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AN ADAPTIVE FINITE ELEMENT METHOD FOR FREDHOLM INTEGRAL
EQUATIONS OF THE FIRST KIND AND ITS VERIFICATION ON EXPERIMENTAL

DATA

NIKOLAY KOSHEV∗ AND LARISA BEILINA ∗∗

Abstract. We propose an adaptive finite element method for the solution of a linear Fredholm integral equation of the first
kind. We derive a posteriori error estimates in the functional to be minimized and in the regularized solution of this functional,
and formulate corresponding adaptive algorithm. To do it we specify nonlinear results obtained in [6, 7, 8, 9, 18] for the case
of the linear bounded operator. Numerical experiments justify the efficiency of our a posteriori estimates applied both to the
computationally simulated and experimental backscattered data measured in microtomography.

1. Introduction. In this work we consider a problem of the solution of a Fredholm integral equation
of the first kind and propose an adaptive finite element method to solve it. Such problems arise in many
applications of astrophysics [13], astronomy [3], image processing of smeared and defocused photography [19]
and image processing in microtomography [20], spectroscopy in the backscattered electron signal [10], etc.
An adaptive finite element method for a Fredholm integral equation of the second kind was considered in
[1]. In this paper we solve a more complicated and different problem: we derive a posteriori error estimates
for a Fredholm integral equation of the first kind which is an ill-posed problem. Thus, to solve this problem,
we need minimize the corresponding Tikhonov functional.

We will consider a Fredholm integral equation of the first kind which takes the form

∫

D

K(t, s)z(s)ds = u(t), t ∈ D. (1.1)

Here, D is a closed bounded set in R
n, n = 2, 3. It is assumed that the kernel K(t, s) is the absolutely

integrable function. Equation (1.1) can be written in an operator form as

A(z) = u (1.2)

where A : X → Y and X and Y are complete metric spaces.
In the case when the kernel K(t, s) in (1.1) is a smooth function then equations of type (1.1) are classified

as ill-posed problems since the solution z is sensitive to the small perturbations in the data function u, see
[15, 22, 13, 25, 26]. If the kernel K(t, s) is a singular function then the ill-posedness in (1.1) is feasible.
One of the examples of this type equation is the boundary integral equations used for solution of elliptic
partial differential equations, see [2] and references therein. In the current paper we consider the case when
the operator A−1 in (1.2) is not compact operator and thus we are dealing with a classic case of ill-posed
problem [26].

Main novelty of our work is in the derivation of a posteriori error estimates for the Tikhonov functional
and for the regularized solution of this functional. These estimates are derived not only on the conforming
finite element meshes where continuous piecewise linear functions CG(1) are applied but even on the meshes
with hanging nodes. Thus, we apply discontinuous finite element method DG(1) on these meshes. To do
that we specify results of [6, 7, 8, 9, 18] for the case of the linear Fredholm integral equation of the first kind.
Because of the linearity, results of this paper sound more clear than those of previous works and proofs here
are different from ones of [6, 7, 8, 9, 18]. Another novelty of this paper is that the Tikhonov regularization
term is given in the H1 norm, which is stronger than the L2 norm being used in [6, 7, 8, 9, 18]. All these
new moments causes additional difficulties, compared with [6, 7, 8, 9, 18].
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We note that in [6, 9] a posteriori error estimates were obtained for the regularized coefficient rather for
the exact. In the follow-up work [18] the effort of the accuracy improvement of the regularized coefficient
rather than the exact coefficient was explained. More precisely, from [18] follows that the regularized coeffi-
cient is closer to the exact coefficient than the first guess in the nonlinear case. Therefore, an improvement
of the accuracy of the reconstruction of the regularized coefficient on the adaptively refined meshes leads to
an improvement of the accuracy of the reconstruction of the exact solution. Similarly with [6, 9] we obtain
new a posteriori error estimates for the regularized function.

The main concept of the adaptivity technique, which we apply to a Fredholm integral equation of the
first kind, is following. In the case of ill-posed problems it is inefficient to use an exceedingly fine mesh
in computations. The main idea of the adaptive finite element method is to obtain a good accuracy of
solutions via local mesh refinements. In order to do it, we minimize the Tikhonov functional on a sequence
of locally refined meshes. A posteriori error analysis developed in this paper addresses the main question in
the adaptivity: where to refine the mesh locally in order to improve the resulting solution.

In our numerical examples we demonstrate the efficiency of the adaptivity technique for the image
restoration problem of electron microscopy [19, 20]. The goal of our tests is to restore blurred images obtained
in electron microscopy and identify possible defects on them. To do that we apply adaptive algorithm of
Section 9. Since in computational examples of Section 10 we work only with a finite dimensional space
of standard piecewise linear finite elements, then we consider our problem in a finite dimensional space.
However, the corresponding Fredholm integral equation of the first kind certainly inherits the ill-posed
nature of its infinitely dimensional analog. Therefore, it is worth to consider the Tikhonov functional.

In Tests 1,2 of Section 10 we have applied computationally simulated data, while in Test 3 was used real
measured data obtained by the microtomograph developed by Professor Eduard Rau at Moscow Lomonosov
State University [19, 20]. Conclusion from these tests is that the local adaptive mesh refinement algorithm
can significantly improve contrast of the blurred images. In Test 2 of Section 10 we compare the performance
of our adaptive algorithm with performance of methods of [20, 21] on the reconstruction of the deconvolution
function. Our computational tests show that an adaptive finite element method gives better stability in the
reconstruction of the deconvolution function.

Comparison with other techniques which are used for solution of such kind of problems is presented
in Section 10.4. We compare three different reconstruction methods: an adaptive finite element method of
this paper, uniform grid deconvolution method of [19], and Bounded Total Variation method of [20]. Test 4
demonstrates that an adaptive finite element method gives better results in the reconstruction of the high-
intensive smeared images than other two reconstruction methods. However, the Bounded Total Variation
Method of [20] performs better in the case of large noise level in the computational data on the reconstruction
of non-intensive smeared images. Our conclusion is that the choice of the particular reconstruction method
depends on the level of the noise in computational data and level of the smearing intensity of the image to
be reconstructed.

We do not consider the case of the multi-connected computational domains in this work. However,
based on the results of Test 4 in Section 10.4, it can be interesting task to consider such domains in a future
research with different reconstruction methods applied in each domain.

An outline of this paper is as follows: In Section 2 we present the statement of the problem, the
corresponding Tikhonov functional and it’s Frechét derivative. In Section 3 we describe CG(1) and DG(1)
finite element spaces and in Section 4 we present CG(1) and DG(1) finite element method for the Tikhonov
functional. In Section 5 we demonstrate general framework for a posteriori error estimates. A posteriori error
estimate for the regularized solution on a locally refined meshes is derived in Section 6 and a posteriori error
estimate for the error in the Tikhonov functional is presented in Section 7. We formulate mesh refinement
recommendations and adaptive algorithms in Sections 8, 9, correspondingly. Finally, in our concluding
Section 10 we demonstrate results of the reconstruction in two dimensions using adaptive algorithms of
Section 9.

2. Notations used in the paper. We introduce first common notations which we are using in this
paper. Let Ω ⊂ R

n, n = 2, 3 be a bounded domain with the piecewise-smooth boundary ∂Ω. In our numerical
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experiments we work with piecewise smooth boundaries and this is one of discrepancies between the theory
and its numerical implementation.

Let function u (x) , x = (x1, ..., xn) ∈ Ω be a k times continuously differentiable in Ω. We denote the
partial derivative of the order |α| ≤ k, of function u by

Dαu =
∂|α|u

∂α1x1 . . . ∂αnxn

, |α| = α1 + . . . + αn,

where α = (α1, . . . , αn) is such that αi ≥ 0.
Denote Ck

(
Ω
)

the Banach space of functions u (x) which are continuous in the closure Ω of the domain
Ω together with their derivatives Dαu, |α| ≤ m. The norm in this space is defined as

‖u‖Ck(Ω) =
∑

|α|≤m

sup
x∈Ω

|Dαu (x)| < ∞.

Consider the Sobolev space Hk (Ω) of all functions with the norm defined as

‖u‖
2
Hk(Ω) =

∑

|α|≤k

∫

Ω

|Dαu|
2
dx < ∞,

where Dαu are weak derivatives of the function u.
Hk (Ω) is a Hilbert space with the inner product defined as

(u, v)Hk(Ω) =
∑

|α|≤k

∫

Ω

DαuDαvdx.

In L2(Ω) the inner product and the norm are defined as

(u, v) =

∫

Ω

uvdx, x ∈ Ω,

||u||2 = (u, u).

2.1. Statement of the problem. Let H be the Hilbert space of functions defined in Ω. Recall that
we consider Ω ⊂ R

n, n = 2, 3 which is a bounded domain with the piecewise-smooth boundary ∂Ω. Our goal
is to solve a Fredholm integral equation of the first kind

∫

Ω

ρ(x, y)z(x)dx = u(y) y ∈ Ω, (2.1)

where u(y) ∈ L2(Ω), z(x) ∈ H , ρ (x, y) ∈ Ck (Ω × Ω) , k ≥ 0 is the kernel of the integral equation.
We can rewrite (2.1) in an operator form as

A(z) = u (2.2)

with an operator A : H → L2(Ω) defined as

A(z) :=

∫

Ω

ρ(x, y)z(x)dx. (2.3)

The Problem (P).
Let the function z(x) ∈ H in the equation

∫

Ω

ρ(x, y)z(x)dx = u(y) y ∈ Ω, (2.4)

be unknown in the domain Ω. Determine the function z(x) ∈ H for x ∈ Ω assuming that functions ρ(x, y) ∈
Ck (Ω × Ω) , k ≥ 0 and u(y) ∈ L2(Ω) in (2.4) are known.

Although the function A (z) ∈ Ck (Ω) , k ≥ 0 we assume in (2.3) that u ∈ L2 (Ω) . The reason of this is
that the right hand side of this equation can be noisy.
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2.2. The Tikhonov functional. We assume that the right hand side of (2.4) is given with the small
parameter δ ∈ (0, 1) which characterizes the level of the error in data. Let u∗ be the perfect noiseless right
hand side of (2.4) which corresponds to the exact solution z∗ of (2.2) such that

A (z∗) = u∗, ‖u − u∗‖L2(Ω) ≤ δ. (2.5)

Introduce the operator F : H → L2 such that

F (z) := Az − u. (2.6)

Hence Az∗ − u∗ = 0. Since ‖u − u∗‖L2(Ω) ≤ δ then

||F (z∗)||L2(Ω) ≤ δ. (2.7)

Recall that the problem of solution of the operator equation (2.2) is a classical ill-posed problem [24]
since the operator A−1 may not be compact. Thus, we assume that there exists the exact solution z∗ to our
problem P but we never will get this solution in computations. Because of that we call by the regularized
solution zα some approximation of the unknown exact solution z∗ which is satisfied to the requirements of
closeness to the exact solution z∗ and stability with respect to the small errors of the right-hand side u(y)
of equation (2.2). Algorithm for solution of the equation (2.2) can be written in the form zα = R(δ, α)u,
where R(δ, α) : L2 → H is regularization operator, see in [24] for more information about construction of
this operator. When we apply this operator to the solution of the ill-posed problem we get a regularization
algorithm. In this paper we use Tikhonov regularization algorithm which is based on the minimization of the
Tikhonov functional. Thus, to find regularized solution zα of equation (2.4), we take H = H1 and minimize
the Tikhonov regularization functional Mα(z) in the form

Mα (z) =
1

2
‖F (z)‖

2
L2(Ω) +

α

2
‖z − z0‖

2
H1(Ω) , (2.8)

Mα : H1 → R, z0 ∈ H1,

where α = α (δ) > 0 is a small regularization parameter. The choice of the point z0 and the regularization
parameter α depends on the concrete minimization problem and this is outside of the scope of this publication.
Usually z0 is a good first approximation for the exact solution z∗.

From [24] follows that an algorithm for solution of the equation (2.2) which is based on the minimization
of the Tikhonov functional (2.8) is the regularization algorithm, and the element zα ∈ H1 where the functional
(2.8) reaches its minimum is the regularized solution.

Let us consider an important class of Fredholm integral equations of the first kind - the convolution
equation. These equations can be presented in the form (2.2) with the convolution operator A : H1 → L2(Ω)
defined by

A(z) :=

∫

Ω

ρ(y − x)z(x)dx, (2.9)

where ρ(y − x) ∈ Ck (Ω × Ω) , k ≥ 0, z(x) ∈ H1. Then using the convolution theorem and properties of the
Fourier transform [25] we obtain the minimum z(x) ∈ H1 of the functional (2.8) given by

z(x) = F−1
( û(ω)ρ̂∗(ω)

|ρ̂(ω)|2 + α(1 + ω2)

)
, (2.10)

where f̂(ω) denotes the Fourier transform F (f)(ω) of the function f(ω) defined by

f̂(ω) := F (f)(ω) =
1

(2π)n

∫

Rn

f(x)e−iωxdx. (2.11)

We consider the convolution equation (2.9) in our numerical examples of Section 10. We note that our
a posteriori error estimates are valid also for this type of equation.
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2.3. The Fréchet Derivative and the convexity of the Tikhonov Functional. For the conve-
nience of the presentation we introduce more general form of the Tikhonov functional (2.8). This is done for
presentation of the general form of the convexity property of this functional. Let W1,W2, Q be three Hilbert
spaces, Q ⊆ W1 as a set, the norm in Q is stronger than the norm in W1 and Q = W1, where the closure is
understood in the norm of W1. We denote scalar products and norms in these spaces as

(·, ·) , ‖·‖ for W1,

(·, ·)2 , ‖·‖2 for W2

and [·, ·] , [·] for Q.

Let A : W1 → W2 be a bounded linear operator. Our goal is to find the function z ∈ Q which minimizes the
Tikhonov functional

Jα (z) : Q → R, (2.12)

Jα (z) =
1

2
‖Az − u‖

2
2 +

α

2
[z − z0]

2
, u ∈ W2; z, z0 ∈ Q, (2.13)

where α ∈ (0, 1) is the regularization parameter.
To do that we search for a stationary point of the above functional with respect to z satisfying ∀b ∈ Q

J ′
α(z)(b) = 0. (2.14)

where J ′
α(z) is the Fréchet derivative of the functional (2.13) and J ′

α(z)(b) means that J ′
α acts on b.

The following lemma is well known [4] and we present it for the particular case when the operator
A : L2 → L2. In the case when A : H1 → L2 the explicit derivation of the Fréchet derivative of the functional
(2.13) is technically more complicated problem because of the presence of H1 norm in the regularization term
of the functional (2.13), and we omit here explicit presentation of the Fréchet derivative of the functional
(2.13) in this case. However, in our proofs of Theorems 1 and 2 we mean that the Fréchet derivative of the
functional (2.12) is given in H1 norm when the operator A : H1 → L2.

Lemma 1. Let A : L2 → L2 be a bounded linear operator. Then the Fréchet derivative of the functional
(2.12) is

J ′
α (z) (b) = (A∗Az − A∗u, b) + α [z − z0, b] , ∀b ∈ Q. (2.15)

In particular, for the integral operator (2.4) we have

J ′
α (z) (b) =

∫

Ω

b (s)



∫

Ω

z (y)



∫

Ω

ρ (x, y) ρ (x, s) dx


 dy −

∫

Ω

ρ (x, s) u (x) dx


 ds (2.16)

+α [z − z0, b] , ∀b ∈ Q.

Lemma 2 is also well known since A : W1 → W2 is a bounded linear operator. We again formulate this
lemma only for our specific case, referring to [25] for a more general case. The situation is naturally more
complicated for a nonlinear operator, and we refer to [6] for this case.

Lemma 2. Let the operator A : W1 → W2 be a bounded linear operator which has the Fréchet derivative
of the functional (2.12). Then the functional Jα (z) is strongly convex on the space Q and

(J ′
α (x) − J ′

α (z) , x − z) ≥ α[x − z]2, ∀x, z ∈ Q.
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It is known from the theory of convex optimization that Lemma 2 implies existence and uniqueness of
the global minimizer zα ∈ Q of the functional Jα defined in (2.12) such that

Jα(zα) = inf
z∈Q

Jα(z).

It is well known that the operator F is Lipschitz continuous

‖F (z1) − F (z2)‖ ≤ ||A|| · ‖z1 − z2‖ ∀z1, z2 ∈ H.

We also introduce new constant D = D (||A||, α) = const. > 0 [4, 5] such that

‖J ′
α (z1) − J ′

α (z2)‖ ≤ D ‖z1 − z2‖ , ∀z1, z2 ∈ H. (2.17)

3. The finite element spaces. Following [17] we discretize our bounded domain Ω ⊂ R
n, n = 2, 3 by

an unstructured mesh T using non-overlapping elements K. In R
3 the elements K are tetrahedrons and in

R
2 the elements K are triangles such that T = K1, ..., Kl, where l is the total number of elements in Ω, and

Ω = ∪K∈T K = K1 ∪ K2... ∪ Kl.

We associate with the triangulation T the mesh function h = h(x) which is a piecewise-constant function
such that

h(x) = hK ∀K ∈ T,

where hK is the diameter of K which we define as the longest side of K.
Let r′ be the radius of the maximal circle/sphere contained in the element K. We make the following

shape regularity assumption for every element K ∈ T

a1 ≤ hK ≤ r′a2; a1, a2 = const. > 0. (3.1)

We introduce now the finite element space Vh as

Vh =
{
v(x) ∈ V : v ∈ C(Ω), v|K ∈ P1(K) ∀K ∈ T

}
, (3.2)

where P1(K) denotes the set of piecewise-linear functions on K with

V =
{
v(x) : v(x) ∈ H1(Ω)

}
.

The finite dimensional finite element space Vh is constructed such that Vh ⊂ V . The finite element method
which uses piecewise-linear test functions we call continuous Galerkin, or CG(1) method. CG(1) can be
applied on the conforming meshes.

In a general case we also allow meshes in a space with hanging nodes and assume that the local mesh
size has bounded variation in such meshes. This means that there exists a constant γ > 0 such that
γhK+ ≤ hK ≤ γ−1hK+ for all neighboring elements K− and K+. Let S be the internal face of the non-
empty intersection of the boundaries of two neighboring elements K+ and K−. We denote the jump of the
function vh computed from the two neighboring elements K+ and K− sharing the common side S as

[vh] = v+
h − v−h . (3.3)

We introduce the discontinuous finite element space Wh on such meshes as

Wh =
{
v(x) ∈ V : v|K ∈ DP1(K) ∀K ∈ T

}
, (3.4)

where DP1(K) denotes the set of discontinuous linear functions on K. The finite element space Wh is con-
structed such that Wh ⊂ V . The finite element method which uses discontinuous piecewise-linear functions
is called DG(1) method.
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Let M be a subspace of the space V . Let Ph : V → M for ∀M ⊂ V , be the operator of the orthogonal
projection of V on M . Let the function f ∈ H1 (Ω) ∩ C (Ω) and ∂xi

fxi
∈ L∞ (Ω) . We define by f I

k the
standard interpolant [12] on triangles/tetrahedra of the function f ∈ H . Then by one of properties of the
orthogonal projection

‖f − Phf‖L2(Ω) ≤
∥∥f − f I

k

∥∥
L2(Ω)

. (3.5)

It follows from formula 76.3 of [12] that

‖f − Phf‖L2(Ω) ≤ CI ‖h ∇f‖L2(Ω) , ∀f ∈ V. (3.6)

where CI = CI (Ω) is positive constant depending only on the domain Ω.

4. A finite element method. To formulate a CG(1) for equation (2.14) we recall the definition of the
space Vh. The CG(1) finite element method then reads: find zh ∈ Vh such that

J ′
α(zh)(b) = 0 ∀b ∈ Vh. (4.1)

Similarly, for DG(1) for equation (2.14) we recall the definition of the space Wh. The DG(1) finite
element method then reads: find zh ∈ Wh such that

J ′
α(zh)(b) = 0 ∀b ∈ Wh. (4.2)

5. General framework of a posteriori error estimate. Our goal is to present a posteriori error
estimate for two kinds of error:

• For the error |Jα(zα) − Jα(zh)| in the Tikhonov functional (2.12).
• For the error |zα − zh| in the regularized solution of this functional zα.

To achieve the first goal, we note that

Jα(zα) − Jα(zh) = J ′
α(zh)(zα − zh) + R(zα, zh), (5.1)

where R(zα, zh) is the second order remainder term. We assume that zh is located in the small neighborhood
of the regularized solution zα. Thus, the term R(zα, zh) is small and we can neglect it.

We now use the Galerkin orthogonality principle

J ′
α(zh)(b) = 0 ∀b ∈ Vh or ∀b ∈ Wh (5.2)

together with the splitting

zα − zh = (zα − zI
α) + (zI

α − zh) (5.3)

where zI
α ∈ Vh or zI

α ∈ Wh is the interpolant of zα, and get the following error representation:

Jα(zα) − Jα(zh) ≈ J ′
α(zh)(zα − zI

α). (5.4)

A posteriori error estimate (5.4) involves the derivative of the Tikhonov functional J ′
α(zh) which represents

residual multiplied by weights zα − zI
α.

To derive the error zα − zh in the regularized solution zα we use the convexity property of the Tikhonov
functional (2.12) together with the interpolation property (3.6).

We now make both error estimates more explicit for the case of CG(1) and DG(1) applied to solution
of (2.4).
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6. A posteriori error estimate of the regularized solution on refined meshes. In this section
we formulate theorem for a posteriori error estimate for the regularized solution zα for the case of the
functional Mα defined in (2.8). This Theorem is also valid in a common case of the functional Jα(z) defined
in (2.13). To reduce notations during the proof of this theorem we define the scalar product (·, ·)H1 as (·, ·).

Theorem 1
Let zh ∈ Wh be a finite element approximation of the regularized solution zα ∈ H2(Ω) on the finite

element mesh T with the mesh function h. Then there exists a constant D defined by (2.17) such that the
following a posteriori error estimate for the regularized solution zα holds

||zh − zα||H1(Ω) ≤
D

α
CI

(
||hzh||L2(Ω) + ‖[zh]‖L2(Ω) + C max

S⊂∂K
h−1

K ‖[∂Szh]‖L2(Ω)

)
∀zh ∈ Wh. (6.1)

In the case when zh ∈ Vh we have a posteriori error estimate

||zh − zα||H1(Ω) ≤
D

α
CI ||hzh||L2(Ω).

Proof.
Let zh be the minimizer of the Tikhonov functional (2.8). The existence and uniqueness of this minimizer

is guaranteed by Lemma 2. Since by Lemma 2 the functional (2.8) is strongly convex on the space H1 with
the strong convexity constant α, then this fact implies that

α ‖zh − zα‖
2
H1(Ω) ≤ (M ′

α (zh) − M ′
α (zα) , zh − zα) . (6.2)

where M ′
α(zh), M ′

α (zα) are the Fréchet derivatives of the functional (2.8) for the operator A : H1 → L2.
Since zα is the minimizer on the set H1, then

(M ′
α (zα) , z) = 0, ∀z ∈ H1.

Using (6.2) with the splitting

zh − zα = (zh − Phzα) + (Phzα − zα) ,

together with the Galerkin orthogonality principle

(M ′
α (zh) − M ′

α (zα) , zh − Phzα) = 0 (6.3)

such that either (zh, Phzα) ∈ Vh for CG(1) or (zh, Phzα) ∈ Wh for DG(1), and we obtain

α ‖zh − zα‖
2
H1 ≤ (M ′

α (zh) − M ′
α (zα) , Phzα − zα) . (6.4)

We can estimate the right hand side of (6.4) using (2.17) as

(M ′
α (zh) − M ′

α (zα) , Phzα − zα) ≤ D||zh − zα||H1(Ω)||Phzα − zα||H1(Ω).

Substituting above equation into (6.4) we obtain

||zh − zα||H1(Ω) ≤
D

α
||Phzα − zα||H1(Ω). (6.5)

Using the interpolation property

||Phzα − zα||H1(Ω) ≤ CI ||h zα||H2(Ω)

we obtain a posteriori error estimate for the regularized solution with the interpolation constant CI :

||zh − zα||H1(Ω) ≤
D

α
||Phzα − zα||H1(Ω) ≤

D

α
CI ||h zα||H2(Ω).

8



.
We can estimate ||h zα||H2(Ω) as

||h zα||H2(Ω) ≤
∑

K

||hKzα||H2(K) =
∑

K

||(zα + ∇zα + D2zα)hK ||L2(K)

≤
∑

K

(
||zhhK ||L2(K) +

∥∥∥∥
[zh]

hK

hK

∥∥∥∥
L2(K)

+

∥∥∥∥
[∂nK

zh]

hK

hK

∥∥∥∥
L2(∂K)

)

≤ ||hzh||L2(Ω) +
∑

K

(‖[zh]‖L2(K) + ‖[∂nK
zh]‖L2(∂K)).

(6.6)

We denote in (6.6) by D2zα the second order derivatives of zα, ∂K denotes the boundary of the element K,
[∂nK

zh] is the jump of the normal derivative of the function zh in the outward direction nK , [zh] is the jump
of the function zh over the element K, hK is the diameter of the element K. In (6.6) we also used the facts
that [16]

|∇zα| ≤
|[zh]|

hK

and

|D2zα| ≤
|[∂nK

zh]|

hK

.

We now estimate the third and second terms in the last row of (6.6). We take sum over the element
boundaries such that the every internal side S of the element K occurs twice. We denote by ∂Szh the
derivative of the function zh in one of the normal directions of every side S to get

∑

K

‖[∂nK
zh]‖L2(∂K) =

∑

S

‖[∂Szh]‖L2(S) , (6.7)

where [∂Szh] is the jump in the derivative ∂Szh computed from the two triangles sharing the same side S.
We now distribute every jump equally over the two triangles sharing the side S and return to the sum over
the elements boundaries ∂K to get

∑

S

‖[∂Szh]‖L2(S) =
∑

K

1

2
h−1

K ‖[∂Szh]hK‖L2(∂K) . (6.8)

Now we replace norms over the element boundaries ∂K by norm over the domain Ω to get
∣∣∣∣∣
∑

K

1

2
h−1

K ‖[∂Szh]hK‖L2(∂K)

∣∣∣∣∣ ≤ C max
S⊂∂K

h−1
K ‖[∂Szh]‖L2(Ω) (6.9)

with the constant C > 0.
Substituting the above estimates into the right hand side of (6.6) we get

||zh − zα||H1(Ω) ≤
D

α
CI ||hzh||L2(Ω) +

D

α
CI

(
‖[zh]‖L2(Ω) + C max

S⊂∂K
h−1

K ‖[∂Szh]‖L2(Ω)

)
∀zh ∈ Wh.

In the case when zh ∈ Vh terms with jumps disappear and we have a posteriori error estimate

||zh − zα||H1(Ω) ≤
D

α
CI ||hzh||L2(Ω).

�
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7. A posteriori error estimates for the functional (2.8). In Theorem 2 we derive a posteriori
error estimates for the error in the Tikhonov functional (2.8) on the finite element mesh T . This Theorem
is also valid in a common case of the functional Jα(z) in (2.13).

Theorem 2
Suppose that there exists minimizer zα ∈ H2(Ω) of the functional Mα on the set V and mesh T .

Suppose also that there exists finite element approximation zh of a minimizer zα of Mα on the set Wh and
mesh T with the mesh function h. Then the following approximate a posteriori error estimate for the error
e = |Mα(zα) − Mα(zh)| in the Tikhonov functional (2.8) holds

e = |Mα(zα) − Mα(zh)| ≤ CI ‖M
′
α(zh)‖H1(Ω)

(
||hzh||L2(Ω) + ‖[zh]‖L2(Ω) + C max

S⊂∂K
h−1

K ‖[∂Szh]‖L2(Ω)

)
.

(7.1)
In the case when the finite element approximation zh ∈ Vh we have following a posteriori error estimate

e = |Mα(zα) − Mα(zh)| ≤ CI ‖M
′
α(zh)‖H1(Ω) ||hzh||L2(Ω). (7.2)

Proof
By definition of the Frechét derivative we can write that on the mesh T we have

Mα(zα) − Mα(zh) = M ′
α(zh)(zα − zh) + R(zα, zh), (7.3)

where by Lemma 1 R(zα, zh) = O((zα − zh)2), (zα − zh) → 0 ∀zα, zh ∈ V and M ′
α(zh) is the Fréchet

derivative of the functional (2.8) for the operator A : H1 → L2. The term R(zα, zh) is small since we assume
that zh is the minimizer of the Tikhonov functional on the mesh T and this minimizer is located in a small
neighborhood of the regularized solution zα. Thus, we can neglect R in (7.3), see similar results for the case
of a general nonlinear operator equation in [4, 6]. Next, we use the splitting

zα − zh = zα − zI
α + zI

α − zh (7.4)

and the Galerkin orthogonality [12]

M ′
α(zh)(zI

α − zh) = 0 ∀zI
α, zh ∈ Wh (7.5)

to get

Mα(zα) − Mα(zh) ≤ M ′
α(zh)(zα − zI

α), (7.6)

where zI
α is a standard interpolant of zα on the mesh T [12]. We have that

|Mα(zα) − Mα(zh)| ≤ ||M ′
α(zh)||H1(Ω)||zα − zI

α||H1(Ω), (7.7)

where the term ||zα − zI
α||H1(Ω) in the right hand side of the above inequality can be estimated through the

interpolation estimate with the constant CI

||zα − zI
α||H1(Ω) ≤ CI ||h zα||H2(Ω).

Substituting above estimate into (7.7) we get

|Mα(zα) − Mα(zh)| ≤ CI ‖M
′
α(zh)‖H1(Ω) ||h zα||H2(Ω). (7.8)

Using the facts that [16]

|∇zα| ≤
|[zh]|

hK

10



and

|D2zα| ≤
|[∂nzh]|

hK

,

we can estimate ||h zα||H2(Ω) similarly with (6.6)-(6.9) to get

|Mα(zα)−Mα(zh)| ≤ CI ‖M
′
α(zh)‖H1(Ω)

(
||hzh||L2(Ω) + ‖[zh]‖L2(Ω) + C max

S⊂∂K
h−1

K ‖[∂Szh]‖L2(Ω)

)
∀zh ∈ Wh.

(7.9)
In the case when zh ∈ Vh all terms with jumps in (7.9) disappear and we get estimate (7.2).

�

8. Mesh refinement recommendations. Using Theorems 1 and 2 we now formulate our mesh re-
finement recommendations which are used in Section 10 to improve accuracy of the reconstruction of the
regularized solution zα of the problem P.

The estimate (6.1) of the Theorem 1 provides an idea on where we need to refine the mesh locally in
order to improve the accuracy of the regularized solution zα. Given a finite element approximation zh ∈ Wh

of the regularized solution zα ∈ H2(Ω) the main impact of the norms of the computed finite element solution
zh in the estimate (6.1) are provided by neighborhoods of thus points in the finite element mesh T where
||hzh||L2(Ω) achieves its maximal value. We note that additional terms with jumps in the estimate (6.1)
disappear in the case of the conforming finite element meshes when zh ∈ Vh. Thus, the first idea of the
finite element mesh refinement is that the neighborhoods of all points in the finite element mesh T where
the function |hzh| achieves its maximum should be refined.

Similarly, the estimate (7.1) of the Theorem 2 provides the second idea where to refine the finite element
mesh locally in order to improve the accuracy in the Tikhonov functional (2.8). Given a finite element
approximation zh ∈ Wh of the regularized solution zα ∈ H2(Ω) and the computed Frechét derivative M ′

α(zh)
of the Tikhonov functional (2.8) the main impact of the norms given in the right hand side of the estimate
(7.1) are provided by neighborhoods of thus points in the finite element mesh T where both norms ||hzh||L2(Ω)

and ||M ′
α(zh)||H1(Ω) achieves its maximal values. Thus, the second idea of the finite element mesh refinement

is that the neighborhoods of all points in the finite element mesh T where |M ′
α(zh)| achieves its maximum,

or both functions |hzh| and |M ′
α(zh)| achieves their maximum, should be refined.

Since the term |hzh| is already included in the first mesh refinement recommendation, we write only one
term |M ′

α(zh)| in the second mesh refinement recommendation. Thus, by combining the first and second
mesh refinement recommendations we can perform numerical tests to check performance of different mesh
refinement criteria.

Since Theorems 1 and 2 are valid for the common case of the functional Jα(z) defined in (2.13), we write
the second mesh refinement recommendation for this functional.

The First Mesh Refinement Recommendation. Using the Theorem 1 we conclude that we should
refine the mesh in neighborhoods of those points in Ω where the function |hzh| attains its maximal values.
More, precisely in such subdomains of Ω where

|hzh| ≥ κ̃ max
Ω

|hzh|

where κ̃ ∈ (0, 1) is the number which should be chosen computationally and h is the mesh function of the
finite element mesh T .
The Second Mesh Refinement Recommendation. Using the Theorem 2 we conclude that we should
refine the mesh in neighborhoods of those points in Ω where the function |J ′

α(zh)| attains its maximal values.
More precisely, let κ ∈ (0, 1) be the tolerance number which should be chosen in computational experiments.
Refine the mesh in such subdomains of Ω where

|J ′
α(zh)| ≥ κ max

Ω
|J ′

α(zh)| .
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9. The Adaptive Algorithm. In this section we present two adaptive algorithms for the solution of a
Fredholm integral equation of the first kind (2.4) which we apply in numerical examples of Section 10. In our
algorithms we define the minimizer and its computed solution, or approximation, on k times refined mesh
Tk by zα and zk, correspondingly. In our mesh refinement recommendations we need compute the function
zk. To do that we use the convolution theorem (10.9) of Section 10. In Algorithm 1 we apply modified
second mesh refinement recommendation of Section 8, while in Algorithm 2 we use both mesh refinement
recommendations of Section 8. These algorithms are successfully tested in numerical examples of Section 10.

Algorithm 1

Step 0. Choose an initial mesh T0 in Ω and obtain the numerical solution z0 of (2.8) on T0 using the finite
element discretization of (4.1) for CG(1) or (4.2) for DG(1) and discretization of convolution theorem
(10.9). Compute the sequence zk, k > 0, on a refined meshes Tk via following steps:

Step 1. Obtain the numerical solution zk of (2.8) on Tk using the finite element discretization of (4.1) for
CG(1) or (4.2) for DG(1) and discretization of (10.9).

Step 2. Refine the mesh Tk at all points where

|Bh(zk)| ≥ βk max
Ω

|Bh(zk)|, (9.1)

where a posteriori error indicator Bh(zk) we define as

Bh (zk) =

∫

Ω

zk(y)



∫

Ω

ρ(x, y)ρ(x, s)dx


 dy −

∫

Ω

ρ (x, s)u (x) dx. (9.2)

Here the tolerance number βk ∈ (0, 1) is chosen by the user.
Step 3. Construct a new mesh Tk+1 in Ω and perform steps 1-3 on the new mesh. Stop mesh refinements

when ||zk − zk−1|| < ǫ or ||Bh(zk)|| < ǫ, where ǫ is tolerance chosen by the user. To compute norms
||zk − zk−1||, the solution zk−1 is interpolated from the mesh Tk−1 to the mesh Tk.

Algorithm 2

Step 0. Choose an initial mesh T0 in Ω and obtain the numerical solution z0 of (2.8) on T0 using the finite
element discretization of (4.1) for CG(1) or (4.2) for DG(1) and of the convolution theorem (10.9).
Compute the sequence zk, k > 0, via following steps:

Step 1. Obtain the numerical solution zk of (2.8) on Tk using the finite element discretization of (4.1) for
CG(1) or (4.2) for DG(1) and discretization of (10.9).

Step 2. Refine the mesh Tk at all points where

|Bh (zk) | ≥ βk max
Ω

|Bh (zk) | (9.3)

with a posteriori error indicator Bh (zk) defined by (9.2), and where

|zk (x)| ≥ κ̃k max
Ω

|zk (x)| . (9.4)

Here the tolerance numbers βk, κ̃k ∈ (0, 1) are chosen by the user.
Step 3. Construct a new mesh Tk+1 in Ω and perform steps 1-3 on the new mesh. Stop mesh refinements

when ||zk − zk−1|| < ǫ or ||Bh (zk) || < ǫ, where ǫ is tolerance chosen by the user. To compute norms
||zk − zk−1||, the solution zk−1 is interpolated from the mesh Tk−1 to the mesh Tk.

Remarks
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• 1. We note that the choice of the tolerance numbers βk, κ̃k in (9.2), (9.4) depends on the concrete
values of maxΩ |Bh (zk) | and maxΩ |zk (x)|, correspondingly. If we would choose βk, κ̃k very close
to 1 then we would refine the mesh in very narrow region of the computational domain Ω, and if we
will choose βk, κ̃k ≈ 0 then almost all mesh of the domain Ω will be refined what is unsatisfactory.
Thus, the values of the numbers βk, κ̃k should be chosen in optimal way. Our numerical tests of
Section 10 show that the choice of βk, κ̃k = 0.5 is almost optimal one since with those choice of the
parameters βk, κ̃k the finite element mesh is refined exactly at the places where we computed the
function zh, see Figures 10.1, 10.2, 10.4. However, such choice of numbers βk, κ̃k is valid for our
computational tests of Section 10 and it can be changed during the iterations in adaptive algorithms
from coarser to refined mesh.

• 2. We also note that we neglect the computation of the regularization term in a posteriori error
indicator (9.2) since this term is very small and does not affects on the refinement procedure.
However, this term is included in the minimization procedure of the Tikhonov’s functional (2.8).

10. Numerical studies of the adaptivity technique in microtomography. In all our tests of
this section we consider the problem of the two-dimensional reconstruction of the backscattered signal in
microtomography [19, 20]. This method allows nondestructive layer-by-layer image restoration of micro and
nanostructures, for example, reconstruction of integral microschemes.

In the numerical tests of this section we show examples of the image restoration in microtomography
using adaptive finite element method with piecewise linear functions on a locally refined meshes. We present
numerical studies of the adaptive algorithms of Section 9 on the computationally simulated data (Tests 1,2
in subsection 10.2) and on the experimental data (Test 3 in subsection 10.2). In Test 2 of subsection 10.2
we also compare results obtained by the uniform deconvolution algorithm of [19, 20] with the adaptivity
technique of this paper.

Experimental backscattered signal in Test 3 of subsection 10.2 is generated by the microtomograph
developed by professor Eduard Rau at Moscow Lomonosov State University. This device is based on the
electron microscope working in the backscattering electron mode. As soon as original measured images are
obtained by the microtomograph they can be improved by mathematical methods. It is well known, that in
mathematics the problem of the image restoration in microtomography consists in solution of a Fredholm
integral equation of the first kind which is ill-posed problem. Usual method for solution of this equation
in two and three dimensions is minimization of the Tikhonov functional (2.8) in some bounded domain
Ω ⊂ R

n, n = 2, 3 using deconvolution algorithm on the uniform mesh [19, 20].
In Test 4 of subsection 10.4 we compare three different reconstruction methods: an adaptive finite element

method of this paper, uniform grid deconvolution method of [19], and Bounded Total Variation method of
[20]. Our tests show that the relative computational error in an adaptive finite element method is smaller
than in other two methods in the case of the reconstruction of high-intensive smeared images. However, the
Bounded Total Variation Method of [20] gives the smallest relative error in the case of increasing of the noise
level in the computational data on the reconstruction of non-intensive smeared images.

We can conclude that the choice of the numerical reconstruction method depends on the concrete real
application, level of the noise in computational data and smearing intensity of the image to be reconstructed.

10.1. Statement of the problem. Reconstruction in microtomography is based on the analyzing
of energy loss of the electrons backscattered by a layer of some solid object under investigation. Usually
electron probe (monokinetic electron ray) falls normally to the surface of the object. Since electrons are
reflected from different depths of the object they have different energies such that we can filter them using
these energies. Thus, we can get the backscattered signal only from the depth in which we are interested.

The measured intensity of the signal depends on the scattering coefficient of the material of the object.
This intensity is saved into the point of a plane image which corresponds to the position of the electron
probe. Collecting all intensities at all points over the domain where we measure our signal into a some
matrix we can obtain the image of the distribution of the intensity in the domain under investigation.

Unfortunately, the image formed in this way has drawbacks. One of them is the blurring which can be
explained by the fact that the finite radius of the electron probe leads to the situation, when every position
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of the electron probe produces some spot in the matrix, where the signal is saved.
Let us denote by r0 the the known radius of the primary electron beam outside the target. The radius

r of the electron probe on the penetration depth d can be represented using the empiric formula

r′(d)2 = r2
0 + 0.625

(
Z

E0

)(
k

A

)0.5

d1.5, (10.1)

where Z and A are the atomic number and the atomic weight, respectively. Here, r′ and d are expressed in
centimeters [cm], energy E0 - in kelvin [keV], the density of the material of the target k - in gram/centimeter3

[g/cm3].
The distribution of the current density in the cross section of the electron probe can be represented by a

Gauss distribution [20]. This distribution transforms on the depth d with the scaling parameter (dispersion)
r′(d) defined by (10.1). For short notations we will define by r(d) the radius of the electron probe. Thus,
the distribution of the current density ρ(r) can be calculated using the expression

ρ(r) =
1

2πr′2
exp(−

r2

2r′2
). (10.2)

The distribution of the current density ρ(x1, x2) in the Cartesian coordinate system (x1Ox2) which is defined
in the plane of the layer under investigation, can be defined by the formula

ρ(x1, x2) =
1

2πr′2
exp(−

x2
1 + x2

2

2r′2
). (10.3)

The signal distribution via the frame is formed line by line through the integral measuring of the
intensity of backscattered electron signal. The measured intensity saved into the point of a plane image,
which corresponds to the position of the electron probe.

Let z(x1, x2) be the scattering coefficient at the point with coordinates (x1, x2). Let (ξOη) be other
Cartesian coordinate system which is defined in the plane of the image. Without loss of generality we can
assume, that this system is equivalent to the system (x1Ox2). If the electron probe is located at some
point (ξ, η) of the layer under investigation, then the intensity at this point is proportional to the number
of electrons backscattered from the object.

Let Ω will be the bounded domain representing the object to be investigated. We decompose this domain
into N small rectangular subdomains ωi such that Ω = ∪N

i=1ωi, ωi ∩ ωj = 0 ∀i 6= j. Let subdomains ωi

have sizes dx1, dx2 such that ωi = dx1 × dx2 and the point (x1, x2) ∈ ωi. We assume a constant scattering
coefficient z(x1, x2) inside every subdomain ωi when dx1 → 0 and dx2 → 0. Then the backscattered signal
over the domain ωi at the point (ξ, η) is proportional to the current density ρ(x1 − ξ, x2 − η) of the electron
probe and to the scattering coefficient z(x1, x2) at the point (x1, x2). This signal can be described by equation

u(ξ, η) = z(x1, x2)ρ(x1 − ξ, x2 − η)dx1dx2. (10.4)

Integrating (10.4) over all subdomains ωi ⊂ Ω and summing up them over the computational domain Ω we
get expression for the backscattered signal u(ξ, η) at the point (ξ, η) in the whole domain Ω

u(ξ, η) =

∫

Ω

z(x1, x2)ρ(x1 − ξ, x2 − η)dx1dx2. (10.5)

Inverse problem (IP)
Let the function z(x1, x2) ∈ H1 in the equation

∫

Ω

ρ(x1 − ξ, x2 − η)z(x1, x2) dx1dx2 = u(ξ, η), ξ, η ∈ Ω, (10.6)

be unknown in the domain Ω. Determine the function z(x1, x2) ∈ H1 for all points (x1, x2) ∈ Ω assuming
that functions ρ(x1 − ξ, x2 − η) ∈ Ck (Ω × Ω) , k ≥ 0 and u(ξ, η) ∈ L2(Ω) in (10.6) are known.
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We note that the equation (10.6) is a Fredholm integral equation of the first kind in two dimensions. It
can be presented in the form (2.2) with the convolution operator A : H1 → L2(Ω) defined by

A(z) :=

∫

Ω

ρ(x1 − ξ, x2 − η)z(x1, x2) dx1dx2. (10.7)

To solve the inverse problem IP we minimize the Tikhonov functional (2.8) in the form

Mα(z) =‖

∫

Ω

ρ(x1 − ξ, x2 − η) z(x1, x2) dx1dx2 − u(ξ, η)‖2
L2(Ω) + α‖z(x1, x2) ‖

2
H1 . (10.8)

Using the convolution theorem and properties of a Fourier transform [25, 26] similarly with (2.10) we
can obtain the following formula of the minimizer zα(x1, x2) of the functional (10.8) in two dimensions

zα(x1, x2) =

∫

R2

e−i(λx1+νx2)
ρ̂∗(λ, ν)û(λ, ν)

|ρ̂(λ, ν)|2 + α(1 + λ2 + ν2)
dλdν, (10.9)

where functions û and ρ̂ are the Fourier transforms of the functions u and ρ, respectively.
In [20, 21] the solution of the equation (10.5) was found on uniform grids on the spaces H1 and V H(B)

(the space of functions with bounded total variation). The best reconstruction result was obtained using the
bounded total variation functions when for the first approximation was taken the result obtained on space
H1. Our computational tests of Section 10.2 show the better stability for the adaptive method than methods
of [20, 21].

10.2. Tests with simulated backscattered data. The goal in Test 1 and Test 2 was to solve the
problem IP and restore the function z(x1, x2) in (10.6) under the condition that we know functions ρ(x1 −
ξ, x2 − η) ∈ Ck (Ω × Ω) , k ≥ 0 and u(ξ, η) ∈ L2(Ω) in (10.6). The function ρ(x1 − ξ, x2 − η) is given by
(10.3), and the function u(ξ, η) represents the backscattered signal. In all our tests we decompose the finite
element domain Ω into non-overlapping triangles as described in Section 3.

In Tests 1-3 we used simulated backscattered data u(ξ, η). More precisely, we compute the function
u(ξ, η) in (10.6) using the known functions z(x1, x2) and ρ(x1 − ξ, x2 − η) in (10.6). Next, the function
z(x1, x2) is “forgotten” and our goal is to reconstruct this function for all (x1, x2) ∈ Ω by known functions
ρ(x1 − ξ, x2 − η) and u(ξ, η) ∈ L2(Ω) in (10.6).

We define a posterori error indicator (9.2) for the problem IP as

Bh (zk) =

∫

Ω

zk(ξ, η)



∫

Ω

ρ (x1 − ξ, x2 − η) ρ (x1 − s1, x2 − s2) dx1dx2


 dξdη

−

∫

Ω

ρ (x1 − s1, x2 − s2)u(x1, x2) dx1dx2,

(10.10)

where Ω is our two-dimensional computational domain. Recall that according to the Remark 2 we omit
computation of the regularization term in the indicator (10.10) since this term is negligible compared to
other terms presented in this indicator. Thus, this term does not affect into refinement of the mesh.

10.2.1. Test 1-a). The computational domain Ω in this test has the area SΩ = 3.4813 mkm (1 mi-
crometre mkm = 1 · 10−6 of a metre). The backscattered signal is the simulated function u(ξ, η) in (10.6)
which is presented in Figure 10.1-a). This function is computed for the function ρ(x1 − ξ, x2 − η) with the
smearing parameter r′ = 0.188 mkm in (10.2).

To reconstruct the function z(x1, x2) for backscattered data given in Figure 10.1-a) we apply the first
adaptive algorithm of Section 9. First, we compute the function z0 on a coarse mesh T0 for k = 0 with the
regularization parameter α = 3e10− 07 in (10.8). The coarse mesh T0 is presented in Figure 10.1-g).

15



a) 7938 elements b) z1, 9336 elements c) z2, 12094 elements

d) z3, 17706 elements e) z4, 28676 elements f) z5, 48864 elements

g) Exact Solution h) 9336 elements i) 12094 elements

j) 17706 elements k) 28676 elements l) 48864 elements

m) n) o)

Fig. 10.1. Test 1-a). Reconstruction of the function z(x1, x2) using simulated backscattered data. On a) we
present simulated backscattered data u(ξ, η). On b)-f) we show results of the reconstruction of the function z(x1, x2)
on different adaptively refined meshes using the algorithm of Section 9, on g) we present the known exact function z∗.
Adaptively refined meshes corresponding to the images on c)-f) are presented on h)-l). Enlarged parts of the refined
meshes on j), k), l) are presented on m), n), o), respectively.16



a) 7938 elements b) z1, 9604 elements c) z2, 12798 elements

d) 7938 elements e) 9604 elements f) 12798 elements

Fig. 10.2. Test 1-b). Reconstruction of the function z(x1, x2) using simulated backscattered data. On a) we present
simulated backscattered data u(ξ, η). On b)-f) we show results of the reconstruction of the function z(x1, x2) on the
different adaptively refined meshes using the second algorithm of Section 9. Adaptively refined meshes corresponding
to the images on b)-c) are presented on e)-f).

a) b) c) d)

Fig. 10.3. Test 2. Efficiency of the application of the adaptive mesh refinement for calculation of the deconvolution
function zα given by (10.9). a) Simulated backscattered data u(ξ, η). b) Computed deconvolution function zα on the
adaptively refined mesh with the regularization parameter α = 2e10 − 7. c),d) Computed deconvolution function zα

on the uniform mesh with the regularization parameters α = 0.01 and α = 2e10 − 7, respectively.

Now we describe our stopping criterion for mesh refinements. According to the second mesh refinement
recommendation we refine the mesh in all subdomains where the function Bh (zk) attains its maximal values,
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a) 7938 elements b) z1, 11270 elements c) z2, 15916 elements

d) z3, 24262 elements e) z4, 40358 elements f) z5, 72292 elements

g) 7938 elements h) 11270 elements i) 15916 elements

j) 24262 elements k) 40358 elements l) 72292 elements

m) n) o)

Fig. 10.4. Test 3. Reconstruction of the function z(x1, x2) from the experimental backscattering data obtained by
the microtomograph [19, 20]. On a) we present the real measured signal u(ξ, η) on the part of the planar microscheme
Ω obtained by microtomograph on the depth 0.9 µm. On b)-f) we show results of the reconstruction of the function
z(x1, x2) on different adaptively refined meshes using the algorithm of Section 9. Adaptively refined meshes corre-
sponding to the images on b)-f) are presented on h)-l). Enlarged parts of refined meshes on j), k), l) are presented on
m), n), o), respectively.
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or where

|Bh (zk) | ≥ βk max
Ω

|Bh (zk) | (10.11)

with βk = 0.5. Next, we perform all steps of the first adaptive algorithm of Section 9 until the desired
tolerance ||zk − zk−1|| < ǫ with ǫ = 10e − 05 is achieved, or the computed L2- norms of the differences
||zk − zk−1|| start to grow abruptly.

Figures 10.1-b)-f) show results of the reconstruction of the function z(x1, x2) on the adaptively refined
meshes presented in Figures 10.1-h)-l). We observe that on the fifth refined mesh corresponding to the Figure
10.1-l) we obtain the best restoration results. Since the computed L2- norms ||zk − zk−1|| with k = 5 start
to grow abruptly after the fifth refinement of the initial mesh we conclude that the function z5 of the Figure
10.1-f) is our final reconstruction result.

10.2.2. Test 1-b). This test is similar to the previous one only the goal was to reconstruct the function
z(x1, x2) in (10.6) using backscattered data u(ξ, η) presented in Figure 10.2-a). The computational domain
Ω in this test is the same as in Test 1-a). The backscattered signal of Figure 10.2-a) is the simulated function
u(ξ, η) with the same smearing parameter r′ = 0.188 mkm in (10.2) as in Test 1-a).

To reconstruct the function z(x1, x2) we apply the second adaptive algorithm of Section 9 with both
mesh refinement recommendations of Section 8. Figures 10.2-b)-c) show results of the reconstruction of the
function z(x1, x2) on the adaptively refined meshes presented in Figures 10.2-e)-f). Stopping criterion for
mesh refinements is the same as in the Test 1-a).

We observe that on the second refined mesh corresponding to Figure 10.2-f) we obtain the best restoration
results. Since the computed L2- norms ||zk − zk−1|| start to grow abruptly after the second refinement of
the initial mesh we conclude that the function z2 of Figure 10.2-c) is our final reconstruction result.

10.2.3. Test 2. The goal of this test is to present the efficiency and robustness of applying of adaptive
mesh refinement for calculating of deconvolution function zα given by (10.9). The computational domain
Ω in this test has the area SΩ = 6.963 mkm. The backscattered signal is the simulated function u(ξ, η) in
(10.6) which is presented in Figure 10.3-a). This function is computed for the function ρ(x1 − ξ, x2 − η) with
the smearing parameter r′ = 0.0612 mkm in (10.2). On Figure 10.3-b) we present computed deconvolution
function zα on the adaptively refined mesh using the first adaptive algorithm of Section 9 with the small
regularization parameter α = 2e10 − 7 in the Tikhonov functional (10.8). Figure 10.3-c) shows computed
deconvolution function zα on the uniform mesh with the regularization parameter α = 0.01 in the Tikhonov
functional (10.8). Figure 10.3-d) shows that the image blows up on the uniform mesh taking the small
regularization parameter α = 2e10− 7 in the Tikhonov functional (10.8).

Comparing results of Figures 10.3 we can conclude that the computed deconvolution function zα on the
adaptively refined mesh of the Figure 10.3-b) is better than the corresponding function on the uniform mesh
of the Figure 10.3-c). We observe, that this function blows up on the uniform mesh when the regularization
parameter is taken the same as in the adaptive algorithm, compare results of Figure 10.3-b) with the Figure
10.3-d). This test points out towards the robustness of using the adaptive algorithm for image restoration
problems.

10.3. Tests with experimental data. Test 3. In this test our goal was to solve the problem IP and
restore the function z(x1, x2) in (10.6) using experimentally measured backscattered data u(ξ, η) and the
known function ρ(x1−ξ, x2−η) in (10.6). The computational domain Ω in this test has the area SΩ = 16.963
mkm and represents the part of the planar microscheme. In Figure 10.4-a) we show the backscattered signal
u(ξ, η) obtained from the experimentally measured data by microtomograph [19, 20]. This function was
measured on the depth d = 0.9µm of the microscheme with the smearing parameter r′ = 0.149 mkm in
(10.2).

To reconstruct the function z(x1, x2) from backscattered data given in Figure 10.4-a) we apply the
first adaptive algorithm of Section 9. First, we compute z0 using the finite element discretization of (10.9)
with the regularization parameter α = 2e10 − 07 in (10.8) on the coarse mesh presented in Figure 10.4-g).
Then we refine the mesh in all subdomains where the gradient of (10.10) attains its maximal values by
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choosing βk = 0.5 in (10.11). Next, we perform all steps of the adaptive algorithm until the desired tolerance
||zk − zk−1|| < ǫ with ǫ = 10e − 05 is achieved or the computed L2- norms of the differences ||zk − zk−1||
start to grow abruptly.

Figures 10.4-b)-f) show results of the reconstruction of the function z(x1, x2) on the adaptively refined
meshes which are presented in Figures 10.4-h)-l). We observe that on the fifth refined mesh corresponding
to the Figure 10.4-l) we obtain the best reconstruction results. Since the computed L2- norms ||zk − zk−1||
start to grow abruptly after the fifth refinement of the initial mesh we conclude that the function z5 of Figure
10.4-f) is our final reconstruction result.

10.4. Test 4: comparison with other methods. In this section we present performance comparison
between three different reconstruction methods: adaptive finite element method of this paper, uniform grid
deconvolution method on the Sobolev space H1 of [19], and Bounded Total Variation method V H of [20].

In all our tests we solve the problem IP and reconstruct the function z(x1, x2) in (10.6) using the
backscattered function u(ξ, η) given in Figure 10.1-a) and known function ρ(x1 − ξ, x2 − η) in (10.6). The
computational domain Ω in this test is the same as in Test 1. We perform two different set of tests: in
Test 4-a we use simulated computational data with different noise level in them (we apply additive white
Gaussian noise where the maximal amplitude Ia is varied on the interval Ia = [0%; 100%]), and in Test 4-b
we use different values of the smearing parameter r′(d) such that this parameter belongs to the interval
r′(d) = [0, 0.3 · l], where l is the linear size of the frame under investigation.

Our analysis is based on calculating of relative error er

er =
‖z∗ − zα‖

2
L2(Ω)

‖z∗‖2
L2(Ω)

. (10.12)

Here, z∗ defines the exact solution and zα - computed solution of the problem IP. Note, that to compute
relative error in (10.12) we used the known exact solution z∗ presented on Figure 10.1-g).

10.4.1. Test 4-a. Figure 10.5 shows performance comparison of three above named methods. Using
Figure 10.5-a) we observe that the Bounded Total Variation Method gives the best performance results in Test
4-a: with increasing of the noise level this method gives smallest relative error er. We also observe that an
adaptive finite element method performs better than the uniform grid deconvolution method with increasing
of the noise level in the computational data. In this test an adaptive finite element method was applied
with the piecewise-constant function in the finite element approximation of the function z(x1, x2). We are
planning to check performance of an adaptive finite element method with higher polynomial approximation
of this function in the future research.

10.4.2. Test 4-b. Figure 10.5-b) shows performance results of three reconstruction methods when using
different values of the smearing parameter r′(d) in computations. We observe that the smallest relative
error we obtain using the adaptive finite element method when the function r′(d) has the high intensity
(r′(d) > 0.2). We can conclude that an adaptive FEM performs better than other two methods in the case
of the reconstruction of high-intensive smeared images.

11. Conclusion. In this work we considered a problem of the solution of a Fredholm integral equation
of the first kind (2.1) as an ill-posed problem P. To find regularized solution zα of the problem P we
minimized the Tikhonov functional (2.8) on adaptivelly refined meshes. To do that we use CG(1) and DG(1)
finite element methods to solve the minimization problem (2.14). In Theorem 1 we derived a posteriori error
estimates for the error in the regularized solution zα of the Tikhonov functional (2.8), and in Theorem 2 -
for the error in Tikhonov functional (2.8). Both theorems are valid for the case of more general functional
(2.13). Using these theorems we formulated local mesh refinement recommendations which improve accuracy
of the reconstruction of the regularized solution zα in the Tikhonov functionals (2.8) and (2.13). Our two-
dimensional numerical experiments of Section 10 justify efficiency of our a posteriori estimates applied both
to the computationally simulated and experimental backscattered data measured in microtomography.
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Fig. 10.5. Test 4. Performance comparison of an adaptive finite element method, uniform grid deconvolution
method and Bounded Total Variation method.
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