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Abstract

Modeling of loads on a vehicle through Laplace moving averages is extended to the multivariate setting
and efficient methods of computing the damage indexes are discussed. Multivariate Laplace moving
averages are used as statistical models of multi-axial loads represented by forces and moments mea-
sured at some locations of a cultivator. As oppose to models based on the Gaussian distribution, these
models account explicitly for transients that have a common origin – vibrations that can be caused by
large obstacles encountered by a cultivator or a vehicle driving into potholes. The model is character-
ized by a low number of parameters accounting for fundamental characteristics of multivariate signals:
the covariance matrix representing size of loads and their mutual dependence, the excess kurtosis that
in the model is related to relative size of transients, and the time scale that accounts for the vehicle
speed. These parameters can be used to capture diversity of environmental conditions in which the
vehicle operates. Distributions of parameter values that are specific to a given market or encountered
by specific customers can be then used to describe the long term loading. The model is validated by
analysis of the resulting multi-axial damage index. It is shown that the parameters enter this index in
a multiplicative and explicit manner and, for a given damage exponent, only the factor representing
dependence on the kurtosis has to be obtained through regression approximation based on Monte Carlo
simulations. An example of actual cultivator data are used to illustrate the accuracy of damage and
fatigue life prediction.

Keywords: damage variability, multi-axial rainflow, Laplace moving averages, multi-axial loads.

1 Introduction

This study is focused on modeling vibrations of a cultivator and stresses occurred as a result of en-
countered load. Durability characteristics of vehicle components often require a customer or market
specific load description. Variability of stresses depends on many factors such as a type of equipment,
speed, maneuvering topography of a field, a type of soil, etc. For example, when a cultivator is working
in heavy soil its vibrations can be quite accurately described by means of locally stationary Gaussian
processes. In contrast, when it is operating in light sandy soils where stones are frequent, the vibrations
have larger spread of variation that can not be any longer modeled by solely Gaussian processes. This
is mostly due to the fact that transients caused by encountered obstacles are frequent and may become
the main reason for the ensuing fatigue and damage.

The importance for accurate modeling of such working environment is highlighted by the evidence
of greater fatigue damage in cultivator’s components comparing to the ones caused by stresses follow-
ing Gaussian models. To obtain an accurate while not over-parameterized model of the environment
and resulting loads we consider the class of general Laplace moving averages (LMA) – the processes
that have been discussed, for example, in [1]. In [2], the fatigue damage rates for loads modeled as
Gaussian moving averages were compared with the damage rates computed under a Laplace noise.
Such LMA loads have kurtosis exceeding the value of three – the necessary value for Gaussian loads –
and a considerable increase of the fatigue damage accumulation rate was reported for higher values of
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kurtosis. This effect from the model is in agreement with empirical evidence.
Here we propose a multivariate extension of the hybrid model introduced in [5] that characterizes

soil by two parameters; the intensity of transients (obstacles) µ and the parameter ν measuring their
sizes. The value ν = 0 leads to the Gaussian model while large ν causes the fatigue process to be
dominated by transients with large amplitudes. Both Gaussian vibrations and transients depend also on
cultivator properties. These enter the model through square integrable kernels g(t) defining the moving
average processes and hence the power density functions of the response components.

The material is organized as follows. First the damage index related to the so called multi-axial
rainflow count introduced in [4] is reviewed in Section 2. In Section 3, we define load as a moving
average over a random noise, both the Gaussian case and a more general case of LMA are discussed.
Some properties of LMA essential for fatigue damage modeling are discussed and exemplified. A
representation of the model that explicitly involves transients is discussed in Section 4, where also
a scaling property of the expected damage is presented. The univariate hybrid model that combines
Gaussian and Laplace moving averages is introduced in Section 5. Section 6 is devoted to multivariate
extensions of the models and a property is presented that shows that under suitable assumptions the
expected damage resulting from a multi-hybrid model thataxial load can be expressed by the univariate
expected damage. In Section 7, the multivariate hybrid models are fit to multi-axial loads measured in
a cultivator. Finally, formal arguments supporting the results of the paper are detailed in the appendix
together with MATLAB code to simulate multivariate hybrid models.

2 Multiaxial fatigue damage

In this work, a multivariate random process X(t) = (X1(t), . . . , XM (t)) represents multi-axial
loads containing transients, where Xi’s represent forces and bending moments acting on a structure at
different locations. For a stiff structure, stresses used to predict fatigue damages are linear combinations
of forces and moments. For this reason, it is important to model the multi-axial load so that a stress,
i.e. a linear combination of loads

Ya(t) =

M∑
r=1

arXr(t), t ∈ [0, T ], (1)

yields accurate fatigue accumulation. Since the vector a = (a1, . . . , aM ) may vary between locations
in a structure experiencing the same loads X(t) one requires good accuracy for any choice of the vector
a. The fatigue damage accumulated in material is expressed using a fatigue (damage) index defined by
means of the rainflow method which is computed in the following two steps. First rainflow ranges hrfck ,
k = 1, . . . ,K in Ya(t) are found, then the rainflow damage is computed according to Palmgren-Miner
rule [11], [10], viz.

Dβ(a) =
1

T

K∑
k=1

(hrfck (a))β , (2)

see also [13] for details of this approach. Various choices of the damage exponent β can be considered
but in this paper most often β = 3 which is the standard value for the crack growth process. For
comparison we also consider β = 5 that is often used when fatigue process is dominated by crack
initiation phase. The index Dβ(a) is often called multi-axial damage intensity and was first introduced
in [4], see also [14] and [12].

The proposed model for multi-axial load X(t) is validated by using measured loads and comparing
the ensuing damage index with the expected value of the damage index following from the model fitted
to the data. In this, first the model parameters are fit using measured loads Xobs(t), then the expected
theoretical damage index

Dβ(a) = E [Dβ(a)] (3)

is estimated by means of Monte Carlo (MC) method and compared with Dobs
β (a) for a suitably chosen

vector of factors a and β, where Dobs
β (a) is computed by means of (2) with rainflow ranges obtained
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in the observed records. In our notation we do not explicitly indicate that the expected damage index
Dβ(a) depends also on the properties and defining parameters of the process X. In what follows,
whenever this dependence needs to be exhibited, we write DX

β (a) and DX
β (a) for the damage and the

expected damage, respectively .

3 Laplace moving averages model for loads

In this section we review some facts about the LMA models. In what follows, the response is denoted
by X(t) and is normalized to have mean zero and variance one. We start by reviewing the standard
Gaussian moving averages.

A zero mean stationary Gaussian process is completely defined by its spectral density and thus any
probability statement about properties of Gaussian loads can be in principle expressed by means of the
spectral density. This is not always practically possible and hence MC methods are often employed
to estimate probabilities of interest. There are several ways to generate Gaussian sample paths. The
algorithm proposed in [17] is often used in engineering and it is based on the spectral representation of
a stationary process. Here we use an alternative way to generate Gaussian processes employing moving
averages of a Gaussian white noise. The method naturally extends to Laplace moving averages (LMA)
by simply replacing the Gaussian noise by a Laplace distributed white noise, see e.g. [2], [5], for more
details.

In an approximate sense, a general moving average process is the convolution of a kernel function
g(t) with a infinitesimal “white noise” process having variance equal to the discretization step, say dt.
The kernel g(t) is normalized so that its square integrates to one, which is equivalent to saying that the
variance of X(t) is one. In particular, the standardized (mean zero and variance one) Gaussian moving
average (GMA) can be written as

X(t) =

∫ +∞

−∞
g(t− u) dB(u) ≈

∞∑
i=−∞

g(t− ti)Zi
√
dt, (4)

where B(t) is a Brownian motion independently extended to the past, Zi’s are independent standard
Gaussian variables, ti are discretization points chosen regularly and densely enough over (−∞,∞)
with the discretization step dt. The approximation is valid due to ∆B(ti) = B(ti + dt) − B(ti) =√
dtZi. A choice of appropriate length of the increment dt is related to smoothness of the kernel. In

the example of Section 7, the reciprocal of the sampling frequency of 500 Hz is used, i.e. dt = 0.002
[s].

There is an important relation between the kernel and the spectrum of a moving average process

SX(ω) =
1

2π
|Fg(ω)|2, (5)

where Fg(ω) stands for the Fourier transform. While in general this relation does not allow for unique
identification of the kernel for a given spectrum, if we limit ourselves to the kernels symmetric around
zero, i.e. such that g(−t) = g(t), they can be defined through their Fourier transform by

Fg(ω) =
√

2π SX(ω). (6)

It is worth to note here that there are many asymmetric kernels that give the same spectrum since
equation (5) does not have a unique solution in g. Moreover, while for the Gaussian processes any of
the kernels (symmetric or not) satisfying (5) defines the same GMA, this is not the case for LMA and
the choice of a kernel may have important consequences for the model, see also Example 3.

In the simplest terms, a LMA is obtained by replacing the deterministic standard deviation of the
Gaussian noise

√
dt by random

√
Ki, where independent gamma distributed variables Ki are chosen

so that the variance of
√
KiZi is the same as that of

√
dtZi, i.e. so that E [Ki] = dt. This is achieved

by taking in the gamma distribution the shape parameter dt/ν and scale ν > 0. The new model for
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X(t) can be approximately written as

X(t) ≈
∞∑

i=−∞
g(t− ti)Zi

√
Ki. (7)

The variables Λi =
√
Ki Zi have the generalized symmetric Laplace distribution, sometimes also

called the Bessel function distribution, with scale
√
ν and the shape parameter dt/ν. Due to an explicit

form of the characteristic function, see [8], the moments of a generalized Laplace distribution are
readily available and the parameter ν can be estimated using the method of moments from excess
kurtosis κe of X:

ν =
κe

3
∫
g(t)4 dt

. (8)

If the discretization step dt tends to zero the process in (7) is formally an approximation of

X(t) =

∫ +∞

−∞
g(t− u) dΛ(u), (9)

where dΛ(u) is the symmetric Laplace noise process with the shape parameter ν and Var (dΛ(t)) = dt,
see [1] for further details. Note that when the shape parameter ν decreases to zero LMA becomes GMA.
MATLAB code to generate LMA/GMA can be found in [5]. In the following section we shall motivate
how the parameter ν relates to the relative magnitudes of transients in loads.

4 LMA process as a model for load transients

One can interpret the approximation (7) as a transient process that adds transients g(t − ti)Zi
√
Ki

at the discretization points ti. More precisely, one can limit ti only to [0, T ] for appropriately large T
and consider values of t that are not ‘too close’ to the end points of this interval so that the following
approximation is accurate

X(t) ≈
N∑
i=1

Zi
√
Kig(t− ti), (10)

whereN is the integer part of T/dt and ti = idt. Thus a LMA process essentially represents the effects
of jumps (shocks) as the resulting loads is the sum of transients caused by the jumps. The transients
have the shape of the kernel that is scaled by the jump sizes.

The above can be formalized since from the mathematical point of view a sequence of jumps oc-
curring in time constitutes the Laplace motion as seen in the following series expansion

Λ(t) =

∞∑
i=1

Zi
√
K∗i 1[0,Ui](t), 0 ≤ t ≤ T, (11)

where Zi’s are independent standard Gaussian variables, Ui are independent uniformly on [0, T ] dis-
tributed locations of jumps, and 1[0,U ] stands for the indicator function of an interval [0, U ]. The random
factors K∗i are given by

K∗i = ν Wi e
−νγi/T . (12)

where Wi are i.i.d. standard exponential variables independent of Zi and Ui. Finally, γi is the loca-
tion of the i-th point in a Poisson process, i.e., γi =

∑i
j=1Gj , where Gj are independent standard

exponential distributed random variables independent of all previously introduced variables, cf. [6].
Using the series expansion (11) of Λ(t), the LMA loadX(t) in (9) is approximated by the following

series expansion

X(t) ≈
∞∑
i=1

Zi
√
K∗i · g(t− Ui). (13)

This representation resembles (10) but it differs in two aspects. Firstly, the ti’s that are regularly spaced
over [0, T ] have been replaced by the Ui’s which are independently and uniformly distributed over the
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Figure 1: Top a)-c): The factors K∗i , i = 1, . . . , k, where k = 200, 1000, 5000 for parameter ν =
0.5, 0.1, 0.01, respectively. Bottom d)-f): LMA processes having kurtosis 10 and exponential spectrum
(15) with s equal to 0.17, 0.034 and 0.0034, and the K∗i sequences given in the top three graphs,
respectively. In generating K∗i values for each of the three cases, the same values of random variables
γi’s and Wi’s are used and only ν is varying.
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same interval. Secondly, the independent sizes of transients
√
KiZi at regularly spaced and ordered

points ti have been replaced by ‘partially ordered’
√
K∗i Zi at random points Ui. This ‘partial ordering’

is due to e−νγi/T in (12) being a strictly decreasing sequence in i, see also Figure 1 a)-c).
The expansion of Laplace process is approximately valid for large T and for these values of t for

which

X(t) =

∫ +∞

−∞
g(t− u) dΛ(u) ≈

∫ T

0

g(t− u) dΛ(u).

The range of T and t for accurate approximation can be identified through the second order accuracy
condition

1−
∫ T

0

g2(t− u) du ≈ 0.

This is because the left hand side of the above is equal to Var
(
X(t)−

∫ T
0
g(t− u) dΛ(u)

)
.

Representation (13) shows that for ν > 0 the response is a sum of transients uniformly (and inde-
pendently) located in time while the sizes of the transients have a distribution parametrized by ν. The
average amplitude of a transient is given by

E
[
|Zi|
√
K∗i

]
=

√
2ν

(1 + ν/2T )i
≈
√

2ν e−ν i/2T , (14)

which demonstrates that the mean value of the transient in the series representation is exponentially
decaying. A LMA process with large ν is locally dominated by a few transients with very large ampli-
tudes, while low values of ν mean that the sizes of transients are less variable and LMA is closer to a
Gaussian model.

The dependence of transient sizesK∗i on parameter ν is illustrated in Figure 1 a)-c), where a number
of largerK∗i ’s are shown for ν = 0.5, 0.1, 0.01, for the top to bottom plots, respectively. The valuesK∗i
presented in the graphs are computed using (12) with the same values of random variables γi and Wi.
Only ν is varying in (12) so that the three sequences are functionally dependent in order to illustrate
better the role of ν. We see clearly that ν plays a role of a time scale parameter (rate), which is explained
in further detail in Appendix B.

Example 1 (Exponential spectrum – the leading example of LMA).
As a useful illustration, we discuss a LMA with an exponential spectrum. The spectrum is parame-

terized by a scale parameter s > 0 , viz.

Ss(w) = 0.5 s exp(−s|w|) (15)

and for shortness S(w) = S1(w), so that Ss(w) = sS(sw). In Section 7, we shall use this spectrum to
model cultivator loads in sandy soil with stones.

By using (5) and some well-known formulas for the Fourier transform, we obtain the corresponding
symmetric kernel function

gs(t) =
2√
sπ

1

1 + (2t/s)2
. (16)

We denote g(t) = g1(t) so that gs(t) = g(t/s)/
√
s. Note that for any natural n:∫ +∞

−∞
gs(t)

n dt = s1−n/2 Γ(n− 1/2)

Γ(n)

(
2√
π

)n−1

. (17)

Consequently the parameter ν, given by (8), is proportional to excess kurtosis κe and s, viz.

ν = 0.4189κe s. (18)

In Figure 1 d)-f), three LMA loads Xr(t), r = 1, 2, 3 with exponential spectra all having kurtosis
10 are presented for three cases of the Laplace noise: ν = 0.5, 0.1, 0.01. The three noises are presented
in Figure 1 a)-c). Consequently, by (18), the exponential kernels have parameter s = 0.17, 0.034,
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0.0034, respectively. The difference between the responses is striking but is mostly due to differences
in spikiness of the used kernels – smaller values of s lead to more “spiky” kernels.

The values of K∗i ’s for each of the three loads are computed using (12) with the same values of
random variables γi and Wi and only the parameter ν is altered by assuming values 0.5, 0.1 and 0.001,
respectively. Further the Gaussian variables Zi, used in (13) were taken the same for all three cases.
Thus there is in fact a functional dependence between obtained samples. The dependence between
Xr(t) andXk(t) is nonlinear but its linear component is summarized through the correlation coefficient

ρrk =

∫ T
0
gr(t− x)gk(t− x) dx√∫ T

0
g2
r(t− x) dx

∫ T
0
g2
k(t− x) dx

≈
∫ T

0

gr(t− x)gk(t− x) dx,

where gr(t) = g(t/sr)/
√
sr, r = 1, 2, 3 and s1 = 0.17, s2 = 0.034, s3 = 0.0034. The choice of t in

the above integrals should be such that they do not significantly differ from the ones with the limits of
integration extended to the entire real line (which would make the integral independent of t). For this
choice of the parameters, the correlations are: ρ12 ≈ 0.75, ρ13 ≈ 0.28, ρ23 ≈ 0.58.

This section is concluded with a discussion of a method for evaluating the expected damage for
the LMA process, see also [15]. We start with a general result that demonstrates a convenient scaling
property of the expected damage for the LMA processes. We consider the LMA model Xν(t) which
has its statistical properties uniquely given by two characteristics:

a) a kernel g(t) that is normalized so that its squared integral equals to one (and thus the variance
of Xν(t) is also equal to one),

b) the parameter ν controlling relative sizes of the transients occurring in the Laplace motion as
represented in (11).

We note that for the process Xν(t) the expected damage satisfies

DXνβ (a) = aβDXνβ (1).

Definition 1. The expected damage for the standard model relatively to the density g (the dependence
on which is not shown in the notation) is defined as

dβ(ν)
def
= DXν

β (1). (19)

The model is then extended by addition of the scale parameter s in the kernel, so that we deal
with a family of kernels gs(t) = g(t/s)/

√
s. This extended model is denoted by Xν,s(t). Note that

gs still integrates to one and in the corresponding spectrum s also plays the role of a scale because
Ss(ω) = sS(sω), where Ss, S are spectra of Xν,s(t), Xν(t), respectively.

The following result is a consequence of scaling properties of the Laplace motion and the formal
argument are provided in Appendix B.

Proposition 1. With the introduced notation, the expected damage as function of s, a, and ν has the
form

DXs,νβ (a) =
aβ

s
dβ(ν/s). (20)

From the result it follows that for a fixed β in order to compute the expected damage one needs
only establish the dependence of the expected damage for the standard model on the parameter ν,
i.e. to determine the function ν 7→ dβ(ν). For this purpose we employ non-linear regression applied
to the damages obtained from Monte Carlo simulations of loads from the model. This is illustrated
in Figure 2 Top-Left for the case of exponential spectra (15) parameterized by the scale s while the
damage exponent is β = 5. In this figure one can see that the simulated damage indexes are spread
around the fitted line. The residuals may seem large which is caused by short lengths of simulations
but we found it more accurate to use several simulations for the same value of parameter ν instead of
single but very long one. Eventually in this particular case the expected damage was approximated by

d5(ν) = 91.04 + 888.8ν − 1895ν1/2 + 1284ν1/3. (21)
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Figure 2: Top-Left: Regression fit (solid line) to the simulated damage indexes dβ(ν) for a LMA
process defined by the kernel (16) with s = 1. The dots represent values of dβ(ν) using simulated
samples of X(t). Top-Right: Dependence of the damage on the intensity of transients. The damages
are scaled so that the expected damage index for the Gaussian load with µ = 0 and β = 3 is one. The
dashed line represents the expected damage indexes for β = 3 while the solid line corresponds to the
indexes for β = 5. Three bottom graphs: (a) intensity of transients µ = 0, i.e. Gaussian model; (b)
µ = 5, i.e. Gaussian load with 100 transients added; (c) µ = 20, i.e. Gaussian load with 400 transients
added.
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5 The hybrid model

In practice, Gaussian processes are often used to model “normal” loads to which one is adding transients
caused by impulse forces acting on a structure. Since such an approach is physically appealing, we
propose to alter the LMA model so that it will resemble this general scheme. The process is called the
hybrid model and formally is defined in the next paragraph, while the main idea is as follows. In the
transient/jump series representation of the previous section given in (13), we deal with infinite number
of terms which in any practical application has to be replaced by a finite partial sum. In the hybrid
model, we contain in such a sum the most dominant and influential transients, see Figure 1 a)-c), while
the sum of all remaining small ones is replaced by a Gaussian process.

First we introduce one more parameter µ > 0 which we will call the intensity of transients. Then
the normalized (mean zero, variance one) load X(t), 0 ≤ t ≤ T , is defined by

X(t) = pZ0(t) +

k∑
i=1

Zi(t), p ∈ [0, 1], (22)

where k = µT is the number of ‘influential’ transients, Z0(t) is the zero mean variance one Gaussian
process having spectrum SX defined in (5), while Zi(x)’s are taken from the transient representation
of LMA as

Zi(t) = Zi
√
K∗i g(t− Ui). (23)

The constant p is chosen in such a way that V [X(t)] ≈ 1 and employing approximation (41) of Ap-
pendix A, we obtain a relation between p and µ:

p2 = e−νk/T = e−ν µ. (24)

Thus to specify the hybrid model with a given kernel it is enough to find (estimate) µ in (24) and
from the above relation the parameter p can be determined. The Gaussian process pZ0(t), p defined
in (24) is seen as a ‘normal’ load to which one adds transients occurring with intensity µ. On one
hand, introducing an additional parameter, which has to be estimated, increases the uncertainty in the
estimated damage. On the other hand the parameter µ can be conveniently used to tune up the model.
In many situations the Gaussian model (µ = 0) leads to underestimation of damage while the LMA
model (µ =∞) is conservative. Hence one can use µ to reduce the bias.

Example 2. This example shall illustrate how damage depends on intensity of transients. A response
X with exponential spectrum, introduced in Example 1, having parameter s = 0.034, is used. Further
X has kurtosis κ = 10 and hence by (18) ν = 0.1. First we visually compare hybrid models with
increasing intensity of transients.

The three bottom graphs of Figure 2 show the components of the simulated hybrid model X with
increasing intensity of transient µ. In plot (a) µ = 0, i.e.the hybrid model X is just a Gaussian process.
It should be compared with plots (b) and (c), where 100 respectively 400 transients are added. One can
see that in the plot (c) transients are dominating in the sense that variability of the process is smaller
between the transients comparing what can be seen in plots (a) and (b).

Secondly in Figure 2 (Top-Right), the dependence of the damage index on intensity of transient µ
is illustrated. The expected damage indexes are estimated for two damage exponents β = 3, 5. The
indexes are scaled so that it is one for the Gaussian load (µ = 0) and damage exponent β = 3. In
the figure one can see that the damage grows relatively fast with the intensity of transients µ to the
asymptotically level, which for the damage exponent β = 3 is about 2.1 while for β = 5 the the level
is about 14.3.

6 Multi-axial loading

In many fatigue applications loads are uni-axial and can be modeled by means of a one dimensional
random process. However, there are situations when the uni-axiality of a load can not be assumed.
In these cases, it is crucial, for accuracy of fatigue life prediction, that the joint variability of loads is
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well described by a multivariate process. If the multi-axial loads are jointly Gaussian, then any linear
combination of the loads is Gaussian too and there are several methods to evaluate the corresponding
damage index. In a non-Gaussian case, extending from uni-axial loads to multi-axial ones becomes a
much more difficult problem. A common approach is to consider the loads as transformed multivariate
Gaussian processes, see e.g. [18], [19], [16] and [3]. However, if the loads contain transients, then
the transformed Gaussian models are not applicable because the Gaussian processes fundamentally can
not account for jumps. Instead, to model transients in multi-axial loads, we propose to use a correlated
LMA process that was introduced in [9].

We start with the most general form of a multivariate LMA process. This new multi-axial model is
an extension of (13) to the multivalued case, viz.

Xr(t) ≈
∞∑
i=1

Z̃ir
√
K∗ir · gr(t− Ui), r = 1, . . . ,M (25)

where, with the notation of (12),
K∗ir = νr e

−νrγi/T Wi, (26)

and Z̃i = (Z̃i1, . . . , Z̃iM ) is a sequence of Gaussian vectors such that Z̃i and Z̃j are independent for
i 6= j but the vector coordinates are correlated. More precisely, let Zi = (Zi1, . . . , ZiM ) be a sequence
of standard Gaussian vectors with independent coordinates and Σ be M ×M covariance matrix. Then

Z̃i =
√

ΣZi, (27)

where
√

Σ is any matrix such that Σ =
√

Σ
√

Σ
T

. For further properties of this model we refer to [9].
Let us note several important properties of the proposed model.

• Each coordinate process Xr(t) constitutes a univariate LMA process with time scale νr respon-
sible for the relative size of transients, and kernel gr(t).

• The random variances (K∗ir)i∈N of the transient sizes of the loads Xr(t)’s for various r are
dependent since their randomness is determined solely by γi’s and Wi’s and these are taken the
same for all loads.

• In the case of Σ equal to the identity matrix and conditionally on the variances K∗ir, the loads are
independent since the variables Zir are mutually independent. As one consequence, the loads
are uncorrelated but they are not independent because the presence of the same variables γi’s and
Wi’s will be visible in the transients sizes across all loads. Therefore the matrix Σ introduces the
correlation between the sizes of transients in the coordinates of the multi-axial records.

• The time scale parameters νj can be different for different loads and constitute one of the two
main sources of the difficulty in evaluating the expected damage index for linear combination
of the loads, see the discussion in Appendix C. Different forms of the kernels gr are the second
source of the difficulty.

Enumeration of the expected damage DX
β (a) although computationally challenging, is still within

range of computing power of a desktop computer, see Appendix C. More importantly, the numerical
difficulties can be reduced significantly under certain simplifying assumptions that are discussed next.

If the loads are measured in the same environment, the relative sizes of the transients observed
in the loads should be similar. It has been also noted that their variability little affects the ensuing
damage. Therefore it is reasonable to simplify the model by assuming that all νr’s are equal to some
common value, say, ν. On the other hand if different νr’s represent different operating environments
that this can be accounted by a hierarchical model with some fitted distribution of, now random, νr.
When evaluating the expected damaged over environments represented by the distribution of νr, one
can consider the Gaussian first order approximation and replace various νr by the common expected
value ν = E(νr).

Frequently, we can also find a common kernel g(t) = gr(t) for all axial loads. This is another real-
istic while simplifying assumption that can be also interpreted through averaging a hierarchical model.
Under these two assumptions we have the following property that significantly simplifies evaluation of
the expected damage.

10



Proposition 2. For the multi-axial LMA load X = Xν given by (25) having covariance function
Σ and a common time scale parameter (relative size of transients) ν with a common kernel g, the
following relation holds

DX
β (a) =

(
aTΣa

)β/2
dβ(ν).

For the argument see Appendix C.
We see that the computation of the expected damage is reduced to the uni-axial case which has to

be done numerically and was discussed at the end of Section 4. In the model, the correlation matrix
Σ between the damage indexes of the components in a multi-axial load has to be estimated. Given the
kernels this can be done using the straightforward relation between the covariance of the process, the
kernel, and the matrix Σ = [σrk]r,k=1,...,M :

Cov (X(t),X(0)) = [gr ∗ g̃k(t) · σrk]r,k=1,...,M , (28)

where ∗ stands for the convolution operator and g̃(s) = g(−s), see [9] for details. If it is assumed that
the kernels for the uni-axial components are the same, i.e. gr(t) = g(t), r = 1, . . . ,M , then we obtain
a convenient relation that can be used for estimation of Σ:

Cov(X(t),X(0)) = g ∗ g̃(t) Σ.

As in the one dimensional case, see Section 5, the multivariate hybrid model is obtained by truncating
infinite sums in (25) at kr = µr T , where µr are the intensities of the transients, and approximating the
truncation errors by means of Gaussian processes, viz.

Zr(t) = prZ0r(t) +

kr∑
i=1

Zir(t), pr ∈ [0, 1]. (29)

Here Z0r(t) are correlated zero mean variance one Gaussian process having spectrum SXr , while
Zir(x)’s are defined as before using formula (25), viz.

Zir(t) = Zir
√
K∗ir · gr(t− Ui) (30)

Constants pr are chosen in such a way that VarZr(t) ≈ 1, and hence, employing approximation (41),

p2
r = e−νrkr/T = e−νrµr . (31)

Example 3.
In the example we consider two correlated processes X1(t), X2(t) having different both kurtoses

and kernels. The general model for process X1(t) was considered in Section 1, Example 1. It has the
exponential spectrum with parameter s = 0.05 and kurtosis κ = 20, i.e. the scale parameter of Laplace
noise is ν = 0.7 and the symmetric kernel g1(t) given in (16) is assumed.

The process X2(t) is the response of a linear damped oscillator driven by a white noise process.
The response has a power spectrum

SX(ω) = m−2 1

(ω2
0 − ω2)2 + 4α2ω2

(32)

and is a solution to the following standardized differential equation

Ẍ(t) + 2ζω0Ẋ(t) + ω2
0X(t) = m−1Λ(t), (33)

where Λ(t) is the Laplace white noise given in (11). Here α = ζω0, ω̃0 = ω0

√
1− ζ2. The symmetric

kernel can be obtained from (6), however here we will use a causal kernel given by the filters impulse
response function

g2(t) = m−1ω̃−1
0 e−α t sin(ω̃0 t), t ≥ 0, (34)

and zero otherwise. The Fourier transform of g2 is

(Fg2) (ω) = m−1 1

−ω2 + 2ζiω0 ω + ω2
0

11
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Figure 3: Segments of loads X1(t) and X2(t). The solid line corresponds to X1(t) having exponential
spectrum while the dashed line shows X2(t) that is an output of linear oscillator driven by a Laplace
noise. Top: Transient are correlated ρ = 0.9. Bottom: Uncorrelated sizes of transients, ρ = 0.

and hence by (5) it yields the spectrum in (32). In the example, the parameters are ζ = 0.1, ω0 = 20,
m = 1/80 and kurtosis κ = 10 which gives parameter ν = 0.9. The correlation between the transients
(represented in the general model by Σ) is set to ρ = 0.9.

We simulated 100 pairs of processes X1(t), X2(t). In Figure 3 (upper plot) a fragment of one such
simulation is presented. The processX1 is drawn using a solid line whileX2 is shown by a dashed line.
One can see that large transients in both functions start at the same location and that their amplitudes
are correlated. However, the correlation between signals is quite low, viz. Corr(X1(t), X2(t)) = 0.27
that is computed from (28). It is much smaller value than the correlation between the sizes of transients:
ρ = 0.9.

Next we illustrate that the correlation between damage indexes should be confused neither with Σ
nor with Corr(X1(t), X2(t)). For the multi-axial fatigue, it is more important to accurately model
the dependence between the damages than the one between the processes. Using 100 simulations, the
damages indexes have been computed in X1 and X2 for damage exponents β = 3 and β = 5. The
correlations between the damages were 0.8 and 0.74 for β = 3, 5, respectively, which are quite high
and not far from the correlation between the transients amplitudes ρ = 0.9. Finally, for the choice of
parameters and damage exponents, the expected damage indexes for X2 were 1.2, when β = 3, and
2.7, for β = 5, times higher than the expected damage indexes for X1(t).

Finally in Figure 3 (lower plot),X1(t), X2(t) simulated with uncorrelated transients sizes ρ = 0 are
shown. It follows clearly from (28) that X1(t), X2(t) are uncorrelated. However, one can observe in
the records that they are statistically dependent illustrating the fact that the Laplace models, in contrast
to the Gaussian ones, can be uncorrelated but still dependent.

7 Modeling cultivator loads

7.1 Data

The multivariate LMA model has been used to describe variability of forces and moments measured on
a cultivator working in harsh conditions, i.e. sandy soil with stones. Loads are six dimensional, three
forces and three moments. However, we observed directly in the data that only the forces Fy(t), Fz(t)
and of the moments Mx(t), My(t) are not negligible. The data set consists of 18 measured multi-axial
loads for tines working at the depth of 10 cm in the soil. The duration of signals are about 15 seconds
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and sampled with frequency 500 Hz. The damage indexes, defined in (2), computed for Mx,My are
much smaller than the damage indexes for Fy and Fz hence, arbitrarily, the bending moments has
been neglected in the analysis. Consequently in this particular case, we shall model a bi-axial load
(Fy(t), Fz(t)), fit and then validate it by means of the 18 measurements.

Univariate modeling of Fz(t) for a similar data set consisting of 12 time segments was discussed in
[15]. It was demonstrated that the LMA with an exponential spectrum can be used to model the force
and that the damage index was highest for LMA with the symmetric kernel. Based on these results,
we shall use a “conservative” approach and model the measured signals by symmetric kernels, given
in (16). We keep the parameter s and the kurtosis the same for both the components of the considered
bivariate load so that the average damage index for multivariate load can be computed by means of
Propositions 1 and 2. In the following examples an empirical formula for dβ(ν), β = 3, derived in [15]
through the regression approach discussed also in Section 4, is used

d3(ν) = 4.84 + 0.06ν + 8.32ν1/2 − 5.15ν1/3, (35)

where d3(ν), given in (19), is defined for Xν having symmetric kernel (16) and exponential spectrum
(15), with s = 1. We note that in our examples, we do not use the hybrid model since µ = 500 which
for all practical reason removes the Gaussian part of the hybrid model, therefore here d3(ν) does not
depend on µ.

7.2 Hierarchical model for parameter values

There are 18 bivariate data (Fy(t), Fz(t)), which in the generic notation of the previous sections corre-
spond to realizations of X(t) = (X1(t), X2(t)). To remain in the domain of applicability of Proposi-
tion 2, it is required that the relative size of transients represented by ν and the scale s of the exponential
kernel are the same for uni-axial signal X1 and X2. In a more general approach, one could allow both
s and ν to differ between X1 and X2 but, as discussed below, the data suggest that this is not necessary
and thus, as an important consequence, allowing for simplified computation of the damage following
from the results of this paper. All in all, our model for the bi-axial records is parameterized by the total
of 5 parameters: the time scale s and relative size of transients ν, variances σ2

1 and σ2
2 , and correlation

ρ.
It is observed that when each of 18 biaxial records is considered individually, statistical estimates of

these parameters are relatively accurate as measured by standard deviation of the estimation error and
considering their short lengths (only 15 seconds). Thus the statistical fit of the model to the data appears
to be reasonable. However, the accuracy of the model in a single run of experiment does not guarantee
statistically consistent fits between runs. In the terminology of the design of experiments, the run
of experiment can be a (nuisance) factor representing some unaccounted influences of experimental
settings. This effect is also described in mathematical theory as non-ergodicity of the model. In a
stationary but non-ergodic model the long time averages (estimates) are convergent to non-constant,
random values, and this randomness represents certain model unaccounted factors occurring during
each run of the experiment.

One way to build this into the model is by introducing a hierarchical structure in which the param-
eters of the LMA model are sampled from a certain distribution at each run of the experiment. In order
to determine if there is a justified need for the hierarchical model, stability of the model for different
runs of the experiment has to be investigated. To address this important question we have analyzed 18
different runs of the experiment to check the between-run variability of kurtosis and variances.

Let us start our discussion of the performed numerical study with comments on estimation of the
spectrum scale s. The estimation methods discussed in [15] have been applied to the eighteen runs of
bivariate measurements yielding 36 estimates of s obtained from the univariate records. The means of
the estimates of s yielded 0.0101, 0.0084, respectively for each force. Since the standard deviation for
the difference between the scale parameters is 0.0024, we conclude that the scale parameters do not
differ significantly and hence it can be assumed that both forces will have the same common estimated
value 0.0092 of s. The between run variation has been verified by utilizing Monte Carlo analysis of
variability of estimates. Using simulation algorithm described in Appendix D, twenty Monte Carlo
samples have been generated from the model with parameters taken from each of the 18 fits of the
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Figure 4: A study between run variability of the model. Top-Left: Logarithms of estimates of kurtosis
in 18 in loads Fy (dashed-dotted line), Fz (solid line) plotted together with Monte Carlo log-values of
the estimates (crosses – Fy ; circles – Fz). Top-Right: The differences of the estimates from the left
hand side plot. Bottom: Analogous plots for the variance estimates.

model based on the actual data. For each of these Monte Carlo samples, the parameters of the model
have been fit again and their variability was investigated and compared with the variability between
estimates for 18 runs of the experiment.

In Figure 4, we illustrate some of the performed analyzes. The estimates of kurtosis (Top) and vari-
ances (Bottom) for each of 18 signals are represented in the plots by piecewise constant graphs. In the
left hand side top plot, there are two such lines representing the 18 estimates of kurtosis (expressed in
their logarithms), one (dot-dashed) for Fy and the other (solid) corresponding to Fz . One can observe
that the kurtosis variability in-between runs is evidently larger than the one within the run observed in
the Monte Carlo simulations of estimates (crosses for Fy and circles for Fz). We conclude that the hier-
archic model with respect to the kurtosis is needed to fully account for this variation. In the right hand
side figure we confront the differences between kurtosis estimates for the empirical signals (piecewise
constant continuous line graph) and the corresponding differences obtained from the Monte Carlo sam-
ples. The variability of those differences does not appear to be significantly different from the Monte
Carlo variability verifying that the assumption of equal kurtosis (and thus of ν) is not contradicted by
the empirical data.

Similarly, in the bottom plots, we illustrate estimation of variances σ1 and σ2. Here it is evident
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that differences between estimates of the two force variances each of the forces are significantly non-
zero and a proper model for the data would require a different variance for each force. We also observe
significant between-run differences which calls for a hierarchical model with respect to variance. On the
other hand, we found that taking individually estimated correlation for each signal does not essentially
affects the accuracy of model fitting, so we opted for a common value of the correlation for all runs.

In the conclusion of this subsection, it is worth to mention that while the structure of hierarchical
models resembles the Bayesian models in this that the parameters are assumed to come from a certain
distribution (in the Bayesian terminology called the prior distribution), the two approaches should not
be confused. An important methodological distinction is that while the distributions of the parameters
in the Bayesian approach are somewhat arbitrarily chosen with fundamental inability for its empirical
verification, in the hierarchical models we actually have different runs of experiments that can be used
for statistical verification of the assumptions on the parameter distributions.

7.3 LMA modelling of (Fy, Fz), 10 cm tines depth

As we have seen in the previous subsection, there is a strong indication that variable parameters for
each run of the experiment are needed both for the common kurtosis of the two forces represented
(indirectly) by ν and their individual variances σ2

z and σ2
y . In the hierarchical model, we consider a

probabilistic distribution p(ν, σz, σy) on these parameters and compute the total expected damage as

Dtotal =

∫
DX
β (a; ν, σz, σy)p(ν, σz, σy)dνdσzdσy, (36)

where the explicit dependence of the damage on the parameters represented in the hierarchical model
is shown in the notation. When working with empirical data, one could replace p(ν, σz, σy) by its
empirical equivalent obtained from sample distribution of the fitted parameters (ν̂i, σ̂z,i, σ̂y,i), i =
1, . . . ,K, where in our example K = 18.

Despite the documented need for a hierarchical model, it is not clear that the damage itself is sensi-
tive to accounting for such a more complex model. For example, it is worth to verify if the following
Gaussian approximation is appropriate

Dtotal ≈ DX
β (a;µν , µσz , µσy ), (37)

where µν , µσz , µσy are the mean values of (functions of) random parameters (ν, σz, σy) with respect
to p(ν, σz, σy). In other words, one could investigate if it is reasonable to replace a hierarchical model
by a non-hierarchical and thus simpler one with the parameters being averaged values of parameters
across different runs of the experiment.

For this purpose, we consider two models for Σ. One in which a constant Σ equals to the average
estimated from the 18 signals and the other one in which we average correlation between X1 and X2

across the records but estimate variance for each signal separately. Additionally, we have considered
both varying and constant kurtosis. Here is a summary of models that are considered:

a) all parameters (kernel scale, kurtosis, variance, and covariance) fixed;

b) excess kurtosis and correlation between loads fixed but variable variances;

c) correlation between loads fixed, variable excess kurtosis between 18 records (although the same
for X1 and X2) and variable variances.

The choice between the alternatives is basically the question of sensitivity of the damage index
on variability of the parameters. Two values of the damage exponents are used, β = 3, 5, and the
damage index is computed by means of Propositions 1 and 2. Note that the parameter ν is computed
for gs kernel by means of (18), and hence the damage indexes (utilizing the notation in (20) and taking
a = (cos(θ), sin(θ))) are given by

DX
β (a) = DXνβ (1) · (a Σ aT )β/2 =

(a Σ aT )β/2

s
dβ(ν/s),

15



  2000

  4000

  6000

  8000

30

210

60

240

90

270

120

300

150

330

180 0

  500

  1000

  1500

30

210

60

240

90

270

120

300

150

330

180 0

Figure 5: The case of the damage exponent β = 3. Top: Damage of individual records. Solid lines:
18 observed damage indexes as function of θ (in the polar coordinates); Dashed line: 18 damage
indexes computed using Propositions 1 and 2 with observed variances, observed ν, fixed relative scale
s = 0.009 and fixed correlation ρ = 0.428 which is equal to the average correlation estimated from the
observed signal (using variable correlation affects results only marginally). Bottom: The total damage
indexes (over 18 cases): Solid thick line: averaged observed; Dashed line: average of dashed lines in
the top graph; Solid thin line: damaged computed using Propositions 1 and 2 with all parameters fixed
and equal to the observed averages.
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where dβ(·) stands, as in (19), for for the expected damage of the standardized LMA corresponding to
X1 (or X2), i.e. such that the kernel has the scale s equal to one and with the variance equal to one,
while ν represents the relative transient sizes. Substituting ν/s = 0.419κe, we obtain the following
formulas

D3(a) = s−1 · (a Σ aT )3/2(4.84 + 0.025κe + 3.486κ1/2
e − 2.158κ1/3

e ), (38)
D5(a) = s−1 · (a Σ aT )5/2(91.04 + 372.4κe − 794κ1/2

e + 538κ1/3
e ).

Since the frame of the cultivator is stiff the damage indexes Dβ(a) can be used as an indicator of
the severity of the loads. The factors a vary between hot spots and usually are computed using the final
element method. In this example, we investigate whether the proposed bi-axial hybrid model adequately
predict the observed damage indexes for different factors a. Next, the factors a = (cos(θ), sin(θ)),
0 ≤ θ ≤ π, were used. Consequently, the damage indexes in the following 18 signals were computed

Y obsi (t; θ) = cos(θ)Fy,i(t) + sin(θ)Fz,i(t), θ ∈ [0, 2π],

and i = 1, . . . , 18. In the following, we shall write Dobs
β (θ) for Dobs

β (a). The eighteen observed
damage indexes Dobs

β (θ) are shown using continuous lines in the polar coordinates in Figure 5-top,
where damage exponent β = 3 is used (an analogous graph for the case of β = 5 see Figure 6-
top). They can be compared with the dashed line graphs obtained using Propositions 1 and 2 with the
observed variances evaluated individually for each of 18 records.

In Figure 5-bottom, three differently computed averages of the total damage are shown. In a thick
solid line, we see the simple arithmetic mean of the 18 observed damages. The dashed line shows the
analogous mean based on the 18 damages obtained by estimating variance for each signal separately
(‘averaging’ the dashed lines in Figure 5-top ). Finally, the thin solid line shows the damage obtained by
substituting for the model parameters in Propositions 1 and 2 their averaged (over 18 records) estimates.
As we can see, the difference between the expected total damages: the observed one, the one computed
from (37) and the one from the hierarchical approach given in (36) is negligible, leading us to the
conclusion that the simplified computation based on the Gaussian approximation is appropriate.

However, the situation is different for the damage exponent β = 5. In Figure 6, we see analogous
plots to the ones given in Figure 5. Additional illustration in the middle presents the same values as
in the top graphs but using the logarithms of the damages in order to show better the agreement of the
records for small values of the damages. We can see in the bottom plot that the Gaussian approximation
(thin solid line) is not giving accurate damage, while the approach based on the hierarchical model
performs much better providing a good and conservative approximation of the damage obtained directly
from the empirical records.

8 Conclusions

We propose to use the multivariate Laplace moving average model for muliti-axial loads. Two use-
ful properties of the damage for this model are derived. One deals with the scaling/transient intensity
change of the load, while the other demonstrates how the damage resulting from the multivariate load
can be reduced to the damage for a univariate load. These properties allow for a straightforward com-
putation of the damage which is utilized in a study of multiaxial loads of a cultivator. The variability
of between run variation in the data is accounted through a hierarchical model. An example of biaxial
load data for a cultivator is studied. A discussion of sensitivity of the fitted model to the between run
variability observed in the experiment is carried out. The obtained results show that the model based
damage is quite robust on variability of the parameters in the case of β = 3, while the higher damage
exponent β = 5 requires the approach through hierarchical model in order to provide accurate estimates
of the damage. In general, the multivariate LMA model proves to be useful for studying damages re-
sulting from multiaxial loads. It summarizes in a very small number of parameters important features of
the loads that are affecting damage. This efficiency in parameters allows in particular to build in a clear
and manageable manner a hierarchical structure that seems to be necessary to explain all variability in
the investigated cultivator data.
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A Cross-moments of multivariate LMA’s

In this section we use the notation for the loads introduced in (13), (25), and (26). We present
some formulas for variance, kurtosis, and cross-correlations for Xr(t), Xrk(t) =

∑k
i=1 Zir(t), r =

1, . . . ,M . We start with an auxiliary formula that is straightforward to derive and valid for each positive
u and v:

E [(K∗ir)
u(K∗is)

v] = νur ν
v
sΓ(u+ v + 1)

(
T

T + uνr + vνs

)i
, (39)

E
[
(K∗ir)

u(K∗js)
v
]

= νur ν
v
sΓ(u+ 1)Γ(v + 1)

(
T

T + uνr + vνs

)i(
T

T + vνs

)j−i
, j > i. (40)

Below, we only use (39), while (40) is provided for the completeness.
Recall that gr, r = 1, . . . ,M , T > 0, and t are all chosen so that∫ T

0

g2
r(t− u) du ≈

∫ ∞
−∞

g2
r(u) du = 1.

As a consequence of this, given that v + t and v are within the range of t for which the above approx-
imation is valid, is that gr ∗ g̃s(t) ≈

∫ T
0
gr(v + t − u)gs(v − u) du, which is used in the calculations

below. Therefore from now on we assume that T , t, v are chosen so that these approximations are valid.
We have

VarXrk(t)

VarXr(t)
= 1−

∫ T

0

g2
r(t− u) du

(
T

T + νr

)k
≈ 1− e−νrk/T , (41)

where the approximation is accurate for large k.
We use (39) to compute the cross-correlation betweenXr andXs. Recall thatZir(t) = Z̃ir

√
K∗irgr(t−

Ui), with Z̃i = (Z̃i1, . . . , Z̃iM ) =
√

ΣZ, where Z is a standard normal vector. We obtain

Cov(Xrk(v + t), Xsk(v)) = Cov(Z̃ir, Z̃is)
1

T

∫ T

0

gr(t− u)gs(−u) du

k∑
i=1

E
[
K∗ir

1/2K∗is
1/2
]

= σrs
√
νrνs ·

1

T

∫ T

0

gr(t− u)gs(−u) du

k∑
i=1

(
T

T + (νr + νs)/2

)i
≈ 2σrs

√
νrνs

νr + νs

(
1−

(
2T

2T + νs + νr

)k)
gr ∗ g̃s(t)

(42)

and by passing with k to infinity

Cov(Xr(t), Xs(0)) ≈ 2σrs

√
νrνs

νr + νs
gr ∗ g̃s(t) (43)

B Scaling property of expected damage for LMA loads

Here, we explain how the scaling property of the Laplace motion translates to the scaling property
of the expected damage for the LMA model – the result that has been formulated in Proposition 1. Let
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Λν(t) be the Laplace motion given in (11) and consider Λ̃(t) = Λν(αt)/
√
α. We note that by using the

series expansion (11) of Λν(t), the process Λ̃(t) can be rewritten with Ũi = Ui/α which are distributed
over [0, T̃ ], where T̃ = T/α yielding for Λ̃ the representation (11) with ν̃ = ν/α or writing it in a
compact manner

Λν/α(t) = Λν(αt)/
√
α,

where the equality is understood in the distributional sense.
Consequently, the LMA processXs,ν(t) with a kernel gs(t) = g(t/s)/

√
s and driven by the Laplace

motion (11) with the parameter ν satisfies

Xαs,ν(t) =

∫ ∞
−∞

gαs(t− u) dΛν(u)

=

∫ ∞
−∞

g

(
t

αs
− u

αs

) √
α√
αs

dΛν/α

(u
α

)
=

∫ ∞
−∞

gs(t/α− w) dΛν/α(w)

= Xs,ν/α(t/α),

where the second equality is again in the sense of probability distributions.
From this it follows that the rainflow cycles for Xs,ν computed over the interval [0, T ] are the same

as those for Xν/s = X1,ν/s computed over [0, T ν]. Thus in view of (2) we have

D
Xs,ν
β (a) =

aβ

s
D
Xν/s
β (1)

and by taking the expected value, this relation carries over to the expected damages as presented in
(20).

C Expected damage for multivariate LMA loads

Let Y (t) be a linear combination of some coordinates a multi-axial load as defined by (1), where
Xj(t), j = 1, . . . ,M are given by (25). It follows directly from (25) that Y (t) conditionally on the
variance of transients K∗ij and their locations U = (Ui) is a Gaussian (non-stationary) process. Since
K∗ij’s are random only due to W = (Wi) and Γ = (γi), we can write this conditional process as

Y w,u,γ(t) =

M∑
j=1

ajX
w,u,γ
j (t),

in which Xw,u,γ
j (t) are non-stationary Gaussian process depending on (now non-random) realizations

of W,U,Γ. Using this notation one can formally write the expected damage as

DX
β (a) = E

[
E
[
DX
β (a)|W,U,Γ

]]
=

∫
DXw,u,γ

β (a) dP (w,u,γ),

where dP (w,u,γ) is the probability distribution of (W,U,Γ). Despite this ‘quasi’-explicit form
of the expected damage, computing it would be a formidable task. For example if one attempts to use
Gaussianity of Xw,u,γ the main challenges are: these processes are non-stationary (although Gaussian),
the conditional damages depend both on a and on (w,u,γ), and they would have to be averaged
according to the distribution of (W,U,Γ). Essentially such an approach would amount to numerical
evaluation through the Monte Carlo method.

However, if we assume that νr = ν, and gr(t) = g(t), r = 1, . . . ,M , then

Y (t) =

∞∑
i=1

√
νe−νγi/TWi · g(t− Ui)

M∑
r=1

arZ̃ir

=
√

aTΣa

∞∑
i=1

√
K∗i Zi · g(t− Ui),

21



where the second equality is of distributions. Here Zi’s are independent standard normal variables. If
we denote X(t) =

∑∞
i=1

√
K∗i Zi · g(t − Ui), we obtain the following simple relation between the

expected damage of multi-axial load and uni-axial load

DX
β (a) = DXβ

(√
aTΣa

)
=
(
aTΣa

)β/2DXβ (1).

Therefore, for a given kernel g, computation of the expected damage for any a, Σ, and ν reduces to
finding the expected damage ofX as a function of ν, which is a significant simplification of the original
problem.

D MATLAB code to simulate multi-axial correlated Hybrid model

For readers convenience we present the MATLAB codes used to simulate standardized (zero mean
variance one) multi-axial hybrid model having exponential spectrum. We consider a three dimensional
load. In the code some functions from the statistical toolbox in MATLAB are used. If the statistical
toolbox is not available, then equivalent functions from the WAFO [7] toolbox at www.maths.lth.
se/matstat/wafo/ can be downloaded free of charge. Note that the WAFO toolbox contains also
functions computing rainflow ranges that are used to estimate the fatigue damage index.

We will simulate tri-axial load saved in X on interval [−T, T ] with sample step dt. First the dis-
cretization step and related constants are set:

>> dt=0.001; T=120; N0=floor(T/2/dt); N=2*N0+1;
>> t=0.5*linspace(-T,T,N)’;

We now evaluate the kernel (g) and its transfer function (Gk), see (6). As in Example 1 we let
s = 0.034.

>> w=pi/dt*linspace(-1,1,N)’; w3=[w w w]; K=3;
>> dw=w(2)-w(1); s=0.034;
>> S=0.5*s*exp(-s*abs(w3));
>> Gk=ifftshift(sqrt(S))/sqrt(dt/dw/N);
>> g=fftshift(real(ifft(Gk)));

The values of the parameter ν defining the Laplace noise are saved in the vector nu. Here we shall
use ν = 0.002, 0.1, 0.077 giving LMA’s with kurtosis 3.14, 10, 8.4, respectively.

>> nu = [0.002; 0.1; 0.077 ];
>> intg=trapz(t,g)’;

In the following script one defines the covariance structure of the hybrid model. First the intensity
of transients µ will be given, then the correlation matrices for jump sizes (SIGMA) and the correlation
of added Gaussian noise (CG) will be specified.

>> SIGMA = [1 0 0; 0 1 0.7; 0 0.7 1 ]; CG=eye(3);
>> [V,D] = eig(SIGMA); AJump=V*sqrt(D);
>> [V,D] = eig(CG); AGauss=V*sqrt(D);
>> mu=500;

Now we turn to the the simulation algorithms of the multi-axial hybrid model. Basically the code is
an implementation of (25-31), where the simulated load is given in the matrix X;

>> X = zeros([N K]);
>> Njmp=min(floor(mu*T),N);
>> nu_min=min(nu);
>> G = exp(-nu_min*cumsum(exprnd(1,1,Njmp))/T);
>> W = sqrt(exprnd(1,1,Njmp));
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Figure 7: Variability of estimates of variances as a function of kurtosis for the hybrid model with the
intensity µ = 500 and the exponential kernel with s = 1. 1555 time units sampled with dt = 0.2222
were simulated, an equivalent of 14 seconds measurement of the cultivator force with dt = 0.002 and
s = 0.009. On the x-axis we have kurtosis and on the y-axis the estimated variances of the simulated
forces. (The observed kurtosis in cultivator signals was on average 11.5).

>> Z = AJump*normrnd(0,1,[K Njmp]);
>> dXG=sqrt(dt)*AGauss* normrnd(0,1,[K N]);
>> indU=randperm(N);
>> for ii=1:K
>> nui=nu(ii);
>> p=sqrt(exp(-nui*Njmp/T));
>> dLambda=zeros(1,N);
>> dLambda(1,1:Njmp) = sqrt(nui)*Z(ii,:).*W.*G.^(nui/nu_min/2);
>> dLambda=dLambda(indU)’;
>> dX = p*dXG(ii,:)’+dLambda;
>> X(:,ii) = real(ifft(Gk(:,ii).*fft(dX)));
>> end

We finish with some practical remarks on applications of the presented program to simulate the
multivariate hybrid model.

• It is assumed that the variance of the hybrid model is approximately one. The factors p, defined
in (41), are introduced to compensate for the bias introduced by truncating the infinite series to
k terms. However it should be noted that it does not remove variability of the estimates of the
variance from the simulated samples of the hybrid process caused by finite time lengths of a
simulated process. For short simulation periods T variability of the estimated variances is not
negligible and increases with the value of ν (kurtosis). This is well illustrated in Figure 7 were
simulated variances as function of kurtosis are presented. (Note that in general the growth rate
also depends also on the shape of a kernel because of the relation (8) between ν and kurtosis.)

• In the simulations presented in Section 7 the intensity of transients was set to µ = 500 [Hz],
which basically means that the LMA and not hybrid models were used. Hence ν could be es-
timated using the relation (8). Now for lower intensity µ, i.e. when parameters p in (41) are
non-zero, the relation (8) is no longer valid and can not be used to estimate ν. In the subsection
below we show how the coefficients of kurtosis should be adjusted to estimate parameter ν in
such a case.
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• For high intensity µ of transients, it can happen that k is larger than the number of simulated
times of the hybrid process. Extension of the program to cover such situations is straightforward,
however for transparency of the code we do not present it here.

D.1 Kurtosis for the hybrid model

Recall that if X(t) is a LMA process (9) with a kernel g, then the excess kurtosis of X(t) is given from
(8) by

κe(X(t)) = 3ν

∫
g(t)4 dt. (44)

The series representation approximates X(t) through

ν

∞∑
i=1

ZiWie
−νΓi/T g(Ui − t) (45)

and this approximation is utilized in the hybrid model (22) which we write here as

XH(t) = Xk(t) + pZ0(t),

where Z0(t) is the Gaussian part and

Xk(t) = ν

k∑
i=1

ZiWie
−νΓi/T g(Ui − t),

while p is chosen so that variances of the full series and the hybrid model agree.
In the paper we have focused on the case when the parameter ν is estimated from (9) since for the

discussed data there was no need for adding the Gaussian component, i.e. p ≈ 0 or, equivalently, the
intensity µ of the transients per time unit is very large (recall that p2 = exp(−µν) ≈ (1 + ν/T )−k,
where T = k/µ is the observation time). In the full generality however, if the meaningful hybrid model
is considered, we should work rather with the kurtosis of the hybrid model, which has to be worked
out. Here we present its derivation.

Recall that if the distribution of (X,Y ) is either the same as that of (X,−Y ) (or (−X,Y )) so that
any E

[
XmY 2k−1

]
(E
[
X2k−1Y m

]
), k ∈ N vanishes, then the following formula hold for the kurtosis

of the sum of random variables

κe(X + Y ) =
6ρ+ rκe(X) + r−1κe(Y )

2 + r + 1/r
, (46)

where r = Var(X)/Var(Y ) and ρ = Cov(X2, Y 2)/(Var(X)Var(Y )). In particular, if X is Gaus-
sian (so that κe(X) = 0) and independent of Y , then

κe(X + Y ) =
κe(Y )

(r + 1)2
.

Applying this to the hybrid model we obtain

κe(XH(t)) = (1− p2)2κe(Xk(t)). (47)

It remains to evaluate κ(Xk(t)). To this end let us denote R(t) = X(t)−Xk(t) and note that by (46)
we have

κe(X(t)) =
6ρ+ rκe(R(t)) + r−1κe(Xk(t))

2 + r + 1/r
, (48)

where r = p2/(1− p2) and

ρ =
Cov(R2(t), X2

k(t))

p2(1− p2)
.
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We first note that from the series representation (45):

R(t) = νe−νΓk/T
∞∑
j=1

Z̃jW̃je
−νΓ̃j/T g(Ũj − t),

where Z̃j = Zk+j , W̃j = Wk+j , Ũj = Uk+j , Γ̃j = Γk+j − Γk. Consequently,

E [Rm(t)] = E
[
e−mνΓk/T

]
· E [Xm(t)] =

T k

(mν + T )
k
· E [Xm(t)] ≈ e−mνµE [Xm(t)]

and thus

κe(R(t)) ≈ κe(X(t)).

Using this approximaton in (48), we obtain

κe(Xk(t)) = (2r + 1)κe(X(t))− 6ρr

≈ 3

1− p2

(
ν(1 + p2)

∫
g4(t) dt− 2ρp2

)
=

3

1− e−νµ

(
ν

∫
g4(t) dt+ e−νµ(ν − 2ρ)

)
.

(49)

Tedious but straightforward calculation yields

Cov(R2(t), X2
k(t)) ≈

≈ ν4

∫
g2(t) dt

T

(
T

2ν + T

)k(
2ν

(
1−

(
2ν + T

4ν + T

)k)
− T

((
T

2ν + T

)k
−
(

2ν + T

4ν + T

)k))

≈ 2ν3e−2νµ

T

(
1− e−2νµ

)
and thus

ρ ≈ 2ν3e−νµ

T

(
1 + e−νµ

)
.

Substituting this to (49) yields

κe(Xk(t)) ≈ 3ν

1− e−νµ

(∫
g4(t) dt+ e−νµ

(
1− 4ν2

T
e−νµ(1 + e−νµ)

))
.

Finally, substituting the above to (47) yields

κe(XH(t)) ≈ 3ν(1− e−νµ)

(∫
g4(t) dt+ e−νµ

(
1− 4ν2

T
e−νµ(1 + e−νµ)

))
≈ 3ν(1− e−νµ)

(∫
g4(t) dt+ e−νµ

)
,

where the last approximation is valid because T is assumed to be large and is equivalent to considering
ρ ≈ 0. In practice, this equation should be used in order to get an estimate of ν (given µ) from the
sample excess kurtosis. No explicit solution for ν is available but the solution can be easily obtained
through standard numerical approximations.
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