetfonw(x, s) at
s— oo which is confirmed by the following lemma

Lemma 2.2. [18]. Assume that conditions (4) are satisfied. Let the function
w(x,s) € C3(R3\ {|x—xo| < €}),Ve > 0 be the solution of the problem (10). As-
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sume that geodesic lines, generated by the eikonal equeatizasponding to the
function gx) are regular, i.e. any two points i3 can be connected by a single
geodesic line. Let(ix,Xp) be the length of the geodesic line connecting points x and
Xo- Then the following asymptotic behavior of the function w &adlerivatives
takes place fof3| <3,k=0,1,x+# Xg

DEDKw(x, ) = DQDE{W {1+o (%ﬂ } s, (15)

where f(x,xp) is a certain function and fx,xp) # 0 for x # Xo. This behavior is
uniform for xc Q.

Thus, by (15) we can get the following asymptotic behavioiftmctionsv(x,s)
andq(x,s).

Mcs-o(@y =O(5) lalcraa =0(3) 5= 9

We verify the asymptotic behavior (16) numerically in oungautations, see sub-
section 7.2 of [9] and section 3.1.2 in [6].
Assuming that (16) holds, we obtain

V(X,S) = —/q(x, T)dT. a7)

We can rewrite the integral in (17) as

V(x$) = —/q(x,r)dT+V(x,§), (18)

where the truncation numbar> sis a large parameter which should be chosen in
numerical experiments, and the functidiix,s) is defined as

[ee]

V (x,35) = —/q(x,r)dr

S
and called “the tail function”.
Using (12), we obtain an equivalent formula for the tail,
_ Inw(x,3)
-—
Using (12), (13) and (17) we obtain the following nonlineategral differential
equation

V (x,3) (19)
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2

S S
Aq—ZSqu-/Dq(x,r)dT+25 /Dq(x, 1)dr| +220q0v
S S

5 (20)
—ZSDV-/Dq(x,r)dr+23(DV)2:O, xeQ,sclss,
S

q |5Q = lﬂ(X,S) = (95(1) (X’S)'

From (20) we observe that tise-integrals as well as the tail function leads to the
nonlinearity. By using asymptotic (16) we have that

1\ (X,§)||Cz+,,(§) =0 (%) ,5— 00, (21)

From (21) follows that the tail functio(x, S) is small for large values of the trunca-
tion of pseudo frequency Because of that in our first studies about approximately
globally convergent method initial tail was neglected [46 However, last numer-
ical experiments have shown that our reconstruction resdtve a better quality if
we will not neglect the initial value of the tail function her compute it using the
new model of the tail presented in the next section.

2.3 New model of the tail function

In this subsection we formulate our approximate matheraatiodel which is based
on the new representation model of the tail function. Werrefesection 2.9 of the
book [9] for some details which we omit in the presentatiolotye

Let the functiorg/ (x) satisfying (4) be the exact solution of IPB1 or IPB2 for the
exact datay® in (6). LetV* (x,5) be the exact function fdr in (19) defined as

Letg* (x,s) andy* (x,s) be the corresponding exact functions épandy in (20),
respectively, defined from the following nonlinear intdgtdferential equation

(22)

2
S S
Aq*—ZSZDq*-/IZIq* (x, 7)dT+2s [/ dg* (x, r)dr] +2820q° 0OV*
S S

s (23)
—ZsDV*-/Dq* (x,1)dT+25(0V*)? =0, xc Q,s€ s,
S

9 log =¥ (x9) :=0s¢" (x,5) V(x;5)€dQx[sF.
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q* (x,8) € C*™* (Q) xCl[s g (24)

Now we describe main assumptions in the new model for thetimme
V*(x,9),9"(X,S),8 — .

In our assumption we will take into account only the first tanmthe asymptotic
behavior of the function¥*(x,s),q*(x,s),S — . As an example we can refer to
the geometrical optics assumption where the first term iralyenptotic behavior is
also neglected.

Assumptionsfor thefunctionsV*(x,s),q*(x,S),s— .

1. Assume that the asymptotic behavior (21) take place.
2. Assume that the functions® andg* have the following asymptotic behavior

(25)

4 (x9) =av (x5 =P X o (1) ~ p’;g”, 3 o,

We assume tha® ¢ R? is a convex bounded domain with the boundary
X ¢ Q.
Setting in (23 =3Swe get

Aqt+2320g° OV +25(IV*)% =0, x€ Q,

26
q oo =¥ (x5 VxedQ. #0

Then, using the first terms in the asymptotic behavior (25)tfe exact tail
V* (x,3) = 2% and for the exact functiog® (x,3) = —p?(x) we have
Ap* Op* Op* | ,(Op*)?
— 28 25
g € s T
a4 loo =Y" (x5 VYxeoQ.

=0, xeQ, @7)

we obtain the followingapproximateDirichlet boundary value problem for the
function p* (x) -
Ap*=0inQ, p* €C*™(Q), (28)

P*loq = —FY* (X,5). (29)

We now formulate our approximate mathematical model .

Approximate M athematical M odel

Let Assumptions (1)-(2) take place. Then there exists ditmp* (x) € C**% (Q)
such that the exact tail function\(x) has the form
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V*(x,8) :=

Wéx),VSEiS (30)

Using (19) we assume that

Vi (x8) = p*g(x) _ Invv;z(x,s). (31)

Since ¢ (x,s) = dsV* (x,s) for s> 5, we can get from (30)

g (x,3) =— p;X) . (32)

Then we have the following formulas for the reconstructiérthe coefficient

& (¥)

g (X) = AV + | OV* [,

Pr(x)

S
* d
/q (X, T) 4 P s
S

Now we will formulate uniqueness result for the new approxienrmathematical
model. Recall (20) with assumption that
W(x35) €CH(Q). (33)
Consider the solutiop(x) of the following boundary value problem
Ap=0inQ, peC*™(Q), (34)

Ploo = —SY(x.3). (35)

There exists unique solutiop of the problem (34), (35). Furthermore, it follows
from (28), (29), (33), (34) and (35) that

IP—=Pllczia(a )<D§2H (%,3) = " (%,5)[[c2raa0) - (36)

whereD =D (Q) = const > 1.
Now in our approximate globally convergent algorithm weetétike function

V1,1 (X) = & (37)

S

as the first guess for the tail function. Hegx) is the solution of the problem
(34)-(35).
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2.4 The sequence of equations with respect to the
pseudo-frequency

In this section from the equation (20) we will get the seqeeofequations with
respect to the pseudo-frequerscyror all details of this derivation we refer to [4, 9].
To do that we consider a layer stripping procedure with resfmethes by dividing

the interval[s, 5] into N small subintervals such that every interval has the step siz
h=s,_1— s in the frequency. Here,

S=sN<SN1<...<H=S (38)

Now we approximate the functiog(x, s) as a piecewise constant function with re-
spect tos, q(x,s) = gn(X) for s € [sy,sy-1). Using (17) and (18) the approximate
value of the functiov(x,s,) is

V(s = h iqj (¥)+V (x,5),00(x) =0. (39)
=

We now describe the procedure how obtain a sequence of appatexDirichlet
boundary value problems for elliptic PDEs for functiap$x). Let us introduce the
s—dependent Carleman Weight Function (CWF)

G (5) = explu (5—$1-1)], (40)

whereu > 1 is a large parameter, which is chosen in numerical experisn®ul-
tiplying both sides of equation (20) b, ;, (S) and integrating ovefs,,s,-1), we
obtain following system of equations with respect to theugsefrequency fok € Q

n-1
La(an) @ =Adh— Ain <h ZOqu - DVn) Udn
=

2
n-1
= Bn(0gn)? — Agph? < Z[JIZIqj) (41)
J:

n—1
+2A2,nDVn (h Z DQJ‘> —A2,n(|:|vn)27
j=0

>l

Sh-1
On | 00 = n(x) = /L[J(x,s)ds n=1..N.
Sh

Here number#\ n, Ao, Bn i= ',1—0“ depends om, h,n can be computed explicitly via
formulas
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Sh-1
|O::|O(“,h): (gmu(s)ds
Sn

i =taa(h) = [ 595 (51 9Fnu(9)ds
S s (42)
A =Aun() = = [l 21 - 9nu(s)ds

2 [S-1
Aani=Pon(ih) = = [ (9 ds
0 Jsn
In (41) functiond/, are determined from the iterative procedure describedaméxt
section. Because of the presence of the CWF in (41) we ob#sabm,_..Bn =0
uniformly for all n with ¢ >> 1. We describe details of numerical determining of
this parameter in Chapter 3 of [9].

In system (41) we have two unknown functiomg, andV,. We solve system
(41) iteratively on every pseudo-frequency interval. ivge computeV, by iter-
ative procedure inside every pseudo-frequency intervad, then by knowingvy
we determine the functiog, by solving the equation (41). Details of the iterative
procedure are described in the next section.

2.5 The Approximate Globally Convergent Algorithm

We present now algorithm for the numerical solution of eturet (41). In this al-
gorithm indexk denotes the number of iterations inside every pseudo-éecy
interval.

Step 0 Iteratiorin,1),n > 1. On this step we describe iterations with respect to the
nonlinear tem‘(an)2 in (41). Suppose that the initial tail functiaf o(x,s) €
C*(Q) is determined from (37). Suppose also that functigfts, ...,q); €

C2t%(Q) are already constructed. Then, we solve iteratively witpet to the
nonlinear term the following Dirichlet boundary value pleims, fork = 1,2, ...

n—1
Adly 1 — A (h > DqJ-) Ol 1+ Aund 1 - DVig
=1

2 n-1 2
=2B1n (DQﬁ,_ll) — Aonh? Z Oaj (%)
=1
n—1 9
+ 2AonVho- <h Z Uq; (x) _AZn(DVmO) )
=1

91 =T, (%), xeaQ.

We obtain the function, 1 := limy_.c Qﬁ.l such that 1 € C2+°’(§).
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Step1 Compute,; via backwards calculations using the finite element formula
tion of the equation (10), see details in Chapter 3 of [9],iattke finite difference
discretization of (39)

2
&rn1 (x) = AVn 1+ Sﬁ |Vn,1| X€EQ,
where functions, 1 are defined as
n-1

Vn1(X) = —hthi—h % gj+Vai(X).
]=0

Step 2  Solve the hyperbolic forward problem (1)-(2) with(x) := &n1(X), cal-
culate the Laplace transform and the functiay (X,3).
Step 3 Find a new approximation for the tail function

_Inwng (%,95)

Vi) =—5—" (43)

Step 4 lIterationgn,i), i > 2,n > 1. We now iterate with respect to the tails (43).
Suppose that functiortg,j_1,Vni—1(x,5) € C"% (Q) are already constructed.
Step5 Solve the boundary value problem

n—1
Adhj — Aqn (h Z qu) -00n,i + Anan,i - OVnji—1
=1

2
n-1

=2B1 1 (O _1)% — Agph? <Z Oa; (X)>
=1

n—-1
+2Aon[Vnj—1- (h Z 0aq; (X)> — Aon (OVhi_1)?,
=1

Oni (X) =T,(x), xe€0Q.

Step 6 Compute;,; by backwards calculations using the finite element formula-
tion of the equation (10) or via the finite difference disization of (39)

2
€ (X) = AVnj + & Vni|* X € Q,
where functionsj are defined as

n—1
Vo (X) = —hehi—h 3 gj+Vn,i (¥).
=0

We note that the functiogn (X) is extended ifR™\ Q,n = 2,3 by unity, see
(4).
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Step 7 Solve the hyperbolic forward problem (1)-(2) wih,;, compute the
Laplace transform and obtain the functiop; (x,s).
Step 8 Find a new approximation for the tail function

_Inwhi (x,3)

Vhi (X) = =

Step 9 Iterate with respect foand stop iterations dat= m, such thattnm, =
lim; ... f ;. Stopping criterion for computing functiom; is

eitherFX > FK"1orFK <n, (44)
wheren is a chosen tolerance afif are defined as

k—1
K ||qﬁ,| — Ohn,i |||-2

" ldki Y
Step 10 Set
On:=0nm,  &n(X) = &nm(X),  Vhyro(X) = %
Step 11 We stop computing functioaﬁi when
eitherN, > Np_1 orN, < n, (45)

where

N — llerk — &k~ HILy(0)
=

- (46)
llerk Iy

2.6 Approximate Global Convergence Theorem

We now present a brief formulation of the approximate glaosivergence Theorem
2.9.4 of the book [9]. We refer also to Theorem 2.9.4 of [9]thee full details and
proof of this theorem.

Approximate Global Convergence Theorem [9]. Let Q c R3 be the above
convex bounded domain with the bounda < C3 and the sourcex¢ Q. Let
Q; C R® be another bounded domain afdl cC Q. Let the above Assumption
holds. Suppose that all functiogs € C2+ (9Q) and functions™(x) > 1in Q.
Also, assume that the exact solutigh(x) of IP1 satisfies condition (4) ang’ €
cv (5) . Suppose that the total number of inner iterations for is=am,,Vn €
[1,N]. Also assume that then number of subintervalsN covered by the above
algorithm is independent on the step size h in thdigection. Lety: € C>7% (9Q)
be functiong}, corresponding to the exact soluti@h (x) and
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[¢n— nllczrapg) <C* (h+0),

wherea is the level of the error in the boundary data(g,t) in (6) or g2 (x,t) in
(8) and C = const > 1. Denote

n=2h+o).

Let the numbeB > 1. Choose the parametear in the Carleman weight function
(40) so large that
8(3C")?

o

Then there exists a constantMM (5,C*,d, Q, Q1) > 2 such that if the numben
is so small that

u>

_1

N M3Nm’

then all functiong™ € c@ (Q) and the following accuracy estimate of thélHer
type holds

n € (0,no),No=

ek g <n@:i=ge(0,1), (47)

(@)
where the numbew € (0,1) is

. In (NM)

~ 3NmMnM +1In (NM).

Our numerical experience has shown that one can always efeopsoper stop-
ping numbeN for iterations. It follows from (47) that we have Holdekdi conver-
gence estimate.

3 Imaging of land mineswith backscattered data

In this section we present numerical implementation of apipnately globally con-
vergent method on an example of reconstruction of land misesy backscattered
data. For the case when Quasi-Reversibility Method (QRM)sied for such re-
construction we refer to results of [22, 21, 28]. In this wevk use finite element
discretization for solution of an integro-differentialeation (41) on every pseudo-
frequency interval rather then using QRM method of [22, 28], ®ur numerical
tests show that we can get very accurate reconstructioncatitsn and refractive
indexes of objects with backscattered data without usinQRM.

In our implementation we use some discrepancies betweehebey of approxi-
mate globally convergent method and the practical comjmutsin our specific case
of imaging of land mines.
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1. Thefirst main discrepancy is with regard to Lemma 2.2. By this lemma, w
need to have regularity of geodesic lines generated by komal equation [26]

|0 (%,%0)[* = & (%), (48)

wherel (x,Xp) is the length of the geodesic line connecting pokasidxp.

The regularity condition is not constructive and cannot bgfied analytically.

It can be verified only in the case wher(x) is close to the constant. We have
verified the asymptotic behavior of Lemma 2.2 computatignake Chapter 3
of [9].

2. Thesecondmain discrepancy is that we perform our computations with th
plane wave instead of the point source in (2). We need thet goimrce in (2)
only because of conditions of Lemma 2.2. However, the tephndf approxi-
mate globally convergence can be easily extended to theot#se plane wave.
From other side, in the case of our application to image jléstd mines, the
wave which is initialized by a point source, overcomes to aegpaave when
that source is located far from the domain of interest.

3.1 A simplified Mathematical Model of Imaging of Plastic Lah
Mines

We use some simplification assumptions in our experimenisiége plastic land
mines. First, we consider the 2D case instead of 3D. Secoedjgwore the
air/ground interface and assume that our hyperbolic PDEZ s valid in the whole
space.

Let the ground bgx = (x,2) : z> 0} C R2. Suppose that a polarized electric
field is generated by a plane wave, which is initialized aitie{z = 2 <0xe R}
at the moment of time= 0.

We use the well-known fact that the maximal depth of an argigenel land mine
does not exceed approximately 10 centimeters (cm)=0.1rr{rade In our test we
model these mines as small rectangles with length of s@im@ter and width of side
0.1 meter. We are interested in imaging of land mines when ome fisilying over
another one. We have modelled such situation in our compuatdigeometnQ, see
Figure 1. This is one of the important and practical casesitifany applications.
We set _

Qrem = {Xx=(x,2) € (—0.3,0.3) mx (0.05,0.45)m}.

Now we introduce dimensionless spatial variabtes x/ (0.1m) and obtain that the
domainQggy is transformed into our dimensionless computational domai

Qrem = (—3.0,3.0) x (0.5,4.5).

Using tables of dielectric constants [27] we see that in tlyesdnds; =5 and in
the trinitrotoluene (TNT), = 22. Hence, the relation of mine/background contrast
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is 22/5~ 4. Thus, we consider new parameters
&
g =—
r 5 )

to get
&(dry sand=1, &(TNT) =~ 4. (49)

To simulate the data for the inverse problem, we solve th&ded problem using
the software package WavES [29] via the hybrid FEM/FDM mdthescribed in
[10]. The dimensionless size of our computational domaitrite forward problem
is Q =[—4.0,4.0] x [0,5.0]. This domain is split into a dimensionless finite element
domainQregm = [—3.0,3.0] x [0.5,4.5] and a surrounding domai@rpy with a
structured mesh? = QremU QrFpm, see Figure 1. The space mestfdggy andin
Qrpwm consists of triangles and squares, respectively. The meslist = 0.125 in
the overlapping regions. The boundary of the donfiis 0 Q = 00Q1 U0 QU0 Q3.
Here,d Q1 anddQ, are respectively top and bottom sides of the domainsee
Figure 1, and Q3 is the union of left and right sides of this domain.

Correspondingly to the boundaries ©frpy we describe also boundaries of
Qrem Where we solve our inverse problem. We define the boundaryeofibmain
Qrem asl” =1 UL U3, Here, [ andl;, are respectively top and bottom sides of
the domainQgrg v, see Figure 1, anflz is the union of left and right sides of this
domain.

We use the hybrid method of [10] since in our applications wevk value of the
coefficients; (x) outside of the domain of intere§izg . That means that we know

& (X) =1in QFpwm, (50)

and we need to determirgg(x) only in Qrgm. Thus, it is computationally efficient
consider the forward problem in the whole computational don® but solve the
coefficient inverse problem only iQrg M. In the case of our application the hybrid
method of [10] perfectly corresponds to these needs.

Now we proceed to the forward problem which is used in our catatons. The
forward problem in our test is

&(X)uw—Au=0, inQx(0,T),
u(x,0) =0, w(x,0) =0, in Q,
onu=f(t), ondQq x (O,ty],
Opu= —0u, ond Qg x (t1,T),
Ohu = —3gu, ondQ, x (0,T),
ohu=0,0ndQ3x (0,T),

(51)

wheref (t) is the amplitude of the initialized plane wave,

f(y= CNATBHD ocpcy =2 (52)
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e
a) Q = QremU Qrpm b) Qrpm C) Qrem

Fig. 1 a) Geometry of the hybrid mesh. This is a combination of trediateral mesh in the
subdomainQgpy b), where we apply FDM, and the finite element mesh in the idoenain

Qrem ), where we use FEM. The solution of the inverse problemmgpeted inQrg . The trace

of the solution of the forward problem (51) is recorded attitye boundaryi; of the finite element
domainQeem.

To compute the data for the inverse problem we solve the fiatweoblem (51) with
w="7.0in (52) and in the timd = (0, 6) with the time ste = 0.01 which is sat-
isfied to the CFL condition, and save solution of this prob&drtne top boundark;
of the finite element domai@rgnm. Figures 2 show how the plane wave propagates
in the computational domaif? presented at Figure 1-a).

Because of (49), we define the set of admissible coefficientaé functiore, (x)
in Qrem as

Mg = {&(X) 1 & () € [L,8], & (x) = 1Vx € RA\ Q,¢& (X) € C* (R?) .}

3.2 Numerical Results

We have performed two set of tests. In the first test we solR&d.land in the second
test we solved IPB2. The goal of both tests was to reconsstaetture given on
Figure 1-a).

The data at the boundafy for IPB1 or IPB2 were computationally simulated
using the software package WavES [29] via solving the hyplértproblem (51)
with known values of the coefficielst = 4 inside two inclusions of Figure 1-a). To
choose appropriate pseudo-frequency interval for contiounal solution of IPB1 or
IPB2 we check sensitivity of the simulated backscatterdd dethe boundarf; by
solution of the forward problem (51).

Thus, we check sensitivity of the simulated functig(x,s) with respect to the
pseudo-frequency Figure 4 displays the computed functigfx, s) ,x € I for dif-
ferent values of the pseudo-frequerscyVe have started computations of the func-
tion g(x) from very large values of the pseudo-frequesey 18 and finished with
small values = 2. From Figure 4 we have observed that the behavior of the-func
tion |q(x,s)| for x € 1 is similar for all pseudo frequencias< 5. More precisely,
this function is close to its maximal value only on a smalltdithe backscattered
sidel7, see Figure 4. However, all values of the functiq(x)| for s> 5 are very



18 Larisa Beilina and Michael V. Klibanov

¢) t=5.0 d) t=6.0

Fig. 2 Isosurfaces of the simulated exact solution for the forw@mblem (51) at different times
with a plane wave initialized at the top boundary.

noisy and does not show sensitivity to the inclusions, sgargi4-e), f). Thus, for
computations we decided take one of pseudo-frequencyaitefors < 5. Using
Figure 4 we observe that the computed functifr, s) is most sensitive on the
intervals = [2, 3] then on other intervals in the pseudo-frequency, and we ttake
pseudo-frequency interval= |2, 3] for our computations. We take step in pseudo-
frequencyh = 0.05 and run computations froe= 3 tos= 2. We have used deriva-
tives of tailsdsVin j (x,3) instead of taild/y; (x,5) when computing functiong, i, see
Chapters 2,5 of [9] for explanations. To solve integrafetiéntial equation (41) we
use Finite Element discretization of this equation withcgigise-linear functions
for approximation of functiong,(x) and then we use KSP method in the software
package PETSc [25] for solution of the resulting equation.

3.3 Testl

In this test we solve IPB1. The boundary conditions for theegral-differential
equation (41) were replaced with the following Dirichletumalary conditions

Qn|l'1 = wn(x)a QH|I'2UI'3 = 0 (53)

Thus, we use the zero Dirichlet boundary condition for thectionq, at I, U Is.
This condition does not follow from the radiation conditiahthe infinity for the
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Fig. 3 Reconstruction results in Test 1 with the computed exatVfa&= at different

pseudo-frequencies

functionw(x,s). However, we have observed in our computational simulatibat
values of functionfgn ()| at/; are much larger and close to the constant than values
of |gn(X)| atx € L UT3.

The algorithm of section 2.5 was used to calculate the imddeigure 5-a).
Location of both the mine-like targets is imaged accurasdlyough we could not
separate these two mines. Als®comp(X) = 1 outside of the imaged inclusions
is reconstructed correctly. Finally, m@xcomp(X)] ~ 3.58 which is 895% of the
correct value.

3.4 Test2

In this test we solve IPB2. The boundary conditions for thtednal-differential
equation (41) were replaced with the following Dirichletimmary conditions

Qn|l'1 = Wln(x)7 CIn|/'2ul'3 = w2n(x)7
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Fig. 4 Backscattered data for the function q at the top boundargf the computational domain
Qrem computed for the different values of the pseudo-frequendieobserve that for all pseudo-
frequencies s¢ 5, the values of the functioig (x, s)| are close to its maximal value only on a small
part of the boundarys. Values of the function (¢, s) at the rest of’; are close to a constant.
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Fig.5 Computed image using backscattered data obtained fromeibngtry presented on Figure
1-a). Both location and contrast of the inclusion are actahaimaged. The computed function
& = loutside of imaged inclusions. The noise level in datsts

where functionyn(x) and @, (x) are generated by functiomg(x,t) andro(x,t),
respectively, see definition of IPB2. In this test we simedathe functiorry(x,t)
at I, U Iz by solution of the forward problem (51) witkg (x) = 1 at every point of
the computational domaif. This Dirichlet boundary condition d% U 73 is also
approximated and is necessary to solve the integral-efffigal equation (41).

As in the first test, the algorithm of section 2.5 was used toutate the image
of Figure 5-b). Location of both the mine-like targets is ged accurately. We re-
constructed contrast m@k comp(X)] = 4.17. Thus, (49) is approximately fulfilled
with 4% error of the correct value. We also note, that in teist twve imaged more
accurately contrast inside inclusions then in the previess We can conclude that
in the case of backscattered data for the solution of (4 1fficdent and stable apply
Dirichlet boundary conditions which are immersed into dedan the homogeneous
domain.
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