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Adaptive FEM with relaxation for a hyperbolic
coefficient inverse problem

Larisa Beilina* and Michael V. KlibanoV

Recent research of publications [6, 7, 9, 10, 11, 12, 13, 54,17] have shown
that adaptive finite element method presents a useful toaldioition of hyperbolic
coefficient inverse problems. In the above publicationsrowpment in the image
reconstruction is achieved by local mesh refinements usipgsteriori error esti-
mate in the Tikhonov functional and in the reconstructedfa@ent. In this paper
we apply results of the above publications and present taraton property for the
mesh refinements and a posteriori error estimate for thenstnacted coefficient for
a hyperbolic CIP, formulate an adaptive algorithm and afiftythe reconstruction
of the coefficientin hyperbolic PDE. Our numerical exammple=sents performance
of the two-step numerical procedure on the computatiorsattyulated data where
on the first step we obtain good approximation of the exacffictent using ap-
proximate globally convergent method of [12], and on theoselcstep we take this
solution for further improvement via adaptive mesh refinatae

1 Introduction

In this paper we summarize recent results on the AdaptivieeHitiement Method
(adaptivity) for solution of hyperbolic coefficient inverproblem, see [1, 6, 7, 9,
10, 11, 13, 14, 15, 17] and chapter 4 of [12]. We also presdakation property
in adaptivity which is based on results of [17] and refornbeitheorems of [17] for
our specific case of hyperbolic CIP.

The relaxation property means that the accuracy of the céedpgplution im-
proves with mesh refinements of the initial mesh. The relargproperty in the
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adaptive finite element method applied to the solution ofsGiAs observed numer-
ically in many publications, see, e.g. [1, 6, 7, 9, 10, 11,1¥3,15]. Analytically it
was proved for the first time in [17].

The adaptivity for acoustic and elastic CIPs was developettié first author in
her PhD thesis in 2003 [8] with the first publication [6]. A sianidea was proposed
in [4]. However, an example of a CIP was not considered in T4le adaptivity
was developed further in a number of publications, whereas wpplied both to
CIPs [3, 6, 7, 9, 10, 11] and to the parameter identificatiarvbf@ms, which are
different from CIPs to some other ill-posed problems, seg,[82, 24, 25]. In [35]
the adaptivity was applied to the Cauchy problem for the aeplequation. In the
recent publication [32] was developed an adaptive finitenelet method for the
solution of the Fredholm integral equation of the first kind.

The idea of adaptivity consists in the minimization of thehonov functional on
a sequence of locally refined meshes using a posteriori estonates. We note that
due to local mesh refinements, the total number of finite efdsrie rather moderate
and the corresponding finite element space behaves as adinmitnsional one.
Since all norms in finite dimensional spaces are equivateat) we use the same
norm in the Tikhonov regularization term as the one in theioal space. This
is obviously more convenient for both analysis and numéstadies of this and
previous publications than the standard case of a strorgger |2, 12, 26, 38, 39]in
this term. Numerical results of the current and previoudigabons [6, 7, 9, 10, 11]
confirm the validity of this approach.

In section 3 of this paper we present a posteriori error et of distances
between regularized solutions and ones obtained after neéskements. In the past
publications which uses the adaptivity for ill-posed peyhk such estimates were
obtained only for some functionals rather than for solutitimemselves, see, e.g.
[4,6,7,10, 11, 13, 14, 24, 25].

Because of the well known phenomenon of local minima andnessiof the
Tikhonov functional, many regularized solutions mightséxFurthermore, even if
such a regularized solution exists and is unique, it is wardiew to practically find
it, unless a good first guess about the true solution is aail&ecently developed
the approximately globally convergent method for CIPs ftwyperbolic PDE with
single measurement data, see, e.g. [12, 13, 14, 15, 17, 333]La&nd further refer-
enced cited there delivers a such good approximation foexiaet solution.

In our numerical examples we use the two-step numericalgoloe which was
developed for some CIPs for a hyperbolic PDE [12, 13, 14, O5i.the first step,
the approximately globally convergent method delivers adyapproximation for
the exact solution, and on the second step, the adaptivetythés approximation as
a starting point for a refinement. We need the first step sineeataptivity works
only in a small neighborhood of the exact solution of the Bikbv functional. Nu-
merical examples of section 6 presents results of the réswanion of the unknown
coefficient of hyperbolic PDE using this two-step numermalcedure.
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2 The Space of Finite Elements

First we introduce the space of standard piecewise lineie falements, which are
triangles in 2-d and tetrahedra in 3-d. L@&tc R",n = 2,3 be a bounded domain.
Let a triangulationT of Q represents a coarse mesh. Following section 76.4 of [21],

we construct global piecewise linear functiofes (x, T) prl) C C(Q) associated

with the triangulationT . Functions{ej (x,T)}JPiTl) are linearly independent i

and its number equals to the number of the mesh points in theohd?.
Let {Ni} = Ng,Nz,...,NyT) be the enumeration for nodes in the triangulafion
Then test functions satisfies to the condition fori gjle {N;}

(N _ li= jv
& (N T) = {o,i #1.
Let Vi(T) is the linear space of finite elements with its ba@(x,T)}?Q which
is defined as
Vh(T)={v(x) eV:v]ke P (K) YK e T}, (1)

whereP;(K) defines the set of linear functions &nand
V(T)={v(x):veC(Q),OveP(C(Q))}.

Here,P(C(Q)) defines the set of piecewise-continuous functiongorn (1) v |k
is the function defined on the eleméttvhich coincides witlv onK. Each function
v eV (T) can be represented as

p(T)
V(X) = Zlv(Nj)ej (x,T).
=

Leth(Kj) be the diameter of the triangle/tetrahe#lfac T. We define the mesh
parameteh
h= ILTJ'ICB._?_(h(KJ') (2)

and call it by thanaximal grid step sizef the triangulationT. Letr be the radius of
the maximal circle/sphere inscribedHs. We impose the following shape regularity
assumption for all triangles/tetrahedra uniformly forgdissible triangulation$

ar <h(Kj) <rap, aj,ap=const>0, VK; CT, VT, 3)

where numbersy, a, are independent on the triangulatibn\We also assume that
the following condition is fulfilled

h(K;j)/h(Ki) <C (4)
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with the some constai@, whereh(K;),h(K;) are the smallest and the largest di-
ameters for the elements in the méghcorrespondingly. Condition (4) practically
means that we can not refine the mesh infinitely and we showdkchoth condi-
tions (2) and (4) simultaneously after every mesh refinement

Usually, the number of all triangulations which are saiisfy(3) is finite, and we
define the following finite dimensional linear spdde

H =[JSpanVy(T)), VT satisfying (3).
T

Hence,
dimH < e, H C (C(Q)NH*(Q)), & €L (Q), Vf € H. (5)

In (5) "C” means the inclusion of sets. We equtipwith the same inner product as
the one inL, (Q). Denote(,) and||-|| the inner product and the norm kh respec-
tively, || flly = [[fll, ) =Ifll, Vf € H. We refer to [12, 17] for description of the
construction of subspaces of triangulatidiig} as well as corresponding subspaces
{Mn} of the spaceH. We view the spacél as an “ideal” space of very fine finite
elements. This space cannot be reached in practical cotiqnga

Letl be the identity operator oH. For any subspad#él C H, letBy : H — M
be the orthogonal projection operator oivio DenoteR, := Ry,,. Let h, be the mesh
function for T, defined as a maximal diameter of the elements in trianguidtio
Let f! be the standard interpolant of the functibre H on triangles/tetrahedra of
Th, see section 76.4 of [21]. It can be easily derived from fomr(id6.3) of [21] that

1= fallL. (@) < KIOFlL(0) hn, v € H, (6)

whereK = K (Q,r,a;,a) = const > 0. Sincef) € H,vf € H, then by one of well
known properties of orthogonal projection operators,

|f —Paf|l <||f—f}]|, ¥f € H. (7)
Hence, from (6) and (7) follows that
[ =PafllL, o) <KI[OflL, ) hn,VE €H. (8)

SinceH is a finite dimensional space in which all norms are equivaleis conve-
nient for us to rewrite (8) with a different constafitin the form

[[x—Prx|] < K|[X|| hn, ¥X € H. (9)
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3 Relaxation property for a Coefficient Inverse Problem

In section below we present theorems which show the relaxatioperty for hyper-
bolic CIP. More explicitly, we prove that the accuracy of gwution of hyperbolic
CIP improves with mesh refinements. Proofs of these theofetasvs from the
results of section 4 of [12].

3.1 Coefficient Inverse Problem and Tikhonov functional

We consider a convex bounded dom&nc R3 with the boundandQ < C3. Let
the pointxg ¢ Q.

DenoteQr = Q x (0,T), ST =0Q x (0,T) for T > 0. Letd > 1 be a number,
w € (0,1) be a sufficiently small number, and the functiofx) € C (R3) belongs
to the set of admissible coefficieritg, such that

Mc = {c(X): c(X) € (1— w,d+ w) in Q,c(x) =1 outside of2}.  (10)

In numerical experiments we specifyx) > 1. Consider the solution(x,t) of the
following Cauchy problem

c(X)ut = Au,xe Rt e (0,T), (11)
u(x,0) = 0,ut (X,0) = 0 (X—Xo) . (12)

Equation (11) is called the acoustic wave equation in the x&sthe sound speed
andu(x,t) is the amplitude of the acoustic wave [40]. Equation (11 @sverns
propagation of the electromagnetic field wittx) = & (), whereg; (x) is the spa-
tially distributed dielectric constant. [37].

In (12) the point source can be replaced with the incideniglaave in the case
when it is initialized at the planéxs = X3 o} such that{xs = x30} N Q = @. All
derivations below are similar to the case of plane wave toour Theorems below
we focus on (12), but in numerical studies we use the incigiame wave.

Coefficient Inverse Problem CIP). Let conditions (10)-(12) hold. Assume that
the coefficient(x) is unknown inside the domai@. Determine this coefficient for
x € Q, assuming that the following functian(x,t) is known

Ulsr=9g(x,t). (13)

The functiong (x,t) represents measurements of the outcome wave digld )
at the boundary of the domain of intere3t Since the functior(x) = 1 outside of
Q, then (11)-(13) imply

Ut = AU,(X,t) € (]RS\Q) X (OaT)a
u(x,0) = w (x,0) = 0,xe R¥:\ Q,u s, = g(xt).
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Solving this initial boundary value problem fdx.t) € (R3\ Q) x (0,T), we
uniquely obtain Neumann boundary conditip(x,t) for the functionu,

Ontt |5 = P(x.1). (14)

Since CIPs are complex problems one naturally needs to ienparsie simplify-
ing assumptions. In the case of our particular CIP uniguettesorem for our CIP
does not working unless we replace thefunction in (12) by a smooth function,
which approximate® (x—Xp) in the distribution sense. Let € (0,1) be a suffi-
ciently small number. We repla@(x — Xp) in (12) with the functiord,, (x— xo),

1

5. (X—Xo) = C”EXp(\x—xO\Z—XZ) X=Xl < 22, /5% (x—x)dx=1. (15)
0, |X—Xo| > s, e

We assume that is so small that

5. (x—%) =0in Q. (16)
Let { € (0,1) be a sufficiently small number. Consider the functipre C* [0, T]
such that
1te[0,T—2(],
ZZ (t): { O,tE [T_Z7T]7 (17)
between 0 and 1 fdre [0, T —2{,T —(].

Let us consider the following state problem
State Problem Find the solutiorv(x,t) of the following initial boundary value
problem

c(X)wit —Av=0inQr,
V(Xa O) :VI(Xv 0) = 07 (18)
OnV s = P(X,1).

The Tikhonov functional for the above CIP which correspotudihe state prob-
lem (18) is

Fa(0) = 5 [(vls: — 9xt))?% () dodt+ 50t [ (e~ cyonlPdx  (19)
Sr Q

wherecyqp IS the approximate solution obtained by an approximatedpally con-
vergent numerical method of [12] on the first stage of our ttege numerical proce-
dure (introduction and [12, 13]) arais the small regularization parameter. To fig-
ure out the Fréchet derivative of the functioial(c) , we introduce the Lagrangian
L(A,v,c),

L(A,v,c) = Eq(c) — / VA dxdt+ / VDA dxdt— / pAdodt.  (20)
Qr Qr Sr
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The sum of integral terms ib(c) equals zero, because of the definition of the weak
solutionv € H* of the problem (18) ag(x,0) = 0 and

/ (—c(x)vew + CvOw) dxdt— / pwdoydt = 0,%w € HL(Qr),w(x,T) =0, (21)
or &

see section 5 of Chapter 4 of [34]. Hentég) = E4 (). To find the Fréchet deriva-
tive of the Lagrangian (20) it is necessary to consider Feéclerivatives of func-
tions v, A with respect to the coefficierd (in certain functional spaces). This in
turn requires to establish a higher smoothness of functiphghan justH* (Qr)
[12, 14].

The Fréchet derivative of the Lagrangian with respech tgives us the state
problem and the Fréchet derivative of the Lagrangian wepect tor gives us the
adjoint problem which we present below.

Adjoint Problem. Find the solution (x,t) of the following initial boundary
value problem with the reversed time

C(X))\tt —AA =0in QT,
AXT)=A(x,T)=0, (22)
OnA [sr =27 (1) (9—V) (X1).

In (18) and (22) functions € H!(Qr) andA € H(Qr) are weak solutions of
problems (18) and (22) respectively. In fact, we need a highmothness of these
functions, which we specify below. In (22) and (18) func8@andp are the ones
from (13) and (14) respectively. Hence, to solve the adjpnoblem, one should
solve the state problem first. The functign(t) is introduced to ensure the validity
of compatibility conditions aft = T} in (22).

State and adjoint problems are concerned only with the dofarather than
with the entire spac®&3. We define the spacé as

3
Z={f:feC(Q)NHY(Q),c( €Lx(Q),i =1,2,3},[|f|, = ||f||C(5)+zi|\fxi||Lm(Q).
1=

ClearlyH C Z as a set. To apply the theory of above sections, we expresbges-
tion 6.2 the functiorc(x) via standard piecewise linear finite elements. Hence, we
assume below thate Y, where

Y={ceZ:ce(l-wd+w)}. (23)

Theorem 3.1.1 can be easily derived from a combination obfémas 4.7.1, 4.7.2
and 4.8 of [12] as well as from Theorems 3.1, 3.2 of [14].

Theorem 3.1.1 Let Q ¢ R be a convex bounded domain with the bound-
ary 0Q € C? and such that there exists a functioreaC? (Q) such that alyqo=
0,0ha|go= 1. Assume that there exists function&R) , @ (x,t) such that
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P € H%(Qr),® € H>(Qr);0nP |sr= p(X.t),0n® |5, =7 (1) 9 (x.),
3P(x0) =3 @ (x,0)=0,j=1,23,4.
Then for every function € Y functions VA € H?(Qr), where vA are solutions

of state and adjoint problems (18), (22). Also, for every ¥ there exists FEchet
derivative E (c) of the Tikhonov functional &c) in (19) and

.
E4(6) (9 = @ (6 Cgon) (X) — [ (ueA) (x.) dti= @ (e Cgion) () +Y(4). (24)
0

The function yx) € C(Q) and the there exists a constant8B (Q,a,d, w,z;) >0
such that

Yle(a) < I3 ex®T) (IPI2s gy + 1@ 12si0r)) - (25)

The functional of the Frchet derivative f(c) acts on any function B Z as

_ /Eg(c) (X)b(x)dx
Q

3.2 Relaxation property for the functionak, ()

We now specify the relaxation property of [17] for the spedifinctionalE, (c) for
our CIP. LetY be the set of functions defined in (23) adde the finite dimensional
space of finite elements constructed in section 2. We defesditc asG:=YNH.
We consider the séb as the subset of the spaldewith the same norm as iH. In
particular,G = {c(x) € H : ¢(x) € [1— w,d+ w] forx e Q} . Let the Hilbert space
Hs := L2 (Sr). We define the operatét as

F:G— HaF(c)(xt) =27 (t) [g(xt)—Vv(xt,c)], (xt) €S, (26)

where the functiorv := v(xt,c) is the weak solution (21) of the state problem
(18), g is the function in (13) andy (t) is the function defined in (17). For any

functionb € H consider the weak solutiofi(x,t,c,b) € H(Qr) of the following
initial boundary value problem

() Ut = AU— b( )Vtt,(Xt)éQT,

U(x,0) = U (x,0) = 0,U]|s;=0.

Theorem 3.2.2 can be easily derived from a combination ofofdras 4.7.2 and
4.10 of [12].
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Theorem 3.2.2.Let Q c R3 be a convex bounded domain with the boundary
dQ € C2. Suppose that there exist function&g P (x,t) , @ (x,t) satisfying condi-
tions of Theorem 3.1.1. Then the functidix,t,c,b) € H?(Qr) . Also, the operator
F in (26) has the Fechet derivative Hc) (b),

F'(c)(b) = —z; (t)T(x.t,c,b) |s;,Vce G, Vb e H.
Let B=B(Q,a,d,w,z;) > 0be the constant of Theorem 3.1.1. Then

IF*(e)

% S eXp(CT) HPHHG(QT)7 VCG G
In addition, the operator Kc) is Lipschitz continuous,

|F’(c1) —F'(c2)

o < exXp(CT)[[Plysop) llcr —cof|, Ver,c2 € G.

We also introduce the error of the lev@In the datag(xt) in (13). So, we assume
that

g(x.t) =g (x.t) +9s(X,t); 9°,95 € L2(Sr),[195]lL,(sr) < O- (27)

whereg*(x,t) is the exact data and the functigg(x,t) represents the error in these
data. To make sure that the operdtds one-to-one, we need to refer to a uniqueness
theorem for our CIP. However, uniqueness results for miattgshsional CIPs with
single measurement data are currently known only underdsignaption that at least
one of initial conditions does not equal zero in the entirendn Q, which is not
our case.

All these uniqueness theorems were proven by the method dér@an esti-
mates, which was originated in 1981 simultaneously andgaddently by the au-
thors of the papers [18, 19, 27]; also see, e.g. [20, 28, ZPa80vell as sections
1.10, 1.11 of the book [12] and references cited there. Hewdecause of appli-
cations, it makes sense to develop numerical methods fatibee CIP, regardless
on the absence of proper uniqueness theorems. Therefonetraguce Assumption
3.2.1.

Assumption 3.2.1.The operator Hc) defined in (26) is one-to-one.

Theorem 3.2.3 follows from Theorems 3.3 of [16], 3.1.1 arRI&.Note that if a
functionc € H is such that € [1,d], thenc € G.

Theorem 3.2.3.Let Q C R? be a convex bounded domain with the boundary
0Q < C3. Suppose that there exist functiongdg, P (x,t), @ (x,t) satisfying con-
ditions of Theorem 3.1.1. Let Assumption 3.2.1 and cond{&y) hold. Let the
function v=v(xt,c) € H?(Qr) in (19) be the solution of the state problem (18) for
the function a= G. Assume that there exists the exact solutioa 6,c* (x) € [1,d]
of the equation Kc*) = O for the case when in (27) the function g is replaced with
the function §. Let in (27)

a=a(d) =05 u=conste (0,1/4).
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Also, let in (19) the functiongg, € G be such that

5%
Jegoo—c < 2

Then there exists a sufficiently small numbg & (Q d, 0,7;,8,[|Pl[e(q, ,u)

(0,1) such that for alld € (0, d) the neighborhood ¥4, (c*) of the function ¢ is
such that ¥y (¢*) C G and the functional E(c) is strongly convex in 4, (c*) with
the strong convexity constaat/4. In other words,

2
ller — ol < > (Eq (c1) —Eg (c2),c1— o), V1,00 € G, (28)
where(,) is the scalar product in £(Q) and the Fechet derivative [ is calcu-
lated as in (24). Furthermore, there exists the unique rageéd solution g ), and
Ca(s) € Vs3u/3(X) . In addition, the gradient method of the minimization of tined-
tional E4 (c) , which starts at gop, cOnverges to g ). Furthermore, le€ € (0,1) be

an arbitrary number. Then there exists a numbge &; (Q, d,w,z,a, ||P||H6(QT) M, E) €
(0, dp) such that

|Ca(a) — €| < & |lcgiob—c*||, VO € (0,61).

In other words, the regularized solutior @) provides a better accuracy than the

solution obtained on the first stage of our two-stage nunaépoocedure Further-

more, (28) implies that
le=Ca(s IEa (c

|| Lo(Q) (29)

|| < S 52“

Theorem 3.2.4 is follows from Theorems 5.1 of [16] and 3.Z3w&ll as from
Theorem 4.11.3 of [12].

Theorem 3.2.4.Let conditions of Theorem 3.2.3 hold. Lgf|| < A, where the
constant A is given. Let Mc H be the subspace obtained after n mesh refinements
as described in section 2. Let, lbe the maximal grid step size of the subspace
Mp. Let B=B(Q,a,d,w,Z ) > 0 be the constant of Theorem 3.1.1 and K be the

constant in (9). Then there exists a constBiat= N, (exp(CT) ||PHH6(QT)) such
that if

o
ANLK’
then there exists the unique minimizeraf the functional (19) on the setGMy,
Cn € Vsau (X*) N My and the following a posteriori error estimate holds

hn <

[

(Cn) (30)

H . ‘ Lo(Q)
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The estimate (30) ia posterioribecause it is obtained after the functignis
calculated. Theorem 3.2.5 follows from Theorems 5.2, 5.3,43as well as from
Theorem 4.11.4 of [12].

Theorem 3.2.5(relaxation property of the adaptivitypAssume that conditions of
Theorem 3.2.4 hold. Leth& V3, (X*) N Mp be the unique minimizer of the Tikhonov
functional (19) on the set GM,, (Theorem 3.2.4). Assume that the regularized so-
lution ¢ (5) # Cn, I.8. Gy(5) € Mn. Letn € (0,1) be an arbitrary number. Then one
can choose the maximal grid sizgh = hny1 (A, N2,K, 8,2z, 14,n) € (0, hy] of the
mesh refinement numbgr+ 1) so small that

2
ens2 = Catey| < 1 [len— caral| < 521

E&(a) (Cn) (@) (31)

where the numbeN;, was defined in Theorem 3.2.4. Lt (0,1) be an arbitrary

number. Then there exists a sufficiently small nundger & (A, N5, K, d, 2z,&, 1, n) €

(0,1) and a decreasing sequence of maximal grid step $h¢g}§j Jhe=h (AN2,K,8,2,,&,u.n)
such thatifd € (0, ), then

l[ces — €[l < n¥||er — Caqs || + € || Cglon— €7 k= 1,...,n. (32)

Theorem 3.2.6 follows from Theorems 5.4 of [16] and 3.2.5.

Theorem 3.2.6 (relaxation property of the adaptivity for local mesh refin
ments).Assume that conditions of Theorem 3.2.5 hold. Qe Q1 U Q. Sup-
pose that mesh refinements are performed only in the subda@ailLet HY be
the maximal grid step size 1. Then there exists a sufficiently small number
=20 (A, N, K, 0,27,¢, 1, n) € (0,1) and a decreasing sequence of maximal grid

~ yn+1l o ~ _
step size{hk}k_l,hk = he (AN2,K,3,27,&,u,n) of meshes iM2, such that if

|| Ocq is so small that if

(9) ‘ ’ Loo(Q1)
2KN3

i I8¢

(5)||Lm(91) h() < % HCk—Ca(é)H Jk=1..,nandd € (07 60),

~ ynh+1
then (32) holds with the replacement ﬁﬁk}ﬂj with {hk}k_l. Here the number
N3 depends on the same parameterdNas

4 Mesh Refinement Recommendations

We now present recommendations for mesh refinements whelased on the
theory of section 3.

The First Mesh Refinement RecommendationRefine the mesh in neighbor-
hoods of those grid pointsxQ, where the functiofE}, (cn) (X)| attains its maximal
values, where the functid&, (c,) (x)| is given by formula (24). More precisely, let
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B1 € (0,1) be the tolerance number. Refine the mesh in such subdomaif?s of
where
|Eq (en) (X)| > Be r%aX|E& () (%) - (33)
2

To figure out the second mesh refinement recommendation, teemet by (24)
and (25)

Bt (en) 00| < a (Jlenll ey + caiopllc(ay ) +lnl3 ) ©XPCT) (IPIRe(or) + I ®ls(or) ) -

Sincea is small, then the second term in the right hand side of thisnese dom-
inates. Next, since we have decided to refine the mesh in beigbods of those

points, which deliver maximal values for the functi*:Eg@ (cn) (x)‘ , then we ob-

tain the following mesh refinement recommendation.

Second Mesh Refinement RecommendatiorRefine the mesh in neighbor-
hoods of those grid points & Q, where the function {x) attains its maximal
values. More precisely, lg%; € (0,1) be the tolerance number. Refine the mesh in
such subdomains a@, where

n(X) > B2 maxcy (x), (34)

How to choose numbef andf3,, depends on numerical experiments. If we would
choosepfy, 3> ~ 1, then we would refine the mesh in too narrow regions, and if
we would choosgBi, 3> ~ 0, then we would refine the mesh in almost the entire
subdomaim,, which is inefficient.

5 The adaptive algorithm

In this section we present our adaptive algorithm which wkeganesh refinement
recommendations of section 4.

Recall that in our computations we use two-step proceduswveim the first step
we apply the approximately globally convergent algorithsdftly globally conver-
gent algorithm) of [12] and on the second step the adaptivie felement method
improves this solution. In Theorem 2.9.4 of [12] was proveat the globally con-
vergent algorithm gives solutiozy o, Which is a good approximation for the exact
solutionc* (x) of the above CIP. We take this first good approximatigg, as an
initial guess in our second step - in an adaptive algorithm.

On every mesh we find an approximate solution of the equéip(c) = 0.
Hence, on every mesh we should find an approximate solutichefollowing
equation

.
a (C— Cgion) (x)—/(ut)\t)(x,t) dt=0.
0
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For each newly refined mesh we first linearly interpolate thecfioncgop () on it
and iteratively update approximatiod® of the functionc,, wheremis the number
of iteration in optimization procedure. To do so, we use thasitNewton method
with the classic BFGS update formula with the limited st&r§86]. Denote

;
g"(x) = (" Cglo) (X) — /0 (UnAne) (.8, €T di,

where functionsu, (x,t,c") , An (X,t,c') are computed finite element solutions of
state and adjoint problems with= ¢

Using the mesh refinement recommendations of section 4, plg e following
adaptivity algorithm in our computations:

Adaptive algorithm

e Step 0. Choose an initial mekh in Q and an initial time partitiody of the time
interval (0,T). Start with the initial approximatiooﬂ ‘= Cglop @nd compute the
sequence of]' via the following steps:

e Step 1. Compute solutions = up (x,t,cf") andA, = Ap (x,t,cft") of state (18)
and adjoint (22) problems, respectively, kpandJg.

e Step 2. Update the coefficiegt := cherl on K}, andJi using the quasi-Newton
method, see details in [6, 36]

et =+ yH™Mg"(x),

wherey is the step-size in the gradient update given by one-dimeassearch
algorithm [23] ancH is given by the usual BFGS update formula of the Hessian
[36].

e Step 3. Stop computing' and obtain the function, if either [|g™|| o) < 6
or norms||g"||.,(q) are stabilized. Otherwise set:= m+ 1 and go to step 1.
Here® is the tolerance in quasi-Newton updates.

e Step 4. Compute the functidy, (x),

"ok oy

B0 = |a (o —cgon) — | S5

Next, refine the mesh at all points where

Bn (X) > BrmaxBn (X). (35)

Q

and where
o (X) > Bomach (X). (36)
Q
Here the tolerance numbeBs, 3, € (0,1) are chosen by the user.
e Step 5. Construct a new mekh in Q and a new time partitiody of the time
interval (0, T). OnJi the new time step should be chosen in such a way that
the CFL condition is satisfied. Interpolate the initial agpmationcge, from
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(@) Grpm (b) G=Grem UGrpm () Grem=Q

Fig. 1 The hybrid mesh (b) is a combinations of a structured mesiw(agre FDM is applied, and
a mesh (c), where we use FEM, with a thin overlapping of stmect elements. The solution of the
inverse problem is computed in the squ&reandc(x) = 1 forx € G\ Q.

the previous mesh to the new mesh. Next, return to step 1 afwrpeall above
steps on the new mesh.

e Step 6. Stop mesh refinements if norms defined in step 3 eitlveedse or
stabilize, compared with the previous mesh.

6 Numerical Studies

In this section we present performance of two-step numigstcgedure on the com-
putationally simulated data in two dimensions. In our nunaexamples we work
with the computationally simulated data. That is, the dagsg@nerated by comput-
ing the forward problem with the given functi@(x).

6.1 Computations of forward problem

To solve the forward problem, we use the hybrid FEM/FDM mettescribed in [5]
using the software package WavES [41]. The computatiormakdiofor the forward
problem isG = [—4.0,4.0] x [—5.0,5.0]. This domain is split into a finite element
domainGrem := Q = [-3.0,3.0] x [-3.0,3.0] and a surrounding domaiBgpum
with a structured mesthG = Ggem U Grpwm, See Figure 1. The space meshdn
consists of triangles and iBgpy - of squares with the mesh sibe= 0.125 in the
overlapping regions. At the top and bottom boundarie&afe use first-order ab-
sorbing boundary conditions, and at the lateral boundargespply mirror boundary
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t=9.0 t=105

Fig. 2 Isosurfaces of the simulated exact solution to the forwaablem (8.2) at different times
with a plane wave initialized at the top boundary.

conditions. The coefficier(x) is unknown in the domai® C G and is defined as

1inG\Q
c(x) = 1+b(x)in Q, ) (37)
€ =4 in small squares

AsIr? (55%2) Sin? (552z) , for 0 < x; < 2.875|x;| < 2.875
b(x) = and for—2.875< x; < 0,0 < x2 < 2.875
0 otherwise, including small squares

Thus, (37) means thatx) = 1 both near the boundary of the squ&end outside
of this square and(x) > 1 := 2d; everywhere. The constaBtcharacterizes the
inclusion/background contrast in sharp inclusions (ss@lilares). The numbér>

0 is the maximal amplitude of the slowly changing backgrofumattion.
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The trace of the solution of the forward problem is recordetha boundary
0Q. Next, the coefficient(x) is “forgotten”, and our goal is to reconstruct this
coefficient forx € Q from the datay(x,t). The boundary of the domai@ is G =
0G;U0dG,UdGs. Here,0G; anddG; are respectively top and bottom sides of the
largest domain of Figure 1 arti33 is the union of left and right sides of this domain.
Lett; := 25~ %, T = 17.8t;. The plane wavef (t) = 0.1(sin(st—7/2)+1), 0 <
t <tg, f(t) =0,t € (t1,T) is initialized fort € (0,t;] at the top boundargG; and
propagates int&. In all our tests the forward problem is

c(X)ut—Au=0, inGx(0,T),
u(x,0) = u(x,0) =0, in G,
anu‘ael =f(t), ondGy x (0,t1],
a“u‘ael = —du, ondGy x (t1,T),
0nu\aG2 = —4du, ondG; x (0,T),
‘7““‘503 =0, 0ndGs x (0,T).

(8.2)

6.2 Results of reconstruction using the approximately gédly
convergent algorithm. Test 1

In this section we present results of reconstruction udiegapproximately globally
convergent algorithm of [12]. This algorithm gives goodiamii guesscyop, for the
Tiknonov functional (19) and we take this algorithm as thet fitep in our two-step
reconstruction procedure.

We have performed numerical experiments to reconstruatb@ium shown in
Figure 3-a). Here we have used value of amplitdde 0.5 in (37). The plane wave
f is initialized at the top bounda@G; of the computational domai@, propagates
during the time period0,t;] into G, is absorbed at the bottom bounda@® for all
timest € (0,T) and it is also absorbed at the top bound2@; for timest € (t1,T),
see Figures 2.

To find solutioncgyqp in the approximately globally convergent algorithm we
need to solve iteratively certain integral-differentiajuation to find functions
On,i (X, ) with a priori known functiorVn (X, s). Heresis the pseudo-frequency and
indicesn,i denote inner and outer iterations on every pseudo-frequaterval, re-
spectively. For full details of implementation of this atgbm we refer to Chapter
3 of [12].

The starting value for the tail1 1 (x,S) was computed via solving the forward
problem (8.2) forc = 1. It was found in Chapter 3 of [12] that for domaiGsQ
the pseudo-frequency intenjalg = [6.7,7.45] is the optimal one. In our numerical
studies we have used subinterig$] = [6.95, 7.45] of the mentioned above interval.
We have chosen the step size with respect to the pseudo fregjue- 0.05. Hence,
N = 10 in our case. We have chosen two sequences of regularizagi@ameters



Adaptive FEM with relaxation for a hyperbolic coefficienverse problem 17
A:=Arande=¢g,forn=1,...,N,

Ah=20n=1,...,10;
&n=0.0n=12¢,=0.000L2<n<10.

Once the functiony, is calculated, we update the function= c,, see Chapter 3 of
[12] for some numerical details. The resulting computectfiom isc(x) := cg(X).
In the current work we choose stopping rule for calculatibfuoctionsqy, similar
to[13]. In calculating iterations with respect to the noelar term (Section 5 of [13]
and Chapter 3 of [12]), we consider relative norﬁffﬁ

Fk_ ok 1loe — WallL,00)
" [,

with known values ofifi,,. In (38) values of calculated functiomﬁ1 are taken at
the pointsh-inside from the lower boundary. We stop our iterations wéhpect to
nonlinear terms when either

(38)

eitherFX > FK"LorFK <¢,

whereg = 0.001 is a small tolerance number of our choice. In other wosgsstop
iterations, when eithefX starts to grow or are too small. Next, we iterate with re-
spect to the tails and use the same stopping criterion. Namelstop our iterations
with respect to tails when either

Fn7i > Fn.i—l (39)

or
Fn,i S 87 (40)

whereFni =||aniloo — UnllL,(00)- We denote the number of iterations with respect
to tails, on which iterative procedure for functiop is stopped, as:= m,. Once
the criterion (39)-(40) is satisfied, we take the last coragu&ilVi m,, S€tVni11:=
Vhm, and run computations again. Hence, the nunmageof iterations with respect
to tails is chosen automatically “inside” of each iteratfonqy.

In our tests we have introduced the multiplicative randons@@ the boundary
data,gq, by adding relative error to computed datasing the following expression

o (4,11) = g (¥t} [14 DO Gmn)C
Here,g (x,t}) = u(x,t)) X' € dQ is a mesh point at the boundady2,t! € (0,T)
is a mesh pointin timeg; is a random number in the interviat 1; 1], gmaxandgmin
are maximal and minimal values of the computed drt@spectively, andr = 5%
is the noise level.

Figure 3 displays isosurfaces of resulting images of fumstc,,n = 2,3,7
obtained in our iterative procedure. Comparison of imadgarctionscy for dif-
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X-Displacen

a) exact coefficient(x) b)cz2
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Fig. 3 Test 1. Spatial distribution of exact coefficiez{x) on a) and approximatec}, on b),c),d)
after computingy, k; n = 2,3, 6, wheren is number of the computed functian
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ferent valuesr andk shows that the inclusion/background contrasts grow wiéh th
grow ofnandk. One can see from Figure 3 that thé 31 contrast in the right square
is imaged fom := N = 7 (see below for this choice &). As to the left square, we
got the same contrast. However, location of the left squashifted downwards,
and both imaged squares are on about the same horizontaNeltees of the func-
tion ¢(x) = 1 outside of these squares are also imaged accurately thaliggs of
the function with amplitud@ = 0.5 are cutted by cut-off regularization function.
Using Figure 4-a) which shows computkgtnormsF,;, we analyze results of
the reconstruction. We observe that the compigdiecrease until computing the
function gz and on this iteration the norms are stabilized. Ret 8,9,10 norms
Fni grow steeply. Thus, we conclude, thdt= 7 and we takes g as our final re-
construction result. Figure 4-b) presents computed kaddty-norms of functions

Vniloo —Vi ) . .
%’W. Using Figure 4-b) we observe that these norms have siméar b
2

havior, as in Figure 4-a).

6.3 The synthesis of the globally convergent algorithm witte
adaptivity. Test 2

We take the starting point for the adaptivity computed valug- the image obtained
by the globally convergent method on the coarse mesh, winickgponds to Figure
3-d). In our tests lef” be the side of the squafe, opposite to the side from which
the plane wave is launched afd =T x (0,T). In some sense the sidg is the
most sensitive one to the resulting data.

The adaptive algorithm means that on each mesh we minimeédutictional
Eq (c) in (19) via computing an approximate solution of the equafg (c) = 0,
whereE], (c) is given in (24). To do so, we use and adaptive algorithm dices.

On all refined meshes we have used a cut-off paran@gtefor the reconstructed
coefficientc, such that

o — 1 Cniif en —Cgiob| = Cout
" cglon, elsewhere

We chooseCe; different on every mesh and every quasi-Newton iteratioaret

m is the number of iterations in quasi-Newton method. Hertoe cut-off parame-
ter ensures that we do not go too far fragi,. The application of the adaptivity
technique allows us to get more correct locations of bothllssgqaares depicted in
Figure 5.

In the adaptive algorithm we can use box constrains for tkenstructed co-
efficient. We obtain these constraints using the solutiotaiokd in the globally
convergent part. Thus, in all adaptive we enforce that thedfimientc(x) belongs to
the set of admissible parameters) € Cy = {c € C(Q)|1 < c(x) < 4.0}.

We have performed numerical experiments with differentsedevelo in the
function g(x,t) and different regularization parameters in an adaptiveguare.
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0.0122447
0.0137795
0.0127081
0.00857489

0.012033
0.0139721
0.0124145
0.012117
0.00503188
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0.013013 0.005779

Table 1 Test 2:[|u|r —9|[L, () On adaptively refined meshes. The number of stored corretio
in quasi-Newton method is= 3. Computations was performed with the noise levet 0% and
with the regularization parametgr= 0.01.
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Fig. 5 Test 2. Computational results with= 0% andy = 0.01. Adaptively refined computational
meshes on a)-e) and spatial distribution of the paranwgterhich corresponds to the mesh e).

We choose following values of parameters:
o=0%,a=0.01,n

o0=1%a =0.01,n
0=2%a=0.02,n=

|
»

Testing was done on 5 times adaptively refined mesheg far0%, 1% shown on
Figures 5-a)-e),6-a)-e), and on 4 times adaptively refinedmshown on Figure
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8-a)-e). All Figures shows that the adaptivity techniqukasrces the quality of the
reconstruction obtained on the first stage. We are able tinsgruct well locations
of both small squares while values of the function aroundélsguares are still not
reconstructed. The value of the coefficieik) = 1 outside of small squares is also
imaged well.

Table 1 presents computég-norms of|[u [ —3||,(r) for 0 =0%,a = 0.01.
We observe that norms at the boundary are decreasing as sregheefined. Then
they slightly increase and are finally stabilized for allmefinents > 3 of the initial
mesh.

Figure 7 presents computed relaxation prop@dy,, , —Ca/|L, < 0n||Ch, —Cal|L,
between the approximated valueogfand value oty taken on finally refined mesh.
We takecy on 5 times refined mesh in tests for= 0%, a = 0.01 and foro =
1%, a = 0.01. When reconstructing coefficient with = 2%, a = 0.02 it turned
out that reconstruction on 4 times refined mesh gives beggerits than on 5 times
refined mesh.

Figure 9 shows comparison of the relaxation propertycfoafter 4 refinements
(see Figure 8-e) fory, whenn = 4) and 5 refinements (see Figure 8-f) tgrwhen
n = 5) of the initial mesh. We observe relaxation property orurég9-a) fom = 4.
Thus, we take final reconstructiag on 4 times refined mesh in the test for=
2%, a = 0.02.
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