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A posteriori error estimates for Fredholm
integral equations of the first kind

N.Koshev and L. Beiling*

Abstract We consider an adaptive finite element method for the saoluwdfa Fred-
holm integral equation of the first kind and derive a postédoor estimates both in
the Tikhonov functional and in the regularized solutiontogtfunctional. We apply
nonlinear results obtained in [3-6, 12] for the case of thedr bounded operator.
We formulate an adaptive algorithm and present experinh@etiication of our
adaptive technique on the backscattered data measuredriotamography.

1 Introduction

The goal of this work is to present a posteriori error estesdbr the Tikhonov
functional and for the regularized solution of this funci@b, formulate an adaptive
algorithm and apply it for the solution of a Fredholm intdgrgquation of the first
kind on the adaptively locally refined meshes.

Fredholm integral equation of the first kind arise in differepplications of the
mathematical physics such as image and signal processtrgnamy and geo-
physics, see, for example, [2,9, 14,17] and referencesithefhere exists a lot of
works devoted to the solution of a Fredholm integral equnetiof the first kind on
the finite-difference uniform grids - we refer to [16] andesénces therein. Since
the problem of the solution of a Fredholm integral equatibthe first kind is the
ill-posed problem then for the solution of this equation wiaimize the Tikhonov
regularization functional. The main result of our work igigation of a posteriori
error estimates for the underlying Tikhonov functional &odthe regularized solu-
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2 N.Koshev and L. Beilina*

tion of this functional, formulation of an adaptive algbrit and application of this
algorithm for the numerical solution of a Fredholm integrgliation of the first kind
on the locally adaptively refined meshes.

In this work we specify results of recent works [3—6, 12] foetcase of a linear
Fredholm integral equation. The main difference of the entrnwork from [3—6,
12] is that we present new proofs of a posteriori error ed@mdor the Tikhonov
functional and for the regularized solution for the case lifi@ar bounded operator.
One more difference from the above cited works is that we idenshe Tikhonov
regularization term irH® norm. This norm is stronger than the norm which was
used in proofs of [3-6, 12].

Let zy be the regularized solution of the Tikhonov functional, Znte the com-
puted finite element solution. The main goal of the adaptivereontrol is to find
such triangulatiom which has a least number of nodes such that the corresponding
finite element solutiom;, on this mesh satisfies to the equation

|za —20]| <, (1)

wheree is the desired tolerance.

To achieve criterion (1) we minimize the Tikhonov functiboa a sequence of
a locally adaptively refined meshes what allow us improveréseilting solution.
Based on a posteriori error estimates we formulate an adaalgorithm and apply
this algorithm on the one real-life image restoration peobl Problem which we
consider in our numerical examples arises in electron rsawpy [14,17]. The goal
of our tests is to restore blurred images obtained by thetreleenicroscope and
find possible defects on the investigated objects. Blumeagies was obtained by
the microtomograph developed by professor Eduard Rau atto$ omonosov
State University [14,17]. Thus, in our numerical experinsene are working with
real measured data.

Our tests show that the local adaptive mesh refinement ghgorcan signifi-
cantly improve contrast of the blurred images using optedinumber of nodes in
the computational mesh.

2 Statement of the problem

Let H be the Hilbert spacéi! and letQ ¢ R™ m= 2,3, be a convex bounded
domain. Our goal is to solve a Fredholm integral equatiomefirst kind forx € Q

| K= y)zax=uly), @
whereu(y) € L(Q), z(x) € H, K(x—y) € C¥(Q) ,k > 0 be the kernel of the integral
equation.
Let us rewrite (2) in an operator form as
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Az) =u (3)

with an operatoA : H — L,(Q) defined as

A(z) ::/QK(x—y)z(x)dx 4)

lll-posed problem.

Let the functiorg(x) € H* of the equation (2) be unknown in the domain De-
termine the functioz(x) for x € Q assuming the functior(x—y) € C* (Q) k>0
andu(x) € Lz(Q) in (2) are known.

Let d > 0 be the error in the right-hand side of the equation (2):

AZ)=u", U=l ) <. ()

whereu* is the exact right-hand side corresponding to the exactisola*.
To find the approximate solution of the equation (2) in our euoal tests of
Section 9 we will minimize the functional

Ma (2) = [|Az— U[lf, o) + allzllZ, o) (6)

Mg :H! = R,

wherea = a (d) > 0 is the small regularization parameter.

Our goal is to solve the equation (2) on the rather coarse mégklsome regular-
ization parametea and then construct the sequence of the approximated sadutio
z. on the refined mesh&8g with the same regularization parameterThe regular-
ization parametex can be chosen using one of the methods, described in [16] (for
example, the method of generalized discrepancy).

We consider now more general form of the Tikhonov functiqéalLet\W W, Q
be three Hilbert space® C W, as a set, the norm iQ is stronger than the norm
in Wy andQ = W, where the closure is understood in the nornvWaf We denote
scalar products and norms in these spaces as

(5)7”” forWl;
()2, Il for Wa
and [7])[] for Q

Let A: W, — W, be a bounded linear operator. Our goal is to find the function
z(x) € Q which minimizes the Tikhonov functional

Eq (2 :Q— R, (7

1 a
Ea (2= 5 [Az-ul3+ 5 [z~ 2] ueWyiz20€Q, (8)
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wherea € (0, 1) is the regularization parameter. To do that we search fatasiary
point of the above functional with respectzgatisfyingvb € Q

Eq(2)(b) =0. (9)

The following lemma is well known [1] for the ca¥¢ =W, = L.
Lemma 1.Let A: L, — L, be a bounded linear operator. Then theéEhet
derivative of the functional (6) is

E, (2) (b) = (A*Az— A*u,b) + a [z— zp,b] , Vb € Q. (10)

In particular, for the integral operator (2) we have

E, (2 (b)= [ b(s)| [ z(y) K(x—y)K(x—s)dx | dy— [ K(x—s)u(x)dx| ds
Jo o e s f-sone

(11)
+a[z—2,b],Ybe Q.

Lemma 2 is also well known, sinde: Wy — W, is a bounded linear operator. We
formulate this lemma only for our specific case and refer &] ftor a more general
case. For the case of a nonlinear operator we refer to [3].

Lemma 2. Let the operator AW, — W, satisfies conditions of Lemma 1. Then
the functional i (z) is strongly convex on the space Q with the convexity paramete
k such that

(Ef (X) —EL (2),x—2) > K[x— 22 Vx,2€ Q. (12)

Similarly, the functionaMq (2) is also strongly convex on the Sobolev spiige
(Mg () =M (2),x—2),, > K|[x—2[f,, %,z € Hy, (13)

Remark. L
We assume in (2) thate L, (Q) since this function can be given with a noise.
This is done despite to thal(z) € C*(Q) ,k > 0.

3 The finite element spaces

LetQ Cc R™ m= 2,3, be abounded domain with a piecewise-smooth bour@i@ry
Following [11] we discretize the domai@ by an unstructured mesh using non-
overlapping tetrahedral elementsid and triangles ifrR? such thafl = Ky, ...,K|,
wherel is the number of elements @, and

Q =UkeTK =K1UKs... UK.
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We associate with the triangulation the mesh functiorh = h(x) which is a
piecewise-constant function such that

h(X) =hg VKeT,

wherehy is the diameter oK which we define as the longest sidekof
Letr’ be the radius of the maximal circle/sphere contained in kmentK. We
make the following shape regularity assumption for eveeyrent € T

a < hg <r'ay; ag,ap=const > 0. (14)
We introduce now the finite element spageas
Vh = {v(x) e H}(Q) : ve C(Q), V|k € P(K) VK € T}, (15)

whereP;(K) denote the set of piecewise-linear functionskonThe finite dimen-
sional finite element spad#, is constructed such th&t, C V. The finite element
method which uses piecewise-linear test functions we c@l{1¢ method. CG(1)
can be applied on the conforming meshes.

In a general case we allow also meshes in space with hangdesramd assume
that the local mesh size has bounded variation in such me3hés means that
there exists a constapt> 0 such thayhy+ < hx < y~*hy: for all the neighboring
elementK~ andK™. Let Sbe the internal face of the non-empty intersection of
the boundaries of two neighboring elemekits andK —. We denote the jump of the
function v, computed from the two neighboring eleme#ts andK~ sharing the
common sideés as

[Vh] =V — v}, . (16)

We introduce the discontinuous finite element spAg®n such meshes as
Wh = {v(x) eV : v|x € DP(K) VK € T}, (17)

where DP;(K) denote the set of discontinuous linear functionskanThe finite
element space4, is constructed such the, C V. The finite element method which
uses discontinuous linear functions we call DG(1) method.

Let R :V — M for YM C V, be the operator of the orthogonal projection. Let
the functionf € H1(Q)NC(Q) anddy fx, € Lo (). We define byf} the stan-
dard interpolant [8] on triangles/tetrahedra of the fuoictf € H. Then by one of
properties of the orthogonal projection

[f—=Rfll0) < Hf_flLHLZ(Q)' (18)
It follows from formula 76.3 of [8] that
[T =Rl @) <CilhOf,q), VeV (19)

whereC; = C; (Q) is positive constant depending only on the dom@in
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4 A finite element method

To formulate a CG(1) for equation (9) we recall the definitadrthe spacé4,. The
CG(1) finite element method then reads: fad: j, such that

E/ (z4)(b) =0 Vb € V. (20)

Similarly, for DG(1) for equation (9) we recall the definitiof the spac®\,. The
DG(1) finite element method then reads: fipd= W, such that

Eq(zn)(b) =0 Vb e W, (21)

5 A posteriori error estimate for the regularized solution on
locally refined meshes

In this section we will formulate theorems for accuracy & tiegularized solution
for the case of the more general functiokal defined in (7).

From the theory of convex optimization it is known, that Lemgéclaims exis-
tence and unigueness of the global minimizer of the funeligg defined in (7) for
Zg € Q such that

Eq(zq) = inf Eq(2).

2eQ
It is well known that the operatdt is Lipschitz continuous
IF(z1) ~ F(z2)| < ||Al]- |1~ 2]l V21,22 € H.
Because of the boundedness of the operAtibiere exists the constant
D = 2(||A||>+ a) = const > 0 (22)
such that the following inequality holds [1]
|Eq (1) —Eq (2)|| <Dz~ 2|, V21,2 € H. (23)

Similarly, the functionaMy (2) is twice Frechét differentiable [16] and the fol-
lowing inequality holds [1]:

Mg () = Mg ()| <D||zs— 22| ,Vz1,22 € H. (24)

Letz be the computed solution (minimizer) of the Tikhonov funotl andz, €
H be the regularized solution on the finally refined mesh.Rdie the operator of
the orthogonal projection defined in section 3. Then theofaithg theorem is valid
for the functional (8):

Theorem 1a
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Let z be a minimizer of the functional (8). Assume that (12) holden there
exists a constant D defined by (22) such that the followinghas¢ holds

D
[Zk_za]SEHHJa—ZGHWL (25)

In particular, if Rizqg = z4, then z = z,, which means that the regularized solution
is reached after k mesh refinements.

Proof.

Through the proof the Frechét derivatiZg and the scalar produét -) are given
in W norm.

Sincez is a minimizer of the functional (8) then by (12) the mininizg is
unique and the functional (8) is strongly convex with th@st convexity constant
K. This implies that

K[z~ 2a)? < (Eq (20 — Eq (Za) &~ 2a) (26)
Sincez is the minimizer of the functional (7), then
(Eq (z).y) =0, Vy e Wa. (27)
Next, sincez, is the minimizer on the s&), then
(Ey (za),2) =0, Vze Q.
Using (26) with the splitting
%~ 2a = (& —Rza) + (Rza — ),
together with the Galerkin orthogonality principle (27) wietain
(Eq (2) —Eq (za),z«—Pza) =0 (28)

and thus
K[z~ 2a]? < (Eg (2) — Ef (Za) . PZa — Za) - (29)
It follows from (23) that

(EL (20) — El (2a) , Rz — Za) < Dl — 2a]l| A — Zal -

Substituting above equation into (29) we obtain (25).

]

The following theorem is valid for the functional (6) whenetloperatorA :
HY(Q) — La(Q):

Theorem 1b

Let z be a minimizer of the functional (6). Assume that (13) holdd that

the regularized solutiongzis not yet coincides with the minimizer after k mesh
refinements. Then there exists a constant D defined by (2R)tlsatthe following
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estimate holds 5
||Zk—Za||H1§E||H<Za—Za||H1~ (30)

In particular, if Rizqg = z4, then z = z,, which means that the regularized solution
is reached after k mesh refinements.

Proof.

In this proof the Frechét derivatiie, and the scalar produgt,-) are given in
H® norm. Sincez is a minimizer of the functional (6) then by (13) the minimizg
is unique and the functional (6) is strongly convex on thecep# with the strong
convexity constank. This implies that

K|z~ zal[f2 < (MG (20) =M} (2a) 24— 2a) - (31)
Sincez is the minimizer of the functional (6), then
(Mg (z),y) =0, ¥y e H™. (32)
Next, sincez, is the minimizer on the séd, then
(M} (za),2) =0, Vze HY.
Using (31) with the splitting
% — 20 = (& —Rza) + (Rza — ),
together with the Galerkin orthogonality principle (32) wietain
(Mg (2) =My (2a) , 2z — Rza) =0 (33)

and thus
K|z —2al[f2 < (Mg (2) — Mg (2a) , PZa — 2a) - (34)
It follows from (24) that

(Mg (2) — Mg (Za) , Aza — Za) < D[z — Za |1/ [Pezar — Za |1

Substituting above equation into (34) we obtain (30).

O

In Theorem 2 we derive a posteriori error estimates for theren the Tikhonov
functional (6) on the mesh obtained afkemesh refinements.

Theorem 2

Let conditions of Lemma 2 hold. Suppose that there existsniaier z € H?(Q)
of the functional \j on the setV and mesh T. Suppose also that there exists finite
element approximation,zof My on the set \Wand mesh T. Then the following
approximate a posteriori error estimate for the error in thi&honov functional (6)
holds
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IMa (za) —Ma ()| <G ||M&(Zk)||H1(Q) <||h2k||L2(Q) + 1zl + Z 1[0nzd I, k)

(35)
In the case when the finite element approximatipa V;, obtained by CG(1) we
have

IMa (Za) ~ Ma (80| < C1 [ MG (@) 10 1M L0 (36)

Proof
By definition of the Frechét derivative we can write that ba meshl we have

Mq (Za) — Ma(Z) = Mg () (Za — z) + R(Za, %), (37)

where by Lemma R(zy, %) = O((zy — %)?), (Za —2) — 0 Vzq4,2 €V. The term
R(zq,z) is small since we assume ttmis minimizer of the Tikhonov functional on
the meshT and this minimizer is located in a small neighborhood of #gutarized
solutionz,. Thus, we can negle® in (37), see similar results for the case of a
general nonlinear operator equation in [1, 3]. Next, we hgesplitting

Zy— % =20 — 2+ 2% — % (38)
and the Galerkin orthogonality [8]
My (2)(Zg — 2) = 0 V2, 2 € Wh (39)

to get
Ma (Za) — Ma (2) < Mg (2 (2o — ), (40)

wherez, is a standard interpolant af, on the mesfT [8]. We have that
[IMa (Za) = Ma (2 10y < MG (20l ln1(0)||2a — Zullz(a), (41)

where the terni|zy — z'a||H1(Q) in the right hand side of the above inequality can be
estimated through the interpolation estimate with the tam€,

20— Zulls @) < Cilh 2 bz,

Substituting above estimate into (41) we get

IMa (za) = Ma(Z)ll2(@) < G [[Ma () | 2(g) |IN Zalln2(q)- (42)
Using the facts that [10]
Oz < 12
LN
e [0nad)
D2 < nzk
D7z | < he

we can estimatfh zx [[,42( o) in a following way:
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1N Za||h2(0) < Z MK Za [[42(k) < Z |1(za + Oza + D?Za )k |y k)

(502 ) (43)
L2(9K)

Z
<3 <||zth||L2<K>+ H%m e

< lhad[ @) + 12dll L) + Z 1[0nzd I, (ax) -

hk

§

L2(K)

HereD?z, denotes the second order derivativezgf Substituting above estimate
into right hand side of (42) we get estimate (35).

6 A posteriori error estimates for the functional (44) in DG(1)

We now provide a more explicit estimate for the weaker nfen- zq [, ) which
is more efficient for practical computations since it doesimeolves computation of
terms like|| [0z ||, (4k) Which are included in estimate (35). To do this, we replace
in (6) the norm|z— Zo||E|1(Q) with the weaker norniz— z||f ) -
Below in Theorems 3, 4 and 5 we will consider the following fdkov func-
tional
Eq(2):H — R,

1 o
Ea (2 = §||AZ— U||L2(Q)+§ HZ_ZOHEZ(Q)' (44)

Theorem 3.Let o € (0,1) and A: L, — L, be a bounded linear operatotet
z. € W, be the minimizer of the functionalEz) obtained by DG(1) on T. Assume
that the regularized solution,zs not yet reached on the mesh T and is not coincided
with the minimizergz Let jump of the functionizomputed from the two neighboring
elements K and K~ sharing the common side S on the mesh T is defined by

&l =7 —7. (45)

Then there exist constants@ defined by (24),(19), correspondingly, such that the
following estimate holds

CD
12— zall L, 0) < 7||[Zk]||L2(Q)

Proof.
Conditions (24) imply that

|Ea () — Ea (20| ) < Pll&—Zalliyq) (46)
with a constanb (]|A||,a) > 0. By (19)

12a = Rzall, ) < CilIh Dza ||, ) - (47)
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Using the Cauchy-Schwarz inequality as well as (46) and, {#&)obtain from (30)
CD
12— ZallLy0) < =5~ I Dzalliyg) - (48)

We can estimatgh Oz, || in a following way. Using the fact that [10]

Oz < 12 (49)
hk

we have

[Ih Dza |, Q) < ZHhKDZGHLZ(K)

P A T (50)
= ZH KW”LZ(K) = Z||[Zk]||L2(K)-
Substituting above estimate in (48) we get
C| D CI D
1% — ZallLy ) < o Z 1z llL,k) = 7||[Zk]||L2(Q)~ (51)

7 A posteriori error estimate for the error in the Tikhonov
functional (44)

The proof of Theorem 4 is modification of the proof given in.[B] the proof of this
Theorem we used the fact thgis obtained using CG(1) oh. Theorem 5 follows
from the proof of Theorem 4 in the case of DG(1) method.

Theorem 4

Let conditions of Lemma 2 hold and: A, — L, be a bounded linear operator.
Suppose that there exists minimizgraf the functional & on the setV and mesh
T. Suppose also that there exists approximatipa ¥}, of E5. Then the following
approximate a posteriori error estimate for the error in thi&honov functional (6)
holds

|Ea(za) — Ea(2)| < Cl|E; (2 ILy(@) - I Dzal Ly 0)- (52)

Proof
By definition of the Frechét derivative we can write that @ery meshry

Ea(Za) — Ea(z) = Ef(2) (2o — 2) + R(2a, %), (53)

where by Lemma R(zg,z) = O(r?), r — 0 Vzgq,z € V,r = |2 — z].
Now we neglecR, use the splitting
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Zo— % =20~ Zg + 2 — % (54)
and the Galerkin orthogonality [8]
Eq(20)(Zy — %) = 0Vzg,2 € Vi (55)
with the space DG(1) for approximation of functians to get
Ea(Za) — Ea (%) < Eq(2) (2o — Zy); (56)

wherez, is a standard interpolant @ on the mesH [8]. Applying interpolation
estimate (19) tay — Z, we get

|Ea(Za) — Ea(z)| < Ci|[Eq(Z)]ILy(0) - 11N Ozall L) (57)

O

Theorem 5

Let conditions of Lemma 2 hold and A, — L. Suppose that there exists mini-
mizer z of the functional g on the setV and mesh T. Suppose also that there exists
approximation g € W, of E, obtained by DG(1). Then the following approximate a
posteriori error estimate for the error in the Tikhonov ftional (6) holds

|Ea(2a) — Ea(2d)] < Cil[Eq (2dlILy0) - 12 llLy0)- (58)

Proof
In the case of CG(1) by Theorem 4 we have the following a pumstezrror
estimate for the error in the Tikhonov functional (44)

|Ea(za) — Ea(2)| < Cil|Eq (2l ILy() - [1h Dzal|Ly()- (59)

Using now for||h Dzy |, (o) the estimates (49)-(50) in the case of DG(1) we get the
following a posteriori error estimate

|Ea(2a) — Ea(2d)] < Cil[Ea (2)lIy0) - 12 llLy0)- (60)

]

Using the Theorems 2 - 5 we can now formulate our mesh refinemeom-
mendations in CG(1) and DG(1) for a Fredholm integral equmatif the first kind
used in practical computations. Let us define a postericoréndicator

En(z) = [ () ( / K(xy)K(x—s)dx) dy- [K(x-guxdx  (61)
Q Q Q

We note that a posteriori error indicator (61) is approximatof the function
|E/ (z)| which is used in the proofs of Theorems 2-5. We neglect thepetan
tion of the regularization term in the functioB (z)| since this term is very small,
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and obtain a posteriori error indicator (61). Such appration does not affect on
the refinement of the mesh.

The First Mesh Refinement RecommendationUsing the Theorems 4 and 5
we can conclude that we should refine the mesh in neighbosfdtiose points in
Q where the functionE, ()| or the function|Ep(z)| attains its maximal values.
More precisely, letr € (0,1) be the tolerance number which should be chosen in
computational experiments. Refine the mesh in such subdsimmi2 where

B} (2] > semax|Ef ()|

or
[En(z0] > >max En(z)

The Second Mesh Refinement Recommendatiotlsing the Theorem 3 we can
conclude that we should refine the mesh in neighborhoodsosktpoints inQ
where the functionz| attains its maximal values. More, precisely in such subdo-
mains of Q where

|2 = 72max|z

where € (0,1) is the number which should be chosen computationally

8 The Adaptive Algorithm

In this section for solution of a Fredholm integral equatadrihe first kind (2) we
present adaptive algorithms which we apply in numericahgxas of section 9. Our
algorithms use mesh refinement recommendations of sectiortffese algorithms
we also assume that the kernel in (2) is suchithat—y) = p(y—Xx). Next, using the
convolution theorem we can determine the functip{x$ in (2) and the regularized
solution z, of (6), correspondingly. For example, for calculation oé tlunction
Zy(X) in numerical examples of section 9 we use (69). In our algorét we define
the minimizer and its approximation kay andz,, correspondingly.

In Algorithm 1 we apply the first mesh refinement recommerahadif Section 7,
while in Algorithm 2 are used both mesh refinement recommeoiisof section 7.
These algorithms are successfully tested by numerical pbeof section 9.

Algorithm 1

e Step 0. Choose an initial medh in Q and obtain the numerical solutiag
of (6) on Ty using the finite element discretization of (20) for CG(1) aiL)
for DG(1) and discretization of the convolution theorem)(8%ompute the se-
guencez, k > 0, via following steps:
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Step 1. Interpolate the given right hand side of (2) and thetism z,_, from
the meshl_; to the meshly and obtain the numerical solutian of (6) on Ty
using the finite element discretization of (20) for CG(1) ®t) for DG(1) and
discretization of (69).

Step 2. Refine the medh at all points where

1Bn(z)| > B man| Bn ()|, (62)

with

Q

Bn (20 = [ 2(y) ( / p(x,y>p<x,s>dx> dy- [p(xsu de (63
Q Q

Here the tolerance numbgg € (0,1) is chosen by the user.

Step 3. Construct a new me3f.; in Q and perform steps 1-3 on the new
mesh. Stop mesh refinements whgm—z_1|| < € or ||Bn(z)|| < €, wheree

is tolerance chosen by the user.

Algorithm 2

Step 0. Choose an initial medp in Q and obtain the numerical solutiag
of (6) on Tp using the finite element discretization of (20) for CG(1) at)
for DG(1) and discretization of the convolution theorem)(8%ompute the se-
quencez, k > 0, via following steps:

Step 1. Interpolate the given right hand side of (2) and thetiem z, 1 from
the meshl_; to the meshly and obtain the numerical solutian of (6) on Ty
using the finite element discretization of (20) for CG(1) ®1) for DG(1) and
discretization of (69).

Step 2. Refine the medh at all points where

[Bn () | = Bemax|Bn () | (64)
with By, (z) defined by (63), and where
29| > Fcmaxiz ()] (65)
Here the tolerance numbeBg, > € (0,1) are chosen by the user.
Step 3. Construct a new me3dfy,; in Q and perform steps 1-3 on the new

mesh. Stop mesh refinements whigm— z._1|| < € or ||Bn (z) || < €, wheree
is tolerance chosen by the user.

Remarks
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e 1. We note that the choice of the tolerance numifiersy in (63), (65) depends
on the concrete values of maiBy, (z) | and max |z (x)|, correspondingly. If
we would choosgy, > very close to 1 then we would refine the mesh in very
narrow region of the computational domd® and if we will choosgBy, 5 ~ 0
then almost all mesh of the domaéd will be refined what is unsatisfactory.
Thus, the values of the numbeBg, 7o« should be chosen in optimal way. Our
numerical tests show that the choiceBpf >« = 0.5 is almost optimal one, how-
ever, it can be changed during the iterations in adaptiverdigns from one
mesh to other.

e 2. We also note that we neglect the computation of the regaléon term in a
posteriori error indicator (63) since this term is very shaald does not affects
on the refinement procedure. However, this term is includéide minimization
procedure of the Tikhonov’s functional (6).

9 Numerical studies of the adaptivity technique in
microtomography

Microtomography in the backscattering electron mode alowtain the picture of

a plain layer which is located at a some depth below the seidéathe investigated
object. Due to the fact that the electron probe (monokiredéctron beam) has the
finite radius the measured signal of this layer is distortedvas shown in [13]
and [14] that there exists connection between the measiged| ©btained by the
electron microscope and the real scattering coefficierfi@bbject under investiga-
tion. The measured signa(¢ ,n) can be described by a Fredholm integral equation
of the first kind

u(E.m = [ 2xy)plx—&.y—ndxdy (66)
Here, the kernel is given by the relation
1 X2+y2
p(X,y) - 2m2 EXF(— 2r2 ) (67)

with the variance function=r(t) depended on the deptlof the layer under inves-
tigation.

To solve the equation (66) we minimize the following Tikherfanctional on
Sobolev spacei?!

Ma(2) = || [ p(x—&.y—n)zixy)dxdy-uE,mIEq) + alzxy)Zs.  (69)
Q

Using the convolution theorem we can obtain the followingression for the min-
imizer z;(x,y) (see, for example, [15]) of the functional (68)
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i P*(A,v)U(A,v)
_ i(Ax+vy)
Za (%) l;e PAVIE+a(liAZ1v?)

SdAdv, (69)

where functiond) andP are the Fourier transforms of the functionsndp, re-
spectively, and* denotes the complex conjugated function to the fundéion

The goal of our computational test was to restore image ofiféid.-a) which
represents the part of the planar microscheme obtained fhenexperimentally
measured data by microtomograph [14]. This image was medsur the depth 0.9
um of the microscheme with the smearing parameter0.149 mkm in (67). Real
area of the image of Figure 1-a) {8 = 16.963 mkm. For restoration of the image
of Figure 1-a) we apply the adaptive algorithm of section 8.

First, we computezg on the initial coarse mesfiy using the finite element
discretization of (69) as described in section 3 with theutagzation parameter
a = 2el0— 07 in (68) on the coarse mesh presented in Figure 1-g). Letfised
the function

Bn(2) = [ 2 | [p(x—&y—np(x—&s—mdx| dy- [px—&.s-muxdx
Q Q Q

(70)
whereQ is our two-dimensional domain. We refine the mesh in all suaios of
Q where the gradient of the functidy, (z) (X) attains its maximal values, or where

1Bn (2¢) | > Bk méax| Bn (%) | (71)

with B¢ = 0.5. Next, we perform all steps of the adaptive algorithm uhe desired
tolerance |z — z_1|| < € with ¢ = 10e— 05 is achieved or the computég- norms
of the differences|z, — z_1|| are started abruptly grow.

Figures 1-b)-f) show results of the reconstruction on thepdgely refined
meshes which are presented in Figures 1-h)-1). Using ther€idy we observe that
on the fifth refined mesh corresponding to the Figure 1-1) waiokihe best restora-
tion results. Since the computéd- norms||z — z_1|| are started abruptly grow
after the fifth refinement of the initial mesh we conclude thatrestoration image
of the Figure 1-f) is the resulting one.
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