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Abstract

Significant wave heights are modeled by means of a spatial-temporal random Gaussian field. Its de-
pendence structure can be localized by introduction of time and space dependent parameters in the
spectrum. The model has the advantage of having a relatively small number of parameters. These
parameters have natural physical interpretation and are statistically fitted to represent variability of ob-
served significant wave heights records. The fitted spatial-temporal significant wave field allows for
prediction of fatigue accumulation in ship details and of extreme responses encountered. The method
is exemplified by analyzing a container ship data relevant for North Atlantic trade and the results show
a high agreement with actual on-board measurements.

Keywords: Significant wave heights, hundred years wave, fatigue damage, narrow band approxima-
tion, rainflow cycles, level crossings.

1 Introduction

In this paper one gives means to describe variability of encountered sea states by a vessel. The methods
are applicable to assessment of the expected damage accumulated in a vessel details, the variability of
the damage and prediction of the extreme seas that could be encountered.

The sea load environment is often described by a wave spectrum depending on few parameters.
In the simplest case of long-crested sea having Pierson-Moskowitz spectrum these parameters are the
significant wave height and the average wave period. The sea surface is then modeled as a sum of non
interacting cosine waves leading to a Gaussian random surface that moves in time. A sea state rests for
about half an hour period during which the waves acting on ship or offshore structure result in variable
stresses causing fatigue damage of structure components. Although the accumulated damage during a
sea state is a random quantity, its variability can be assumed negligible in comparison to variation of the
sea states and hence it is well approximated by its expected value. For ships the expected damage rate
can be then accurately approximated if the significant wave height, vessels speed and heading angle
are known. In the following the heading angle at a position on the route will be approximated by a
non-random function which depends only on the average velocity of storms and the direction of the
rout. For longer time periods the sea conditions change which results in new values of significant wave
heights, heading angles and other parameters. Thus the damage accumulation rate is also changing and
becomes a function of encountered significant wave heights. This highlights importance of accurate
description of the variability of significant wave heights and heading angles along a route for prediction
of the severity of encountered loads for a ship detail.

The methodological problems of this sort have been previously worked out to evaluate the expected
damage of an offshore structure component, see [19] and [13]. However the distribution of sea state
parameters in that context are easier to find since for an offshore structure measurements of sea state
are often available and thus standard statistical procedures of fitting parameters to the data can be used.
A ship, on the other hand, can take different routes, or alter these dependently on the sea conditions,
thus finding distributions of encountered significant wave heights becomes much more challenging.
For example some difficulties arise from comparable speed with which ships and sea storms moves
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across the sea. In this paper we propose a way to address theses challenges and present an approach to
computing the expected damage accumulated during a voyage given that the distribution of encountered
significant wave heights by a vessel along the route is known. A simple model for significant wave
heights variability is proposed. The discussed model features a relatively small number of parameters
that have very straightforward physical interpretation. For the applications that are tackled in this
work it is sufficient to account for the mean and standard deviation of the significant wave height
field logarithms, the average duration of a storm related to the time correlation length (here a storm is
defined as an excursion of the significant wave height above the median), the velocity with which storm
is moving, and the heading angle of the ship in relation to the propagation of the storm.

Estimation of extreme wave height across the oceans is important for marine safety and design, but
it is hampered by a lack of data. Buoy and platform data are geographically limited, and though satel-
lite observations offer global coverage, they suffer from temporal sparsity and intermittency, making
application of standard methods of extreme value estimation problematical. A possible strategy in the
face of this difficulty is to use extra model assumptions to compensate for the lack of data. In this paper
we shall use a spatio-temporal model proposed in [4]. The model is estimated using several types of
data, buoys, satellites, hind-cast. Sometimes the significant wave height is measured on board of a ship.
However the measurements are often of poor quality and have to be re-calibrated. Numerous missing
values constitute an additional problem especially that they are over represented during the storms. All
these deficiencies of the data were featured in the set of measurements taken on board of 2800 TEU
container ship during several months of a full scale measurement campaign. These data stand behind
all our examples.

The risk of meeting extremely high significant wave heights is measured by means of the so-called
100 years significant wave height defined as a level that is exceeded during one year with the probability
of 1/100. Means to estimate the 100 years Hs that can be encountered by a vessel will be presented
in Section 4. The computation will require estimates of average sizes of encountered storms as well
as significant wave height distributions. These distributions in practice can be distorted since captains
usually try to avoid the most severe storms which in turn affects the encountered wave heights. However
in our computations captains decisions are neglected and hence the 100 years significant wave height
will be overestimated.

In order to evaluate the uncertainty in fatigue damage prediction one can simulate the stochastic
sequences of sea condition that could happen along the rout. For the simulated sequence of significant
wave heights the accumulated damage can be computed and an estimate of the damage distribution
derived. This will be discussed in Section 5.

2 Significant wave height field Hs

In the literature typically the Hs distribution is understood as the long-term distribution of the
significant wave height at some location or region. The distribution can be interpreted as variability of
Hs at a randomly taken time during a year. Limiting time span to, for example, January month affects
the Hs distribution simply because, as it is the case for many geophysical quantities, the variability
of Hs depends on season. To avoid ambiguity when discussing the distribution of Hs, time span and
region over which the observations of Hs are gathered need to be clearly specify. By shrinking the
time span to a single moment t and geographical region to a location p one obtains (in the limit) the
distribution of Hs(p, t) and this will be the meaning of distribution of Hs as used in this paper.

In order to identify the distributions at all positions p and times t vast amount of data are needed.
Observations of Hs are available at some locations where buoys or platforms are placed. Since the
resulting data are usually in the form of regular time series of several observations per day, standard
methods of estimation of Hs distribution and intensities of rare extreme events (storms) may be used.
Such data are, however, limited both in number and geographical extent. Alternatives offering global
spatial coverage are observations of Hs from satellites. Those however suffer from restricted temporal
coverage as the satellite returns to the same location only at time intervals of the order of days, and
the returns are not equally spaced (see [1]). Thus the satelite observed values of Hs at the location
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are made at times that are sparse and irregular, posing difficulties for application of standard statistical
methods – extra information or stronger model assumptions are needed to compensate for the data
limitations. Eventually the two types of data: high time resolution with a limited space coverage
(buoys and platforms) and space broadly spread but scarcely sampled in time (satelite data) have to be
combined together to reconstruct the significant wave height fields. One can also utilize reconstruction
of Hs from numerical ocean-atmosphere models based on large-scale meteorological data called also
hindcast. While a hindcast does not represent actual measurements of quantities but extrapolations to
the grid locations based on simulations from complex dynamical models, it is defined on regular grids
in time and space and hence convenient to use.

In this paper the fieldW (t,p) will be identified with logarithm of significant wave field lnHs(t,p),
where Hs(p, t) is defined as four time standard deviation of sea surface observed in vicinity of a ship,
buoy or offshore structure located at a position p. One can think that at time t an image of a sea surface
at this location was taken and a standard deviation was estimated from that image.

In several investigations, see [3],[5], [8], it was confirmed that at many locations at the world oceans
the distribution of W (t,p) can be defined by seasonally variable mean m(t,p) and variance σ2(t,p).
In Figure 3 examples of maps of the estimated parameters m and σ2 are presented. As expected waves
in the Northern Atlantic are higher in winter season, while, surprisingly, the variance seems to be
constant over time, i.e. σ2(t,p) = σ2(p), which was noticed in several works, see [1].

By assuming that lnH(t,p) = W (t,p) is Gaussian, the model is completely specified if addi-
tionally to m(t,p) and σ2(p), the autocorrelation function ρ(t, t′,p,p′) is given. For this purpose
the variability of significant wave height along satellite lines has been studied by several authors, see
e.g. [12] and [1] which contains further references. In [12] one has observed that Hs is built up of
variability in two scales, a long one on the scale of about two to four degrees and a short one on the
scale approximately between half and one degree. Typically a noise is added to the model to account
for measurement uncertainty (observational noise) leading to the following general model

lnHs(t,p) = m(t,p) +Ws(t,p) +Wf (t,p) + ε(t,p), (1)

whereWs, Wf , and ε are independent Gaussian fields corresponding to the smooth component, the fast
component and the measurement noise, respectively. Additionally, the model frequently assumes that
the covariance is locally isotropic, i.e. variability of Hs along any straight line in space is the same in
some small neighborhood of the location.

The spectra locally estimated from the records resembled the Gauss curve. Thus it is reasonable to
consider the correlation model that was proposed before in [8] and [4], that is valid for a fixed t and
locally in some small area, e.g. four by four degree

ρ(p,p′) = qpe−
|p−p′|2

2L2 + q(1− p)e
− |p−p′|2

2L2
f + (1− q)e−

|p−p′|2

2L2
e , (2)

where p, q are between zero and one, L is the memory length of the "smooth component" (about two to
four degrees) Lf is the memory length of fast component (approx. between half and one degree) while
Le is memory of colored noise. Most often p is close to one and hence for computations of 100 years
Hs one can simplify the model and let p = q = 1.

The covariance in (2), is not accounting for any temporal variability and the simplest way to in-
troduce it is through the autoregressive time dependence that leads to the Ornstein-Uhlenbeck type
temporal field

ρ̃(p,p′; t, t′) = ρ(p− p′ − v(t− t′)) · e−λ|t−t
′|, (3)

where v is locally constant velocity and λ is accounting for the ‘memory’ of the significant wave height
field. This type of spatial-temporal covariance has been originally used in [14] and [11] for modeling
rainfall.
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Figure 1: Estimates of median significant wave height in February (top plot) and August (middle plot).
In the bottom plot, estimates of variance of lnHs, as noted the variance is independent of a season.
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All the parameters in the above model, including the velocities, are local both in space and time thus,
in general, they can be made space and time dependent. For example in Figure 3 (top) and (middle),
the global map of estimates velocities is presented for two months: February and August. The velocity
v(t,p) is not directly observed in the record and we will later discuss how it can be estimated from the
observed motion of the surface.

Remark 1 Using the autoregressive or, in other words, Ornstein-Uhlenbeck type dependence in (3)
exhibited in the factor e−λ|t−t

′| make the covariance non-differentiable along the t-axis and the process
W (t,p) is not smooth in the way it develops in time. This non-differentiability has to be address later
when the velocities on a random surface are defined. Essentially, one can consider a smoothed field
obtained by convoluting the field with some smoothing kernel, see also [23] for more discussion.

3 Fatigue

Let s(t), 0 ≤ t ≤ T , be measured, or simulated, stress. In this note the fatigue damage accumulated
in material caused by s is measured by means of the rainflow damage rate Dβ(s) with the damage
exponent β, which is computed in the following two steps. First rainflow cycles hrfci in s(t) are found,
then the rainflow damage is computed according to Palmgren-Miner rule [20], [18], viz.

Dβ(s) =
∑
i

a−1(hrfci )β ,

where a and β are material dependent constants defining the S-N curve, see [29] for more details on S-
N curvws and [26], [10] on rainflow amplitudes. In practice due to uncertainties, stress s is random and
so is Dβ(s). For this reason, one is interested in the average value represented by the expected damage
rate Dβ = E [Dβ(s)] and in the variability of Dβ(s) as represented, for example, by its variance.

At the design stage oftenDβ and the so called S-N method are used to estimate the fatigue life time.
The method predicts failure before T , where T is the total exposure time to stress s, if Dβ ≥ 1. Often
a safety factor is included and the criterion altered to Dβ ≥ 0.5 or anoter constant smaller than one.
Consequently, evaluating Dβ during a design life T becomes a central issue in the reliability analysis.
In this section we present means to evaluateDβ for a ship. The method is based on representation of the
encountered loads as a sequence of stationary sea states during which the expected damage increases at
a rate depending on shipping conditions and sea states parameters. The speed of damage increase d(t)
per time unit at time t is called the damage rate.

While the presented approach is in principle applicable to any type of ship, we illustrate it when ap-
plied to reliability analysis for a container ship traveling regularly between Europe and North America.
In [16], [17] approximation of the fatigue damage rate d(t) = d in a container ship was given, viz.

d =
0.47Cβ

a

(
H
β−1/2
s

3.75
− 2π

g

Hβ−1
s

3.752
‖vsh‖ cosα

)
= d(Hs,vsh, α), (4)

where Hs is significant wave height encountered by the ship, vsh is her velocity, α is the heading angle
as given in Figure 2 or by using the velocity of v of Hs field through

cosα =
〈vsh,v〉
||vsh|| · ||v||

.

Here 〈·, ·〉 is the inner product between vectors. For compactness of the formulation, the dependence
on time t and a position of the ship p(t) (a route of the ship) is not explicitly shown, i.e. d = d(t),
vsh = vsh(t), v = v(t,p(t)), Hs = Hs(t,p(t)). In the formula a is fatigue strength of material taken
from S-N curve. For the particular example considered in this work a = 1012.76 while β = 3. Further
g = 9.81 [m/s2] is the gravity acceleration. The constant C depends on the type of a ship and the
geometry of ship detail; ship speed, heading angle. It can be evaluated using linear strip code, beam
theory and stress concentration factor, here C = 20. It is also assumed that actual encountered waves
travel in the same direction as that the field Hs moves in.
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v sh
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 direction
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Figure 2: Heading angle α of a ship.

The formula (4) has been derived using the narrow band approximation for the damage rate pro-
posed first in [9] under the assumption that stresses are Gaussian. Note that under this assumption
the narrow band method overestimate the damage rate, see [27] for the proof. It is well known that
container vessels responses are non-Gaussian in harsh seas (high Hs values) due to high frequency vi-
brations involving transients caused by impulse forces, e.g. slams. The high frequency responses have
small energy often below 5% of the total energy (variance) but causes increase of damage rate by about
20%-30%. Hence one could question the use Gaussian processes to model stresses. However in the
cases studied the narrow band approximation, based on the Gaussianity assumption, overestimates the
damage rate by about 30% which is close to the contribution to fatigue due to high frequency vibrations.
Consequently the simple formula (4) predicts fairly well the damage accumulation in ship details.

The damage rate d is the expected damage increase per time unit for a known sea state parameterHs

and ‖vsh‖ cosα. However both quantities vary in an unpredictable way along ship’s routes. This vari-
ability is often model by probability distributions also called long-term distributions. The distributions
are used at the design stage of a ship detail to estimate the expected damage for possibly encountered
Hs, vsh, α for a planed shipping. In this sense the expected damage rate d is a random variable itself
and the expected damage during the design life E [Dlife] is given by

E [Dlife] = E [d(Hs,vsh, α)] · E [N ] ∆t (5)

where E [·] now stands for averaging over the long-term distributions of the sea states, E [N ] is the
expected number of encountered sea states all lasting for a period ∆t, e.g. half of an hour. Obviously
the long-term distributions of Hs,vsh,v and N , are not easy to determine as it requires a specification
of shipping and knowledge of Hs(t,p) distributions over oceans during seasons. This work aims at
presenting an organized way of approaching to this challenging problem.

The method is constructive and requires a detailed shipping plan which consists of voyages between
harbors. A single voyage is then represented by a route i.e. a sequence of times ti (in hours) of the
(approximately) constant sea states and corresponding positions in space pi = p(ti) (in degrees). In
our examples we considered the constant time sea state as lasting half an hour, so that the constant
increment of ti’s is ∆t = 0.5. Since the sea climate depends on season one requires also information
on a season a voyage is undertaken, i.e. a month of a year. In Figure 3 Bottom a route that will be
considered in examples is presented as a black line. The route started close to England and took 408
hours to sail (time in an American harbor included).

Now for a given route which sails in T hours the accumulated damage is

D =

∫ T

0

d(t) dt ≈
∑

d(ti)∆t. (6)

As mentioned before the expected damage

E [D] ≈
∑

E [d(ti)] ∆t,

is used to estimate risk for cracking of ships details. Here expectation E [d(ti)] averages the variability
of significant wave heights, heading angle, and the ship velocity at time ti when ship is at position
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p(ti). The variability of significant wave height is described by its probability distribution at time ti
and the position pi. In order to find the distribution for any route one needs atlases of distributions
of Hs(p) at any position and season (here represented by a month). Several such atlases exist and an
example of such maps is presented in Figure 1 one estimated from Hs recorded by satellites.

The second problem is description of variability of the ship velocity vsh and heading angle α. Here
the ships velocity and heading along the route are approximated by their average values that are derived
as follows. The speed is taken as the “design speed” and the direction is evaluated as the tangent to the
rout. The heading is taken as the angle between the average ship velocity and the average velocity of
Hs at position p and time t. The average velocity of Hs is discussed next.

3.1 Heading angle - Velocity fields

In order to evaluate ‖vsh‖ cosα – the quantity that is needed in (4) – ships velocity vsh and the
velocity of wave field along entire route are needed. For any position on the route both velocities are
uncertain and difficult to measure and could be modeled as random vectors. In the presented approach
to evaluation of the damage rate, the velocities will be replaced by their expected value. For this, the
average ships velocity is estimated using the rout. The positions are estimated for half hour periods
and by assuming that the ship is moving along straight lines between the positions. Analysis of Hs

dynamics is a much more challenging problem, even on the stage of definition of the velocity of a sea
state movement.

In pioneering work [15] a concept of velocity was introduced studied for random, moving surfaces.
This concept of velocity has been further investigated in [22] and called the velocity of apparent waves
and further extended in [6] to describe dynamics of contour levels in a moving random field. Sev-
eral possible definitions of velocities were studied. Here the following definition for the velocity of
movement of a field W (t, x, y) at position p = (x, y) is used

V(p, t) =

(
−Wt

Wx
,−Wt

Wy

)
.

The contour line of Hs field may describe the edges of a storm and the velocities defined on that
contour line W (t,p) = u describe movements of a storm. The velocity V observed on the contour is
random and for a stationary and homogeneous Gaussian fields has mean

v =

(
−Cov(Wt,Wx)

Var(Wx)
,−Cov(Wt,Wy)

Var(Wy)

)
. (7)

We use here the same notation for the velocity as that in (3) and it is not obvious that the mean velocity
on the contours coincide with the velocity driving dynamics in the model but it was shown in [7]
and [23] that these two velocities coincide in a wide range of models. Note that the mean velocity is
independent of the level u but here, for the sake of interpretation, we choose the contour level u to be
zero, i.e. median of Hs field.

Remark 2 It is worth to notice that Wt for the model given in (3) with the autoregressive temporal
dependence is not well defined. However for any smoothing of the data either by filtering or discretiza-
tion, the resulting models will have random velocities on the contours that are well defined. It has been
shown in [23] that the median value of these distributions is always located at v, used in (3), indepen-
dently of the choice of the smoothing. Therefore despite the problem with existence of Wt, the median
value of the velocities for such fields is still well defined and can be obtained from a smoothed version
of the field.

Let us also remark on this occasion that the usage of the median in [23] was dictated by the fact that
velocities observed at an arbitrary point have a Cauchy distribution that does not have the mean value.
However when the velocities are observed only at the constant level contours the mean of this biased
sampling distribution is well defined and coincide with the median due to the symmetry of distributions,
see [6] for detailed discussion of this problem.
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Figure 3: . Estimates of the median Hs-velocity v for the wave fields in February (top) and August
(middle). The lengths of vectors are not up to scale. Bottom: Estimates of the median velocity v along
the route in January.
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It is assumed that locally the logarithm ofHs is well approximated by a stationary and homogeneous
Gaussian field and the average velocities can be computed using (7). In the larger scale of couple of
degrees and weeks the average velocity may change. This time-space dependence will be made explicit
in the notation by writing v(t,p) if needed. For the field that is (locally) stationary and homogeneous
a power spectral density S(κx, κy, ω) can be defined and the mean velocity v can be conveniently
computed using the spectral moments of S, viz.

v(t,p) =

(
−λ101
λ200

,−λ011
λ020

)
, (8)

where

λijk =

∫
κixκ

j
yω

k S(κx, κy, ω) dκx dκy dω).

In Figure 3 examples of maps of the average velocities v(p, t) are presented for month February
and November. The velocities have been derived in [4] using (8) and spectral moments estimated from
ERA 40 data.

3.2 Expected fatigue rates along a route – an example

Here we shall illustrate the presented methods by estimating the expected damage accumulation rate
along the route presented in Figure 3 (Bottom) that took 17 days to sail in January month. The damage
rate is given by (4) with ship velocity and Hs field velocity replaced by their expected values, as
represented in (8). The average Hs fields velocities along the route are available and presented in
Figure 3. What remains is computations of expectations of H2

s and H2.5
s . For log normally distributed

Hs defined by m = E [lnHs] and σ2 = Var (lnHs) the average value of Hr
s is given by

E [Hr
s ] = exp(rm+ r2σ2/2).

Since the duration of the voyage is less than one month the dependence of distribution of Hs on time
can be neglected and hence the damage rate can be computed when the parameters values m(p) and
σ2(p) are known for locations p along the rout. This can be done using the model proposed in [8] and
fitted to all locations on oceans in [3]. Typical fits following this approach see Figure 1.

The expected damage rate can be thus evaluated and it is presented in Figure 4-Right (dashed line)
as a function of time. Since during the voyage the encounteredHs were measured one can also compute
the observed damage intensities. The quality of measurements was poor, needed recalibration and there
are missing data particularly during the periods when Hs are high. For these reasons the ‘observed’
damage rate should be treated as an illustration how the damage accumulation could look like and not
as precise measurement values. The so-obtained observed damage rates are presented in the figure as a
solid (irregular) line.

Let us comment the results:

• Using the evaluated damage rates presented in Figure 4 the accumulated damage for the entire
voyage can be computed. The average damage rate (dashed line) results in expectation that 0.99%
of the total fatigue life has been “consumed” in this 17 days long voyage. This estimate applies
to a midship location in 2800 TEU container ship, see [15], [16] for more details. During six
winter months between 6 and 8 such voyages can be undertaken which indicates high risk for
cracking in some ship details before the design life of 20 years.

• The observed damage rates, although uncertain due to large estimation errors and missing values,
give accumulation of 0.65% of the life during the voyage (when corrected for missing values
the damage increases to 0.72%). The difference between observed and the expected damage is
caused not only by randomness of the sea conditions but also by captain decisions and routing
programs. A wish to avoid predicted large storms resulted in the decision of taking longer route
to the south to avoid the worse sea conditions but despite these precautions still three storms have
been met en route to America.
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Figure 4: Analyses for the route in Figure 3 (Bottom) in dependence on sailing time. Left: Mean (top)
and variance (bottom) of lnHs(t). Right: The expected (mean) damage rate (dashed line) vs. the
observed damage rate (solid line).

• Since on the route back to Europe one is sailing in similar direction as the motion of storms
the damage rate is much smaller. The weather in the middle of this route is harsher than the
conditions that can be met on the chosen route to America as seen from the parameters m and σ2

in Figure 4 (Left). Mathematically, it is the term ‖vsh‖ cosα that makes the damage rate smaller,
and as a result 80% damage were accumulated on the way to America and only 20% on the way
back. The difference is a well known fact and hence sailing from America to Europe is often
taken along the shortest route with a maximum speed.

4 Extreme responses - the 100 years significant wave height

In this paper we classify the sea state at time t as a storm if Hs exceeds the median exp(m(t)). The
highest value of Hs is attended at storm crests. Severity of a storm is measured by means of values of
its return times, evaluated assuming a stationary climate. For example a 100 years storm is encountered
when storm crest exceeds a threshold h100, which is called a hundred years significant wave height.
Here, the threshold h100 is chosen in such a way that the return period of the so defined 100 years
storm is actually 100 years. Most of the structures are designed to withstand waves for a sea state with
Hs = h100. In this section we shall give means to estimate return values of significant wave height, e.g.
100 years value, which is a measure of harshness of a shipping plan (here identified with a collection
of routes). This is a more difficult problem than estimation of the expected damage since it requires
extrapolation to very high levels for which not much of relevant data are available – as mentioned
before, spatio-temporal data having good coverage in space and sufficiently dense in time are limited.
This lack of the data necessarily has to be remedied by more specified model assumptions.

In previous work [28], an approach to estimation of extreme wave heights using crossings methods
was discussed based on a assumption that the logarithms of significant wave heights can be accurately
represented by a Gaussian model. Here the method is adopted to estimation of the return values of
extreme significant wave heights that can be encountered by a vessel.

In this section we consider the logarithm of Hs along a route t 7→ (t,p(t)), i.e. process W (t) =
W (t,p(t)) = lnHs(t,p(t)), where t is measured in years. The 100 years return value h100, say, is
defined as a level which can be exceeded during one year with probability 1/100. More precisely, let
M = max0≤t≤tyear W (t), where tyear represents the period of one year expressed in the time unit of
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the temporal argument t. Then h100 is a solution to the following equation

P (M > lnh100) =
1

100
. (9)

Other return periods can be also considered, e.g. 20 years significant wave height h20 solves P (M >
lnh20) = 1/20.

Our approach is based on the theory of level-crossings of stochastic processes. We have the fol-
lowing obvious relationship between crossings of a level u and the distribution of the maximum over a
period of time

P (M > u) = P (W (0) > u) + P (N(u) > 0,W (0) ≤ u), (10)

where N(u) is the number of upcrossings of the level u by W (t) during one year. For Gaussian model
ofW , as u increases, the probability P (W (0) > u) become negligible, so that the restrictionW (0) ≤ u
in the second probability in (10) becomes less relevant. Thus for large u

P (M > u) ≈ P (N(u) > 0).

Furthermore, we have obvious inequalities

E [N(u)]− 2E [N(u)(N(u)− 1)] ≤ P (N(u) > 0) ≤ E [N(u)] .

When W is satisfying some smoothness assumptions, the term E [N(N − 1)] tends faster to zero than
E [N ] (see, for example, Chapter 4 in [2]), and so

P (M > u) ≈ E [N(u)] (11)

The expectation in (11) can be evaluated by means of Rice’s formula – an approach referred to as Rice’s
method.

We assume that at time t the process W (t) is approximately stationary for about half an hour. In
other words we assume that logarithm of Hs measured from a ship is Gaussian has variance σ2(t),
mean m(t) = m(p(t), t) and variance of derivative λ2(t). Our assumptions means in practice that the
mean of derivative process W ′(t) is negligible (m′(t) ≈ 0) and that W (t) is independent of W ′(t)
for any fixed t. Now, if the sea state sequence were known for a long period of time, then N(u)
could be estimated and extrapolated to very high levels. The extrapolation could be used to estimate
E [N(lnh100)] and hence h100. When we do not have measured Hs, for example at the design stage,
then we can use the model of Section 2 and the probability P (M > u) could be estimated using (11)
and Rice’s formula [24], [25], so that h100 can be approximated by solving

E [N(lnh100)] =
1

2π

∫ tyear

0

√
λ2(t)

σ2(t)
exp

(
− (lnh100 −m(t))2

2σ2(t)

)
dt = 1/100. (12)

The parameter

τ = τ(t) = π

√
σ2(t)

λ2(t)
(13)

needs to be evaluated but first we give its physical interpretation (see for example [21] for a similar
discussion).

Let us consider a small time interval like, say, half an hour chosen so that the dependence of the
parameters on time can be neglected. By employing Rice’s formula one can see that the average number
of upcrossings of the levelm(t) per time unit is equal to µ =

√
λ2(t)/σ2(t)/(2π). If we define a storm

as an excursion of Hs above its median, then the number of storms per time unit is equal to the number
of upcrossings, and thus µ represents intensity of the storms. By our definition of a storm, the average
time between storms is the same as the average duration of a storm, so that 0.5µ−1 interprets as the
average duration of a storm, i.e. τ is the average duration of a storm encountered by a vessel. Note that
τ would be the average if W (t) were stationary in time, i.e. Hs homogeneous and stationary and ship
were sailing along straight line. In this application τ = τ(t) is a local parameter which changes along
the route so it depends on a position on the route and a season.
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4.1 Estimation of τ(t)

Denote by r(s) = σ2ρ(s) the covariance between W (t) and W (t+ s), while σ2 and ρ(s) are variance
and correlation function, respectively. By assumed local stationarity of the encounteredHs process one
has that

τ = π
√
σ2/λ2 = π

√
σ2/− r′′(0) =

π√
−ρ′′(0)

. (14)

The problem of estimation of τ given in (13) reduces to estimation of ρ(s). The most straightforward
approach would be to statistically estimate the autocorrelation for observed Hs on board of a ship.
However such measurements are: seldom available, often unreliable, have incomplete coverage, and
could be biased because of the way data are collected. Hence other means of computing the parameter
are of interest.

Here we shall presented such a method and consider two special cases for which extensive data
sets are available: firstly, Hs observed from a satellite, corresponding to encountered significant waves
by a vessel moving with speed 5.8 km/s, i.e. practically with “infinite” speed as compared with the
Hs dynamics scale; secondly, Hs measured by a buoy or on an offshore structure, i.e. encountered
Hs by vessel moving with a zero speed – this case was discussed in [28] where the total variation of
logarithms of the significant wave height were used to estimate

√
λ2(t). Then, under some additional

model assumptions, the in-between case of a moving vessel is treated for which τ (equivalently λ2 or
ρ′′(0)) is obtained by combining the methods for the two extreme cases above.

4.1.1 Hs encountered by a satellite

The TOPEX-POSEIDON satellite is moving with the ground speed of 5.8 km/s. Because of its high
speed temporal variability ofHs can be neglected and it is natural to consider the spatial autocorrelation
ρ̃, where ρ(t) = ρ̃(tv) and d = tv is distance in degree and v = 0.0523 degree per second.

The log-normal model is used as defined before in (1). The field W is normal and when considered
for fixed t, while p are positions in some small area, e.g. four by four degree, it has the covariance as
defined in (2). Most often p and q are close to one and hence for computations of 100 years Hs one can
simplify the model by setting p = 1 and q = 1. We have ρ′′(0) = v2ρ̃′′(0) and since ρ̃′′(0) = −(L)−2

τ =
π L

v
, (15)

giving τ about four minutes.
We note the interpretation of spatial covariance parameter L. Namely, from (15) we obtain that π L

is the average length (along a line) of a storm in degrees. This interpretation would be exact if W (p)
were homogeneous. In general, L is a local parameter which changes in space and with season as can
be seen in Figure 5 were maps of π L are shown for February and August.

4.1.2 Estimation of τ(t) at a fixed position.

It is tempting but wrong to use the formula (15) to estimate τ for moving vessels. Since ship moves
about 500 times slower than the satellite does thus τ for a ship would be around 33 hours which is too
short when sailing in storm direction, see Figure 7, and in the case of buoy τ would be infinity which
is obviously wrong. The reason for it is that the previous derivation work by assuming that satellite
measures “frozen” Hs field. The assumption was reasonable since satellite moves so fast relative to Hs

dynamics that no movement of Hs field is observed. From satellite measurements one can not observe
that waves travels (as swell) over oceans and in general Hs fields moves. However as illustrated in
Figure 3, where maps of average Hs velocities were shown, the storms are moving and this movement
has to be accounted for in the cases when the vessel velocity is comparable to the movements of wave
systems and in particular if one considers a fixed location.

Simplistically, limiting the window to four by four degree in space and 10 hours in time one may
assume that approximately in that window the velocity of significant wave heights v is non-random and
constant. This leads to a “frozen field” moving with a constant velocity in time. Further assuming that
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movements of fast components and noise is zero (p = 1, q = 1), then the observed correlation in time
at fixed position p0 would be

ρ(t;p0) = e−
|vt|2

2L2 . (16)

The true local dynamics of Hs field is not likely to be accurately modeled by such a movement
of a “frozen” surface. Hence a more careful analysis of buoy data need to be performed by adding
truly temporal stochastic dependence. This is often done by a simple autocorrelation function ρ(t) =
exp(−λ|t|) to model dynamics of logarithms of Hs. This is a very convenient model since sampling
Hs regularly in time will form an AR(1) process. For example, the AR(1) model was investigated in
[1] to model logarithms of Hs measured by Buoy 46005. It was concluded that “residuals are not fully
described by an AR(1) process”. Despite this, the authors still recommended the AR(1) structure to be
included in the model and the following shows how a combination of AR(1) and (16) can be introduced.

Having in mind the formula (16) and using AR(1) modeling presented in [4], the correlation of
W (t) takes form

ρ(t) = qe−
t2

2T2 e−λ|t| + (1− q) 10(t), 0 ≤ t ≤ 10, (17)

where t has units hours and 10(t) = 1 if t = 0 and zero otherwise. The 1− q-term is the iid noise term,
typically introduced to account for the so-called nugget effect observed in estimated correlation, and
the factor e−λ|t| is the correlation of Ornstein-Uhlenbeck process which when sampled on a regular
grid becomes AR(1). In [4], the model was successfully fitted to twenty buoys from NDBC-NOAA and
the tables with parameters were given, proving that this extension of AR(1) model can be useful for the
waves models.

It should be noted that the Ornstein-Uhlenbeck term e−λ|t| causes that the λ2 = −r′′(0) is not well
defined even if the noise would be neglected, i.e. q = 1. Consequently smoothing of the signal or other
approximations are needed to evaluate the parameter τ needed in estimation of 100 years encountered
significant wave heights by means of Rice’s method.

It should be emphasized, that a direct approach to evaluation of τ by using the records to estimate
ρ′′(0) is problematic not only because of the model assumptions as in the argument above. There is
a general difficulty in estimation of τ by means of the second order derivative of covariance function
at zero due to sampling frequency of the data. For example, Hs are reported every hour for an buoy
and every six hours for hind-cast data, e.g. ERA 40. Consequently, estimation of the derivative using
finite differences can be quite inaccurate. One way to go around the problem would be to estimate τ
by taking averages of time periods that Hs spends above/ below its median value, i.e. directly using
the physical interpretation of τ as the average duration of storms. The approach would require more
studies and, in particular, accounting for the dependence of τ on season. Investigations of this issues
are planed in future. Meanwhile the parametric model for covariance (17) is utilized providing a way
of fitting τ based on the estimation of λ and T , that is done by fitting (17) to empirical covariances.

Once λ and T are fitted, then τ can be found some ‘smoothed’ versions of the relation between τ on
one hand and T and λ on the other hand. Is the past research, see [4], a smooth simplified method has
been developed based on the time that the autocorrelation of lnHs drops to 0.6. Namely, we observe
that if the actual correlation would not have the Ornstein-Uhlenbeck part (λ = 0), then τ obtained from
the second derivative of such simplified covariance would be equal to πT . The value of the simplified
correlation at t = τ/π = T is approximately equal to 0.6. Thus a rough estimate of τ in the presence
of λ is obtained by considering the time T0 at which value of the complete correlation drops to 0.6
and then taking τ = πT0. Consequently τ could be directly from the fitted r(s) to the data by solving
equation ρ(τ/π) = 0.6 or by evaluating it for the ρ(s) given in (17), which through the second order
Taylor expansion results in

τ = π (−λT 2 +
√
λ2T 4 + T 2). (18)

Example 1 (Hundred years Hs at location of Buoy 46005) In [1] dataHs measured 1978-1999, from
Buoy 46005, have been throughfully analyzed. The proposed model for m(s) was a seasonal compo-
nent with linear trend, viz.

m(s) = 0.7697 + 0.1072 sin(2π s) + 0.4375 cos(2π s) + 2.6626 10−5 · 365.25(s− 1978), (19)
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Figure 5: Estimates of storm size in degrees, i.e. average excursion length above median significant
wave height π L, in February (top) and August (middle). Bottom: Expected number of crossings of
level u by Hs(t) during a year of shiping in the North Atlantic.
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while
σ(s) = 0.432− 1.143 10−5 · 365.25(s− 1978), (20)

where s has units years. In the Table 2.4 page 21 of that reference, the long-term correlation function
ρ(t) is given. To the function ρ(t), 1 ≤ t ≤ 10 the correlation function (17) is fitted and the fitted
parameters are T = 23.6 and λ = 0.009 hours−1. Using (18) the parameter τ = 60 hours.

The estimate of 100 yearsHs using Rice’s method and parameters based on analysis of [1], e.g. the
fitted correlation to data from the table and regressions (19-20), is 15.4 meters, see Figure 6 solid line
(s = 1999) and 17.6 meters, dashed doted line s = 1979. Finally as reported in [28] the 100 years
significant wave hight estimated using yearly maximums and the Gumbel fit was 16.8 meters while the
generalized extreme distribution fit gave estimate 13.7 meters, see the dot and the star in Figure 6,
respectively.

4.1.3 Hs measured on board of a ship

Similar reasoning that was motivating formula (17) can be applied to a vessel moving with velocity
vshp. The local covariance between logarithms of encountered Hs is of the following form

ρ(t) = pe−
|vshp−v|2 t2

2L2 e−λ|t| + (1− p)10(t),

In order to find the average duration of storm when on board of such a vessel, one can use the relation
(18) that leads to

τ = π
(
−λT 2

v +
√
λ2T 4

v + T 2
v

)
, Tv = L/||vshp − v||). (21)

In general, τ depends on route (season and position of vessel and speed computed from the rout)
which is function of time t hence, given yearly routing, the expected number of times the encountered
significant wave heights by a vessel can be predicted by

E [N(u)] =
365.2 · 24

2

∫ 1

0

1

τ(s)
exp

(
−(lnu−m(s))2

2σ2(s)

)
ds, (22)

Here s has units years while τ is in hours leading to the factor 4382.4 in (22).

Example 2 (100 years Hs observed from a vessel) Here yearly shipping is equivalent to seven pas-
sages over Atlantic. We can use (21), (22) and (12), to evaluate h100. However the problem is that at
present we have no estimates of λ for the globe but only for the 20 buoys locations reported in [4]).
Instead, we arbitrarily choose λ to be 0.011 hours−1. The remaining parameters are evaluated using
the estimates reported in [3] and shown in Figures 1 and 3 (bottom). The functions m(s), σ2(s) are
presented in Figure 4 (left) while τ(s) in Figure 7 (left). The estimated encountered 100 years Hs is
about 18.5 meters, see Figure 5 (bottom).

Example 3 (100 years Hs at location of Buoy 46005, using the model) We consider a buoy as a ship
moving with speed zero and use (21), (22) and (12), to evaluate h100. We choose the same λ as in
Example 1, viz. 0.011 hours−1. The remaining parameters are evaluated using the estimates reported
in [4]) and extrapolated to the position of the buoy, giving σ(s) = 0.3523,

m(s) = 0.9493 + 0.3452 cos(2π s) + 0.2669 sin(2π s).

The parameters L and Tv vary with season and are given in the following table

L in degrees: 5.1 9.1 5.6 6.0 4.5 3.9 3.6 3.5 3.6 3.8 6.1 4.7

Tv in hours: 24.5 43.9 27.2 29.1 21.6 18.9 17.5 16.9 17.4 18.5 29.6 22.7

The speed was taken constant ||v|| = 0.207 degree per hour. The direction of the velocity v varies with
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Figure 6: Expected number of crossings of level u by Hs(t) during a year, estimated for Buoy 46005,
using estimate given in [1] the solid line for year 1999 and the dashed dotted line for year 1979. The
dashed line is the expected number using the spatio-temporal model. The dot and star are estimates of
h100 ussing 23 yearly maximums, the Gumbel fit (black dot) and the generalized extreme distribution
(GEV) fit (star).

time. Since L are estimated for each month separately one can see considerable estimation errors. The
encountered 100 years Hs estimated in this example is about 15 meters, see Figure 6 the dashed line.

We conclude that because of a trends (increasing mean and decreasing standard deviation the Rice’s
estimate of 100 years significant wave height h100 changes from 17.6 meters in 1979 to 15.4 meters in
1999. More standard statistical methods employing observed yearly maxims estimate h100 to be 13.7
meters if GEV model is used and 16.8 meters for Gumbel model. (One need to to note that about 20% of
buoy observations are missing.) The Rice’s estimate employing spatio-temporal model gave 15 meters
estimate of h100. The values are quite similar although show some spread due to uncertainties when
estimating such extremely seldom events as an occurrence of 100 years storm.

4.2 Hierarchical model for parameters

In the above approach sea conditions encountered by a vessel during a year are described by a deter-
ministic functions (m(t), σ2(t), τ(t)) sampled at frequency 2 per hour. The integral (12) is basically a
sum of a long sequence of encountered crossing intensities. The result is a function of about 50 thou-
sand values of parameters. Often a more convenient approach is to compute the integral by means of
the so called long-term distribution of parameters. Denote by f(m,σ2, τ) the pdf of the distribution
which could be approximated by the normalized histogram of encountered values of parameters along
the route. The long term distributions describes variability of parameters values encountered on the
route at time t taken at random.

By using the long-term pdf we can write the expectation in (12) as

E [N(lnhT )] =
1

2

∫ ∞
−∞

∫ ∞
0

∫ ∞
0

1

τ
exp

(
−(lnhT −m)2

2σ2

)
f(m,σ2, τ) dmdσ dτ (23)

The formula (23) can be further simplified by introducing the biased sampling pdf of the parameters

f̃(m,σ2) = c−1
∫ ∞
0

1

τ
f(m,σ2, τ) dτ, (24)
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where c is the expected frequency of storms encountered by a ship during a year. This leads to

E [N(lnhT )] = c

∫ ∞
−∞

∫ ∞
0

exp

(
−(lnhT −m)2

2σ2

)
f̃(m,σ2) dm dσ2. (25)

Note that factor c is equal to the expected number of encountered storms, defined as an excursion of
Hs above its median, during a year.

Remark 3 In previous sections we have presented maps for exp(m) and σ2. Such maps could be used
to compute the long term distribution of m and σ2 whenever a detailed plan of shipping, i.e. positions
p and seasons for planned routes, is chosen. Basically one can estimate the long term pdf f(m,σ2).
However f̃(m,σ2) is in general not equal to the long term pdf f(m,σ2) and hence the joint distribution
of (m,σ2, τ) needs to be estimated as well.

5 Simulation of encountered Hs along a route.

In the previous sections means to estimate expected fatigue damage and risk for encountering an
extreme sea state (100 years significant wave height) for a specific shipping plan were presented. The
computations involved long-term distributions of sea climate parameters; median and coefficient of
variation Hs; heading angle; and τ (parameter measuring average duration of encountered storms).
These parameters describe local properties of the encountered sea states along the planned routes. The
long term distribution of the parameters were defined as the values of parameters at a randomly chosen
point along a rout.

The expected damage and hundreds years encountered significant wave heights represent quantities
(averages) that are useful at the design stage of a vessel, a choice of ship routes or for planing of
maintainance schedules. However the accumulated damage may differ from the expected one and there
can be a need to quantify the variability of the accumulated damage by means of its variance or even
distribution. For such purposes one needs to simulate random sequences of encountered sea states
and evaluate the accumulated fatigue damages, which become random itself. Their variability can be
describe by means of a single parameter, e.g. variation coefficient, or more completely by a fitted
probability distribution. There are also other applications of explicit random model for the sequence
of encountered sea states. They can be used for prediction of missing values, future sea states to be
encountered based on the available information, duration and severity of storms, etc.

In the following a simple random model for a sequence of encountered sea states will be described.
The model is uniquely defined by spatial and time distributions of the previously mentioned local
parameters; median and coefficient of variation of Hs; average duration of storms τ ; and average
velocity v of storms (level contours of Hs). The parameters have clear physical meaning and their
evolution in time could be described by means of trends derived from climate change models. This
would give a possibility to study distributions of more complex events (like sizes of storms) at a future
seas.

5.1 Non-stationary log-normal model for Hs encountered along a route.

We continue to assume that the logarithms of encountered significant wave heightsW (t) = lnHs(t,p(t))
are normally distributed with means m(t) and variances σ2(t), 0 ≤ t ≤ T , where t is in hours. It was
also assumed that W (t) is locally stationary, the notion which is not precisely defined but it essentially
means that meanm(t) and variance σ2(t) change slowly and that for points t1, t2 such that |ti−t| < 10,
say, the correlation ρ between W (t1) and W (t2) is a function of the difference t2 − t1. The parameter
τ , the average duration of a storm, is proportional to the second derivative of ρ, viz. τ = π/

√
−ρ′′(0).

Hence a very crude approximation of the autocorrelation is derived by means of Gauss function, viz.

ρ(t1, t2) ≈ e−
π2(t2−t1)2

2τ(t)2 . (26)
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Figure 7: Parameters of W (t) = lnHs(t,p(t)) for the route presented in Figure 3 (bottom). Left:
The expected duration τ of encountered storm. Right: Covariance (31) between W (t), W (s). The
covariance is zero for 160 < t < 270 or 160 < s < 270 since the vessel is close to or in the harbor.

The approximation does not define ρ for arbitrary t1, t2 in the interval [0, T ] but only only in vicinity of
the time t. Before we propose a formula for correlation ρ for any pair of times t1, t2, we present how
to simulate stationary W (s) with correlation (26) through spectral representation of W (s).

Stationary Gaussian process W (s) with correlation (26) has a power spectral density

St(ω) =
τ(t)√

2π
e−ω

2 τ(t)2/2π2

(27)

and can be evaluated by the following integral

W (s) = m(t) + σ(t)

∫
exp(−is ω)

√
St(ω) dB(ω), (28)

where B(ω) is a Brownian motion.
A non stationary process can be derived by exploiting that the spectrum St in (28) depends on time

and let t = s, viz.

W (s) = m(s) + σ(s)

∫
exp(−is ω)

√
Ss(ω) dB(ω). (29)

If the spectrum changes slowlyW (s) in time defined in (29) satisfies our loose requirements on a locally
stationary Gaussian process. In order to simulate the process one could approximate the integral in (29)
or evaluate a covariance between W (s) and W (t) for process defined in (29) for any times s, t. This
approach will be used here.

Some simple analysis calculations shows that

Cov(W (t),W (s)) =

∫
exp(−i(s− t)ω)

√
Ss(ω)St(ω) dω = r(t, s), (30)

say, where Sti are defined in (27). Assuming that σ(t) and τ(t) are known and St is given by (27) the
integral in (30) can be computed to yield

r(t, s) = σ(t)σ(s)

√
2τ(t)τ(s)

τ(t)2 + τ(s)2
e−π

2(t−s)2/(τ(s)2+τ(t)2). (31)
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Figure 8: Three simulated Hs encountered along the route presented in Figure 3 – they are exhibited in
solid lines while dots represent measured Hs on board of a vessel sailing the same route.

5.1.1 Example: Simulation of Hs along a route.

Here we demonstrate the use of the proposed model to simulate the significant wave heights encoun-
tered along the route presented in the Figure 3. The mean value m(t) and σ2(t) are shown in Figure 4.
The average duration of encountered storm (in hours) τ(t) is given in Figure 7. One can see that the
time duration of storms/calm periods on the route from Europa to America is about 40 hours while the
sailing time is about 160 hours. Thus one can expect to meet three storms on this route. On the other
hand, the route from America to Europe took about 125 hours, the average storm period is 130 hours
and hence one can expect to meet one storm.

We turn now to more detailed description of the simulation algorithm. The inputs are functions
m(t), σ2(t) and τ(t) presented in Figures 4 and 3. The functions are sampled with time step 0.5 hour
(the same as frequency of on board measured Hs). In the following, we denote by t, s vectors of
time points sampled with frequency two per hour along the rout. Further the significant wave height
observed at points t is denoted by Hs(t), while their logarithms by W (t) and the vector of their means
by m(t). The covariance matrix between W (t), W (s) , with entries r(ti, sj) computed using (31), is
denoted by Σ(t, s). Using the introduced notation the samples of Hs(t) can be simulated as follows

Hs(t) = exp
(
m(t) +

√
Σ(t, t)Z

)
,

where Z is a vector of independent standard normal variables and
√

Σ is any matrix such that Σ =√
Σ
√

Σ
T

.

Example 4 For the voyage presented in Figure 3 and times ti sampled with frequency 2 per hour the
covariance Σ(t, t) is shown in Figure 7 (right). One can see that correlation between Wi decreases
fast for ti on the route to America, since one is sailing “against” storms while W (ti) are strongly
correlated on the route from America to Europe since one is traveling with storms. Finally, since the
stay in the harbor is much longer than the correlation length of W (t), the covariance between W (t)
and W (s) for t when ship is on the route to America while s is on the route to Europe is zero.

In Figure 8 three samples of simulated significant wave heights are compared with the measured
ones (dots). One can see that there are missing values in the measured signals and that during certain
periods the measurements have quite high volatility.

19



0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

7

8

9

 t [h]

H
s [m

]

−2.6 −2.4 −2.2 −2 −1.8 −1.6 −1.4 −1.2
−4

−3

−2

−1

0

1

2

3

4
Normal Probability Plot

Q
ua

nt
ile

s 
of

 s
ta

nd
ar

d 
no

rm
al

0.01%

0.1%

0.5%
1%
2%

5%

10%

30%

50%

70%

90%

95%

98%
99%
99.5%

99.9%

99.99%

Figure 9: Further analysis of the route presented on Figure 3. Left: Measured Hs along the route from
Europe to America. The dots mark reconstructed values that has been missing in the record. Right:
One thousand simulated values of log10(D), accumulated for the ship sailing the route, plotted on a
normal probability paper. The logarithm of the observed damage log10(Dobs) is -2.18.

5.1.2 Extrapolation of missing values

As one can see in Figure 8 there are some times when some Hs measurements are missing. Since those
are in the stormy period it can lead to underestimation of the observed damage. Here we give formulas
to simulate the missing values.

Let s be a vector of times when measurements are missing while t be the remaining times. Denote
the available measurements by hs(t) and let m̃(s) and Σ̃(s, s) be the mean and covariance of W (s))
conditioned thatW (t)) = lnhs(t), respectively. Then the missing valuesHs(s) can be simulated from
the conditional distribution by

Hs(s) = exp(m̃(s) +

√
Σ̃(s, s)Z).

Finally the conditional mean is given by

m̃(s) = m(s) + Σ(s, t)Σ(t, t)−1(lnhs(t)−m(t))T

while the conditional covariance is

Σ̃(s, s) = Σ(s, s)− Σ(s, t)Σ(t, t)−1Σ(t, s).

In Figure 9 (left) some reconstruction is presented. In order to make the reconstruction more similar
to the rest of signal we have assumed that there is a measurement error of lnHs which is normally
distributed with zero mean and variance 0.02. More precisely one have added to Σ(t, t) a matrix
0.02 I, where I is the identity matrix.

5.1.3 Estimating distribution of the accumulated damage on a route

The route used here for illustration of the described results was selected from 6 month long full scale
measuring campaign on board of a 2800 TEU container ship. Container ships are long, slender, thin-
walled structures with open cross-sections experiencing large oscillations of wave induced stresses
with superimposed vibrations caused by resonances and slamming. Such variability of stresses makes
fatigue life prediction very uncertain, see Mao et al. (2010). Although the fatigue design life of a
container ship operating in the North Atlantic Ocean is usually more than 20 years cracks in ships
details are found earlier than expected. For example it was reported in [30] that fatigue cracks were
found in a container vessel after less than eight years of service. To identify source of such early damage
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vibrations of container ships were studied both theoretically, in wave tanks on ship models, and in full
scale measuring campaigns. The measured Hs used in the paper were taken from one of such full scale
measurements on a 2800 TEU container ship mentioned above undertaken to study the variability of
stresses at some location of the ship were cracks were observed.

Here we had considered a trip to America and back to Europe undertaken in January month. The
observed damage was 0.66% of the expected total life, which increases to 0.75% after prediction of
missing Hs measurements. The median damage computed using the log-normal model for the en-
countered Hs is 0.99%. The observed damage is slightly below the theoretical median as can be seen
in Figure 9 where logarithms of 1000 simulated damages are plotted on normal paper. This bias is
not entirely surprising since captains are using routing programs to avoid the most sever storms. For
eight undertaken voyages during the measuring campaign only once the observed damage exceeded the
median computed using the model presented in this paper.

The presented model could be used to detect problems in the design of the vessel. A very crude
analyzes could be performed in the following way. One may assume that for the North Atlantic trade
the yearly accumulated damage is equivalent to 8 presented voyages during one year. These would lead
to the median damage during 20 years of service of about 160%, i.e. the predicted life is about 12 years.
Since predictions of fatigue life are uncertain one often conservatively predicts high risks for fatigue
problems at a ship detail when the damage exceeds 50% level, which in our case would be 6 years.

6 Conclusions

This work demonstrates that a relatively simple model for the global significant wave field can be fitted
from a variety data and records: satellite data, buoy and platform data, hindcast. Despite its simplicity,
the model allows quite accurately analyze the fatigue damage and reliability of a ship traveling along
known routes. The same model can be used to provide assessment of the risk associated with the 100
year significant wave height. We obtain different values of the 100 year significant wave heights for a
stationary location (buoy or platform) and for a vessel traveling along a route on North Atlantic. Finally,
the simulated data from the models allowed for a study of variability of the damage accumulation – an
important issue at the design stage of the ship operation.
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