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Abstract

We will study regularity properties of the solution operator Et to the
subcritical semi-linear wave equation, and in particular the Lipschitz con-
tinuity in the (non-linear) energy space in low dimensions.

1 Introduction

We will discuss regularity properties of the solution operator Et to the semi linear
hyperbolic equation

∂2
t u−∆u+m2u+ f(u) = 0, t > 0, x ∈ Rn, u|0= φ, ∂tu|0= ψ, (1.1)

in case m = 0, f(u) = |u|ρ−1u (we could use more assumptions on f, e.g. those
in [11]) and where the data φ, ψ belong to (Ḣ1

2 ∩ Lρ+1) × L2 = Xe, the energy
space for the non linear equation. If m 6= 0, the space Ḣ1

2 is replaced by the
corresponding inhomogeneous space H1

2 = Ḣ1
2 ∩ L2. If m > 0, we denote the

equation (1.1) by NLKG (the non linear Klein-Gordon equation), and if m = 0,
we denote it by NLWE (the non linear wave equation). Regularity properties of
Et for the NLKG were discussed in [11].
For any solution u with data in the energy space Xe the energy

E(u) =
1

2

∫
(|∂xu|2 +m2|u|2 + |∂tu|2)dx+

1

ρ+ 1

∫
|u|ρ+1dx
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is conserved for ρ < ρ∗(n) = n+2
n−2

, and is for ρ ≥ ρ∗(n) uniformly bounded by the
energy of u(0) (cf. Strauss [37]).

Above Ḣs
p denotes the homogeneous Sobolev space of order s, based on Lp, where

for p = 2 we may drop the reference to the L2-space. The corresponding inho-
mogeneous space is then Hs

p = Ḣs
p ∩ Lp.

For the linear and non-linear Klein-Gordon equations, the energy spaces on which
energy is conserved in the sub-critical case are the same (by Sobolev’s inequality),
that is H1

2 × L2.
This is not the case for the linear and non-linear wave equations, however. Here
the energy space for the linear equation is, leaving out non-zero constant solu-
tions, E = Ḣ1

2 ∩ Lρ∗+1 × L2. with nδρ∗+1 = 1 for (corresponding to the critical
case ρ = ρ∗ for the non-linear equation), while the NLWE has as energy space
Xe = Ḣ1

2 ∩ Lρ+1 × L2. We will write e(I) for L∞(I;Xe) and E(I) for L∞(I;E).
Solutions with finite energy data are unique in the sub-critical case (see Ginibre
and Velo [16],[18] and also [10]). We give a short proof for the NLWE below.
The following result is partly known and implicit in these uniqueness and exis-
tence results. For a proof, see e.g. [11] in the case m > 0, and for earlier related
work for m = 0 in [18]. The differences in results between this paper and that of
Ginibre and Velo [18] is mainly a result of a different choice of the basic energy
space Xe, and the focus on slighly different problems for the NLWE.

Theorem 1.1. Let 3 ≤ n ≤ 7, and ρ∗(n) > ρ > ρ∗ = 1 + 4
n−1

. Then Et is
Lipschitz continuous on the energy space Xe for t > 0.

The following comments follow from the proof of Theorem 1.1.

(1) With the lower bound ρ > 1 + 4.5
n−1

Theorem 1.1 holds also for n=8.

(2) Let 3 ≤ n ≤ 7, and ρ∗(n) > ρ > 1. Then Et : Xe 7→ E is Lipschitz continuous
for t > 0.

The question of uniform estimates in the time variable will be treated in a sequel
to this paper.
As for m > 0 (although not proved here) the solution operator for the NLWE in
the subcritical case is also Hölder continuous of order α(n) > 0 for n ≥ 3 on Xe.
([11]).
The restriction to low dimensions in Theorem 1.1 is natural ( and the given
bounds of the space dimension probably necessary) in view of the results on Lip-
schitz and Hölder continuous opertors in [13].
We will supply a proof of Theorem 1.1 based on the methods used in [11].
For basic properties of Besov and Sobolev spaces we refer to Bergh and Löfström
[3] and also [2],[14]. For a discussion of the homogeneous Besov and Sobolev
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spaces in the present context, e.g. representation of the elements in the homoge-
neous spaces as distributions, see Bourdaud, [5], [6] and also the Appendix in [18].

2 Energy spaces

For the linear and non-linear Klein-Gordon equations, the energy spaces on which
energy is conserved in the sub-critical case are the same (by Sobolev’s inequality),
that is H1

2 × L2.
As mentioned in the introduction, this is not the case for the linear and non-linear
wave equations, however. Here the energy space for the linear equation is, leaving
out non-zero constant solutions, Ḣ1

2 ∩ Lρ∗+1 × L2. with nδρ∗ = 1 (corresponding
to the critical case for the non-linear equation), while the NLWE has as energy
space Xe = Ḣ1

2 ∩ Lρ+1 × L2. We will write X1
e for the first component.

Let us point out a property of finite energy solutions u(t) of the linear and
non-linear wave equation (cf. [39]): Assume that additionally u(0) = φ ∈ L2.
For such u(t), t 7→ ∂tu(t) is weakly continuous in H1

2 and so, again weakly,
u(t) =

∫ t
0
∂tu(τ)dτ + u(0). Thus the L2-norm of u(t) is by the energy inequality

estimated by

‖u(t)‖2
L2
≤ 4T 2E(u(0)) + 2‖u(0)‖2

L2
, 0 < t ≤ T

for any T > 0. If we apply (linear) interpolation between H1
2 and Ḣ1

2 ∩ Lρ∗+1 we
find that:

if u0 is a solution of the wave equation, with initial data in Xe =
Ḣ1

2 ∩Lρ+1×L2, then also u0 ∈ Lloc∞ (Xe), and in particular, u0(t) ∈ Lp′
for ρ + 1 ≤ p′ ≤ ρ∗ + 1, t ∈ R+, with growth in t bounded by
C(1 + t)1−nδp′ .

By the energy inequality, the same statement holds for the solution u(t) of the
non-linear equation, now with uniform estimates i time, however.

3 Solution operators and basic kernel estimates

Let u0 be the solution of the wave equation

∂2
t u−∆u = 0, t > 0, x ∈ Rn, u|0= φ, ∂tu|0= ψ, (3.1)
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with (φ, ψ) in Xe = Ḣ1
2 ∩ Lρ+1 × L2, with ρ < ρ∗. Then we can write

u0(t) = E0(t)φ+ E1(t)ψ

and by e.g, [7]
‖Eµ(t)v‖Ḃs′

p′
≤ Kµ(t)‖v‖Ḃsp , µ = 0, 1 , (3.2)

where for 0 ≤ θ ≤ 1
0 = µ− (n+ 1 + θ)δ + s− s′ (3.3)

and where Kµ(t) satisfies

Kµ(t) ≤ Ctµ−2nδ+s−s′ ≤ Ct−(n−1−θ)δ (3.4)

Let K(t) denote the upper bound in (3.4). Notice that with the assumption (3.3)
K is independent of µ. If

(n− 1− θ)δ < 1 (3.5)

then K ∈ Llocr with 1 ≤ r < 1
(n−1−θ)δ .

If we replace the Besov spaces in (3.2) with their inhomogeneous counterparts,
then we may use inequality (≤) in (3.3).
At this point it is convenient to notice that the finite energy solution of (1.1) is
the (weak) finite energy solution of integral equation

u(t) = u0(t) +

∫ t

0

E1(t− τ)f(u(τ)dτ (3.6)

where u0 is the solution of the linear Klein-Gordon equation (3.1) with the same
initial data (in Xe) as u.
Remark We have (cf. [19]),

Ḃs
p = Ḃs,2

p ⊇ Ḣs
p , p ≤ 2 , Ḃs′

p′ = Ḃs′,2
p′ ⊆ Ḣs′

p′ , p
′ ≥ 2 (3.7)

Thus estimates of the Ḃs′

p′ -norms (in terms of Ḃs
p-norms) imply the corresponding

estimates in the Sobolev norms Ḣs′

p′ (in terms of the Ḣs
p-norms). Estimates of the

Ḣs
p-norm in terms of Ḣs′

p′ -norms in the same way imply the corresponding Besov
space estimates. The estimates in this section (these subsections od Section 5)
will be proved in the appropriate strongest form - so that all the main estimates
will be equally valid in Besov space norms as in Sobolev space norms.
We will also use the Sobolev embedding in the following form for the homogeneous
Besov spaces (for a short proof, see [19]): Let si ∈ R, 1 ≤ p1 ≤ p2 and let δi = δpi ,
i = 1, 2. Then

Bs1
p1
⊆ Bs2

p2
, if

n

p1

− s1 =
n

p2

− s2, (3.8)

and in particular if
nδ1 + s1 = nδ2 + s2, p1 ≥ 2

and correspondingly for p2 ≤ 2, changing the signs of the si.
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4 Strichartz type estimates

Using (3.4), a duality argument (a clear exposition of the duality argument can be
found in Ginibre and Velo [18]) and Young’s (or the Hardy-Littlewood) inequal-
ity, we obtain the following space-time estimate the classical Strichartz estimates,
originated by Strichartz [38]. For general Strichartz estimates, see Ginibre and
Velo [18], and the references given there.The endpoint estimates are due to Keel
and Tao [25].
First some notation: We denote Lr′(I;Bs′

p′) by A(s′, I) and Lr(I;Bs
p) by B(s, I)

for any interval I in R+. If (r′, s′, p′) or (r′, 1− s, p′), where as usual r′, s′ are the
duals of r, s, are Strichartz triples, i.e. satisfy (4.1) below, then we simply write
A(I) and B(I), respectively. With a, b, . . . we denote the spaces A,B, . . . with
the Besov spaces replaced by Sobolev spaces.
The corresponding spaces with homogeneous Besov or Sobolev spaces are as usual
supplied with a · on top.
In addition we write E = Ḣ1

2 ∩ Lρ∗+1, E(I) = L∞(I; Ḣ1
2 ∩ Lρ∗+1) and e(I) =

L∞(I;X1
e ).

Proposition 4.1 (Strichartz estimates). Let n ≥ 3, s′ ∈ R and r′, p′ ≥ 2. Then
if u0 is a finite energy solution of the wave equation,

u0 ∈ Ȧ(I), any interval I ⊆ R+

and
‖u0‖Ȧ(I) ≤ C‖u0‖E(I)

with C independent of I and u0, provided (r′, p′, s′) satisfy

s′ = 1− n+ 1

2
δ − s′′, and 1

r′
=

1

2
(n− 1)δ − s′′ ≤ 1

2
, (4.1)

for some s′′ ≥ 0.
For n = 3 the value r′ = 2, (n− 1)δ = 1 is not allowed.

We call a triple (r′, s′, p′) satisfying (4.1), with the endpoint restrictions a Strichartz
triple.
Another way to write (4.1) is (cf. [19])

s′ + nδp′ −
1

r′
= 1 (4.2)

2

r′
≤ min((n− 1)δ, 1)

(4.3)
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again with r′ = 2, (n− 1)δ = 1 not allowed for n = 3.

Let as above X1
e = Ḣ1

2 ∩ Lρ+1. Then by the discussion in the end of the last
subsection,

Lloc∞ (X1
e ) ⊂ Llocr′ (X1

e ) ⊂ Llocr′ (Lp′), ρ+ 1 ≤ p′ ≤ ρ∗ + 1, r′ ≤ +∞ (4.4)

so that

‖u0‖Lr′ (I;Lp′ ) ≤ C(I)‖u0‖e(I), ρ+ 1 ≤ p′ ≤ ρ∗ + 1, r′ ≤ +∞ (4.5)

where I is a bounded interval i R+. With the Strichartz estimate this proves the
following estimate for solutions u0 of the wave equation with data in Xe:

‖u0‖A(I) ≤ C(I)‖u0‖e(I), I ⊂⊂ R+, ρ+ 1 ≤ p′ ≤ ρ∗ + 1 (4.6)

We may take this further, however. Since u0 ∈ Lr′(I;Bs′

p′) for any Strichartz

triple with ρ + 1 ≤ p′ ≤ ρ∗ + 1, u0(t) ∈ Lp′′ for 1
p′′
≥ 1

p′
− s′

n
for any p′ in this

range: hence

δp′′ =
1

n
+

(n− 1)δp′

2n

Thus u0 ∈ Llocr′′ (B
s′′

p′′), where (r′′, s′′, p′′) is a Strichartz triple ( as long as (n −
1)δp′′ ≤ 1). If we bootstrap this argument, and use that

1

n

∞∑
0

(
(n− 1)

2n
)k ≥ 1

n− 1
, n ≥ 3

with strict inequality for n > 3, we find that in a finite number of steps we reach
(n − 1)δp′ = 1 for n > 3, and come arbitrarily close to this for n = 3. Together
with the Strichartz estimate, (4.2) and (3.8), this now proves that

‖u0‖A(I) ≤ C(|I|)‖u0‖e(I), I ⊂⊂ R+, ρ+ 1 ≤ p′, (4.7)

If we assume ρ∗+1 ≤ p′ then e(I) may be replaced by E(I), with C(|I|) depending
on the Xe-norm of the initial data.

We now turn to some variations of Proposition 4.1 and the Strichartz estimates.
Let w0 be defined by

w0(t) =

∫ t

0

E1(t− τ)h(τ)dτ (4.8)

where h = h(t, x) ∈ Lloc1 (L2).

Proposition 4.2. With the notation of (3.2) through (3.4), let µ = 1. Let
I ⊂ R+, let w0 be defined by (4.8) with the integral taken over I. Let Ȧ(I) be
defined as above, let B̄(I) = Lr̄(I; Ḃ s̄

p̄). Let (r′, s′, p′) and (r̄′, s̄′, p̄′) be Strichartz
triples with s̄ = 1− s̄′. Then

‖w0‖E(I) + ‖w0‖A(I) ≤ C‖h‖B̄(I), t ∈ I (4.9)

with C independent of I.
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For a proof, see e.g. Ginibre and Velo [18], and for the end-point estimates [25].

We will use (and prove) the following variation of Proposition 4.2.

Proposition 4.3. With the notation of Proposition 4.2, let I be a bounded in-
terval in R+, and let w0 be defined by (4.8) with the integral taken over I. Then
for 0 ≤ ε ≤ 1

r̄′
,

‖w0‖Ȧ(I) ≤ C|I|ε‖h‖B̄(s̄+ε,I), t ∈ I (4.10)

with C independent of I.

Again, we want to use initial data i Xe and hence estimate also w0 in Lloc∞ (X1
e ).

Excluding non-zero constants (which will not be in Xe) we have by Proposition
4.3 and the invariance of Eµ(t) under (fractional) powers of (−∆) we get for
σ ≥ 0

‖w0(t)‖Ḣ1−σ
2
≤ C|I|ε′‖h‖B̄(s̄+ε′−σ,I), t ∈ I (4.11)

and since under these assumptions,

Ḣ1−σ
2 ⊂ Lρ+1, σ = 1− nδρ+1

by Proposition 4.3 we get the following result:

Corollary 4.1. With the above notation, let e(I) = L∞(I;X1
e ). Then for I a

bounded interval in R+

‖w0‖e(I) ≤ C|I|ε(‖h‖B̄(s̄+ε−σ,I) + ‖h‖B̄(s̄+ε,I)) (4.12)

with C independent of I, where

σ = 1− nδρ+1 = n(δρ∗+1 − δρ+1) (4.13)

There is another consequence of Proposition 4.3:The uniform continuity of w(t)
in H1

2 -norm.

Corollary 4.2. Assume that h ∈ B̄(s̄ + ε, I), I ⊂ R+ and ε > 0. Then w0(t) is
uniformly continuous on I in the Ḣ1

2 -norm.

Proof: Let t, t′ ∈ I. We have then

w0(t)− w0(t′) =

∫ t

t′
E1(t− τ)h(τ)dτ + (E0(t− t′)− I)w0(t′)

where by Proposition 4.2 and our assumptions w0(t′) is uniformly bounded in E.
Since E(t′′)−I tends to 0 uniformly on E as t′′ → 0, the second term is uniformly
continuous on E for t, t′ ∈ I. Applying Proposition 4.3, our assumptions on h
imply that the first term is Hölder continuous of order ε > 0 on E for t, t′ ∈ I.
This completes the proof. �
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Proof: [of Proposition 4.3 based on Proposition 4.2] Let ε > 0, Then if (r̄′, 1−
s̄, p̄′) is a Strichartz triple, the so is (r̄′ε, 1− s̄− ε, p̄′), where 1

r̄ε
= 1

r̄
+ ε. Replace r̄

by r̄ε and s̄ by s̄+ ε in (4.10). Then apply Hölder’s inequality to the Lr̄ε-integral
over I, and the statement in the Corollary follows. �

5 Besov- and Sobolev space estimates of u 7→
f (u)

The following estimates of f(u) are well known (cf. [8],[18]) and contains a version
of Lemma 3.1 in [11] (some misprints are corrected here) for homogeneous spaces.
The proof is a straightforward application of Hölder’s inequality, but as it contains
an unusual twist in case ρ ≤ 2, we give a sketch of that part of the proof.
As before (motivated by our study of functions u in Ḣ1

2 ∩ Lρ+1) we exclude non-
trivial constants from the homogeneous spaces. In applications we will usually
assume (as in (3.3) through (3.5)) that (n− 1− θ)δ < 1.

Lemma 5.1. Let f(u) = |u|ρ−1u with ρ < ρ∗ = n+2
n−2

.
Let 0 ≤ θ ≤ 1 and assume that 1 ≥ s, and that s, s′ ≥ 0, with s − s′ =
(n+ 1 + θ)δ − 1. Assume in addition that ε and η are real.
Then

‖f(u)‖Ḃs+εp
≤ C‖u‖ρ−1+η

Ḣ1
2

‖u‖1−η
Ḃs
′
p′

(5.1)

where for ρ ≤ 2− η,

s+ ε− s′

1− s′
+ 1− η ≤ ρ (5.2)

1− ρ ≤ η ≤ 2− ρ

and where for ρ+ η ≥ 2, 1− ρ ≤ η ≤ min(1, ρ− 2), provided

ρ = ρ(n, δ, θ)− 2η
nδ − 1 + s′

n− 2
− 2ε

1

n− 2
(5.3)

ρ(n, δ, θ) =
n+ 2(n− 1− θ)δ

n− 2

Correspondingly for non-homogeneous spaces Bs
p and Bs′

p′ we have

‖f(u)‖Bs+εp
≤ C‖u‖ρ−1+η

e ‖u‖1−η
Bs
′
p′

(5.4)

provided that (5.3) holds with equality replaced by inequality (≤), and with an
additional lower bound

ρ ≥ 1 + 4δ − 2ηδ + 2δρ+1(ρ− 1 + η) (5.5)
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Remarks In particular, (5.5) holds for δ ≤ δρ+1 for any ρ ≥ 1, and the right hand
side of the inequality is then less than or equal to the right hand side of (5.3) for

θ = 0 and ε small. The maximal value of ρ(n, δ, θ) is then (for θ = 0) ρ̂ =
n+2− 2

n

n−2

for ρ ≤ ρ∗, as nδρ∗+1 = 1. This implies that the non-homogeneous estimate holds
for 1 < ρ ≤ ρ̂ and p′ = ρ+ 1.
The range of ρ in the homogeneous estimate is for |ε|, |η| small, and with
(n− 1− θ)δ ≤ 1, given by 2

n−2
≤ ρ− 1 ≤ 4

n−2
.

The value of s′ may be chosen larger than in the corresponding Strichartz esti-
mate, depending on θ.

Proof: Assume first η = 0 and that ρ ≤ 2.We may assume equality in (5.2),
replacing Bs

p by B s̄
p̄. Let s̄ = s+ n(δp̄ − δp) = s+ ε′.

We shall use (5.2) and (5.3) to prove (5.1). With uh = u(·+h), and wh = w(uh, u),

|h|−s̄|f(uh)− f(u)| ≤ |h|−s̄|f ′(wh)||uh − u|

where
|f ′(wh)| ≤ C(|uh|+ |u|)ρ−1

By (5.2) we have s̄ = s′ + (ρ− 1)(1− s′)− θ = ρ− 1 + s′(2− ρ), and so,

|h|−s̄|uh − u| ≤ (|h|−1|uh − u|)ρ−1(|h|−s′ |uh − u|)2−ρ

Taking L2-norm in space of the first factor on the right, and the Lp′-norm of the
second factor, we get using Hölder’s inequality that

‖f(u)‖Ḣs+ε
p
≤ C‖u‖ρ−1

Ḣ1
2

‖u‖2−ρ
Ḣs′
p′
‖u‖ρ−1

Lr

with 1
r

= 1
p′
− s′

n
, provided

1

2
+ δp̄ = (ρ− 1)

1

2
+ (2− ρ)(

1

2
− δ) + (ρ− 1)(

1

2
− δ− s

′

n
) =

1

2
− δ+ (ρ− 1)(

1

2
− s

′

n
)

and so
4nδ + 2ε′ = (ρ− 1)(n− 2) + 2(ρ− 1)(1− s′)

Now by (5.2)

(ρ− 1)(1− s′) = s+ ε′ − s′ = ε′ + (n+ 1 + θ)δ − 1

which gives the bound (5.3). If s̄ = s+ ε′ + ε, we get (5.3) with η = 0.
Next replace ρ by ρ + η ≤ 2 in the above argument and we get (5.1), provided
(5.2) and (5.3) hold. Estimating f(u) = f ′(w)u in Lp splitting |u| in |u|ρ−1|u|2−ρ
and estimating the factors in Lρ+1 and Lp′ , respectively, and |f ′(w)| in Lp′ , we
obtain (5.5).
The proof of (5.1) for ρ > 2, ρ+η > 0 is a straightforward application of Hölder’s
inequality. �
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6 Space time integral estimates of u 7→ f (u)

We shall establish Space Time Integral (STI) estimates of u 7→ f(u), as they
appear e.g. in Propositions 4.2 and 4.3 in terms of the norms of u given in
Proposition 4.1.
We assume throughout that f(z) = |z|ρ−1z, that n ≥ 3, and that 1 < ρ <
1 + 4

n−2
= ρ∗.

Then let s = 1− s′, and (r′, s′, p′) be Strichartz triple. We define

1

r(θ)
= 1− θ

r′
,

1

p(θ)
=

1

2
+ δθ, 0 ≤ θ ≤ 1 (6.1)

so that (r(θ)′, 1− θs, p(θ)′) is a Strichartz triple, too.
Let I ⊆ R+ be an interval. We will for for short write Ã = L2(I;Bs′

p′) and
Bθ(s, I) = Lr(θ)(I;Bs

p(θ)).
Define

β = ρ+ θ − 2, 0 ≤ θ < 1 (6.2)

For n = 3, 4 we assume that β is an integer, and (in consequence) that β = 0 for
ρ ≤ 2, all n ≥ 3. If n = 5 we will below choose β suitably in the range 1

3
< β < 1

for 2 < ρ ≤ ρ∗ = 21
3
.

Notice also that s = 1
2
(n+ 1)δ.

As before, uh = u(·+ h). Then

|f(uh)− f(u)| ≤ C(|uh|+ |u|)ρ−1|uh − u|

Assume that ε ≥ 0. In view of Proposition 4.3, we will eventually restrict ε to be
≤ 1

2
(n − 1)δ.Let als 0 ≤ θ < 1 and γ = s′ for ρ ≤ 2 and γ = 1 otherwise.With

s̄ = θ(s+ ε) and θ̄ = s̄
γ

we get, provided s̄ = θs+ ε ≤ γ (see [d], [d’] below)

|h|−s̄|uh − u| ≤ (|h|−γ|uh − u|)θ̄|uh − u|1−θ̄

and so for h small

|h|−s̄|f(uh)− f(u)| ≤ C|u|ρ−θ̄(|h|−γ|uh − u|)θ̄

Then with a constants C and C(I), where C(I) ≤ C(1 + |I|)( 1
2
− 1
r′ )(ρ−β) may

depend on I,

‖f(u)‖Bθ(θs+ε,I) ≤ C‖u‖ρ−β
Ã(I)
‖u‖βe(I)

≤ C(I)‖u‖ρ−βA(I)‖u‖
β
e(I) (6.3)

and the corresponding homogeneous estimates, replacing e(I) by E(I), provided
that, after some (straightforward) reductions of “standard” Sobolev and Hölder
estimates,
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in particular

1

2
+ δθ = (ρ− θ̄)(1

2
− δ − s′

n
) + θ̄(

1

2
− δ)

and for β ≥ 1,

1

2
+ δθ = (ρ− β)(

1

2
− δ − s′

n
) + (β − θ̄)(1

2
− 1

n
) + (θ̄(

1

2
)

which give for β ≥ 0

n ≥ ρ(n−2)−(ρ−β)(n−1)δ+θ(n+1)δ−2nδθ+2θε = ρ(n−2)−(ρ−β+θ)(n−1)δ+2θε

If we want to use homogeneous norms in (6.3), we need in addition to
the above estimates with e(I) replaced by E(I), and ≥ replaced by
=.
In addition, for the non-homogeneous estimate we need that

1 + 2δθ ≤ (ρ− β)(1− 2δ) + βδρ+1

and so with (6.2)

ρ ≥ 1 + 2δ(θ+ ρ− β) = 1 + 2δ(θ+ 2− θ) + 2βδρ+1 = 1 + 4δ + 2βδρ+1

These derivations are useful if we change (6.2) to e.g. β = ρ+ θ− r′′,
where 2 ≤ r′′ ≤ r′ to extend the global estimates from uniform L2-
estimates in time to uniform Lr′-estimates.

the following conditions hold:

[a ]ρ ≤ n+2(n−1)δ
n−2

− 2θε
(n−2)

, with ≤ replaced by = in case of homogeneous estimates

[b ] 1 + 4δ + 2βδρ+1 ≤ ρ, left out in case of homogeneous estimates

[c ] r′ + β − θ ≥ ρ

[c’ ] 2 + β − θ = ρ (i.e. (6.2))

[d ] (2 + β − ρ)(s+ ε) ≤ γ,
that is with [c’]:

[d’ ] (2− ρ)(s+ ε) + s ≤ 1 if β = 0

11



Notice that [a] coincides with (5.3), and that with β = θ+ ρ− 2 ≤ ρ− 1 will also
recover (5.5) i [b].
We will first show that for each ρ, 1 < ρ ≤ ρ∗, we can find p′ = p′(ρ, n) ≥ ρ + 1
such that for ε = 0 (or, with an obvious extension of the argument below, small)
the right hand side of [a] is at least as large as the left hand side of [b], where
(n− 1)δ ≤ 1:
To this end, notice that β = ρ+θ−2 ≤ ρ−1, and hence the remark after Lemma

5.1 shows that for 1 < ρ ≤ ρ̂ =
n+2− 2

n

n−2
we find that p′ = ρ + 1 will do for all

n ≥ 3.
Next assume that δp′ ≥ δρ∗+1, p > 2. Then we require

4δ + 2δρ+1β ≤
2 + 2(n− 1)δ

n− 2
(6.4)

where we have chosen p′ such that the right hand side equals ρ.

n=3 and β = βmax = 3 gives

4δ + 2 ≤ 2 + 4δ

and (6.4) is proved for n=3.
n=4 and β = 1:

4δ +
1

2
≤ 1 + 3δ

and so (6.4) holds (for δ ≤ 1
2
).

n=5. This time take 1
3
< β < 5

6
:Then (6.4) holds for δ ≤ 1

4
= 1

n−1
in

case n=4.
Thus (6.4) is verified for n = 3, 4 and 5. It remains to consider the
case n ≥ 6, when ρ ≤ 2: but then

4δ ≤ 2 + 2(n− 1)δ

n− 2

implies that (n − 3)δ ≤ 1, and so all δ with (n − 1)δ ≤ 1 is allowed.
This completes the verification of (6.4) for n ≥ 3.
Thus: For 1 < ρ ≤ ρ∗ and n ≥ 3 we can find p′ = p′(ρ, n) ≥ ρ + 1
such that the right hand side of [a] is at least as large as the left hand
side of [b] (with ε small).

To verify [d] for β > 0 (i.e ρ > 2) we notice that as θ < 1 and s ≤ 1,
and γ = 1 in this case, by which [d] follows for the above choice of p′.
If ρ ≤ 2 we have to verify [d’], which translates in (3 − ρ)s < 1 for
ε small. Invoking the lover bound [b] and use that s = 1

2
(n + 1)δ we

get the condition
(1− 2δ)δ(n+ 1) < 1

12



The maximum of the left hand side is taken at δ = 1
4
, which is larger

than 1
n−1

for n > 5. For n ≤ 5, the left hand side is at most n+1
8
≤ 3

4
.

For n > 5 and (n − 1)δ ≤ 1 we get the upper bound (n−3)(n+1)
(n−1)(n−1)

=
n2−2n−3
n2−2n+1

< 1 of the left hand side. In conclusion: The conditions
[a] through [d’] can be satisfied for 1 < ρ ≤ ρ∗ for suitably chosen
p′ = p′(ρ, n) ≥ ρ+ 1.

Also notice that if β > 1 we may replace β − 1 of the factors ‖u‖e(I) by the
corresponding L∞(I;Lr̄) for any r̄ such that H̄1

2 ∩ Lρ+1 ⊆ Lr̄.

If I is a compact subinterval of R+, formally [c’] can be relaxed. If we want esti-
mates for ρ close to ρ∗, however, we not only have to take (n− 1)δ close to 1 and
ε close to 0, but we will be forced by [a] (most easily seen before simplification)
to have essentially [c’] satisfied. The restrictions in case ρ close to ρ∗ will thus be
the same as in the uniform case, i.e under assumption [c’].

7 Lipschitz estimates of u 7→ f (u)

We keep the notation of the preceding section. Let

(ρ− 1)− = min(ρ− 1, 1) and (ρ− 2)+ = max(ρ− 2, 0)

With wh = w(uh, vh) and w = w(u, v) we have by

(f(uh)−f(vh)−(f(u)−f(v))) = (f ′(wh)−f ′(w))(u−v)+f ′(wh)(uh−vh−(u−v))

where

|f ′(wh)| ≤ C(|uh|ρ−1 + |vh|ρ−1)

|f ′(wh)− f ′(w)| ≤ C(|uh − u|(ρ−1)− + |vh − v|(ρ−1)−)(|u|+ |uh|+ |v|+ |vh|)(ρ−2)+

(7.1)

Let s̄ = θs − σ + ε, ε ≥ 0 and max(s′, θs) > σ ≥ 0. With γ, θ̄ = s̄
γ

as in the
previous section, write

|h|−s̄|uh − u|(ρ−1)− = (|h|−γ|uh − u|)θ̄|u− uh|(ρ−1)−−θ̄

and correspondingly for vh − v. We then get

|h|−s̄|f(uh)− f(vh)− (f(u)− f(v))|
≤ C(|h|−γ(|uh − u|+ |vh − v|))θ̄(|uh − u|+ |vh − v|)(ρ−1)−θ̄(|u|+ |uh|+ |vh|+ |v|)(ρ−2)+ |u− v|
+ C(|uh|+ |vh|)ρ−1|h|−s̄|(uh − u)− (vh − v)|

13



Straightforward use of Hölder’s and Sobolev’s inequalities give, with C and C(I),

where C(I) ≤ C(1 + |I|)( 1
2
− 1
r′ )(ρ−β) may depend on I,

‖f(u)− f(v)‖Bθ(θs−σ+ε,I) ≤ C(‖u‖ρ−β−1

Ã(I)
‖u‖βe(I) + ‖v‖ρ−β−1

Ã(I)
‖v‖βe(I))‖u− v‖Ã(s′−σ,I)

≤ C(I)(‖u‖ρ−β−1
A(I) ‖u‖

β
e(I) + ‖v‖ρ−β−1

A(I) ‖v‖
β
e(I))‖u− v‖A(s′−σ,I)

(7.2)

provided, as in Section 6, conditions [a] through [d] there hold with , and in
addition (as before with γ = s′ for ρ < 2, and equal to 1 otherwise)

[e ] θs− σ + ε ≤ γ(ρ− 1)−, and so, with [c’],

[e’ ] σ ≥ s− (ρ− 1) + ε, if β = 0

The homogeneous estimates (replacing B and A by Ḃ and Ȧ, respectively) also
holds, now with equality in [a], and disregarding [b]. By section 7, conditions [a]
through [d’] hold under our assumptions for ε ≥ 0 small enough.
Hence for β = 0 (7.2) holds if also [e], [e’] are satisfied for sufficiently small ε > 0.
We first consider the case σ = 0: If β > 0 we need t verify [e], i.e. θs−1 + ε ≤ 0,
which holds for ε > 0 sufficiently small.
Thus for n = 3, 4 and 5 and for 2 < ρ < 1 + 4

n−2
= ρ∗ we have that

A(I) 3 u 7→ f(u) ∈ Bθ(θs + ε, I) is Lipschitz continuous for suitable choice of
p′ = p′(ρ, n) ≥ ρ+ 1.
This is also the case for ρ ≤ 2 if 0 > s− (ρ−1): Using [b] and that s = 1

2
(n+1)δ,

we have to verify 1
2
(n + 1)δ ≤ 4δ, with strict inequality for ε > 0. Hence the

Lipschitz continuity also holds for n = 6 for ε > 0 small enough, and for n = 7
if ε = 0. In addition, if we only want Lipschitz continuity for ρ close to ρ∗, then
the upper limit for the dimension becomes 8, also for small ε (cf.[11]).
On f(z): The slightly complex form of (7.1) makes it possible to extend the
estimates on the NLWE to more general non-linearities f satisfying condition
(A) in [11]. This is useful if we want uniform bounds (in time) in e.g Proposition
8.1, as this seems to require different behaviour at 0 and +∞ of f(z) (cf. [18],
and [11]).

8 Space-time integral estimates (STI) of solu-

tions of the subcritical NLWE

Proposition 8.1. Let n ≥ 3, let (r′, s′, p′) be a Strichartz triple, and let I a
bounded interval in R+. Assume that u is a solution of NLWE with finite energy
data (i.e in Xe) and let u0 be the corresponding solution of the wave equation
with the same initial data as u.

14



i) [Ginibre and Velo [18], Proposition 4.1 (1)]: Let 1 + 2
n−2
≤ ρ < ρ∗. Then

u ∈ Ȧ(I) and
‖u‖Ȧ(I) ≤ C(|I|, ‖u0‖E(I), ‖u‖E(I)) (8.1)

where C(·, ·, ·) is of at most polynomial growth in each of the variables.

ii) Let 1 < ρ ≤ ρ∗ and p′ ≥ ρ+ 1. Then u ∈ A(I) and

‖u‖A(I) ≤ C(|I|, ‖u0‖e(I), ‖u‖e(I)) (8.2)

where C(·, ·.·) as above is of at most polynomial growth in each of the vari-
ables.

iii) Let 1 < ρ < ρ∗. Then u ∈ Ȧ(I) and (8.1) holds with E(I)-norms replaced by
e(I)-norms.

Proof: We first prove

(ii)* Let 1 < ρ ≤ ρ∗. Then there is a p′(ρ, n) ≥ ρ+1 such that for any Strichartz
tripple (r′, s′, p′(ρ, n), (6.3) holds, u ∈ A(I) and (8.2) holds.

We begin by proving (ii)* for 1 < ρ ≤ ρ̂ = 1 +
4− 2

n

n−2
by choosing ρ + 1 = p′: Let

s′ ≥ 0, ε > 0 as in Lemma 5.1. Then by (3.6), Proposition 4.3, the remark after
that proposition, and Lemma 5.1, with our choice of p’:

‖u‖
Bs
′+ε
p′
≤ ‖u0‖Bs′+ε

p′
+ C‖f(u)‖Bsp+ε ≤ ‖u0‖Bs′+ε

p′
+ C‖u‖e‖u‖Bs′

p′

which for s′ = 0 have a right hand side that (by definition of Xe and (4.7)) belongs
to Llocr′ for ρ + 1 ≤ p′ ≤ ρ∗ + 1. Since u belongs to Llocr (L′p), u also belongs to
Llocr′ (Bε

p′). After a finite number of steps we then reach s′ + ε = 1− 1
2
(n+ 1)δp′ =

s′ρ+1. This extends to all p′ ≥ ρ + 1 with nδp′ + s′ = nδρ+1 + s′ρ+1 = 1 + 1
r′

by
(4.2).
Let ρ̂ ≤ ρ ≤ ρ∗. Choose p′ = p′(ρ, n) so that (5.2) holds with θ = η = ε = 0.
By (i) then u ∈ Llocr′ (Ḃs′

p′), which implies that u ∈ Llocr′ (Lp̂′), where p̂′ > p′(ρ, n).
As u ∈ Linfty(Lρ+1) interpolation (convexity) gives that u ∈ Lr′(L′p), and hence
u ∈ A(I), with p′ = p′(ρ, n) ≥ ρ + 1 also for ρ̂ ≤ ρ ≤ ρ∗. The above choice of p′

is the same as that in the verification of (6.3). This completes the proof of (ii)*.
We now invoke (6.3), the comments on that inequality, and Proposition 4.2 to
prove the first part of (ii): Let (r′, s′, p′) be a Strichartz triple, let p̄′ ≥ ρ + 1 be
determined as in (ii)*, and let B̄(I) = Lr(I : B s̄

p̄), Ā(I) = Lr′(I : B s̄′

p̄′). Then

‖u‖A(I) ≤ ‖u0‖A(I) + ‖f(u)‖B̄(I)

≤ ‖u0‖A(I) + ‖u‖ρ−β
Ā(I)
‖u‖βe

≤ ‖u0‖A(I) + C(|I|, ‖u0‖e(I), ‖u‖e(I))
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which proves (ii). In the proof of (iii) we only have to consider 1 < ρ ≤ 1 + 2
n−2

.
Let (as in (ii)*) p′ = ρ+ 1. Then as above

‖u‖Ȧ(I) ≤ ‖u0‖Ȧ(I) + ‖f(u)‖B̄(I)

≤ ‖u0‖Ȧ(I) + ‖u‖ρ−β
Ā(I)
‖u‖βe

≤ ‖u0‖Ȧ(I) + C(|I|, ‖u0‖e(I), ‖u‖e(I))

With (3.6) this completes the proof of (iii). �

Remark If we let p′ = ρ∗ + 1, then Xe may be replaced by Ḣ1
2 × L2 in the above

argument.
Remark Even if the norms of u0 and u are uniformly bounded , as they are in
case of E(I)-norms, the dependence on I is in view of (4.4) is unavoidable with
the present method of proof.
The estimate of the norm of u in E follows from the energy inequality.

9 Lipschitz etimates of Et

Let u, v be solutions of the NLWE and u0, v0 the corresponding solutions with
the same finite energy data (in Xe) as u, v. Let e0 denote the energy norm of
the data, i.e the norm in Xe. Then, by the energy inequality, and (4.8), u0 and
u are bounded by in e(I) = L∞(I; Ḣ1

2 ∩Lρ+1×L2) ⊂ E(I) = L∞(I; Ḣ1
2 ×L2) by

e0, I ⊂⊂ R+.

We let (r′, s′, p′) be a Strichartz triple and 0 ≤ σ ≤ θ(1 − s′) as in (7.2), where
then σ > 0 is a possible (and for n < 8 necessary) choice for 1 < ρ < ρ∗ and
n ≥ 6.

Fix Ī ⊂⊂ R+. Let I ⊂ Ī. By Proposition 4.3 and the Lipschitz estimate (7.2)
for f(u), using Proposition 8.1, we then get

‖
∫
I

E1(· − τ)(f(u(τ))− f(v(τ)))dτ‖A(s′−σ;I) ≤ J(I)‖u− v‖A(s′−σ;I) (9.1)

‖u− v‖A(s′−σ;I) ≤ ‖u0 − v0‖A(s′−σ;I) + J(|I|)‖u− v‖A(s′−σ;I) (9.2)

J(|I|) = |I|εC(e0, Ī),

for ε = ε(ρ, n) > 0 small enough, and thus for |I| > 0 small enough, depending
only on the energy e0 (and on the constants ε, Ī),

‖u− v‖A(s′−σ;I) ≤ 2‖u0 − v0‖A(s′−σ;I) , |I| ≤ ε(e0).

Let us make a small diversion in order to prove
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Proposition 9.1 (Uniqueness of finite energy solutions of NLWE). Let u be a
finite energy solution with finite energy data (i.e. in Xe). Then u is uniquely
determined by the initial data.

Proof: Since the solution operator of the wave equation is Lipschitz continuous
as a map from E to Ȧ (which follows from the linearity and the Strichartz estimate
(Proposition 4.1, if u and v have the same initial data then so has u0 and v0, and
u− v = 0 in Ȧ(I). Hence u = v a.e. on R+×Rn. By the continuity of u, v in E,
u(t) = v(t) a.e on Rn for t ∈ I, and so are equal in E and Xe in a neighbourhood
of 0. The translation invariance of the NLWE completes the proof. �

Let us now go back to the Lipschitz estimates:
For t0 ≥ 0 we have

u(t+t0)−v(t+t0) = u0(t+t0)−v0(t+t0)+

∫ t+t0

0

E1(t+t0−τ)(f(u(τ))−f(v(τ)))dτ

where we split the integral term (for t0 > 0) in two parts, with integration over
I0 = (0, t0) and (t0, t0 + t), respectively.
Assume now that

‖u− v‖A(s′−σ;I0) ≤ C(I0, e0)‖u0 − v0‖A(s′−σ;I0) (9.3)

Then (9.1) implies that for I = (0, t0 + t) with t ≤ ε(e0)

‖u− v‖A(s′−σ;I) ≤ (C(I0, e0) + 1)‖u0 − v0‖A(s′−σ;I) +
1

2
‖u− v‖A(s′−σ;I\I0)

+ J(|I0|)‖u− v‖A(s′−σ;I0)

≤ ‖u0 − v0‖A(s′−σ;I) +
1

2
‖u− v‖A(s′−σ;I) + C(I0, e0)‖u0 − v0‖A(s′−σ;I0)

By induction then (starting with t0 = ε(e0)) for each bounded interval I ⊂ Ī
there is a continuous function C(I, e0) such that

‖u− v‖A(s′−σ;I) ≤ C(I, e0)‖u0 − v0‖A(s′−σ;I) (9.4)

Thus by (4.11) and (7.2) ( and Proposition 8.1) for any interval I ⊂ Ī, using that
by linearity u0 − v0 is solution of the wave equation,

‖u− v‖L∞(I,Ḣ1
2 ) ≤ ‖u0 − v0‖E(I) + C(e0, Ī)‖u− v‖A(s′,I)

≤ C ′(e0, Ī)‖u0 − v0‖e(I) (9.5)

since σ = 0 is allowed in (7.2) for n ≤ 7 (and for n = 8 if ρ < ρ∗ is sufficintly close
to ρ∗) by the analysis following that equation, and p′ ≥ ρ + 1. This completes
that proof of the Lipschitz continuity of Et as a map from e0 to E(I), I ⊂⊂ R+.
If we may choose σ = 1− nδρ+1 = n(δρ∗+1 − δρ+1) in (9.4), it will follow that
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Proposition 9.2. Let 3 ≤ n ≤ 8. Then Et is Lipschitz continuous on Xe for
t > 0, and ρ < ρ∗ sufficiently close to ρ∗.

Proof: We first have to verify that σ ≤ θs. With s = 1
2
(n+ 1)δ, θ = 2 + β − ρ,

chosing β = 2 + ρ∗ we get after dividing out the common factor ρ∗ − ρ the
condition

n− 2

2

1

1 + ρ
≤ 1

2
(n+ 1)δ (9.6)

For ρ = ρ∗ and (n− 1)δ = 1, we get strict inequality in (9.6), since

(n− 2)2

2n
<
n+ 1

n− 1
for 3 ≤ n ≤ 6

If n > 6, ρ∗ < 2, and so

n− 2

2

1

1 + ρ
(ρ∗ − ρ) ≤ 1

2
(n+ 1)δ(2− ρ), n ≥ 6 (9.7)

holds for ρ < ρ∗ sufficiently close to ρ∗. Thus σ = 1 − nδρ+1l ≤ θs, 3 ≤ n ≤ 8
and ρ < ρ∗ sufficiently close to ρ∗. We have

‖u− v‖e(I) ≤ ‖u0 − v0‖e(I) + ‖
∫
I

E(t− τ)(f(u(τ))− f(v(τ))dτ‖e(I)

and so by Corollary 4.1, with σ = 1− nδρ+1 ≤ θs,

‖u− v‖e(I) ≤ ‖u0 − v0‖e(I) + C(I)‖f(u)− f(v)‖Ḃ(θs−σ,I)

By our assumption (9.4) holds. Thus

‖u− v‖e(I) ≤ ‖u0 − v0‖e(I) + C‖u− v‖A(s′−σ,I)

≤ ‖u0 − v0‖e(I) + C‖u0 − v0‖A(s′−σ,I) (9.8)

We now by obtain (again using that by linearity u0 − v0 is solution of the wave
equation, and the invariance of the Ȧ-norm of these under powers of (−∆)):

‖u0 − v0‖A(s′−σ;I) ≤ ‖u0 − v0‖A(I) ≤ C(I)‖u0 − v0‖e(I)
and so by (9.8)

‖u− v‖e(I) ≤ C(|I|, e0(u), e0(v))‖u0 − v0‖e(I) (9.9)

where e0(u), e0(v) denotes the (non-linear) energy of the initial data of u, and
v, respectively. As the solution operator of the wave equation is (by linearity)
Lipschitz continuous on Xe on bounded intervals I in R+, this completes the
proof of the Lipschitz continuity in Xe on bounded subintervals of R+ for ρ < ρ∗

close to ρ∗. �

In the next section we will determine a lower bound for ρ for which Et is Lipschitz
continuous on Xe by establishing a variation of the Lipschitz estimates in Section
7.
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10 On the Lipschitz continuity of Et and uniform

continuity in time.

As in the previous sections, let u, v be solutions of the NLWE and u0, v0 the
corresponding solutions with the same finite energy data (in Xe) as u, v. Let us
begin with the following result.

Proposition 10.1. Let 3 ≤ n ≤ 8, and let I ⊂⊂ R+. Assume that 1 + 4
n−1

=

ρ∗ ≤ ρ < ρ∗ for n ≤ 7, with a lower bound 1 + 4.5
n−1
≤ ρ for n = 8. Then

‖f(u)− f(v)‖Ḃ(θs−σ+ε,I) ≤ C(|I|, u, v)‖u− v‖A(s′−σ,I) (10.1)

holds for σ = 1− nδρ+1 = n(δρ∗+1 − δρ+1) with (r′, s′, p′) a Strichartz triple with
1
r′

=
(n−1)δp′

2
and p′ ≥ ρ+ 1. Here

C(|I|, u, v) ≤ C(‖u‖ρ−β−1
A(I) ‖u‖

β
E + ‖v‖ρ−β−1

A(I) ‖v‖
β
E) (10.2)

where C is independent of I, u, and v.

Proof: We let β = β(ρ, n) be a linear function of ρ for n < 6, and piecewise
linear for n ≥ 6, with 1 < ρ− β ≤ 2, so that

r′ − (ρ− β) = θ, 0 < θ < 1. (10.3)

If β = 0 (i.e ρ < 2, which in view of [b”] below means n ≥ 6), we let r′ = r′(ρ, n)
be piecewise constant, and for β > 0 we assume that r′ = r(ρ, n) is linear in ρ.
As in the proof of (6.3) and (7.2) we get the following conditions under which
(10.1) holds (with ε = 0), keeping the definitions of γ and (ρ− 1)−:

[a” ]n+ 2 ≥ ρ(n− 2) + 2− r′(n− 1)δ = ρ(n− 2), i.e. ρ∗ ≥ ρ

[b” ]ρ ≥ 1 + 2r′δ = 1 + 4
n−1

+ 2βδρ+1

[c” ]r′ − (ρ− β) = θ

[e” ](r′ − (ρ− β))s ≤ σ + γ(ρ− 1)−

[f” ]σ ≤ (r′ − (ρ− β))s(≤ s′)

where the condition p′ ≥ ρ+ 1 implies that

2 ≤ r′ =
2

(n− 1)δ
≤ 2

(n− 1)δρ+1

= r̂(ρ, n), nδρ+1 ≤ δρ∗+1 ≤ 1 (10.4)
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and where σ = 1− nδρ+1 (σ = 0 was handled in the preceding section).
By [b′′] we have ρ ≥ 1 + 4

n−1
, which means that ρ ≥ 2 for n < 6, and by [a′′] ,

that ρ < 2 for n ≥ 6. Further γ(ρ− 1)− equals 1 for n < 6 and for n ≥ 6 equals
s′(ρ− 1) = (1− s)(ρ− 1) . Since θs ≤ 1 ≤ σ + 1 for n < 6, [e”] holds , and will
be disregarded for these dimensions.
Also notice that s = 1

2
(n+ 1)δp′ = n+1

n−1
1
r′

. In addition

σ = 1− nδρ+1 = n(δρ+1 − δρ+1) =
n− 2

2

ρ∗ − ρ
1 + ρ

The equations [e′′] and [f ′′] become after some simplification and reshuffling the
following form, which will be useful in the analysis of [e”] (for n ≥ 6) and [f”]:

n+ 1

n− 1
≤ σ +

n+ 1

n− 1

1

r′
+ ρ− 1, [e′′] n ≥ 6 (10.5)

n+ 1

n− 1
≥ σ + (ρ− β)

n+ 1

n− 1

1

r′
, [f ′′] (10.6)

σ =
n− 2

2

ρ∗ − ρ
1 + ρ

The first inequality is already verified for r′ = 2 and σ = 0 for the range ρ∗(n) ≤
ρ < ρ∗(n), where ρ∗ = 1 + 4

n−1
for 3 ≤ n ≤ 7 and ρ∗ = 1 + 4.5

n−1
for n = 8. If the

inequality holds for some r′ > 2, it evidently also holds for r′ = 2.
The equation [f”] may also be written

n− 2

2

ρ∗ − ρ
1 + ρ

≤ (r′ − (ρ− β))
n+ 1

n− 1

1

r′
(10.7)

In order to simplify some computations, note that

n− 2

2

ρ∗ − ρ∗
1 + ρ∗

=
1

n+ 1
(10.8)

and that the right hand side of (10.7) is an increasing function of r′ (and the left
hand side independent of r′).

n ≥ 6:
Here β = 0, and r′ is assumed piecewise constant: In particular the derivative of
(10.6) becomes

− n

(1 + ρ)2
+
n+ 1

n− 1

1

r′
(10.9)

If n = 6, then r′ = 2(= ρ∗), and by (10.7)

n− 2

2

1

ρ+ 1
≤ n+ 1

n− 1

1

2
(10.10)
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for ρ ≥ 16
7
. For ρ less than this value, (10.9) is negative, and hence it is in this

case enough to compute a bound for r′ when ρ = ρ∗. This gives

1

n+ 1
≤ (r′ − ρ∗)

n+ 1

n− 1

1

r′
(10.11)

which requires r′ ≥ 2 1
220

(which also satisfies [e”]). This completes the case n = 6.
For n ≥ 7 (10.9) is negative. Since σ(ρ∗) = 0, n = 7 and 8 are as in the case
σ = 0 the only allowed dimensions. Equation (10.5) limits the range of ρ: As
mentioned above, we only have to consider r′ = 2, i.e.

1

2

n+ 1

n− 1
≤ ρ− 1 + σ

With σ = 0, we get n ≤ 7 for ρ = ρ∗, while n = 8 requires the lower bound
1 + 4.5

n−1
. If σ = n−2

2
ρ∗−ρ
1+ρ

the right hand side of the inequality is decreasing as a

function of ρ (the derivate is 1− n
(1+ρ)2

< 0), and so the whole range ρ∗ ≤ ρ ≤ ρ∗

is allowed also for n = 8.

For dimensions n = 3 through 5, we only have to verify [f”] and that r′(ρ, n) ≤
r̂(ρ, n) = 2

(n−1)δρ+1
= 4

n−1
ρ+1
ρ−1

, ρ∗ ≤ ρ ≤ ρ∗ (in order to fulfil the condition

p′ ≥ ρ+ 1).

n=5 :
We let r(ρ∗) = 2, r(ρ∗) + β(ρ∗) = ρ∗ = 21

3
, and β(ρ∗) = 0, where now ρ∗ = 2.

Thus β(ρ) = ρ− ρ∗. If we let r′(ρ) + β(ρ) = ρ∗, then r′(ρ) = ρ∗ + ρ∗ − ρ.
After dividing ou the common factor ρ∗ − ρ, [f”] becomes

n+ 1

n− 1

1

r′(ρ)
≥ n− 2

2

1

1 + ρ
, n = 5

which with our choice of r′(ρ) holds in the range ρ∗ = 2 ≤ ρ ≤ ρ∗. This proves
[f”] for n=5.
Now r′(ρ) ≤ r′(ρ∗) = 21

3
≤ r̂(ρ∗) = 21

2
≤ r̂(ρ), ρ ≤ ρ∗. This completes the case

n = 5.

n=4 :
Here ρ∗ = 3 and ρ∗ = 21

3
.We choose r′(ρ∗) = 2, r′(ρ∗) + β(ρ∗) = ρ∗, and so

β(ρ∗) = 1 and we (have to) let β(ρ∗) = 0. Hence β(ρ) = 3
2
(ρ − ρ∗). We next

choose r′(ρ∗) = r̂(ρ∗, 4) = 8
3
, so that p′ ≥ ρ + 1, ρ ≤ ρ∗ will be satisfied. Then

r′(ρ) = 5− ρ and r′ + β − ρ = 1
2
(ρ∗ − ρ). After dividing out the common factor

ρ∗ − ρ in [f”] (i.e. (10.7)) we get

1

2

n+ 1

n− 1

1

r′(ρ)
≥ n− 2

2

1

1 + ρ
, n = 4
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which requires r′(ρ) ≤ 25
9

= 27
9
, which is the case since by our choice r′(ρ) ≤

r′(ρ∗) = 22
3

= 26
9
. This completes the case n = 4.

n=3 :
Here ρ∗ = 5 and ρ∗ = 3. We let r′(ρ∗) = 2 and choose β(ρ∗) = 3 and β(ρ∗) = 0.
If we then take r′(ρ∗) = r̂(ρ∗) = 4, we get r + β − ρ = 1

2
(ρ∗ − ρ). Hence [f”]

becomes (again dividing out the common factor) by (10.7)

1

2

n+ 1

n− 1

1

r′
≥ n− 2

2

1

1 + ρ
, n = 3

which amounts to r′ ≤ 8 which clearly is the case for ρ∗ = 3 ≤ ρ ≤ ρ∗. Will
r′(ρ) ≤ r̂(ρ) in this range? The tangent of the concave curve described by r̂(ρ) =
2ρ+1
ρ−1

= 2 + 4
(1+ρ)2

has the same direction −1 at ρ = ρ∗ as r′(ρ) = 4 + ρ∗ − ρ; as

r′ and r̂ have the same value at ρ = ρ∗, r
′(ρ) is the tangent at this point, and so

is smaller than r̂(ρ) for ρ ≥ ρ∗. This completes the proof for n=3.
The above give together a proof of Proposition 10.1. �

Proof of Theorem 1.1:
In the proof in Section 9 replacing (7.2) by (10.1),(10.2) we obtain (9.4) for
σ = 1 − nδρ+1, ρ∗ ≤ ρ ≤ ρ∗. We then complete the proof as in the last part of
the proof of Proposition 9.2.

We may now as a final result extend Corollary 4.2 to solutions of the NLWE.

Corollary 10.1. Let I ⊂⊂ R+, an u a finite energy solution of the NLWE with
finite energy data. Assume that ρ∗ ≤ ρ ≤ ρ∗. Then u(t) is uniformly continuous
on Xe and on E in the time variable t for t ∈ I.

Proof: An immediate consequence of the Lipschitz continuity and the Lipschitz
estimate for n ≤ 7.
For higher dimensions we prove that (using Corollary 4.1) ‖h‖B̄(s̄+ε−σ,I)+‖h‖B̄(s̄+ε,I),
with h = f(u), is bounded for ε > 0 small enough and σ = 1 − nδρ+1. We then
follow the argument in Corollary 4.2.
In view of conditions [a] through [e] ( or for n > 6, [e’]) we then only additionally
have to prove that for n ≥ 8,

σ < (2− ρ)s < 1− s+ σ, s =
n+ 1

2
δ

which certainly holds for ρ ≥ ρ∗ = 1 + 4
n−1

, δ = 1
n−1

and n ≥ 8 (use that (10.9)
is negative for n ≥ 7, and apply (10.8)). �
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