
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PREPRINT 2012:17 
 

Adaptive FEM with relaxation for a 
hyperbolic coefficient inverse problem 
 
 
 

LARISA BEILINA  
MICHAEL V. KLIBANOV 
 
 
 
 
 

Department of Mathematical Sciences 
Division of Mathematics 

CHALMERS UNIVERSITY OF TECHNOLOGY 
UNIVERSITY OF GOTHENBURG 
Gothenburg Sweden 2012 





 
 

 

Preprint 2012:17 
 
 
 
 
 

Adaptive FEM with relaxation for a hyperbolic 
coefficient inverse problem 

 
Larisa Beilina and Michael V. Klibanov 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Department of Mathematical Sciences 
Division of Mathematics 

Chalmers University of Technology and University of Gothenburg 
SE-412 96  Gothenburg, Sweden 
Gothenburg, September 2012 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Preprint 2012:17 

ISSN 1652-9715 
 

 

Matematiska vetenskaper 

Göteborg 2012 



Adaptive FEM with relaxation for a hyperbolic
coefficient inverse problem

Larisa Beilina∗ and Michael V. Klibanov†

Recent research of publications [6, 7, 9, 10, 11, 12, 13, 14, 15, 17] have shown
that adaptive finite element method presents a useful tool for solution of hyperbolic
coefficient inverse problems. In the above publications improvement in the image
reconstruction is achieved by local mesh refinements using aposteriori error esti-
mate in the Tikhonov functional and in the reconstructed coefficient. In this paper
we apply results of the above publications and present the relaxation property for the
mesh refinements and a posteriori error estimate for the reconstructed coefficient for
a hyperbolic CIP, formulate an adaptive algorithm and applyit to the reconstruction
of the coefficient in hyperbolic PDE. Our numerical examplespresents performance
of the two-step numerical procedure on the computationallysimulated data where
on the first step we obtain good approximation of the exact coefficient using ap-
proximate globally convergent method of [12], and on the second step we take this
solution for further improvement via adaptive mesh refinements.

1 Introduction

In this paper we summarize recent results on the Adaptive Finite Element Method
(adaptivity) for solution of hyperbolic coefficient inverse problem, see [1, 6, 7, 9,
10, 11, 13, 14, 15, 17] and chapter 4 of [12]. We also present relaxation property
in adaptivity which is based on results of [17] and reformulate theorems of [17] for
our specific case of hyperbolic CIP.

The relaxation property means that the accuracy of the computed solution im-
proves with mesh refinements of the initial mesh. The relaxation property in the
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2 Larisa Beilina and Michael V. Klibanov

adaptive finite element method applied to the solution of CIPs was observed numer-
ically in many publications, see, e.g. [1, 6, 7, 9, 10, 11, 13,14, 15]. Analytically it
was proved for the first time in [17].

The adaptivity for acoustic and elastic CIPs was developed by the first author in
her PhD thesis in 2003 [8] with the first publication [6]. A similar idea was proposed
in [4]. However, an example of a CIP was not considered in [4].The adaptivity
was developed further in a number of publications, where it was applied both to
CIPs [3, 6, 7, 9, 10, 11] and to the parameter identification problems, which are
different from CIPs to some other ill-posed problems, see, e.g. [22, 24, 25]. In [35]
the adaptivity was applied to the Cauchy problem for the Laplace equation. In the
recent publication [32] was developed an adaptive finite element method for the
solution of the Fredholm integral equation of the first kind.

The idea of adaptivity consists in the minimization of the Tikhonov functional on
a sequence of locally refined meshes using a posteriori errorestimates. We note that
due to local mesh refinements, the total number of finite elements is rather moderate
and the corresponding finite element space behaves as a finitedimensional one.
Since all norms in finite dimensional spaces are equivalent,then we use the same
norm in the Tikhonov regularization term as the one in the original space. This
is obviously more convenient for both analysis and numerical studies of this and
previous publications than the standard case of a stronger norm [2, 12, 26, 38, 39] in
this term. Numerical results of the current and previous publications [6, 7, 9, 10, 11]
confirm the validity of this approach.

In section 3 of this paper we present a posteriori error estimates of distances
between regularized solutions and ones obtained after meshrefinements. In the past
publications which uses the adaptivity for ill-posed problems such estimates were
obtained only for some functionals rather than for solutions themselves, see, e.g.
[4, 6, 7, 10, 11, 13, 14, 24, 25].

Because of the well known phenomenon of local minima and ravines of the
Tikhonov functional, many regularized solutions might exist. Furthermore, even if
such a regularized solution exists and is unique, it is unclear how to practically find
it, unless a good first guess about the true solution is available. Recently developed
the approximately globally convergent method for CIPs for ahyperbolic PDE with
single measurement data, see, e.g. [12, 13, 14, 15, 17, 31, 17, 33] and further refer-
enced cited there delivers a such good approximation for theexact solution.

In our numerical examples we use the two-step numerical procedure which was
developed for some CIPs for a hyperbolic PDE [12, 13, 14, 15].On the first step,
the approximately globally convergent method delivers a good approximation for
the exact solution, and on the second step, the adaptivity uses this approximation as
a starting point for a refinement. We need the first step since the adaptivity works
only in a small neighborhood of the exact solution of the Tikhonov functional. Nu-
merical examples of section 6 presents results of the reconstruction of the unknown
coefficient of hyperbolic PDE using this two-step numericalprocedure.
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2 The Space of Finite Elements

First we introduce the space of standard piecewise linear finite elements, which are
triangles in 2-d and tetrahedra in 3-d. LetΩ ⊂ Rn,n = 2,3 be a bounded domain.
Let a triangulationT of Ω represents a coarse mesh. Following section 76.4 of [21],

we construct global piecewise linear functions
{

ej (x,T)
}p(T)

j=1 ⊂ C
(
Ω

)
associated

with the triangulationT. Functions
{

ej (x,T)
}p(T)

j=1 are linearly independent inΩ
and its number equals to the number of the mesh points in the domainΩ .

Let {Ni} = N1,N2, ...,Np(T) be the enumeration for nodes in the triangulationT.
Then test functions satisfies to the condition for alli, j ∈ {Ni}

ej (Ni ,T) =

{
1, i = j,
0, i 6= j.

Let Vh(T) is the linear space of finite elements with its basis
{

ej (x,T)
}p(T)

j=1 which
is defined as

Vh (T) = {v(x) ∈V : v |K∈ P1(K) ∀K ∈ T} , (1)

whereP1(K) defines the set of linear functions onK and

V (T) =
{

v(x) : v∈C
(
Ω

)
,∇v∈ P(C(Ω))

}
.

Here,P(C(Ω)) defines the set of piecewise-continuous functions onΩ . In (1) v |K
is the function defined on the elementK which coincides withv onK. Each function
v∈Vh (T) can be represented as

v(x) =
p(T)

∑
j=1

v(Nj)ej (x,T).

Let h(K j) be the diameter of the triangle/tetrahedraK j ⊂ T. We define the mesh
parameterh

h = max
K j⊂T

h(K j) (2)

and call it by themaximal grid step sizeof the triangulationT. Let r be the radius of
the maximal circle/sphere inscribed inK j . We impose the following shape regularity
assumption for all triangles/tetrahedra uniformly for allpossible triangulationsT

a1 6 h(K j) 6 ra2, a1,a2 = const. > 0, ∀K j ⊂ T, ∀ T, (3)

where numbersa1,a2 are independent on the triangulationT. We also assume that
the following condition is fulfilled

h(K j)/h(Ki) ≤C (4)
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with the some constantC, whereh(K j),h(Ki) are the smallest and the largest di-
ameters for the elements in the meshTn, correspondingly. Condition (4) practically
means that we can not refine the mesh infinitely and we should check both condi-
tions (2) and (4) simultaneously after every mesh refinement.

Usually, the number of all triangulations which are satisfying (3) is finite, and we
define the following finite dimensional linear spaceH,

H =
⋃

T

Span(Vh (T)) , ∀T satisfying (3).

Hence,

dimH < ∞, H ⊂
(
C

(
Ω

)
∩H1(Ω)

)
, ∂xi f ∈ L∞ (Ω) , ∀ f ∈ H. (5)

In (5) ”⊂” means the inclusion of sets. We equipH with the same inner product as
the one inL2 (Ω) . Denote(,) and‖·‖ the inner product and the norm inH respec-
tively, ‖ f‖H := ‖ f‖L2(Ω) := ‖ f‖ , ∀ f ∈H. We refer to [12, 17] for description of the
construction of subspaces of triangulations{Tn} as well as corresponding subspaces
{Mn} of the spaceH. We view the spaceH as an “ideal” space of very fine finite
elements. This space cannot be reached in practical computations.

Let I be the identity operator onH. For any subspaceM ⊂ H, let PM : H → M
be the orthogonal projection operator ontoM. DenotePn := PMn. Let hn be the mesh
function forTn defined as a maximal diameter of the elements in triangulation Tn.
Let f I

n be the standard interpolant of the functionf ∈ H on triangles/tetrahedra of
Tn, see section 76.4 of [21]. It can be easily derived from formula (76.3) of [21] that

∥∥ f − f I
n

∥∥
L∞(Ω)

≤ K ‖∇ f‖L∞(Ω) hn,∀ f ∈ H, (6)

whereK = K (Ω , r,a1,a2) = const. > 0. Since f I
n ∈ H,∀ f ∈ H, then by one of well

known properties of orthogonal projection operators,

‖ f −Pn f‖ 6
∥∥ f − f I

n

∥∥ , ∀ f ∈ H. (7)

Hence, from (6) and (7) follows that

‖ f −Pn f‖L∞(Ω) 6 K ‖∇ f‖L∞(Ω) hn,∀ f ∈ H. (8)

SinceH is a finite dimensional space in which all norms are equivalent, it is conve-
nient for us to rewrite (8) with a different constantK in the form

‖x−Pnx‖ 6 K ‖x‖hn, ∀x∈ H. (9)
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3 Relaxation property for a Coefficient Inverse Problem

In section below we present theorems which show the relaxation property for hyper-
bolic CIP. More explicitly, we prove that the accuracy of thesolution of hyperbolic
CIP improves with mesh refinements. Proofs of these theoremsfollows from the
results of section 4 of [12].

3.1 Coefficient Inverse Problem and Tikhonov functional

We consider a convex bounded domainΩ ⊂ R3 with the boundary∂Ω ∈ C3. Let
the pointx0 /∈ Ω .

DenoteQT = Ω × (0,T) ,ST = ∂Ω × (0,T) for T > 0 . Letd > 1 be a number,
ω ∈ (0,1) be a sufficiently small number, and the functionc(x) ∈ C

(
R3

)
belongs

to the set of admissible coefficientsMc such that

Mc = {c(x) : c(x) ∈ (1−ω ,d+ ω) in Ω ,c(x) = 1 outside ofΩ}. (10)

In numerical experiments we specifyc(x) > 1. Consider the solutionu(x,t) of the
following Cauchy problem

c(x)utt = ∆u,x∈ R3,t ∈ (0,T) , (11)

u(x,0) = 0,ut (x,0) = δ (x−x0) . (12)

Equation (11) is called the acoustic wave equation in the case x is the sound speed
andu(x,t) is the amplitude of the acoustic wave [40]. Equation (11) also governs
propagation of the electromagnetic field withc(x) = εr (x), whereεr (x) is the spa-
tially distributed dielectric constant. [37].

In (12) the point source can be replaced with the incident plane wave in the case
when it is initialized at the plane{x3 = x3,0} such that{x3 = x3,0}∩Ω = ∅. All
derivations below are similar to the case of plane wave too. In our Theorems below
we focus on (12), but in numerical studies we use the incidentplane wave.

Coefficient Inverse Problem (CIP). Let conditions (10)-(12) hold. Assume that
the coefficientc(x) is unknown inside the domainΩ . Determine this coefficient for
x∈ Ω , assuming that the following functiong(x,t) is known

u |ST = g(x,t) . (13)

The functiong(x,t) represents measurements of the outcome wave fieldu(x,t)
at the boundary of the domain of interestΩ . Since the functionc(x) = 1 outside of
Ω , then (11)-(13) imply

utt = ∆u,(x,t) ∈
(
R3�Ω

)
× (0,T) ,

u(x,0) = ut (x,0) = 0,x∈ R3�Ω ,u |ST = g(x,t) .
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Solving this initial boundary value problem for(x,t) ∈
(
R3�Ω

)
× (0,T) , we

uniquely obtain Neumann boundary conditionp(x,t) for the functionu,

∂nu |ST = p(x,t) . (14)

Since CIPs are complex problems one naturally needs to impose some simplify-
ing assumptions. In the case of our particular CIP uniqueness theorem for our CIP
does not working unless we replace theδ−function in (12) by a smooth function,
which approximatesδ (x−x0) in the distribution sense. Letκ ∈ (0,1) be a suffi-
ciently small number. We replaceδ (x−x0) in (12) with the functionδκ (x−x0) ,

δκ (x−x0) =

{
Cκ exp

(
1

|x−x0|
2−κ2

)
, |x−x0| < κ,

0, |x−x0| > κ,

∫

R3

δκ (x−x0)dx= 1. (15)

We assume thatκ is so small that

δκ (x−x0) = 0 in Ω . (16)

Let ζ ∈ (0,1) be a sufficiently small number. Consider the functionzζ ∈ C∞ [0,T]
such that

zζ (t) =





1,t ∈ [0,T −2ζ ] ,
0,t ∈ [T − ζ ,T] ,

between 0 and 1 fort ∈ [0,T −2ζ ,T − ζ ] .
(17)

Let us consider the following state problem
State Problem. Find the solutionv(x,t) of the following initial boundary value

problem

c(x)vtt −∆v = 0 in QT ,

v(x,0) = vt(x,0) = 0,

∂nv |ST = p(x,t) .

(18)

The Tikhonov functional for the above CIP which correspondsto the state prob-
lem (18) is

Eα(c) =
1
2

∫

ST

(v |ST − g(x,t))2zζ (t)dσdt+
1
2

α
∫

Ω

(c−cglob)
2dx, (19)

wherecglob is the approximate solution obtained by an approximately globally con-
vergent numerical method of [12] on the first stage of our two stage numerical proce-
dure (introduction and [12, 13]) andα is the small regularization parameter. To fig-
ure out the Fréchet derivative of the functionalEα (c) , we introduce the Lagrangian
L(λ ,v,c),

L(λ ,v,c) = Eα(c)−
∫

QT

c(x)vtλtdxdt+
∫

QT

∇v∇λdxdt−
∫

ST

pλdσxdt. (20)
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The sum of integral terms inL(c) equals zero, because of the definition of the weak
solutionv∈ H1 of the problem (18) asv(x,0) = 0 and
∫

QT

(−c(x)vtwt + ∇v∇w)dxdt−
∫

ST

pwdσxdt = 0,∀w∈ H1(QT) ,w(x,T) = 0, (21)

see section 5 of Chapter 4 of [34]. Hence,L(c) = Eα(c). To find the Fréchet deriva-
tive of the Lagrangian (20) it is necessary to consider Fréchet derivatives of func-
tions v,λ with respect to the coefficientc (in certain functional spaces). This in
turn requires to establish a higher smoothness of functionsv,λ than justH1 (QT)
[12, 14].

The Fréchet derivative of the Lagrangian with respect toλ gives us the state
problem and the Fréchet derivative of the Lagrangian with respect tov gives us the
adjoint problem which we present below.

Adjoint Problem . Find the solutionλ (x,t) of the following initial boundary
value problem with the reversed time

c(x)λtt −∆λ = 0 in QT ,

λ (x,T) = λt(x,T) = 0,

∂nλ |ST = zζ (t)(g−v)(x,t) .

(22)

In (18) and (22) functionsv ∈ H1 (QT) andλ ∈ H1 (QT) are weak solutions of
problems (18) and (22) respectively. In fact, we need a higher smoothness of these
functions, which we specify below. In (22) and (18) functionsg andp are the ones
from (13) and (14) respectively. Hence, to solve the adjointproblem, one should
solve the state problem first. The functionzζ (t) is introduced to ensure the validity
of compatibility conditions at{t = T} in (22).

State and adjoint problems are concerned only with the domain Ω rather than
with the entire spaceR3. We define the spaceZ as

Z =
{

f : f ∈C
(
Ω

)
∩H1 (Ω) ,cxi ∈ L∞ (Ω) , i = 1,2,3

}
,‖ f‖Z = ‖ f‖C(Ω)+

3

∑
i=1

‖ fxi‖L∞(Ω) .

ClearlyH ⊂ Z as a set. To apply the theory of above sections, we express in subsec-
tion 6.2 the functionc(x) via standard piecewise linear finite elements. Hence, we
assume below thatc∈Y, where

Y = {c∈ Z : c∈ (1−ω ,d+ ω)} . (23)

Theorem 3.1.1 can be easily derived from a combination of Theorems 4.7.1, 4.7.2
and 4.8 of [12] as well as from Theorems 3.1, 3.2 of [14].

Theorem 3.1.1. Let Ω ⊂ R3 be a convex bounded domain with the bound-
ary ∂Ω ∈ C2 and such that there exists a function a∈ C2

(
Ω

)
such that a|∂Ω =

0,∂na |∂Ω = 1. Assume that there exists functions P(x,t) ,Φ (x,t) such that
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P ∈ H6 (QT) ,Φ ∈ H5 (QT) ;∂nP |ST = p(x,t) ,∂nΦ |ST = zζ (t)g(x,t) ,

∂ j
t P(x,0) = ∂ j

t Φ (x,0) = 0, j = 1,2,3,4.

Then for every function c∈ Y functions v,λ ∈ H2 (QT) , where v,λ are solutions
of state and adjoint problems (18), (22). Also, for every c∈ Y there exists Fŕechet
derivative E′α(c) of the Tikhonov functional Eα(c) in (19) and

E′
α(c)(x) = α

(
c−cglob

)
(x)−

T∫

0

(utλt)(x,t) dt := α
(
c−cglob

)
(x)+y(x) . (24)

The function y(x) ∈C
(
Ω

)
and the there exists a constant B= B

(
Ω ,a,d,ω ,zζ

)
> 0

such that

‖y‖C(Ω) ≤ ‖c‖2
C(Ω) exp(BT)

(
‖P‖2

H6(QT ) +‖Φ‖2
H5(QT )

)
. (25)

The functional of the Fŕechet derivative E′α(c) acts on any function b∈ Z as

E′
α(c)(b) =

∫

Ω

E′
α(c)(x)b(x)dx.

3.2 Relaxation property for the functionalEα(c)

We now specify the relaxation property of [17] for the specific functionalEα(c) for
our CIP. LetY be the set of functions defined in (23) andH be the finite dimensional
space of finite elements constructed in section 2. We define the setG asG :=Y∩H.
We consider the setG as the subset of the spaceH with the same norm as inH. In
particular,G=

{
c(x) ∈ H : c(x) ∈ [1−ω ,d+ ω ] for x∈ Ω

}
. Let the Hilbert space

H2 := L2 (ST) . We define the operatorF as

F : G→ H2,F (c) (x,t) = zζ (t) [g(x,t)−v(x,t,c)] , (x,t) ∈ ST , (26)

where the functionv := v(x,t,c) is the weak solution (21) of the state problem
(18), g is the function in (13) andzζ (t) is the function defined in (17). For any
functionb∈ H consider the weak solutioñu(x,t,c,b) ∈ H1 (QT) of the following
initial boundary value problem

c(x) ũtt = ∆ ũ−b(x)vtt ,(x,t) ∈ QT ,

ũ(x,0) = ũt (x,0) = 0, ũ |ST = 0.

Theorem 3.2.2 can be easily derived from a combination of Theorems 4.7.2 and
4.10 of [12].
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Theorem 3.2.2.Let Ω ⊂ R3 be a convex bounded domain with the boundary
∂Ω ∈C2. Suppose that there exist functions a(x) ,P(x,t) ,Φ (x,t) satisfying condi-
tions of Theorem 3.1.1. Then the functionũ(x,t,c,b) ∈ H2 (QT) . Also, the operator
F in (26) has the Fŕechet derivative F′ (c) (b) ,

F ′ (c)(b) = −zζ (t) ũ(x,t,c,b) |ST ,∀c∈ G,∀b∈ H.

Let B= B
(
Ω ,a,d,ω ,zζ

)
> 0 be the constant of Theorem 3.1.1. Then

∥∥F ′ (c)
∥∥

L
≤ exp(CT)‖P‖H6(QT ) , ∀c∈ G.

In addition, the operator F′ (c) is Lipschitz continuous,
∥∥F ′ (c1)−F ′ (c2)

∥∥
L

≤ exp(CT)‖P‖H6(QT ) ‖c1−c2‖ , ∀c1,c2 ∈ G.

We also introduce the error of the levelδ in the datag(x,t) in (13). So, we assume
that

g(x,t) = g∗(x,t)+gδ (x,t); g∗,gδ ∈ L2 (ST) ,‖gδ‖L2(ST ) ≤ δ . (27)

whereg∗(x,t) is the exact data and the functiongδ (x,t) represents the error in these
data. To make sure that the operatorF is one-to-one, we need to refer to a uniqueness
theorem for our CIP. However, uniqueness results for multidimensional CIPs with
single measurement data are currently known only under the assumption that at least
one of initial conditions does not equal zero in the entire domainΩ , which is not
our case.

All these uniqueness theorems were proven by the method of Carleman esti-
mates, which was originated in 1981 simultaneously and independently by the au-
thors of the papers [18, 19, 27]; also see, e.g. [20, 28, 29, 30] as well as sections
1.10, 1.11 of the book [12] and references cited there. However, because of appli-
cations, it makes sense to develop numerical methods for theabove CIP, regardless
on the absence of proper uniqueness theorems. Therefore, weintroduce Assumption
3.2.1.

Assumption 3.2.1.The operator F(c) defined in (26) is one-to-one.
Theorem 3.2.3 follows from Theorems 3.3 of [16], 3.1.1 and 3.2.2. Note that if a

functionc∈ H is such thatc∈ [1,d] , thenc∈ G.
Theorem 3.2.3.Let Ω ⊂ R3 be a convex bounded domain with the boundary

∂Ω ∈ C3. Suppose that there exist functions a(x) ,P(x,t) ,Φ (x,t) satisfying con-
ditions of Theorem 3.1.1. Let Assumption 3.2.1 and condition (27) hold. Let the
function v= v(x,t,c) ∈ H2 (QT) in (19) be the solution of the state problem (18) for
the function c∈ G. Assume that there exists the exact solution c∗ ∈ G,c∗ (x) ∈ [1,d]
of the equation F(c∗) = 0 for the case when in (27) the function g is replaced with
the function g∗. Let in (27)

α = α (δ ) = δ 2µ ,µ = const. ∈ (0,1/4) .



10 Larisa Beilina and Michael V. Klibanov

Also, let in (19) the function cglob ∈ G be such that

∥∥cglob−c∗
∥∥ <

δ 3µ

3
.

Then there exists a sufficiently small numberδ0 = δ0

(
Ω ,d,ω ,zζ ,a,‖P‖H6(QT ) ,µ

)
∈

(0,1) such that for allδ ∈ (0,δ0) the neighborhood Vδ 3µ (c∗) of the function c∗ is
such that Vδ 3µ (c∗)⊂ G and the functional Eα (c) is strongly convex in Vδ 3µ (c∗) with
the strong convexity constantα/4. In other words,

‖c1−c2‖
2 ≤

2
δ 2µ

(
E′

α (c1)−E′
α (c2) ,c1−c2

)
, ∀c1,c2 ∈ G, (28)

where(,) is the scalar product in L2 (Ω) and the Fŕechet derivative E′α is calcu-
lated as in (24). Furthermore, there exists the unique regularized solution cα(δ ), and
cα(δ ) ∈Vδ 3µ /3 (x∗) . In addition, the gradient method of the minimization of the func-
tional Eα (c) , which starts at cglob, converges to cα(δ ). Furthermore, letξ ∈ (0,1) be

an arbitrary number. Then there exists a numberδ1 = δ1

(
Ω ,d,ω ,zζ ,a,‖P‖H6(QT ) ,µ ,ξ

)
∈

(0,δ0) such that
∥∥cα(δ ) −c∗

∥∥ ≤ ξ
∥∥cglob−c∗

∥∥ , ∀δ ∈ (0,δ1) .

In other words, the regularized solution cα(δ ) provides a better accuracy than the
solution obtained on the first stage of our two-stage numerical procedure. Further-
more, (28) implies that

∥∥c−cα(δ )

∥∥ ≤
2

δ 2µ

∥∥E′
α (c)

∥∥
L2(Ω)

. (29)

Theorem 3.2.4 is follows from Theorems 5.1 of [16] and 3.2.3 as well as from
Theorem 4.11.3 of [12].

Theorem 3.2.4.Let conditions of Theorem 3.2.3 hold. Let‖c∗‖ ≤ A, where the
constant A is given. Let Mn ⊂ H be the subspace obtained after n mesh refinements
as described in section 2. Let hn be the maximal grid step size of the subspace
Mn. Let B= B

(
Ω ,a,d,ω ,zζ

)
> 0 be the constant of Theorem 3.1.1 and K be the

constant in (9). Then there exists a constantN2 = N2

(
exp(CT)‖P‖H6(QT )

)
such

that if

hn ≤
δ 4µ

AN2K
,

then there exists the unique minimizer cn of the functional (19) on the set G∩Mn,
cn ∈Vδ 3µ (x∗)∩Mn and the following a posteriori error estimate holds

∥∥cn−cα(δ )

∥∥ ≤
2

δ 2µ

∥∥∥E′
α(δ ) (cn)

∥∥∥
L2(Ω)

. (30)
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The estimate (30) isa posterioribecause it is obtained after the functioncn is
calculated. Theorem 3.2.5 follows from Theorems 5.2, 5.3, 3.2.4 as well as from
Theorem 4.11.4 of [12].

Theorem 3.2.5(relaxation property of the adaptivity). Assume that conditions of
Theorem 3.2.4 hold. Let cn ∈Vδ 3µ (x∗)∩Mn be the unique minimizer of the Tikhonov
functional (19) on the set G∩Mn (Theorem 3.2.4). Assume that the regularized so-
lution cα(δ ) 6= cn, i.e. cα(δ ) /∈ Mn. Let η ∈ (0,1) be an arbitrary number. Then one
can choose the maximal grid size hn+1 = hn+1

(
A,N2,K,δ ,zζ ,µ ,η

)
∈ (0,hn] of the

mesh refinement number(n+1) so small that

∥∥cn+1−cα(δ )

∥∥ ≤ η
∥∥cn−cα(δ )

∥∥ ≤
2η
δ 2µ

∥∥∥E′
α(δ ) (cn)

∥∥∥
L2(Ω)

, (31)

where the numberN2 was defined in Theorem 3.2.4. Letξ ∈ (0,1) be an arbitrary
number. Then there exists a sufficiently small numberδ0 = δ0

(
A,N2,K,δ ,zζ ,ξ ,µ ,η

)
∈

(0,1) and a decreasing sequence of maximal grid step sizes{hk}
n+1
k=1 ,hk = hk

(
A,N2,K,δ ,zζ ,ξ ,µ .η

)

such that ifδ ∈ (0,δ0) , then

‖ck+1−c∗‖ ≤ ηk
∥∥c1−cα(δ )

∥∥+ ξ
∥∥cglob−c∗

∥∥ ,k = 1, ...,n. (32)

Theorem 3.2.6 follows from Theorems 5.4 of [16] and 3.2.5.
Theorem 3.2.6. (relaxation property of the adaptivity for local mesh refine-

ments).Assume that conditions of Theorem 3.2.5 hold. LetΩ = Ω1 ∪ Ω2. Sup-
pose that mesh refinements are performed only in the subdomain Ω2. Let h(1) be
the maximal grid step size inΩ1. Then there exists a sufficiently small number
δ0 = δ0

(
A,N2,K,δ ,zζ ,ξ ,µ ,η

)
∈ (0,1) and a decreasing sequence of maximal grid

step sizes
{

h̃k

}n+1

k=1
, h̃k = h̃k

(
A,N2,K,δ ,zζ ,ξ ,µ ,η

)
of meshes inΩ2 such that if

∥∥∇cα(δ )

∥∥
L∞(Ω1)

is so small that if

2KN3

δ 2µ

∥∥∇cα(δ )

∥∥
L∞(Ω1)

h(1) ≤
η
2

∥∥ck−cα(δ )

∥∥ ,k = 1, ...,n andδ ∈ (0,δ0) ,

then (32) holds with the replacement of{hk}
n+1
k=1 with

{
h̃k

}n+1

k=1
. Here the number

N3 depends on the same parameters asN2.

4 Mesh Refinement Recommendations

We now present recommendations for mesh refinements which are based on the
theory of section 3.

The First Mesh Refinement Recommendation.Refine the mesh in neighbor-
hoods of those grid points x∈Ω2 where the function|E′

α (cn)(x)| attains its maximal
values, where the function|E′

α (cn)(x)| is given by formula (24). More precisely, let
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β1 ∈ (0,1) be the tolerance number. Refine the mesh in such subdomains ofΩ2

where ∣∣E′
α (cn)(x)

∣∣ ≥ β1max
Ω2

∣∣E′
α (cn)(x)

∣∣ . (33)

To figure out the second mesh refinement recommendation, we note that by (24)
and (25)
∣∣∣E′

α(δ ) (cn) (x)
∣∣∣≤α

(
‖cn‖C(Ω) +

∥∥cglob
∥∥

C(Ω)

)
+‖cn‖

2
C(Ω) exp(CT)

(
‖P‖2

H6(QT ) +‖Φ‖2
H5(QT )

)
.

Sinceα is small, then the second term in the right hand side of this estimate dom-
inates. Next, since we have decided to refine the mesh in neighborhoods of those

points, which deliver maximal values for the function
∣∣∣E′

α(δ ) (cn)(x)
∣∣∣ , then we ob-

tain the following mesh refinement recommendation.
Second Mesh Refinement Recommendation.Refine the mesh in neighbor-

hoods of those grid points x∈ Ω2 where the function cn (x) attains its maximal
values. More precisely, letβ2 ∈ (0,1) be the tolerance number. Refine the mesh in
such subdomains ofΩ2 where

cn (x) ≥ β2max
Ω2

cn (x) , (34)

How to choose numbersβ1 andβ2, depends on numerical experiments. If we would
chooseβ1,β2 ≈ 1, then we would refine the mesh in too narrow regions, and if
we would chooseβ1,β2 ≈ 0, then we would refine the mesh in almost the entire
subdomainΩ2, which is inefficient.

5 The adaptive algorithm

In this section we present our adaptive algorithm which usesthe mesh refinement
recommendations of section 4.

Recall that in our computations we use two-step procedure when on the first step
we apply the approximately globally convergent algorithm (shortly globally conver-
gent algorithm) of [12] and on the second step the adaptive finite element method
improves this solution. In Theorem 2.9.4 of [12] was proven that the globally con-
vergent algorithm gives solutioncglob which is a good approximation for the exact
solutionc∗ (x) of the above CIP. We take this first good approximationcglob as an
initial guess in our second step - in an adaptive algorithm.

On every mesh we find an approximate solution of the equationE′
α (c) = 0.

Hence, on every mesh we should find an approximate solution ofthe following
equation

α
(
c−cglob

)
(x)−

T∫

0

(utλt)(x,t) dt = 0.
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For each newly refined mesh we first linearly interpolate the functioncglob(x) on it
and iteratively update approximationscm

h of the functionch, wherem is the number
of iteration in optimization procedure. To do so, we use the quasi-Newton method
with the classic BFGS update formula with the limited storage [36]. Denote

gm(x) = α(cm
h −cglob)(x)−

∫ T

0
(uhtλht)(x,t,c

m
h )dt,

where functionsuh
(
x,t,cm

h

)
,λh

(
x,t,cm

h

)
are computed finite element solutions of

state and adjoint problems withc := cm
h .

Using the mesh refinement recommendations of section 4, we apply the following
adaptivity algorithm in our computations:

Adaptive algorithm

• Step 0. Choose an initial meshKh in Ω and an initial time partitionJ0 of the time
interval(0,T) . Start with the initial approximationc0

h := cglob and compute the
sequence ofcm

h via the following steps:
• Step 1. Compute solutionsuh = uh

(
x,t,cm

h

)
andλh = λh

(
x,t,cm

h

)
of state (18)

and adjoint (22) problems, respectively, onKh andJk.
• Step 2. Update the coefficientch := cm+1

h on Kh andJk using the quasi-Newton
method, see details in [6, 36]

cm+1
h = cm

h + γHmgm(x),

whereγ is the step-size in the gradient update given by one-dimensional search
algorithm [23] andH is given by the usual BFGS update formula of the Hessian
[36].

• Step 3. Stop computingcm
h and obtain the functionch if either ||gm||L2(Ω) ≤ θ

or norms||gm||L2(Ω) are stabilized. Otherwise setm := m+1 and go to step 1.
Hereθ is the tolerance in quasi-Newton updates.

• Step 4. Compute the functionBh (x) ,

Bh(x) =
∣∣∣α (ch−cglob)−

∫ T

0

∂λh

∂ t
∂uh

∂ t
dt

∣∣∣.

Next, refine the mesh at all points where

Bh (x) ≥ β1max
Ω2

Bh (x) . (35)

and where
ch (x) ≥ β2max

Ω2

ch (x) . (36)

Here the tolerance numbersβ1,β2 ∈ (0,1) are chosen by the user.
• Step 5. Construct a new meshKh in Ω and a new time partitionJk of the time

interval(0,T). On Jk the new time stepτ should be chosen in such a way that
the CFL condition is satisfied. Interpolate the initial approximationcglob from
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(a) GFDM (b) G = GFEM ∪GFDM (c) GFEM = Ω

Fig. 1 The hybrid mesh (b) is a combinations of a structured mesh (a), where FDM is applied, and
a mesh (c), where we use FEM, with a thin overlapping of structured elements. The solution of the
inverse problem is computed in the squareΩ andc(x) = 1 for x∈ G�Ω .

the previous mesh to the new mesh. Next, return to step 1 and perform all above
steps on the new mesh.

• Step 6. Stop mesh refinements if norms defined in step 3 either increase or
stabilize, compared with the previous mesh.

6 Numerical Studies

In this section we present performance of two-step numerical procedure on the com-
putationally simulated data in two dimensions. In our numerical examples we work
with the computationally simulated data. That is, the data are generated by comput-
ing the forward problem with the given functionc(x).

6.1 Computations of forward problem

To solve the forward problem, we use the hybrid FEM/FDM method described in [5]
using the software package WavES [41]. The computational domain for the forward
problem isG = [−4.0,4.0]× [−5.0,5.0]. This domain is split into a finite element
domainGFEM := Ω = [−3.0,3.0]× [−3.0,3.0] and a surrounding domainGFDM

with a structured mesh,G = GFEM ∪GFDM, see Figure 1. The space mesh inΩ
consists of triangles and inGFDM - of squares with the mesh sizeh̃ = 0.125 in the
overlapping regions. At the top and bottom boundaries ofG we use first-order ab-
sorbing boundary conditions, and at the lateral boundarieswe apply mirror boundary
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t = 4.5 t = 6.0 t = 7.5

t = 9.0 t = 10.5 t = 12.0

Fig. 2 Isosurfaces of the simulated exact solution to the forward problem (8.2) at different times
with a plane wave initialized at the top boundary.

conditions. The coefficientc(x) is unknown in the domainΩ ⊂ G and is defined as

c(x) =





1 in G�Ω
1+b(x) in Ω ,

c̃ = 4 in small squares
, (37)

b(x) =





Asin2( πx1
2.875

)
sin2( πx2

2.875

)
, for 0 < x1 < 2.875, |x2| < 2.875

and for−2.875< x1 < 0,0 < x2 < 2.875
0 otherwise, including small squares

Thus, (37) means thatc(x) = 1 both near the boundary of the squareΩ and outside
of this square andc(x) ≥ 1 := 2d1 everywhere. The constant̃c characterizes the
inclusion/background contrast in sharp inclusions (smallsquares). The numberA>
0 is the maximal amplitude of the slowly changing backgroundfunction.
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The trace of the solution of the forward problem is recorded at the boundary
∂Ω . Next, the coefficientc(x) is “forgotten”, and our goal is to reconstruct this
coefficient forx∈ Ω from the datag(x,t) . The boundary of the domainG is ∂G =
∂G1∪∂G2∪∂G3. Here,∂G1 and∂G2 are respectively top and bottom sides of the
largest domain of Figure 1 and∂G3 is the union of left and right sides of this domain.
Let t1 := 2πs−1,T = 17.8t1. The plane wavef (t) = 0.1(sin(st−π/2)+1) , 0 ≤
t ≤ t1, f (t) = 0,t ∈ (t1,T) is initialized for t ∈ (0,t1] at the top boundary∂G1 and
propagates intoG. In all our tests the forward problem is

c(x)utt −△u= 0, in G× (0,T),

u(x,0) = ut(x,0) = 0, in G,

∂nu
∣∣
∂G1

= f (t) , on ∂G1× (0,t1],

∂nu
∣∣
∂G1

= −∂tu, on ∂G1× (t1,T),

∂nu
∣∣
∂G2

= −∂tu, on ∂G2× (0,T),

∂nu
∣∣
∂G3

= 0, on∂G3× (0,T).

(8.2)

6.2 Results of reconstruction using the approximately globally
convergent algorithm. Test 1

In this section we present results of reconstruction using the approximately globally
convergent algorithm of [12]. This algorithm gives good initial guesscglob for the
Tiknonov functional (19) and we take this algorithm as the first step in our two-step
reconstruction procedure.

We have performed numerical experiments to reconstruct themedium shown in
Figure 3-a). Here we have used value of amplitudeA = 0.5 in (37). The plane wave
f is initialized at the top boundary∂G1 of the computational domainG, propagates
during the time period(0,t1] into G, is absorbed at the bottom boundary∂G2 for all
timest ∈ (0,T) and it is also absorbed at the top boundary∂G1 for timest ∈ (t1,T),
see Figures 2.

To find solutioncglob in the approximately globally convergent algorithm we
need to solve iteratively certain integral-differential equation to find functions
qn,i(x,s) with a priori known functionVn,i(x,s). Heres is the pseudo-frequency and
indicesn, i denote inner and outer iterations on every pseudo-frequency interval, re-
spectively. For full details of implementation of this algorithm we refer to Chapter
3 of [12].

The starting value for the tailV1,1(x,s) was computed via solving the forward
problem (8.2) forc ≡ 1. It was found in Chapter 3 of [12] that for domainsG,Ω
the pseudo-frequency interval[s,s] = [6.7,7.45] is the optimal one. In our numerical
studies we have used subinterval[s,s] = [6.95,7.45] of the mentioned above interval.
We have chosen the step size with respect to the pseudo frequencyh = 0.05. Hence,
N = 10 in our case. We have chosen two sequences of regularization parameters
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λ := λn andε = εn for n = 1, ...,N,

λn = 20,n = 1, ...,10;

εn = 0.0,n = 1,2,εn = 0.0001,2< n≤ 10.

Once the functionqn is calculated, we update the functionc := cn, see Chapter 3 of
[12] for some numerical details. The resulting computed function isc(x) := cN(x).
In the current work we choose stopping rule for calculation of functionsqn similar
to[13]. In calculating iterations with respect to the nonlinear term (Section 5 of [13]
and Chapter 3 of [12]), we consider relative normsFk

n,

Fk
n =

||qk
n,1|∂Ω −ψn||L2(∂Ω)

||ψn||L2

. (38)

with known values ofψn. In (38) values of calculated functionsqk
n,1 are taken at

the pointsh-inside from the lower boundary. We stop our iterations withrespect to
nonlinear terms when either

eitherFk
n ≥ Fk−1

n or Fk
n ≤ ε,

whereε = 0.001 is a small tolerance number of our choice. In other words,we stop
iterations, when eitherFk

n starts to grow or are too small. Next, we iterate with re-
spect to the tails and use the same stopping criterion. Namely, we stop our iterations
with respect to tails when either

Fn,i ≥ Fn,i−1 (39)

or
Fn,i ≤ ε, (40)

whereFn,i =||qn,i |∂Ω −ψn||L2(∂Ω). We denote the number of iterations with respect
to tails, on which iterative procedure for functionqn is stopped, asi := mn. Once
the criterion (39)-(40) is satisfied, we take the last computed tailVn,mn, setVn+1,1 :=
Vn,mn and run computations again. Hence, the numbermn of iterations with respect
to tails is chosen automatically “inside” of each iterationfor qn.

In our tests we have introduced the multiplicative random noise in the boundary
data,gσ , by adding relative error to computed datag using the following expression

gσ
(
xi ,t j) = g

(
xi ,t j)

[
1+

α j(gmax−gmin)σ
100

]
.

Here,g
(
xi ,t j

)
= u

(
xi ,t j

)
,xi ∈ ∂Ω is a mesh point at the boundary∂Ω ,t j ∈ (0,T)

is a mesh point in time,α j is a random number in the interval[−1;1], gmaxandgmin

are maximal and minimal values of the computed datag, respectively, andσ = 5%
is the noise level.

Figure 3 displays isosurfaces of resulting images of functionscn,k,n = 2,3,7
obtained in our iterative procedure. Comparison of images of functionscn,k for dif-
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a) exact coefficientc(x) b) c2,2

c) c3,12 d) c7,9

Fig. 3 Test 1. Spatial distribution of exact coefficientc(x) on a) and approximatedch on b),c),d)
after computingqn,k;n= 2,3,6, wheren is number of the computed functionq.
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Fig. 4 Test 1. ComputedL2-norms: on a) of the
||qn,i |∂Ω−ψn||L2(∂Ω )

||ψn||L2(∂Ω )
; on b) of the

||Ṽn,i |∂Ω−Ṽn||L2(∂Ω )

||Ṽn||L2(∂Ω )
.
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ferent valuesn andk shows that the inclusion/background contrasts grow with the
grow ofn andk. One can see from Figure 3 that the 3.1 : 1 contrast in the right square
is imaged forn := N = 7 (see below for this choice ofN). As to the left square, we
got the same contrast. However, location of the left square is shifted downwards,
and both imaged squares are on about the same horizontal level. Values of the func-
tion c(x) = 1 outside of these squares are also imaged accurately thoughvalues of
the function with amplitudeA = 0.5 are cutted by cut-off regularization function.

Using Figure 4-a) which shows computedL2-normsFn,i , we analyze results of
the reconstruction. We observe that the computedFn,i decrease until computing the
function q7 and on this iteration the norms are stabilized. Forn = 8,9,10 norms
Fn,i grow steeply. Thus, we conclude, thatN = 7 and we takec7,9 as our final re-
construction result. Figure 4-b) presents computed relative L2-norms of functions
||Ṽn,i |∂ Ω−Ṽn||L2(∂ Ω)

||Ṽn||L2(∂ Ω)
. Using Figure 4-b) we observe that these norms have similar be-

havior, as in Figure 4-a).

6.3 The synthesis of the globally convergent algorithm withthe
adaptivity. Test 2

We take the starting point for the adaptivity computed valuec7,9 - the image obtained
by the globally convergent method on the coarse mesh, which corresponds to Figure
3-d). In our tests letΓ be the side of the squareΩ , opposite to the side from which
the plane wave is launched andΓT = Γ × (0,T) . In some sense the sideΓT is the
most sensitive one to the resulting data.

The adaptive algorithm means that on each mesh we minimize the functional
Eα (c) in (19) via computing an approximate solution of the equation E′

α (c) = 0,
whereE′

α (c) is given in (24). To do so, we use and adaptive algorithm of section 5.
On all refined meshes we have used a cut-off parameterCcut for the reconstructed

coefficientch such that

ch =

{
ch, if |ch−cglob| ≥Ccut

cglob, elsewhere.

We chooseCcut different on every mesh and every quasi-Newton iteration. Here,
m is the number of iterations in quasi-Newton method. Hence, the cut-off parame-
ter ensures that we do not go too far fromcglob. The application of the adaptivity
technique allows us to get more correct locations of both small squares depicted in
Figure 5.

In the adaptive algorithm we can use box constrains for the reconstructed co-
efficient. We obtain these constraints using the solution obtained in the globally
convergent part. Thus, in all adaptive we enforce that the coefficientc(x) belongs to
the set of admissible parameters,c(x) ∈CM = {c∈C(Ω )|1≤ c(x) ≤ 4.0}.

We have performed numerical experiments with different noise levelσ in the
function g(x,t) and different regularization parameters in an adaptive procedure.



20 Larisa Beilina and Michael V. Klibanov

opt.it. 4608 4774 elements5272 elements6162 elements7622 elements7724 elements
1 0.01242360.012435 0.0122961 0.0122447 0.012033 0.0122645
2 0.01374140.0126863 0.014033 0.0137795 0.0139721 0.0131978
3 0.02358830.0122284 0.0135201 0.0127081 0.0124145 0.0122671
4 0.0123446 0.0135561 0.00857489 0.012117 0.0121169
5 0.0132789 0.00503188 0.00513259
6 0.013013 0.005779

Table 1 Test 2:||u |ΓT −g||L2(ΓT ) on adaptively refined meshes. The number of stored corrections
in quasi-Newton method isn = 3. Computations was performed with the noise levelσ = 0% and
with the regularization parameterγ = 0.01.

a) 4774 elements b) 5272 elements c) 6162 elements

d) 7622 elements e) 7724 elements f)chα ≈ 3.91

Fig. 5 Test 2. Computational results withσ = 0% andγ = 0.01. Adaptively refined computational
meshes on a)-e) and spatial distribution of the parameterch, which corresponds to the mesh e).

We choose following values of parameters:

σ = 0%,α = 0.01, ,n = 1, ...,5;

σ = 1%,α = 0.01, ,n = 1, ...,5;

σ = 2%,α = 0.02, ,n = 1, ...,4;

Testing was done on 5 times adaptively refined meshes forσ = 0%,1% shown on
Figures 5-a)-e),6-a)-e), and on 4 times adaptively refined mesh shown on Figure
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a) 4774 elements b) 5272 elements c) 6166 elements

d) 7640 elements e) 7742 elements f)chα ≈ 3.88

Fig. 6 Test 2. Computational results withσ = 1% andγ = 0.01. Adaptively refined computational
meshes on a)-e) and spatial distribution of the parameterch, which corresponds to the mesh e).
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Fig. 7 Test 2. Computed relaxation property||cn+1 − cα ||L2 ≤ qn||cn − cα ||L2: on a) for noise
level σ = 0% andα = 0.01; on b) comparison of relaxation property for different noise levels
σ and different regularization parameters:σ = 0%,α = 0.01,n = 1, ...,5;σ = 1%,α = 0.01,n =
1, ...,5;σ = 2%,α = 0.02,n = 1, ...,4.



22 Larisa Beilina and Michael V. Klibanov

a) 4776 elements b) 5272 elements c) 6174 elements

d) 7682 elements e)chα ≈ 3.9,n= 4 f) chα ≈ 3.87,n= 5

Fig. 8 Test 2. Computational results withσ = 2% andγ = 0.02. Adaptively refined computational
meshes on a)-d) and spatial distribution of the parameterchα on e) forn = 4 and on f) forn = 5.
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Fig. 9 Test 2. a) Computed relaxation property||cn+1−cα ||L2 ≤ qn||cn−cα ||L2 for noise levelσ =
2% andα = 0.02; b) comparison of relaxation property for differentcα (different final numbers of
refinement of the initial mesh).
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8-a)-e). All Figures shows that the adaptivity technique enhances the quality of the
reconstruction obtained on the first stage. We are able to reconstruct well locations
of both small squares while values of the function around these squares are still not
reconstructed. The value of the coefficientc(x) = 1 outside of small squares is also
imaged well.

Table 1 presents computedL2-norms of||u |ΓT −g||L2(ΓT ) for σ = 0%,α = 0.01.
We observe that norms at the boundary are decreasing as meshes are refined. Then
they slightly increase and are finally stabilized for all refinementsn> 3 of the initial
mesh.

Figure 7 presents computed relaxation property||chn+1−cα ||L2 ≤ qn||chn −cα ||L2

between the approximated value ofch and value ofcα taken on finally refined mesh.
We takecα on 5 times refined mesh in tests forσ = 0%,α = 0.01 and forσ =
1%,α = 0.01. When reconstructing coefficient withσ = 2%,α = 0.02 it turned
out that reconstruction on 4 times refined mesh gives better results than on 5 times
refined mesh.

Figure 9 shows comparison of the relaxation property forcα after 4 refinements
(see Figure 8-e) forcα whenn = 4) and 5 refinements (see Figure 8-f) forcα when
n = 5) of the initial mesh. We observe relaxation property on Figure 9-a) forn = 4.
Thus, we take final reconstructioncα on 4 times refined mesh in the test forσ =
2%,α = 0.02.
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