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RELAXATION PROPERTY OF THE ADAPTIVITY TECHNIQUE FOR SOME
ILL-POSED PROBLEMS

LARISA BEILINA ∗ AND MICHAEL V. KLIBANOV †

Abstract. Adaptive Finite Element Method (adaptivity) is known to be an effective numerical tool for some ill-posed
problems. The key advantage of the adaptivity is the image improvement with local mesh refinements. A rigorous proof of this
property is the central part of this paper. In terms of Coefficient Inverse Problems with single measurement data, the authors
consider the adaptivity as the second stage of a two-stage numerical procedure. The first stage delivers a good approximation of
the exact coefficient without an advanced knowledge of a small neighborhood of that coefficient. This is a necessary element for
the adaptivity to start iterations from. Numerical results for the two-stage procedure are presented for both computationally
simulated and experimental data.

1. Introduction. This paper summarizes recent results of the authors on the Adaptive Finite Element
Method (adaptivity) for Ill-Posed problems, see [1, 6, 10, 11, 12, 13, 14, 15]. Results, which are formulated in
the setting of Functional Analysis, are applied to a Coefficient Inverse Problem (CIP) for a hyperbolic PDE.
Both formulations and proofs of almost all theorems are modified here, compared with above publications.
The central feature of the adaptivity is the relaxation property. In short, relaxation means that the accuracy
of the computed solutions improves with refinements of meshes of finite elements. The relaxation property for
the adaptivity for CIPs was observed numerically in many publications, see, e.g. [1, 6, 7, 8, 9, 10, 12, 13, 14].
Analytically it was established for the first time in [15]. Here we present a simpler proof of this property
(Theorem 5.2). Since this simpler proof was published only in the book [11] (Theorem 4.9.3), it makes
sense to have a journal publication of this result. It is shown in section 8 (Remark 8.2) that the relaxation
property helps to work out the stopping criterion for mesh refinements. Theorems 5.3 and 5.4 as well as
the numerical example of Test 1 were not published before.

The adaptivity for a CIP for a hyperbolic PDE was first proposed in 2001 in [6]. Also, in 2001 a
similar idea was proposed in [4], although an example of a CIP was not considered in [4]. In both these
first publications the so-called ” Galerkin orthogonality principle” was used quite essentially. The adaptivity
was developed further in a number of publications, where it was applied both to CIPs [3, 6, 7, 8, 9, 10]
and to the parameter identification problems, which are different from CIPs, see, e.g. [23, 24, 25]. In the
recent publication [37] the adaptivity was applied to the Cauchy problem for the Laplace equation. Unlike
other works, both lower and upper error estimates were obtained in [37]. In another recent publication [33]
an adaptive finite element method for the solution of a Fredholm integral equation of the first kind was
presented and a posteriori error estimates for both the Tikhonov functional and the regularized solution
were derived.

The essence of the adaptivity consists in the minimization of the Tikhonov functional on a sequence of
locally refined meshes. Only standard piecewise finite elements are used in this paper. It is important that
due to local rather than global mesh refinements, the total number of finite elements is rather moderate. If
this number would be very large, then the corresponding space of finite elements would effectively behave
as an infinitely dimensional one. However, in the case of a moderate number of finite elements, this space
effectively behaves as a finite dimensional one. This is the underlying reason why our main interest in this
paper is in constructing the theory of the adaptivity only in a finite dimensional space of finite elements.
Since all norms in finite dimensional spaces are equivalent, then we use the same norm in the Tikhonov
regularization term as the one in the original space (except of subsection 2.1). This is obviously more
convenient for both analysis and numerical studies than the standard case of a stronger norm in this term
[2, 11, 26, 42, 43]. Numerical results of the current and previous publications confirm the validity of this
approach. Note that although the finite dimensional version of the original ill-posed problem might be well
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posed, at least formally, in the actuality it inherits the ill-posedness at certain extent. Thus, the use of the
regularization term is still important for the stabilization.

Recall that a minimizer of the Tikhonov functional, if it exists, is called regularized solution of the
corresponding equation [2, 11, 20, 26, 42, 43]. In the case of a nonlinear problem, such as, e.g. a CIP, many
regularized solutions might exists or none. Furthermore, even if a regularized solution exists and is unique,
it is unclear how to practically find it, unless a good first guess about the true solution is available. This is
because of the well known phenomenon of multiple local minima and ravines of the Tikhonov functional.

In the past several years the authors have addressed five important questions about the adaptivity, which
were not addressed before. These five questions are discussed in the current paper:

1. It was established in [32] that if the operator of an ill-posed problem is one-to-one, then a regularized
solution is indeed closer to the exact one than the first guess for a single pair (δ, α (δ)) . Here δ > 0 is the level
of the error in the data and α (δ) is the regularization parameter, see section 2. Note that in the classical
regularization theory convergence of regularized solutions to the exact one is claimed only in the limiting
case when (δ, α (δ)) → (0, 0) [11, 20, 42, 43]. However, in practical computations one always works only with
a single pair (δ, α (δ)) .

2. The local strong convexity of the Tikhonov functional was established under the condition that the
originating operator F has the first Fréchet derivative F ′ satisfying the Lipschitz condition. First, it was
established in a small neighborhood of a regularized solution [15]. In the current paper the proof of [15] is
modified to obtain the local strong convexity in a small neighborhood of the exact solution, which is more
useful. In the finite dimensional case, which is our main interest because of finite elements (see above), it
is shown below that the local strong convexity guarantees both existence and uniqueness of the regularized
solution. In the previous publication [40] the local strong convexity was established for the case when the
originating operator F has the second continuous Fréchet derivative and the source representation condition
is in place. We do not use the source representation condition. In [23] the local strong convexity of the
Tikhonov functional was assumed rather than proved.

3. Estimates of distances between regularized solutions and ones obtained after mesh refinements were
obtained. In the adaptivity these estimates are usually called “a posteriori error estimates” (Theorems 5.1,
6.4 and 6.5 below). Unlike this, in the past publications about the adaptivity for ill-posed problems, such
estimates were obtained only for some functionals rather than for solutions themselves, see, e.g. [1, 4, 6, 7,
9, 10, 12, 13, 24, 25].

4. The relaxation property was established [11, 15]. In particular, it follows from this property that
the accuracy of the reconstruction of the exact solution improves in the mesh refinement process, provided
that maximal grid step sizes of those mesh refinements are properly chosen, see Theorem 5.3, Remark 5.1
and Theorem 6.5 below. To prove the relaxation property, a new framework of Functional Analysis for the
adaptivity technique was introduced (section 4).

5. A two stage numerical procedure was developed for some CIPs for a hyperbolic PDE [11, 12, 13, 14].
On the first stage, the approximately globally convergent method delivers a good approximation for the exact
solution. On the second stage, the adaptivity uses this approximation as a starting point for a refinement.

The reason why we need the first stage is that the adaptivity works only in a small neighborhood of
the exact solution. The question on how to actually obtain a point in that neighborhood is left outside
of this theory. This question was recently addressed by the authors for CIPs for a hyperbolic PDE with
single measurement data, see, e.g. [11, 12, 13, 14, 15, 31, 34, 35] and further referenced cited there. It
is well known that addressing this question for CIPs is an enormously challenging goal. This is because
of two factors combined: nonlinearity and ill-posedness of CIPs. Therefore, one inevitably faces a tough
dilemma: either ignore this question, or try to address it, but within the framework of a certain reasonable
approximate mathematical model. As to that model, see sections 2.9 and 6.6.2 of [11] as well as [34, 35]
for it. We call corresponding algorithms “approximately globally convergent”. It was rigorously established,
within the framework of that approximate model, that the numerical method of these publications indeed
delivers a point in a small neighborhood of the exact solution of the corresponding CIP without any advanced
knowledge of that neighborhood. The validity of that approximate mathematical model was verified via a
six-step procedure, see section 1.1.2 of [11] as well as [34, 35] for this procedure. Basically the verification
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amounts to the numerical testing of the corresponding algorithm on computationally simulated data as well
as, most importantly, on blind experimental data, see [31, 35] and also Chapter 5 and section 6.9 of the
book [11] for blind data studies. “Blind” means that the solution was unknown in advance. Since the blind
experimental data case is unbiased, then the verification for blind data is the most persuasive one.

In the sections 2-5 we use the apparatus of the Functional Analysis to address above items 1-4 for rather
general ill-posed problems. In section 6 we deduce from sections 2-5 some results for a CIP for a hyperbolic
PDE. In section 7 we present mesh refinement recommendations. In section 8 we present numerical results,
including ones for real experimental data. In numerical studies of this paper we use the above mentioned
two-stage numerical procedure.

2. Minimizing Sequence and a Regularized Solution Versus the First Guess.

2.1. The infinitely dimensional case. Let B, B1, B2 be three Banah spaces. We denote norms in
these spaces respectively as ‖·‖ , ‖·‖1 , ‖·‖2 . As it is conventional in the theory of Ill-Posed problems, we
assume that B1 ⊆ B, ‖x‖ ≤ C ‖x‖1 , ∀x ∈ B1 and B1 = B, C = const. > 0, and the closure B1 is in the
norm ‖·‖ . Furthermore, we assume that any bounded set in B1 is a compact set in B. Let G ⊆ B1 be a set
and G be its closure in the norm ‖·‖ . Let F : G → B2 be a continuous operator in terms of norms ‖·‖ , ‖·‖2 .
Consider the equation

F (x) = y, x ∈ G. (2.1)

As it is usually done in the regularization theory [2, 11, 20, 26, 42, 43], we assume that the right hand side
of equation (2.1) is given with a small error δ ∈ (0, 1). We also assume that there exists an “ideal” exact
solution x∗ of (2.1) with the “ideal” exact data y∗ (in principle, there might be several exact solutions).
Thus, we assume that

F (x∗) = y∗, x∗ ∈ G, ‖y − y∗‖2 ≤ δ. (2.2)

Let x0 ∈ B1 be a first guess for the exact solution x∗. Usually one assumes that x0 is located in a small
neighborhood of x∗. Consider the Tikhonov functional

Mα (x) =
1

2
‖F (x) − y‖2

2 +
α

2
‖x − x0‖2

1 , x, x0 ∈ G, (2.3)

where α ∈ (0, 1) is the regularization parameter. The second term in the right hand side of (2.3) is called
“the Tikhonov regularization term”. Let

mα = inf
G

Mα (x) . (2.4)

Hence, there exists a minimizing sequence {xα
n}∞n=1 ⊂ G such that

lim
n→∞

Mα (xα
n) = mα. (2.5)

Theorem 2.1 positively addresses the following question: Let both numbers δ, α = α (δ) be fixed. Does the
minimizing sequence in (2.5) deliver a better approximation for the exact solution x∗ than the first guess x0?
Since ‖x0 − x∗‖1 is usually assumed to be small, we assume for the sake of defineteness that ‖x0 − x∗‖1 ≤ 1.

Theorem 2.1. Let B, B1, B2 be Banah spaces, G ⊂ B1 be a convex open set and F : G → B2 be a
one-to-one continuous operator in terms of norms ‖·‖ , ‖·‖2 . Let α = α (δ) = δ2µ, µ = const. ∈ (0, 1/2) and
conditions (2.4), (2.5) are in place. Let ‖x0 − x∗‖1 ≤ 1 and ξ ∈ (0, 1) be an arbitrary number. Assume
first that x0 6= x∗. Then there exists a sufficiently small number δ0 = δ0 (F, µ, ξ) ∈ (0, 1) such that for any
δ ∈ (0, δ0) there exists an integer N = N (δ, F ) ≥ 1 such that for

∥∥∥xα(δ)
n − x∗

∥∥∥ ≤ ξ ‖x0 − x∗‖ ≤ Cξ ‖x0 − x∗‖1 , ∀n ≥ N. (2.6)
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If x0 = x∗, then (2.6) should be replaced with
∥∥∥xα(δ)

n − x∗
∥∥∥ ≤ ξ. (2.7)

In particular, if δ = 0, then δ0 should be replaced with a sufficiently small number α0 ∈ (0, 1) and δ ∈ (0, δ0)
should be replaced with α ∈ (0, α0) .

Proof. By (2.2)-(2.4)

mα ≤ Mα (x∗) < δ2 + α ‖x0 − x∗‖2
1 . (2.8)

Hence, there exists an integer N = N (δ, F ) ≥ 1 such that Mα

(
x

α(δ)
n

)
< δ2 + α ‖x0 − x∗‖1 , ∀n ≥ N. Hence,

by (2.2)

∥∥∥xα(δ)
n

∥∥∥
1
≤

√
2
(
δ2(1−µ) + ‖x0 − x∗‖2

1

)1/2

+ ‖x0‖1 , ∀n ≥ N (δ, F ) . (2.9)

Consider the set P (δ, x0) defined as

P (δ, x0) =

{
x ∈ G : ‖x‖1 ≤

√
2
(
δ2(1−µ) + ‖x0 − x∗‖2

1

)1/2

+ ‖x0‖1

}
. (2.10)

Let P := P (δ, x0) be its closure in terms of the norm ‖·‖ . Hence, P (δ, x0) ⊆ G. Since the set P (δ, x0) is
bounded in terms of the norm ‖·‖1 , then P is a closed compact set in the space B. Consider the range
F

(
P

)
⊂ B2 of the operator F on the set P . Since the operator F : G → B2 is continuous in terms of

norms ‖·‖ , ‖·‖2, then F
(
P

)
is a closed compact set in B2. Furthermore, since F is one-to-one, then by

the foundational theorem of Tikhonov [11, 42, 43] the inverse operator F−1 : F
(
P

)
→ P is continuous.

Therefore, there exists the modulus of the continuity of the operator F−1 on the set F
(
P

)
. This means that

there exists a function ωF (z) , z ∈ (0, 1) such that

ωF (z) ≥ 0, ωF (z1) ≤ ωF (z2) if z1 ≤ z2, lim
z→0+

ωF (z) = 0, (2.11)

‖x1 − x2‖ ≤ ωF (‖F (x1) − F (x2)‖2) , ∀x1, x2 ∈ P . (2.12)

Using (2.2) and (2.8), we obtain for n ≥ N (δ, F )
∥∥∥F

(
xα(δ)

n

)
− F (x∗)

∥∥∥
2

=
∥∥∥F

(
xα(δ)

n

)
− y + y − F (x∗)

∥∥∥
2

(2.13)

≤
∥∥∥F

(
xα(δ)

n

)
− y

∥∥∥
2
+ ‖y − y∗‖2 ≤

[
2Mα

(
xα(δ)

n

)]1/2

+ δ ≤
(
δ2 + δ2µ ‖x0 − x∗‖2

1

)1/2

+ δ.

By (2.8) and (2.10) x∗ ∈ P . Therefore, (2.12) and (2.13) imply that there exists a sufficiently small number

δ̃ = δ̃ (F, µ) ∈ (0, 1) such that for all δ ∈
(
0, δ̃

)
we have

(
δ2 + δ2µ ‖x0 − x∗‖2

1

)1/2

+ δ < 1 and

∥∥∥xα(δ)
n − x∗

∥∥∥ ≤ ωF

((
δ2 + δ2µ ‖x0 − x∗‖2

1

)1/2

+ δ

)
, n ≥ N (δ, F ) . (2.14)

First, let x0 6= x∗. By (2.11) there exists a sufficiently small number δ0 = δ0 (F, ξ, µ) ∈
(
0, δ̃ (F, µ)

)
⊂ (0, 1)

such that

ωF

((
δ2 + δ2µ ‖x0 − x∗‖2

1

)1/2

+ δ

)
≤ ξ ‖x0 − x∗‖ , ∀δ ∈ (0, δ0) . (2.15)

If x0 = x∗, then (2.15) should be replaced with ωF

((
δ2 + δ2µ ‖x0 − x∗‖2

1

)1/2

+ δ

)
≤ ξ. Recall that ‖x‖ ≤

C ‖x‖1 , ∀x ∈ B1. Therefore (2.6), (2.7) follow from (2.14) and (2.15). The case δ = 0 can be considered
similarly. �
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2.2. The finite dimensional case. Consider now the finite dimensional real valued Hilbert space.
Compared with subsection 2.1, the main new point here is that a minimizing sequence is replaced with a
minimizer, which exists. This case is of our main interest in the current paper because standard piecewise
linear finite elements form a finite dimensional space. Unlike the above, we now use the same norm in the
regularization term as in the original space. This is because all norms are equivalent in a finite dimensional
space. Nevertheless, since the finite dimensional version of the original ill-posed problem “inherits” the
ill-posedness, at certain extent, it is still important to use the regularization term for the stabilization.

Let H and H2 be two real valued Hilbert spaces and dimH < ∞. Norms and scalar products in these
spaces denote respectively as ‖·‖ , (, ) , ‖·‖2 , (, )2 . Let G ⊂ H be an open bounded set and F : G → H2 be
a continuous operator. We again consider equations (2.1), (2.2), where x∗ ∈ G, y, y∗ ∈ H2. The functional
Mα (x) in (2.3) is now replaced with the functional Jα (x) ,

Jα (x) =
1

2
‖F (x) − y‖2

2 +
α

2
‖x − x0‖2 , x ∈ G, x0 ∈ G. (2.16)

The following lemma follows immediately from Weierstrass theorem.

Lemma 2.1. Let F be the operator defined above in this subsection. Then there exists a regularized
solution xα ∈ G,

inf
G

Jα (x) = min
G

Jα (x) = Jα (xα) . (2.17)

Although a similar result is valid for the case when the set G is unbounded, we do not formulate it here
since we do not need it. The following theorem follows immediately from Theorem 2.1.

Theorem 2.2. Let Hilbert spaces H, H2, the set G ⊂ H and the operator F : G → H2 be the same
as specified above in this subsection. Also, let (2.2) hods and ‖x0 − x∗‖ ≤ 1. In addition, let the operator
F be one-to-one and α = α (δ) = δ2µ, µ = const. ∈ (0, 1/2) . Let xα(δ) ∈ G be a regularized solution, i.e.
xα(δ) satisfies (2.17). Let ξ ∈ (0, 1) be an arbitrary constant. Assume first that x0 6= x∗. Then there exists
a sufficiently small number δ0 = δ0 (F, µ, ξ) ∈ (0, 1) such that for any δ ∈ (0, δ0)

∥∥xα(δ) − x∗
∥∥ ≤ ξ ‖x0 − x∗‖ . (2.18)

If x0 = x∗, then (2.18) should be replaced with
∥∥xα(δ) − x∗

∥∥ ≤ ξ. In particular, if δ = 0, then δ0 should be
replaced with a sufficiently small number α0 ∈ (0, 1) and “ δ ∈ (0, δ0) ” should be replaced with α ∈ (0, α0) .

3. The Local Strong Convexity of the Functional Jα (x). In this section we prove the local strong
convexity of the Tikhonov functional (2.16). Let H and H2 be two real valued Hilbert spaces. Let scalar
products and norms in them be respectively (, ) , ‖·‖ and (, )2 , ‖·‖2 . Let L (H, H2) be the the space of all
bounded linear operators mapping H into H2 and let ‖·‖L be the norm in L (H, H2) . Although we do not
assume here that H is finite dimensional, we still use the same norm ‖x − x0‖ in the regularization term in
(2.16) as the one in the original space H , rather than a stronger norm as in (2.3). This is again because
our true goal is to work in a finite dimensional space of finite elements in the adaptivity (section 1). For
any a > 0 and for any x ∈ H denote Va (x) = {z ∈ H : ‖x − z‖ < a} . First, we formulate the following well
known theorem.

Theorem 3.1. [38]. Let G ⊆ H be a convex open set and L : G → R be a functional. Suppose that this
functional has the Fréchet derivative L′ (x) ∈ L (H, R) for every point x ∈ G. Then the strong convexity of
L on the set G with the strong convexity constant ρ > 0 is equivalent with the following condition

(L′ (x) − L′ (z) , x − z) ≥ 2ρ ‖x − z‖2
, ∀x, z ∈ G. (3.1)

Theorem 3.2. Let G ⊆ H be a convex open set and F : G → H2 be an operator. Let x∗ ∈ G be an
exact solution of equation (2.1) with the exact data y∗. Let V1 (x∗) ⊂ G and let (2.2) holds. Assume that for
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every x ∈ V1 (x∗) the operator F has the Fréchet derivative F ′ (x) ∈ L (H, H2) . Suppose that this derivative
is uniformly bounded and Lipschitz continuous in V1 (x∗), i.e.

‖F ′ (x)‖L ≤ N1, ∀x ∈ V1 (x∗) , (3.2)

‖F ′ (x) − F ′ (z)‖L ≤ N2 ‖x − z‖ , ∀x, z ∈ V1 (x∗) , (3.3)

where N1, N2 = const. > 0. Let

α = α (δ) = δ2µ, ∀δ ∈ (0, 1) , (3.4)

µ = const. ∈
(

0,
1

3

)
. (3.5)

Then there exists a sufficiently small number δ0 = δ0 (N1, N2, µ) ∈ (0, 1) such that for all δ ∈ (0, δ0) the
functional Jα (x) with α = α (δ) in (2.16) is strongly convex in the neighborhood Vδ3µ (x∗) of x∗ with the
strong convexity constant α/4. In the noiseless case with δ = 0 one should replace δ0 = δ0 (N1, N2, µ) ∈ (0, 1)
with α0 = α0 (N1, N2) ∈ (0, 1) to be sufficiently small and require that α ∈ (0, α0) .

Proof. To simplify the presentation, we assume without any loss of generality that in (2.1) y = 0.

Otherwise, we can replace the operator F with the operator F̃ (x) := F (x) − y. Hence, by (2.2)

‖F (x∗)‖2 ≤ δ. (3.6)

For any point x ∈ V1 (x∗) let F ′∗ (x) be the linear operator, which is adjoint to the operator F ′ (x). It can
be easily derived from (2.16) that the Fréchet derivative J ′

α (x) of the functional Jα (x) acts on the element
u ∈ H as

(J ′
α (x) , u) = (F ′∗ (x) F (x) + α (x − x0) , u) , ∀x ∈ V1 (x∗) , ∀u ∈ H.

Hence, J ′
α (x) can be considered as an element of the space H ,

J ′
α (x) = F ′∗ (x) F (x) + α (x − x0) . (3.7)

Consider two arbitrary points x, z ∈ Vδ3µ (x∗). We have

(J ′
α (x) − J ′

α (z) , x − z) = α ‖x − z‖2 + (F ′∗ (x) F (x) − F ′∗ (z)F (z) , x − z)

= α ‖x − z‖2
+ (F ′∗ (x) F (x) − F ′∗ (x)F (z) , x − z) + (F ′∗ (x) F (z) − F ′∗ (z)F (z) , x − z) .

Hence,

(J ′
α (x) − J ′

α (z) , x − z) = α ‖x − z‖2
+ A1 + A2, (3.8)

A1 = (F ′∗ (x) F (x) − F ′∗ (x) F (z) , x − z) , A2 = (F ′∗ (x)F (z) − F ′∗ (z)F (z) , x − z) . (3.9)

Estimate numbers A1, A2 from the below. We have

F (x) − F (z) =

1∫

0

(F ′ (z + θ (x − z)) − F ′ (x)) (x − z)dθ. (3.10)

Since

A1 = A1 − (F ′∗ (x) F ′ (x) (x − z) , x − z) + (F ′∗ (x)F ′ (x) (x − z) , x − z) ,
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then by (??) and (3.10)

A1 =


F ′∗ (x)




1∫

0

(F ′ (z + θ (x − z)) − F ′ (x)) (x − z)dθ


 , x − z


 + (F ′∗ (x) F ′ (x) (x − z) , x − z) .

(3.11)
Since ‖A‖ = ‖A∗‖ , ∀A ∈ L (H, H2) , then, using (3.2) and (3.3), we obtain

∣∣∣∣∣∣


F ′∗ (x)




1∫

0

(F ′ (z + θ (x − z)) − F ′ (x)) (x − z)dθ


 , x − z




∣∣∣∣∣∣

≤ ‖F ′ (x)‖L
1∫

0

‖(F ′ (z + θ (x − z)) − F ′ (x)) (x − z)‖2 dθ · ‖x − z‖ ≤ 1

2
N1N2 ‖x − z‖3

.

Next,

(F ′∗ (x)F ′ (x) (x − z) , x − z) = (F ′ (x) (x − z) , F ′ (x) (x − z))2 = ‖F ′ (x) (x − y)‖2
2 ≥ 0.

Hence, using (3.11), we obtain

A1 ≥ −1

2
N1N2 ‖x − z‖3 . (3.12)

Now we estimate A2,

|A2| ≤ ‖F (z)‖2 ‖F ′(x) − F ′ (z)‖L ‖x − z‖ ≤ N2 ‖x − z‖2 ‖F (z)‖2 .

By (3.2) and (3.10)

‖F (z)‖2 ≤ ‖F (z) − F (x∗)‖2 + ‖F (x∗)‖2 ≤ N1 ‖z − x∗‖ + ‖F (x∗)‖2 .

Hence, using (3.6), we obtain

|A2| ≤ N2 ‖x − z‖2 (N1 ‖z − x∗‖ + ‖F (x∗)‖2) ≤ N2 ‖x − z‖2 (
N1δ

3µ + δ
)
. (3.13)

By (3.5) δ < δ3µ for sufficiently small δ. Hence, we can choose δ0 = δ0 (N1, N2, µ) ∈ (0, 1) so small that(
N1δ

3µ + δ
)
≤ 2N1δ

3µ, ∀δ ∈ (0, δ0) . Hence, (3.13) implies that

A2 ≥ −2N2N1 ‖x − z‖2
δ3µ. (3.14)

Hence, using (3.4), (3.8), (3.12) and (3.14) and recalling that x, z ∈ Vδ3µ (x∗), we obtain

(J ′
α (x) − J ′

α (z) , x − z) ≥ ‖x − z‖2

[
α − N1N2

2
‖x − z‖ − 2N1N2δ

3µ

]

≥ ‖x − z‖2 [
δ2µ − 3N1N2δ

3µ
]
≥ δ2µ

2
‖x − z‖2

=
α

2
‖x − z‖2

.

Combining this with Theorem 3.1, we obtain the assertion of Theorem 3.2. Considerations for the noiseless
case are similar. �

Consider now the finite dimensional case.
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Theorem 3.3. Let dimH < ∞, G ⊂ H be an open bounded convex set, and the rest of conditions of
Theorem 3.2 holds with the only exception that (3.5) is now replaced with µ ∈ (0, 1/4). Let in (2.16) the
first guess x0 for the exact solution x∗ be so accurate that

‖x0 − x∗‖ <
δ3µ

3
. (3.15)

Then there exists a sufficiently small number δ0 = δ0 (N1, N2, µ) ∈ (0, 1) such that for every δ ∈ (0, δ0)
and for α = α (δ) satisfying (3.4) there exists unique regularized solution xα(δ) of equation (2.1) on the set
G and xα(δ) ∈ Vδ3µ (x∗) . In addition, the gradient method of the minimization of the functional Jα(δ) (x) ,
which starts at x0, converges to xα(δ). Furthermore, if the operator F is one-to-one on V1 (x∗), then xα(δ) ∈
Vδ3µ/3 (x∗) . In the noiseless case with δ = 0 one should replace δ0 = δ0 (N1, N2, µ) ∈ (0, 1) with α0 =
α0 (N1, N2) ∈ (0, 1) to be sufficiently small and require that α ∈ (0, α0) .

Proof. By Lemma 2.1 there exists a minimizer xα(δ) ∈ G of the functional Jα(δ). We have Jα(δ)

(
xα(δ)

)
≤

Jα(δ) (x∗) . Also,
∥∥xα(δ) − x0

∥∥ ≥
∥∥xα(δ) − x∗

∥∥ − ‖x0 − x∗‖ . Hence, using (2.2) and (3.15), we obtain that
there exists a sufficiently small number δ0 = δ0 (N1, N2, µ) ∈ (0, 1) such that for every δ ∈ (0, δ0)

∥∥xα(δ) − x∗
∥∥ ≤ δ√

α
+ 2 ‖x∗ − x0‖ < δ1−µ +

2

3
δ3µ =

2

3
δ3µ

(
1 +

3

2
δ1−4µ

)
<

2

3
δ3µ · 3

2
= δ3µ.

Hence, xα(δ) ∈ Vδ3µ (x∗) . Since by Theorem 3.2 the functional Jα is strongly convex on the set Vδ3µ (x∗)
and the minimizer xα(δ) ∈ Vδ3µ (x∗) , then this minimizer is unique. Furthermore, since by (3.15) the point
x0 ∈ Vδ3µ (x∗) , then it is well known that the gradient method with its starting point at x0 converges to
xα(δ).

Let now the operator F be one-to-one. Let ξ ∈ (0, 1) be an arbitrary number and x0 6= x∗. By Theorem
2.2 we can choose a smaller number δ0 = δ0 (N1, N2, µ, ξ) such that

∥∥xα(δ) − x∗
∥∥ ≤ ξ ‖x0 − x∗‖ , ∀δ ∈ (0, δ0) .

Hence, (3.15) implies that xα(δ) ∈ Vδ3µ/3 (x∗) . If x0 = x∗, then by Theorem 2.2
∥∥xα(δ) − x∗

∥∥ ≤ ξ. Choosing

ξ ∈
(
0, δ3µ/3

)
, we again obtain that xα(δ) ∈ Vδ3µ/3 (x∗) . The noiseless case is similar. �

4. The Space of Finite Elements. To prove the relaxation property of the adaptivity, we need to
introduce the space of finite elements. We consider only standard piecewise linear finite elements, which are
triangles in 2-d and tetrahedra in 3-d. Let Ω ⊂ Rn, n = 2, 3 be a bounded domain. Consider a triangulation
T of Ω with a rather coarse mesh. We obtain a polygonal domain D and assume for brevity that D = Ω.

Following section 76.4 of [22], we associate with triangulation T piecewise linear functions {ej (x, T )}p(T )
j=1 ⊂

C
(
Ω

)
, which are called global test functions. Functions {ej (x, T )}p(T )

j=1 are linearly independent in Ω. The

number p (T ) of these global functions equals to the number of the mesh points in the domain Ω.
Let {Ni} = N1, N2, ..., Np(T ) be the enumeration for nodes in the triangulation T . Then test functions

should satisfy to the following condition for all i, j ∈ {Ni}

ej (Ni, T ) =

{
1, i = j,
0, i 6= j.

The linear space of finite elements with its basis {ej (x, T )}p(T )
j=1 is defined as

V (T ) =
{
v (x) : v ∈ C

(
Ω

)
, v |K is linear on K ∀K ∈ T

}
,

where v |K is the restriction of the function v on the element K. Each function v ∈ V (T ) can be represented
as

v (x) =

p(T )∑

j=1

v(Nj)ej(x, T ).
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Let h (Kj) be the diameter of the triangle/tetrahedra Kj ⊂ T . Then the number h,

h = max
Kj⊂T

h (Kj)

is called the maximal grid step size of the triangulation T . Let r be the radius of the maximal circle/sphere
inscribed in Kj. We impose the shape regularity assumption for all triangles/tetrahedra uniformly for all
possible triangulations T which we consider. Specifically, we assume that

a1 6 h (Kj) 6 ra2, a1, a2 = const. > 0, ∀Kj ⊂ T, ∀ T, (4.1)

where numbers a1, a2 are independent on the triangulation T . Obviously, the number of all possible trian-
gulations satisfying (4.1) is finite. Thus, we introduce the following finite dimensional linear space H,

H =
⋃

T

Span (V (T )) , ∀T satisfying (4.1).

Hence,

dimH < ∞, H ⊂
(
C

(
Ω

)
∩ H1 (Ω)

)
, ∂xi

f ∈ L∞ (Ω) , ∀f ∈ H. (4.2)

In (4.2) ”⊂” means the inclusion of sets. We equip H with the same inner product as the one in L2 (Ω) .
Denote (, ) and ‖·‖ the inner product and the norm in H respectively, ‖f‖H := ‖f‖L2(Ω) := ‖f‖ , ∀f ∈ H.

Keeping in mind the mesh refinement process in the adaptivity, we now explain how do we construct
triangulations {Tn} as well as corresponding subspaces {Mn} of the space H which correspond to mesh
refinements. Consider the first triangulation T1 with rather coarse mesh. We set M1 := V (T1) ⊂ H. Suppose
that the pair (Tn, Mn) is constructed after n mesh refinements and that the basis functions in the space Mn are

{ej (x, Tn)}p(Tn)
j=1 . We now want to refine the mesh again. We define the pair (Tn+1, Mn+1) as follows. First,

we refine the mesh in the standard manner as it is usually done when working with triangular/tetrahedron
finite elements. When doing so, we keep (4.1). Hence, we obtain both the triangulation Tn+1 and the

corresponding test functions {ej (x, Tn+1)}p(Tn+1)
j=1 . It is well known that test functions {ej (x, Tn)}p(Tn)

j=1

depend linearly on new test functions {ej (x, Tn+1)}p(Tn+1)
j=1 . Thus, we define the subspace Mn+1 as

Mn+1 := Span
(
{ej (x, Tn+1)}p(Tn+1)

j=1

)
.

Therefore, we have obtained a finite set of linear subspaces {Mn}N
n=1 of the space H. Each subspace Mn

corresponds to the mesh refinement number n and

Mn ⊂ Mn+1 ⊂ H, n ∈ [1, N ] .

Let I be the identity operator on H . For any subspace M ⊂ H, let PM : H → M be the orthogonal
projection operator onto M . Denote for brevity Pn := PMn

. Let hn be the mesh function for Tn defined as
a maximal diameter of the elements in triangulation Tn. Let f I

n be the standard interpolant of the function
f ∈ H on triangles/tetrahedra of Tn, see section 76.4 of [22]. It can be easily derived from formula (76.3) of
[22] that

∥∥f − f I
n

∥∥
L∞(Ω)

≤ K ‖∇f‖L∞(Ω) hn, ∀f ∈ H, (4.3)

where K = K (Ω, r, a1, a2) = const. > 0. Since f I
n ∈ H, ∀f ∈ H, then by one of well known properties of

orthogonal projection operators,

‖f − Pnf‖ 6
∥∥f − f I

n

∥∥ , ∀f ∈ H. (4.4)
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Hence, (4.3) and (4.4) imply that

‖f − Pnf‖L∞(Ω) 6 K ‖∇f‖L∞(Ω) hn, ∀f ∈ H. (4.5)

Since H is a finite dimensional space in which all norms are equivalent, it is convenient for us to rewrite
(4.5) with a different constant K in the form

‖x − Pnx‖ 6 K ‖x‖ hn, ∀x ∈ H. (4.6)

Remark 4.1. Everywhere below H is the space defined in this section. We view the space H as an
“ideal” space of very fine finite elements, which cannot be reached in practical computations. At the same
time, all other spaces of finite elements we work with below are subspaces of H. In particular, this means
that we assume without further mentioning that (4.4) is valid for all grid step sizes considered below. We
also assume that we refine meshes not only until condition (4.4) is fulfilled, but also check the condition

h(Kmin)/h(Kmax) ≤ C (4.7)

with the some constant C, where h(Kmin), h(Kmax) are the smallest and the largest diameters for the
elements in the mesh Tn, correspondingly. We perform local mesh refinements automatically and check the
condition (4.7) numerically.

5. Relaxation. Since we sequentially minimize the Tikhonov functional on subspaces {Mn}N
n=1 in the

adaptivity procedure, then we need to establish first the existence of a minimizer on each of these subspaces.
In this section the set G and the operator F are the same as in Theorem 3.3, and the functional Jα (x) is
the same as in (2.16). Theorem 5.1 ensures both existence and uniqueness of the minimizer of the functional
Jα on each subspace of the space H, as long as the maximal grid step size of finite elements, which are
involved in that subspace, is sufficiently small, although condition (4.1) is still satisfied, see Remark 4.1. The
smallness of that grid step size depends on the upper estimate of the norm ‖x∗‖ of the exact solution. Since
by the fundamental concept of Tikhonov (section 1.4 of [11]), one can assume an a priori knowledge of this
estimate, then this assumption imposes an upper bound on the maximal grid step size.

Theorem 5.1. Let G ⊂ H be an open bounded convex set, F : G → H2 be an operator and Jα be the
functional defined in (2.16), where H2 is a real valued Hilbert space. Let x∗ ∈ G be the exact solution of
equation (2.2) with the exact data y∗ and δ ∈ (0, 1) be the level of the error in the data, as in (2.2). Suppose
that V1 (x∗) ⊂ G. Assume that for every x ∈ V1 (x∗) the operator F has the Frechét derivative F ′ (x) and
that this derivative is uniformly bounded and Lipschitz continuous in V1 (x∗), i.e.

‖F ′ (x)‖L ≤ N1, ∀x ∈ V1 (x∗) , (5.1)

‖F ′ (x) − F ′ (z)‖L ≤ N2 ‖x − z‖ , ∀x, z ∈ V1 (x∗) , (5.2)

where N1, N2 = const. ≥ 1. Let

α = α (δ) = δ2µ, ∀δ ∈ (0, 1) , (5.3)

µ = const. ∈
(

0,
1

4

)
. (5.4)

Let M ⊆ H be a subspace of H and let Vδ3µ (x∗) ∩ M 6= ∅. Assume that ‖x∗‖ ≤ A, where the number A

is known in advance. Suppose that the maximal grid step size h̃ of finite elements of M be so small that
(also, see Remark 4.1)

h̃ ≤ δ4µ

5AN2K
, (5.5)

where K is the constant in (4.6). Furthermore, assume that the first guess x0 for the exact solution x∗ in
the functional Jα(δ) is so accurate that

‖x0 − x∗‖ <
δ3µ

3
.
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Then there exists a sufficiently small number δ0 = δ0 (N1, N2, µ) ∈ (0, 1) such that for every δ ∈ (0, δ0) there
exists unique minimizer xM,α(δ) ∈ G∩M of the functional Jα on the set G∩M and xM,α(δ) ∈ Vδ3µ (x∗)∩M.
Furthermore, the functional Jα (x) is strongly convex on the set Vδ3µ (x∗) ∩ M with the strong convexity
constant α (δ) /4. In particular, let xα(δ) ∈ Vδ3µ/3 (x∗) be the regularized solution of equation (2.1) (Theorem
3.3). Then the following a posteriori error estimate holds

∥∥xM,α(δ) − xα(δ)

∥∥ ≤ 2

δ2µ

∥∥J ′
α

(
xM,α(δ)

)∥∥ .

Note that since in Theorem 5.1 V1 (x∗) ⊂ G and Vδ3µ (x∗) ∩ M 6= ∅, then G ∩M 6= ∅. We do not prove
this theorem here and refer instead to Theorem 4.9.2 of [11]; also see Theorem 3.2 of [15] for a similar result.

Theorem 5.2 (relaxation property of the adaptivity). Let Mn ⊂ H be the subspace obtained after
n mesh refinements, as described in section 4. Let hn be the maximal grid step size of the subspace Mn.
Suppose that all conditions of Theorem 5.1 hold with the only exception that the subspace M is replaced with
Mn and the inequality (5.5) is replaced with (also, see Remark 4.1)

hn ≤ δ4µ

5AN2K
. (5.6)

Also, let Vδ3µ (x∗) ∩ M1 6= ∅. Let xn ∈ Vδ3µ (x∗) ∩ Mn be the unique minimizer of the functional Jα (x) in
(2.16) on the set G∩Mn (Theorem 5.1) and xα(δ) ∈ Vδ3µ/3 (x∗) be the unique regularized solution (Theorem
3.3). Assume that

xn 6= xα(δ), (5.7)

i.e. xα(δ) /∈ Mn , meaning that the regularized solution is not yet reached after n mesh refinements. Let η ∈
(0, 1) be an arbitrary number. Then one can choose the maximal grid size hn+1 = hn+1 (N1, N2, δ, A, K, η) ∈
(0, hn] of the mesh refinement number (n + 1) so small that

∥∥xn+1 − xα(δ)

∥∥ ≤ η
∥∥xn − xα(δ)

∥∥ , (5.8)

where xn+1 ∈ Vδ3µ (x∗) ∩Mn+1 is the unique minimizer of the functional (2.16) on the set G ∩Mn+1 (also,
see Remark 4.1). Hence,

∥∥xn+1 − xα(δ)

∥∥ ≤ ηn
∥∥x1 − xα(δ)

∥∥ . (5.9)

Proof. Since Vδ3µ (x∗) ∩ M1 6= ∅, M1 ⊆ Mn and Vδ3µ (x∗) ⊂ V1 (x∗) ⊂ G, then (Vδ3µ (x∗) ∩ Mn) ⊂
(Vδ3µ (x∗) ∩ Mn+1) 6= ∅ and also (V1 (x∗) ∩ Mn) ⊂ (V1 (x∗) ∩ Mn+1) 6= ∅. In particular, (G ∩ Mn) ⊂
(G ∩ Mn+1) 6= ∅. Next, by Theorem 5.1 the functional (2.16) is strongly convex on the set Vδ3µ (x∗)∩Mn+1

with the strong convexity constant α/4. Hence, Theorem 3.1 implies that

α

2

∥∥xn+1 − xα(δ)

∥∥2 ≤
(
J ′

α (xn+1) − J ′
α

(
xα(δ)

)
, xn+1 − xα(δ)

)
. (5.10)

Since xn+1 is the minimizer on G ∩ Mn+1 and xα is the minimizer on the set G, then

(J ′
α (xn+1) , z) = 0, ∀z ∈ Mn+1; J

′
α

(
xα(δ)

)
= 0. (5.11)

Relations (5.11) justify the application of the Galerkin orthogonality principle, see, e.g. [4, 6]. By (5.11)

(
J ′

α (xn+1) − J ′
α

(
xα(δ)

)
, xn+1 − Pn+1xα(δ)

)
= 0. (5.12)

Next,

xn+1 − xα(δ) =
(
xn+1 − Pn+1xα(δ)

)
+

(
Pn+1xα(δ) − xα(δ)

)
.
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Hence, (5.10) and (5.12) imply that

α

2

∥∥xn+1 − xα(δ)

∥∥2 ≤
(
J ′

α (xn+1) − J ′
α

(
xα(δ)

)
, Pn+1xα(δ) − xα(δ)

)
. (5.13)

It follows from (3.7) that conditions (5.1) and (5.2) imply that

∥∥J ′
α (xn+1) − J ′

α

(
xα(δ)

)∥∥ ≤ N3

∥∥xn+1 − xα(δ)

∥∥ (5.14)

with a constant N3 = N3 (N1, N2) > 0. Also, by (4.6)

∥∥xα(δ) − Pn+1xα(δ)

∥∥ ≤ K
∥∥xα(δ)

∥∥ hn+1. (5.15)

Using the Cauchy-Schwarz inequality as well as (5.3), (5.14) and (5.15), we obtain from (5.13)

∥∥xn+1 − xα(δ)

∥∥ ≤ 2KN3

δ2µ

∥∥xα(δ)

∥∥ hn+1. (5.16)

Since by one of conditions of Theorem 5.1 we have an a priori known upper estimate ‖x∗‖ ≤ A, we now
can estimate the norm ‖xα‖. Since by Theorem 3.3 xα(δ) ∈ Vδ3µ/3 (x∗) , then

∥∥xα(δ)

∥∥ ≤
∥∥xα(δ) − x∗

∥∥ + ‖x∗‖ ≤ δ3µ

3
+ A.

Hence, (5.16) becomes

∥∥xn+1 − xα(δ)

∥∥ ≤ 2KN3

δ2µ

(
δ3µ

3
+ A

)
hn+1. (5.17)

Let η ∈ (0, 1) be an arbitrary number. Since
∥∥xn − xα(δ)

∥∥ 6= 0, then we can choose
hn+1 = hn+1 (N2, δ, A, K) ∈ (0, hn] so small that

2KN3

δ2µ

(
δ3µ

3
+ A

)
hn+1 ≤ η

∥∥xn − xα(δ)

∥∥ . (5.18)

Comparing (5.18) with (5.17), we obtain the target estimate (5.8). �

Theorem 5.3 follows immediately from Theorem 2.2 and (5.9).
Theorem 5.3. Let all conditions of Theorem 5.2 hold. Let ξ ∈ (0, 1) be an arbitrary number. Then

there exists a sufficiently small number δ0 = δ0 (N1, N2, µ, ξ) ∈ (0, 1) and a decreasing sequence of maximal

grid step sizes {hk}n+1
k=1 such that

‖xk+1 − x∗‖ ≤ ηk
∥∥x1 − xα(δ)

∥∥ + ξ ‖x0 − x∗‖ , k = 1, ..., n. (5.19)

Since hn+1 is the maximal grid step size in the entire domain Ω, it seems to be at the first glance that
relaxation Theorems 5.2 and 5.3 are about mesh refinements in the entire domain Ω rather than about local
mesh refinements in subdomains, as it is the case in the adaptivity. Assuming that conditions of Theorem
5.3 hold, we now show that local mesh refinements are also covered by this theorem. Suppose that the
first guess x0 is sufficiently close to x∗, as it should be in the realistic case, because of the problem of local
minima and ravines of the Tikhonov functional, see section 1. Hence, we need to refine x0 via the adaptivity
technique. Suppose that the domain Ω is split in two subdomains, Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅. Assume that
the function x0 is changing slowly in Ω1 and has some “bumps” in Ω2. These bumps correspond to small
inclusions. It is these inclusions rather than slowly changing functions, which are of the main applied interest
in imaging. Indeed, those small abnormalities model, e.g. land mines, tumors, etc. Hence, it is reasonable
to assume that x∗ is also changing slowly in Ω1. Next, because of Theorem 2.2 and because all norms in H
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are equivalent, it is also reasonable to assume that the regularized solution xα is changing slowly in Ω1. As
the simplest example, one can assume that

∇xα(δ) = ∇x∗ = 0 in Ω1. (5.20)

A more general case can be considered along the same lines. Thus, inequality (5.21) of Theorem 5.4 is a
reasonable one. Furthermore, it is reasonable to assume that mesh refinements do not take place in Ω1, but
only in Ω2. Let h(1) be the maximal grid step size in Ω1.

Theorem 5.4 (relaxation of the adaptivity for local mesh refinements). Assume that conditions of
Theorem 5.2 hold. Then there exists a sufficiently small number δ0 = δ0 (N1, N2, µ, ξ) ∈ (0, 1) and a

decreasing sequence of maximal grid step sizes
{
h̃k

}n+1

k=1
such that if

∥∥∇xα(δ)

∥∥
L∞(Ω1)

is so small that

2KN3

δ2µ

∥∥∇xα(δ)

∥∥
L∞(Ω1)

h(1) ≤ η

2

∥∥xk − xα(δ)

∥∥ , k = 1, ..., n, (5.21)

then (5.19) holds with the replacement of {hk}n+1
k=1 with

{
h̃k

}n+1

k=1
.

Proof. By (5.13) and (5.14)

∥∥xk+1 − xα(δ)

∥∥ ≤ 2N3

δ2µ

∥∥xα(δ) − Pk+1xα(δ)

∥∥ = (5.22)

2N3

δ2µ

(∥∥xα(δ) − Pk+1xα(δ)

∥∥
L2(Ω1)

+
∥∥xα(δ) − Pk+1xα(δ)

∥∥
L2(Ω2)

)
.

By (4.5) and (5.21)

2N3

δ2µ

∥∥xα(δ) − Pk+1xα(δ)

∥∥
L2(Ω1)

≤ 2KN3

δ2µ

∥∥∇xα(δ)

∥∥
L∞(Ω1)

h(1) ≤ η

2

∥∥xk − xα(δ)

∥∥ . (5.23)

Next, we obtain similarly with (5.18)

2N3

δ2µ

∥∥xα(δ) − Pk+1xα(δ)

∥∥
L2(Ω2)

≤ η

2

∥∥xk − xα(δ)

∥∥ . (5.24)

It follows from (5.22)-(5.24) that

∥∥xk+1 − xα(δ)

∥∥ ≤ η
∥∥xk − xα(δ)

∥∥ , k = 1, ..., n.

Hence, (5.9) holds. Finally, (5.19) follows from (5.9) and Theorem 2.2. �

Remark 5.1. Thus, Theorem 5.3 claims that the accuracy of the reconstruction of the exact solution x∗

improves with mesh refinements, i.e. the relaxation takes place. Comparison of (2.18) with (5.7) and (5.19)
shows that the solution accuracy improvement continues until reaching the regularized solution xα(δ). It is
important that the accuracy of xα(δ) is better than the accuracy of the first guess x0. Indeed, this ensures
that it is worthy to undertake the “adaptivity effort” to improve the accuracy of the regularized solution.
Theorem 5.4 implies that the same is true for local mesh refinements.

6. Adaptivity for a Coefficient Inverse Problem. We now reformulate some of above theorems
for the case of a specific CIP. To save space, we do not prove theorems of this section. Instead, we point to
those results of Chapter 4 of [11] from which these theorems follow easily.

6.1. Coefficient Inverse Problem and Tikhonov functional. Let Ω ⊂ R3 be a convex bounded
domain with the boundary ∂Ω ∈ C3. Let the point x0 /∈ Ω. For T > 0 denote QT = Ω × (0, T ) , ST =
∂Ω × (0, T ) . Let d > 1 be a certain number, ω ∈ (0, 1) be a sufficiently small number, and the function
c (x) ∈ C

(
R3

)
be such that

c (x) ∈ (1 − ω, d + ω) in Ω, c (x) = 1 outside of Ω. (6.1)
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Below we specify c (x) more. Consider the solution u (x, t) of the following Cauchy problem

c (x) utt = ∆u, x ∈ R3, t ∈ (0, T ) , (6.2)

u (x, 0) = 0, ut (x, 0) = δ (x − x0) . (6.3)

Equation (6.2) governs propagation of acoustic waves, in which case c (x) = 1/b2 (x) , where b (x) is the
sound speed and u (x, t) is the amplitude of the acoustic wave [44]. In addition, (6.2) governs propagation
of the electromagnetic field in 2-d, in which case c (x) = εr (x) is the spatially distributed dielectric constant
and u (x, t) is one of components of the electric field [41]. Although in the latter application equation (6.2)
is valid only in 2-d, we have successfully used this equation to model experimental data, which are obviously
in 3-d, see [11, 14, 31] and section 8.

Remark 6.1. An alternative to the point source in (6.3) is the incident plane wave in the case when
it is initialized at the plane {x3 = x3,0} such that {x3 = x3,0} ∩ Ω = ∅. The formalism of derivations below
is similar in this case. In our derivations below we focus on (6.3), because this is the most convenient case
for derivations. However, in numerical studies we use the incident plane wave, because this case has shown
a better performance than the case (6.3) of the point source.

Coefficient Inverse Problem (CIP). Let conditions (6.1)-(6.3) hold. Assume that the coefficient c (x)
is unknown inside the domain Ω. Determine this coefficient for x ∈ Ω, assuming that the following function
g (x, t) is known

u |ST
= g (x, t) . (6.4)

The function g (x, t) can be interpreted as the result of measurements of the outcome wave field u (x, t)
at the boundary of the domain of interest Ω. Since the function c (x) = 1 outside of Ω, then (6.2)-(6.4) imply

utt = ∆u, (x, t) ∈
(
R3�Ω

)
× (0, T ) ,

u (x, 0) = ut (x, 0) = 0, x ∈ R3�Ω, u |ST
= g (x, t) .

Solving this initial boundary value problem for (x, t) ∈
(
R3�Ω

)
× (0, T ) , we uniquely and stably obtain

Neumann boundary condition p (x, t) for the function u,

∂nu |ST
= p (x, t) . (6.5)

CIPs are quite complex problems. Hence, to handle them, one naturally needs to impose some simplifying
assumptions. In this particular CIP our theory is not working unless we replace the δ−function in (6.3) by
a smooth function, which approximates δ (x − x0) in the distribution sense. Let κ ∈ (0, 1) be a sufficiently
small number. We replace δ (x − x0) in (6.3) with the function δκ (x − x0) ,

δκ (x − x0) =

{
Cκ exp

(
1

|x−x0|
2−κ2

)
, |x − x0| < κ,

0, |x − x0| > κ,

∫

R3

δκ (x − x0) dx = 1. (6.6)

We assume that κ is so small that

δκ (x − x0) = 0 in Ω. (6.7)

Let ζ ∈ (0, 1) be a sufficiently small number. Consider the function zζ ∈ C∞ [0, T ] such that

zζ (t) =





1, t ∈ [0, T − 2ζ] ,
0, t ∈ [T − ζ, T ] ,

between 0 and 1 for t ∈ [0, T − 2ζ, T − ζ] .
(6.8)

We now introduce state and adjoint problems.
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State Problem. Find the solution v (x, t) of the following initial boundary value problem

c (x) vtt − ∆v = 0 in QT ,

v(x, 0) = vt(x, 0) = 0,

∂nv |ST
= p (x, t) .

(6.9)

Adjoint Problem. Find the solution λ (x, t) of the following initial boundary value problem with the
reversed time

c (x)λtt − ∆λ = 0 in QT ,

λ(x, T ) = λt(x, T ) = 0,

∂nλ |ST
= zζ (t) (g − v) (x, t) .

(6.10)

Here functions v ∈ H1 (QT ) and λ ∈ H1 (QT ) are weak solutions of problems (6.9) and (6.10) respectively.
In fact, we need a higher smoothness of these functions, which we specify below. In (6.10) and (6.9) functions
g and p are the ones from (6.4) and (6.5) respectively. Hence, to solve the adjoint problem, one should solve
the state problem first. The function zζ (t) is introduced to ensure the validity of compatibility conditions
at {t = T } in (6.10). The Tikhonov functional for the above CIP is

Eα(c) =
1

2

∫

ST

(v |ST
− g(x, t))2zζ (t) dσdt +

1

2
α

∫

Ω

(c − cglob)
2dx, (6.11)

where cglob is the approximate solution obtained by our approximately globally convergent numerical method
on the first stage of our two stage numerical procedure (section 1) and α is the small regularization parameter
as above. To figure out the Fréchet derivative of the functional Eα (c) , we introduce the Lagrangian L(c),

L(c) = Eα(c) −
∫

QT

c(x)vtλtdxdt +

∫

QT

∇v∇λdxdt −
∫

ST

pλdσxdt. (6.12)

The sum of integral terms in L(c) equals zero, because of the definition of the weak solution v ∈ H1 of the
problem (6.9) as v (x, 0) = 0 and

∫

QT

(−c(x)vtwt + ∇v∇w) dxdt −
∫

ST

pwdσxdt = 0, ∀w ∈ H1 (QT ) , w (x, T ) = 0, (6.13)

see section 5 of Chapter 4 of [36]. Hence, L(c) = Eα(c). It is more convenient to calculate the Fréchet
derivative of the Tikhonov functional Eα(c) written in the form (6.12) rather than in the form (6.11).
Because of this, it is necessary to consider Fréchet derivatives of functions v, λ with respect to the coefficient
c (in certain functional spaces). This in turn requires to establish a higher smoothness of functions v, λ than
just H1 (QT ) [11, 13].

State and adjoint problems are concerned only with the domain Ω rather than with the entire space R3.
We define the space Z as

Z =
{
f : f ∈ C

(
Ω

)
∩ H1 (Ω) , cxi

∈ L∞ (Ω) , i = 1, 2, 3
}

, ‖f‖Z = ‖f‖C(Ω) +

3∑

i=1

‖fxi
‖L∞(Ω) .

Clearly H ⊂ Z as a set. To apply the theory of above sections, we express in subsection 6.2 the function
c(x) via standard piecewise linear finite elements. Hence, we assume below that c ∈ Y, where

Y = {c ∈ Z : c ∈ (1 − ω, d + ω)} . (6.14)
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Theorem 6.1 can be easily derived from a combination of Theorems 4.7.1, 4.7.2 and 4.8 of [11] as well as
from Theorems 3.1, 3.2 of [13].

Theorem 6.1. Let Ω ⊂ R3 be a convex bounded domain with the boundary ∂Ω ∈ C2 and such that
there exists a function a ∈ C2

(
Ω

)
such that a |∂Ω= 0, ∂na |∂Ω= 1. Assume that there exists functions

P (x, t) , Φ (x, t) such that

P ∈ H6 (QT ) , Φ ∈ H5 (QT ) ; ∂nP |ST
= p (x, t) , ∂nΦ |ST

= zζ (t) g (x, t) ,

∂j
t P (x, 0) = ∂j

t Φ (x, 0) = 0, j = 1, 2, 3, 4.

Then for every function c ∈ Y functions v, λ ∈ H2 (QT ) , where v, λ are solutions of state and adjoint
problems (6.9), (6.10). Also, for every c ∈ Y there exists Fréchet derivative E′

α(c) of the Tikhonov functional
Eα(c) in (6.11) and

E′
α(c) (x) = α (c − cglob) (x) −

T∫

0

(utλt) (x, t) dt := α (c − cglob) (x) + y (x) . (6.15)

The function y (x) ∈ C
(
Ω

)
and the there exists a constant B = B (Ω, a, d, ω, zζ) > 0 such that

‖y‖C(Ω) ≤ ‖c‖2
C(Ω) exp (BT )

(
‖P‖2

H6(QT ) + ‖Φ‖2
H5(QT )

)
. (6.16)

The functional of the Fréchet derivative E′
α(c) acts on any function b ∈ Z as

E′
α(c) (b) =

∫

Ω

E′
α(c) (x) b (x) dx.

6.2. Relaxation property of mesh refinements for the functional Eα(c). We now need to
“project” the relaxation property for the specific functional Eα(c) for our CIP. To do this, we need to
define first the operator F for our specific case. Let Y be the set of functions defined in (6.14) and H be
the finite dimensional space of finite elements constructed in section 4 (also, see Remark 4.1). We define the
set G as G := Y ∩ H . We consider the set G as the subset of the space H with the same norm as in H .
In particular, G =

{
c (x) ∈ H : c (x) ∈ [1 − ω, d + ω] for x ∈ Ω

}
. Let the Hilbert space H2 := L2 (ST ) . We

define the operator F as

F : G → H2, F (c) (x, t) = zζ (t) [g (x, t) − v (x, t, c)] , (x, t) ∈ ST , (6.17)

where the function v := v (x, t, c) is the weak solution (6.13) of the state problem (6.9), g is the function
in (6.4) and zζ (t) is the function defined in (6.8). For any function b ∈ H consider the weak solution
ũ (x, t, c, b) ∈ H1 (QT ) of the following initial boundary value problem

c (x) ũtt = ∆ũ − b (x) vtt, (x, t) ∈ QT ,

ũ (x, 0) = ũt (x, 0) = 0, ũ |ST
= 0.

Theorem 6.2 can be easily derived from a combination of Theorems 4.7.2 and 4.10 of [11].
Theorem 6.2. Let Ω ⊂ R3 be a convex bounded domain with the boundary ∂Ω ∈ C2. Suppose that there

exist functions a (x) , P (x, t) , Φ (x, t) satisfying conditions of Theorem 6.1. Then the function ũ (x, t, c, b) ∈
H2 (QT ) , ∀c ∈ G, ∀b ∈ H. Also, the operator F in (6.17) has the Fréchet derivative F ′ (c) (b) ,

F ′ (c) (b) = −zζ (t) ũ (x, t, c, b) |ST
, ∀c ∈ G, ∀b ∈ H.

Let B = B (Ω, a, d, ω, zζ) > 0 be the constant of Theorem 6.1. Then

‖F ′ (c)‖L ≤ exp (BT ) ‖P‖H6(QT ) , ∀c ∈ G.
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In addition, the operator F ′ (c) is Lipschitz continuous,

‖F ′ (c1) − F ′ (c2)‖L ≤ exp (BT ) ‖P‖H6(QT ) ‖c1 − c2‖ , ∀c1, c2 ∈ G.

Following (2.2), we also introduce the error of the level δ in the data g(x, t) in (6.4). So, we assume that

g(x, t) = g∗(x, t) + gδ(x, t); g∗, gδ ∈ L2 (ST ) , ‖gδ‖L2(ST ) ≤ δ. (6.18)

where g∗(x, t) is the exact data and the function gδ(x, t) represents the error in these data. To make
sure that the operator F is one-to-one, we need to refer to a uniqueness theorem for our CIP. However,
uniqueness results for multidimensional CIPs with single measurement data are currently known only under
the assumption that at least one of initial conditions does not equal zero in the entire domain Ω, which is not
our case. All these theorems were proven by the method, which was originated in 1981 simultaneously and
independently by the authors of the papers [17, 18, 27]; also see, e.g. [19, 28, 29, 30] as well as sections 1.10,
1.11 of the book [11] and references cited there for some follow up publications of those authors about this
method. This method is based on Carleman estimates. Although many other researchers have published
about this method, we do not cite those works here, because the topic of uniqueness is not a focus of the
current paper. We refer to a survey [46] for more references. Lifting the above assumption is a long standing
and well known open question. Nevertheless, because of applications, it makes sense to develop numerical
methods for the above CIP, regardless on the absence of proper uniqueness theorems. Therefore, we introduce
Assumption 6.1.

Assumption 6.1. The operator F (c) defined in (6.17) is one-to-one.
Theorem 6.3 follows from Theorems 3.3, 6.1 and 6.2. Note that if a function c ∈ H is such that c ∈ [1, d] ,

then c ∈ G.
Theorem 6.3. Let Ω ⊂ R3 be a convex bounded domain with the boundary ∂Ω ∈ C3. Suppose that

there exist functions a (x) , P (x, t) , Φ (x, t) satisfying conditions of Theorem 6.1. Let Assumption 6.1 and
condition (6.18) hold. Let the function v = v (x, t, c) ∈ H2 (QT ) in (6.11) be the solution of the state problem
(6.9) for the function c ∈ G. Assume that there exists the exact solution c∗ ∈ G, c∗ (x) ∈ [1, d] of the equation
F (c∗) = 0 for the case when in (6.18) the function g is replaced with the function g∗. Let in (6.18)

α = α (δ) = δ2µ, µ = const. ∈ (0, 1/4) .

Also, let in (6.11) the function cglob ∈ G be such that

‖cglob − c∗‖ <
δ3µ

3
.

Then there exists a sufficiently small number δ0 = δ0

(
Ω, d, ω, zζ, a, ‖P‖H6(QT ) , µ

)
∈ (0, 1) such that for all

δ ∈ (0, δ0) the neighborhood Vδ3µ (c∗) of the function c∗ is such that Vδ3µ (c∗) ⊂ G and the functional Eα (c)
is strongly convex in Vδ3µ (c∗) with the strong convexity constant α/4. In other words,

‖c1 − c2‖2 ≤ 2

δ2µ
(E′

α (c1) − E′
α (c2) , c1 − c2) , ∀c1, c2 ∈ G, (6.19)

where (, ) is the scalar product in L2 (Ω) and the Fréchet derivative E′
α is calculated as in (6.15). Further-

more, there exists the unique regularized solution cα(δ), and cα(δ) ∈ Vδ3µ/3 (x∗) . In addition, the gradient
method of the minimization of the functional Eα (c) , which starts at cglob, converges to cα(δ). Furthermore,

let ξ ∈ (0, 1) be an arbitrary number. Then there exists a number δ1 = δ1

(
Ω, d, ω, zζ, a, ‖P‖H6(QT ) , µ, ξ

)
∈

(0, δ0) such that

∥∥cα(δ) − c∗
∥∥ ≤ ξ ‖cglob − c∗‖ , ∀δ ∈ (0, δ1) .

17



In other words, the regularized solution cα(δ) provides a better accuracy than the solution obtained on the
first stage of our two-stage numerical procedure. Furthermore, the second relation (5.10) and (6.19) imply
that

∥∥c − cα(δ)

∥∥ ≤ 2

δ2µ
‖E′

α (c)‖L2(Ω) , ∀c ∈ G. (6.20)

Theorem 6.4 is follows from Theorems 5.1 and 6.3 as well as from Theorem 4.11.3 of [11].
Theorem 6.4. Let conditions of Theorem 6.3 hold. Let ‖c∗‖ ≤ A, where the constant A is given. Let

Mn ⊂ H be the subspace obtained after n mesh refinements as described in section 4. Also, let Vδ3µ (c∗) ∩
M1 6= ∅ and let hn be the maximal grid step size of the subspace Mn (also, see Remark 4.1 about hn). Let
B = B (Ω, a, d, ω, zζ) > 0 be the constant of Theorem 6.1 and K be the constant in (4.6). Then there exists

a constant N2 = N2

(
exp (BT ) ‖P‖H6(QT )

)
such that if

hn ≤ δ4µ

AN2K
,

then there exists the unique minimizer cn of the functional (6.11) on the set G ∩ Mn, cn ∈ Vδ3µ (x∗) ∩ Mn

and the following a posteriori error estimate holds

∥∥cn − cα(δ)

∥∥ ≤ 2

δ2µ

∥∥∥E′
α(δ) (cn)

∥∥∥
L2(Ω)

. (6.21)

The estimate (6.21) is a posteriori because it is obtained after the function cn is calculated. Theorem
6.5 follows from Theorems 5.2, 5.3, 6.4 as well as from Theorem 4.11.4 of [11].

Theorem 6.5 (relaxation property of the adaptivity). Assume that conditions of Theorem 6.4 hold.
Let cn ∈ Vδ3µ (x∗) ∩ Mn be the unique minimizer of the Tikhonov functional (6.11) on the set G ∩ Mn

(Theorem 6.4). Assume that the regularized solution cα(δ) 6= cn, i.e. cα(δ) /∈ Mn. Let η ∈ (0, 1) be an

arbitrary number. Then one can choose the maximal grid size hn+1 = hn+1

(
A, N2, K, δ, zζ, µ, η

)
∈ (0, hn]

of the mesh refinement number (n + 1) so small that (also, see Remark 4.1 about hn+1)

∥∥cn+1 − cα(δ)

∥∥ ≤ η
∥∥cn − cα(δ)

∥∥ ≤ 2η

δ2µ

∥∥∥E′
α(δ) (cn)

∥∥∥
L2(Ω)

, (6.22)

where the number N2 was defined in Theorem 6.4. Let ξ ∈ (0, 1) be an arbitrary number. Then there exists
a sufficiently small number δ0 = δ0

(
A, N2, K, δ, zζ, ξ, µ, η

)
∈ (0, 1) and a decreasing sequence of maximal

grid step sizes {hk}n+1
k=1 , hk = hk

(
A, N2, K, δ, zζ, ξ, µ.η

)
such that if δ ∈ (0, δ0) , then

‖ck+1 − c∗‖ ≤ ηk
∥∥c1 − cα(δ)

∥∥ + ξ ‖cglob − c∗‖ , k = 1, ..., n. (6.23)

Theorem 6.6 follows from Theorems 5.4 and 6.5.
Theorem 6.6. (relaxation property of the adaptivity for local mesh refinements). Assume that con-

ditions of Theorem 6.5 hold. Let Ω = Ω1 ∪ Ω2. Suppose that mesh refinements are performed only in
the subdomain Ω2. Let h(1) be the maximal grid step size in Ω1. Then there exists a sufficiently small
number δ0 = δ0

(
A, N2, K, δ, zζ, ξ, µ, η

)
∈ (0, 1) and a decreasing sequence of maximal grid step sizes{

h̃k

}n+1

k=1
, h̃k = h̃k

(
A, N2, K, δ, zζ, ξ, µ, η

)
of meshes in Ω2 such that if

∥∥∇cα(δ)

∥∥
L∞(Ω1)

is so small that

if

2KN3

δ2µ

∥∥∇cα(δ)

∥∥
L∞(Ω1)

h(1) ≤ η

2

∥∥ck − cα(δ)

∥∥ , k = 1, ..., n and δ ∈ (0, δ0) ,

then (6.23) holds with the replacement of {hk}n+1
k=1 with

{
h̃k

}n+1

k=1
. Here the number N3 depends on the same

parameters as N2.
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7. Mesh Refinement Recommendations and the Adaptive Algorithm.

7.1. Mesh Refinement Recommendations. Recommendations for mesh refinements are based on
the theory of section 6. We now present some partly rigorous and partly heuristic considerations which
lead to these recommendations. Since our considerations are partly heuristic, then both mesh refinement
recommendations listed below should be verified numerically. We come back to the arguments presented in
the paragraph above Theorem 5.4. To simplify the presentation, consider, for example the case (5.20), which
now can be rewritten as ∇cα(δ) (x) = ∇c∗ (x) = 0 for x ∈ Ω1. A more general case of functions cα(δ), c

∗

which change slowly in Ω1 can be considered similarly. By (4.5)
(
cα(δ) − Pkcα(δ)

)
(x) = 0 for x ∈ Ω1, ∀k ≥ 1.

Hence, by (4.5)

∥∥cα(δ) − Pn+1cα(δ)

∥∥
L2(Ω)

=
∥∥cα(δ) − Pn+1cα(δ)

∥∥
L2(Ω2)

≤ K
∥∥∇cα(δ)

∥∥
L∞(Ω2)

h̃n+1,

where h̃n+1 is the maximal grid step size in the subdomain Ω2 after n + 1 mesh refinements. Hence, using
the second equality (5.11) and (5.13), we obtain

∥∥cn+1 − cα(δ)

∥∥ ≤ 2K

δ2µ
‖E′

α (cn+1)‖
∥∥∇cα(δ)

∥∥
L∞(Ω2)

h̃n+1. (7.1)

Given a function f ∈ C
(
Ω

)
, the main impact in the norm ‖f‖L2(Ω) is provided by neighborhoods of those

points x ∈ Ω where the function |f (x)| achieves its maximal value. Consider now formula (6.15) for the
function E′

α (c) (x) ∈ C
(
Ω

)
(Theorem 6.1). Hence, (7.1) indicates that we should decrease the maximal grid

step size h̃n+1 (i.e. refine mesh) in neighborhoods of those points x ∈ Ω2 where the function |E′
α (cn+1) (x)|

achieves its maximal values. Although after n mesh refinements we know only the function cn ∈ Mn rather
than the function cn+1 ∈ Mn+1, still, since functions cn and cn+1 are sufficiently close to each other, we
should likely refine mesh in neighborhoods of those points x ∈ Ω2 where the function |E′

α (cn) (x)| achieves
its maximal values. These considerations lead to mesh refinement recommendations below.

The First Mesh Refinement Recommendation. Refine the mesh in neighborhoods of those grid
points x ∈ Ω2 where the function |E′

α (cn) (x)| attains its maximal values. Here the function E′
α (cn) (x) is

given by formula (6.15). More precisely, let β1 ∈ (0, 1) be the tolerance number. Refine the mesh in such
subdomains of Ω2 where

|E′
α (cn) (x)| ≥ β1 max

Ω2

|E′
α (cn) (x)| . (7.2)

To figure out the second mesh refinement recommendation, we note that by (6.15) and (6.16)

∣∣∣E′
α(δ) (cn) (x)

∣∣∣ ≤ α
(
‖cn‖C(Ω) + ‖cglob‖C(Ω)

)
+ ‖cn‖2

C(Ω) exp (BT )
(
‖P‖2

H6(QT ) + ‖Φ‖2
H5(QT )

)
.

Since α is small, then the second term in the right hand side of this estimate dominates. Next, since we have
decided to refine the mesh in neighborhoods of those points, which deliver maximal values for the function∣∣∣E′

α(δ) (cn) (x)
∣∣∣ , then we obtain the following mesh refinement recommendation.

Second Mesh Refinement Recommendation. Refine the mesh in neighborhoods of those grid points
x ∈ Ω2 where the function cn (x) attains its maximal values. More precisely, let β2 ∈ (0, 1) be the tolerance
number. Refine the mesh in such subdomains of Ω2 where

cn (x) ≥ β2 max
Ω2

cn (x) , (7.3)

In fact, these two mesh refinement recommendations do not guarantee of course that the minimizer
obtained on the corresponding finer mesh would be indeed more accurate than the one obtained on the
coarser mesh. This is because right hand sides of formulas (7.2) and (7.3) are indicators only. Thus,
numerical verifications are necessary. Nevertheless, arguments presented above in this subsection show that
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both recommendations are close to rigorous guarantees of accuracy improvements. As to tolerance numbers
β1 and β2, they should be chosen numerically. Indeed, if we would choose β1, β2 ≈ 1, then we would refine
the mesh in too narrow regions. On the other hand, if we would choose β1, β2 ≈ 0, then we would refine the
mesh in almost the entire subdomain Ω2, which is inefficient.

Remark 7.1. It was demonstrated numerically on Figure 4.28 of [11] that maximal values of the function
|E′

α (c∗) (x)| indeed occur in places where small abnormalities are located. In other words, the gradient of
the Tikhonov functional “senses” those inclusions. This can be considered as a numerical confirmation of
the First Mesh Refinement Recommendation.

7.2. The adaptive algorithm. Since this algorithm was described in detail in a number of publica-
tions, see, e.g. [11, 13], we outline it only briefly here. Recall that the adaptivity is used on the second stage
of our two-stage numerical procedure (section 1). On the first stage the approximately globally convergent
algorithm is applied. It was proven, within the framework of the most recent Second Approximate Mathe-
matical Model, that this algorithm delivers a good approximation for the exact solution c∗ (x) of the above
CIP, see section 2.9 and Theorem 2.9.4 of [11]. We start the adaptivity on the same mesh on which the first
stage algorithm has worked. In our experience, this mesh does not provide an improvement of the image.
On each mesh we find an approximate solution of the equation E′

α (c) = 0. Hence, by we find an approximate
solution of the following equation on each mesh

α (c − cglob) (x) −
T∫

0

(utλt) (x, t) dt = 0.

For each newly refined mesh we first linearly interpolate the function cglob (x) on it. Since this function was
initially computed as a linear combination of finite elements forming the initial mesh and since all our finite
elements are piecewise linear functions, then subsequent linear interpolations on finer meshes do not change
the function cglob (x). On each mesh we iteratively update approximations cn

α of the function cα(δ). To do
so, we use the quasi-Newton method with the classic BFGS update formula with the limited storage [39].
Denote

ϕn(x) = α(cn
α − cglob) (x) −

∫ T

0

(vhtλht) (x, t, cn
α) dt,

where functions uh (x, t, cn
α) , λh (x, t, cn

α) are FEM solutions of state and adjoint problems (6.9), (6.10) with
c := cn

α. We stop computing cn
α if either ||ϕn||L2(Ω) ≤ 10−5 or norms ||ϕn||L2(Ω) are stabilized. Of course,

only discrete norms are considered here.
For a given mesh obtained after n mesh refinements, let cn be the last computed function on which

we have stopped. Next, we compute the function |E′
α (cn) (x)| using (6.15), where v := vh (x, t, cn) , λ :=

λh (x, t, cn) . If we use both above mesh refinement recommendations, then we refine the mesh in neigh-
borhoods of all grid points satisfying (7.2) and (7.3). In some studies, however, we use only the first
recommendation. In this case we refine the mesh in neighborhoods of all grid points satisfying only (7.2).

8. Numerical Studies. We present here three numerical examples of the performance of our two-stage
numerical procedure: one for computationally simulated and two for experimental data. More numerical
tests of the adaptivity technique can be found in [1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. In Test 1 we have used
only the First Mesh Refinement Recommendation, and in Tests 2,3 we have used both recommendations.
Since the numerical method of the first stage of our procedure is not a focus of this paper, and since it was
described earlier in, e.g. [11, 12, 13, 14, 31, 34, 35], we do not describe it here.

8.1. Computationally simulated data. Test 1. We have made computational simulations in two
dimensions. Since it is impossible to computationally solve equation (6.2) in the entire space R2, we have
conducted data simulations in the rectangle G = [−4, 4]× [−5, 5] . To simulate the boundary data g (x, t), we
have solved the forward problem by the hybrid FEM/FDM method [5] using the software package WavES
[45]. To do this, we split the domain G in two subdomains G = GFEM ∪ GFDM , see Figure 8.1. Here
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(a) GFDM (b) G = GFEM ∪ GFDM (c) GFEM = Ω

Fig. 8.1: The hybrid mesh (b) is a combinations of a structured mesh (a), where FDM is applied, and a mesh (c),
where we use FEM, with a thin overlapping of structured elements. The solution of the inverse problem is computed
in the square Ω and c(x) = 1 for x ∈ G�Ω.

GFEM := Ω = [−3, 3] × [−3, 3] and GFDM = G�GFEM . The coefficient c(x) is unknown in the domain
Ω ⊂ G and is defined as

c(x) =






1 in GFDM ,
1 + b(x) in GFEM ,
4 in small squares of Figure 8.1,

(8.1)

where the function b(x) ∈ ΩFEM is defined as

b(x) =

{
0 for(x1, x2) ∈ ΩFEM : −2.875 < x1 < 0,−2.875 < x2 < 0,
0.5 sin2

(
πx1

2.875

)
sin2

(
πx2

2.875

)
otherwise.

The spatial mesh consists of triangles in GFEM and of squares in GFDM with the grid step size h = 0.125
both in overlapping regions and in GFDM . There is no reason to refine mesh in GFDM since c (x) = 1 in
GFDM . Let ∂G1 and ∂G2 be, respectively, top and bottom sides of the rectangle G and ∂G3 be the union of
vertical sides of G. We use first order absorbing boundary conditions on ∂G ∪ ∂G2 [21] and zero Neumann
boundary condition on ∂G3.

Let s be the upper value of the Laplace transform of the solution of our forward problem. We use this
transform on the first stage of our two-stage numerical procedure. It was found that for the above domain
Ω the optimal value is s = 7.45. Consider the function f (t) ,

f (t) =

{
0.1 [sin (st − π/2) + 1] , t ∈ [0, t12π/s] , t1 = 2π/s,

0, t ∈ (t1, T ] , T = 17.8t1.

The forward problem for data simulations is

c (x) utt − ∆u = 0, in G × (0, T ),

u(x, 0) = 0, ut(x, 0) = 0, in G,

∂nu
∣∣
∂G1

= f (t) , on ∂G1 × (0, t1],

∂nu
∣∣
∂G1

= −∂tu, on ∂G1 × (t1, T ),

∂nu
∣∣
∂G2

= −∂tu, on ∂G2 × (0, T ),

∂nu
∣∣
∂G3

= 0, on ∂G3 × (0, T ).

(8.2)
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a) exact coefficient c(x) b) Coefficient cglob reconstructed on the first stage

Fig. 8.2: a) Spatial distribution of the exact coefficient c(x). b) Result of the performance of the approximately
globally convergent algorithm (first stage). The spatial distribution of the computed coefficient cglob displayed. Here
max cglob (x) = 3.2, whereas max c (x) = 4. Hence, we have 20% error in imaging of the maximal value of the function
c (x) . The slowly changing part of the function c (x), i.e. the second raw in the above definition of the function b (x) ,

is not imaged. Comparison with Figure a) shows that while the location of the right inclusion is imaged correctly,
the left one still needs to be moved upwards. This is done on the second stage of our two-stage numerical procedure,
i.e. on the adaptivity stage. On this stage we take the function cglob (x) as the starting point for the minimization of
the Tikhonov functional (6.11). The second stage refines the image of the first.

The solution of this problem gives us the function g (x, t) = u |ST
. Next, the coefficient c (x) is “forgotten”

and we apply the two-stage numerical procedure to reconstruct it from the function g (x, t) . To have noisy
data, we have added the random noise to the function g (x, t) as

gi,j = g
(
xi, tj

)
[1 + 0.02αj (gmax − gmin)] . (8.3)

Here xi ∈ ∂Ω and tj ∈ [0, T ] are mesh points on ∂Ω and [0, T ] respectively, gmin and gmax are minimal and
maximal values of the function g and αj ∈ [−1, 1] is the random variable.

1. The approximately globally convergent stage. Since we focus on the adaptivity in this paper, we do
not describe this algorithm here and refer to section 2.6.1 of [11] instead. Figure 8.2 displays the result of
this stage.

2. The adaptivity stage. Since we have observed that u (x, T ) ≈ 0, we have not used the function zζ (t)
in our computations. We now comment on the stopping criterion for mesh refinements, which we use in
numerical studies of the adaptivity technique in this paper. Let cn is the coefficient c(x) calculated after
n mesh refinements. In Theorems 5.2-5.4, 6.5, 6.6 the relaxation parameter η is independent on the mesh
refinement number n. In practice, however, one should expect such dependence η := ηn. In this case the
parameter η of those theorems is η = max(ηn). Then because of the relaxation property of Theorems 6.5,
6.6 as well as because of Remark 5.1, it is anticipated that numbers ηn decrease with the grow of n until
the regularized solution cα(δ) is approximately reached. However, nothing can be guaranteed about numbers
ηn as soon as the regularized solution is reached. Hence, in our computations of the adaptivity method we
stopped mesh refinement process at such n := n0 that ηn0

> ηn0−1. If ηn0
≈ ηn0−1, then we took the final

solution cfinal := cn0
.

Figure 8.3-e),f) represents the images obtained after 4 and 5 mesh refinements, respectivelly, as well as
adaptive locally refined meshes are presented on 8.3-a)-d). Comparing with Figure 8.1-c), one can observe
that locations of both inclusions are imaged accurately. Recall that in each inclusion of Figure 8.1-c) c (x) = 4,
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a) 4776 elements b) 5272 elements c) 6174 elements

d) 7682 elements e) c4(x), max c4(x) = 3.9 f) c5(x), max c5(x) = 3.87

Fig. 8.3: Adaptively refined meshes (a)–(d) and finally reconstructed images (e) and (f) on 4-th and 5-th adaptively
refined meshes, respectively. On e) max c4 = 3.9 and on f) max c5 = 3.87. Reconstructed function on e) is obtained
on the mesh presented on d). The mesh for the function on f) is not shown. Computational tests were performed
with the noise level 2% in (8.3) and the regularization parameter α = 0.02 in (6.11). Locations of both squares of
Figure 8.3-a) as well as maximal values of the computed funtion cglob (x) in them are imaged accurately.
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Fig. 8.4: a) Computed relaxation property ||cn+1 − cα||L2
≤ ηn||cn − cα||L2

for the noise level 2% in (8.3) and the
regularization parameter α = 0.02 in (6.11). Here, 0 < ηn < 1 is the small relaxation parameter obtained after n

mesh refinements. Here, we take cα on the 4-th refined mesh shown on the Figure 8.3-d). b) Comparison of the
relaxation property ||cn+1 − cα||L2

≤ ηn||cn − cα||L2
when we take different functions cα: on the 4-th or on the 5-th

refined mesh.
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see definition for c(x) in (8.1) shown also on Figure 8.2-a). Therefore, maximal values of the function c (x)
on Figures 8.3-e),f) are also accurately imaged: the error does not exceed 3.5%.

Figure 8.4 displays the graph of the dependence of the norm ‖cn − cα‖L2(Ω) from the mesh refinement

number n. By (6.22) and (6.23) these norms should decay. Since we do not exactly know what the regularized
solution cα is, we have taken cα := c4 on Figure 8.4-a). On Figure 8.4-b) we have superimposed those graphs
for cα := c4 and cα := c5. One can observe that norms ‖cn − cα‖ decay in the case when cα is taken on
the 4-th refined mesh. At the same time we also observe, that the relaxation property (6.23) is not fullfilled
when we take cα on the 5-th refined mesh since η3 > η2, see 8.4-b). Thus, we take the final reconstruction
cα := c4, the function obtained after four (4) mesh refinements.

Remark 8.1. It is well known that imaging of locations of small inclusions and maximal values of the
function c (x) in them is of the primary interest in applications and it is more interesting than imaging of
slowly changing parts. Indeed, small inclusions can be explosives [34, 35], tumors, etc..

Remark 8.2. The above stopping criterion for mesh refinements shows that relaxation Theorems 6.5,6.6
are quite useful for computations.

8.2. Experimental data. Experimental studies were described in detail in [14, 31] as well as in Chapter
5 of [11]. Hence, we omit many details here. We point out that the main difficulty was a huge misfit between
computationally simulated and experimental data. The latter was the case even for the free space data: the
analytic solution predicted by Maxwell equations was radically different from the experimentally measured
curves. This can be explained by unknown nonlinear processes in both transmitters and detectors. The same
was observed for the backscattering data collected in the field, see [35] and section 6.9 of [11]. To handle this
misfit, a new data pre-processing procedure was applied. This procedure has immersed experimental data
in computationally simulated ones, see Figures 4 in [35] and Figures 5.3 in [11]. Naturally, this procedure
has introduced a significant modeling noise in already noisy data. Nevertheless, computational results were
very accurate ones, which speaks well for the robustness of our reconstruction method. The first stage of our
two-stage numerical procedure was working with blind data (unlike the second stage). Therefore, results of
at least the first stage were unbiased.

The data collection scheme is displayed on Figure 8.5. A single source of electric wave field emits pulse
for only one component of the electric field, two other components were not emitted. The prism is our
computational domain Ω. The outcome time resolved signal was measured at many detectors located on the
bottom side of the prism. The same component of the electric field was measured as the one emitted. Since
we have not measured that signal at the rest ∂1Ω of ∂Ω, we have prescribed to ∂1Ω the same boundary
conditions as ones for the uniform medium with the dielectric constant εr ≡ 1. The prism Ω is filled with
a dielectric material with the dielectric constant εr ≈ 1, i.e. almost the same as in the air. We point out,
however, that when using the first stage of our two-stage numerical procedure, we did not use any knowledge
of the dielectric constant of this prism. We have only used the fact that εr = 1 outside of this prism, see
(6.1).

We have placed one dielectric inclusion inside of this prism. Inclusions were two wooden cubes, which we
call below “Cube 1” and “Cube 2”. Sizes of their sides were 4 cm for Cube 1 and 6 cm for Cube 2. Note that
only refractive indices n =

√
εr rather than dielectric constants can be measured directly in experiments.

The goal of the first stage was to reconstruct the refractive index of the inclusion and its location. The
goal of the second stage was to reconstruct all three components of inclusions: refractive indices, shapes
and locations. Since only one component of the electric field was measured, we have modeled the wave
propagation process via the problem (8.2) with εr (x) := c (x), where the domain G ⊂ R3 was a prism, which
was bigger than the prism Ω, see (5.8) and section 5.4 in [11] for this domain. The function f (t) in (8.2) was

f (t) =

{
sin (ωt) , t ∈ (0, 2π/ω) ,

0, t > 2π/ω,

where ω = 14 for Cube 1 and ω = 7 for Cube 2 (see page 329 of [11] and page 26 of [14] for ω). It was only
later, after the first author has conducted numerical simulations for solving the Maxwell equations [16], when
we have realized that the choice of modeling by one PDE only was well justified. Indeed, it was demonstrated
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Fig. 8.5: Schematic diagram of data collection. Original source: M. V. Klibanov, M. A. Fiddy, L. Beilina, N. Pan-
tong and J. Schenk, Picosecond scale experimental verification of a globally convergent numerical method for a coeffi-
cient inverse problem, Inverse Problems, 26, 045003, doi:10.1088/0266-5611/26/4/045003, 2010. c©IOP Publishing.
Reprinted with permission.

Case number Computed n Directly measured n Computational error
1 (Cube 1) 1.97 2.07 5%
2 (Cube 1) 2 2.07 3.4%
3 (Cube 1) 2.16 2.07 4.3%
4 (Cube 1) 2.19 2.07 5.8%
5 (Cube 2) 1.73 1.71 1.2%
6 (Cube 2) 1.79 1.71 4.7%

Table 8.1: Blindly computed and directly measured refractive indices n by the first stage of our two-stage numerical
procedure. The error in direct measurements was 11% for cases 1-4 (Cube 1) and 3.5% for cases 5,6 (Cube 2).

computationally in [16] that the component of the electric field, which was initialized, dominates two other
components. In our experiments, Cubes 1 and 2 were placed total in six different positions.

Table 8.1 summarizes results of blind study of the first stage of our two-stage numerical procedure.
Because of the blind test requirement, direct measurements of refractive indices were performed by the
conventional so-called “waveguide method” [41] only after computations of the first stage were done. Next,
computational results were compared with measured ones. One can see that we had only a few percent
difference with a posteriori directly measured refractive indices of both cubes. Furthermore, in five out of
six cases this error was even less than the error in direct measurements.
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a) max nglob = max
√

εr,glob = max
√

cglob = 1.97 b) maxn = max
√

εr = max
√

c = 2.05

Fig. 8.6: Case 1 of Table 8.1 was tested by the two-stage numerical procedure. a) The computational result of the
first stage. Both location of the inclusion and refractive index nglob = 1.97 are accurately reconstructed. However,
the shape of the inclusion is not reconstructed accurately. b) The computational result of the second (refinement)
stage. All three components of the inclusion are very accurately reconstructed: refractive index, location and shape.
Also, values of the function εr (x) := c (x) = 1 outside of the imaged inclusion are computed very accurately. Original
source: L. Beilina and M.V. Klibanov, Reconstruction of dielectrics from experimental data via a hybrid globally
convergent/adaptive inverse algorithm, Inverse Problems, 26, 125009, doi:10.1088/0266-5611/26/12/125009, 2010.
c©IOP Publishing. Reprinted with permission.

We now focus on the results which we have obtained on the second stage of our two-stage numerical
procedure when applying the adaptivity.

Test 2. The two stage numerical procedure for Case 1 of Table 8.1. Figure 8.6-a) displays
the result of the first stage of the two-stage numerical procedure. One can see that although the refractive
index n = 1.97 and location of the inclusion are accurately calculated, the shape is inaccurate. The image
of Figure 8.6-a) was taken as the starting point for the adaptivity technique for refinement. The result of
the second stage is presented on Figure 8.6-b). One can see that all three components of the inclusion are
accurately reconstructed. In addition, the values of the function εr (x) := c (x) = 1 outside of the imaged
inclusion are also accurately computed.

Test 3. The two stage numerical procedure for Case 6 of Table 8.1. Figures 8.7-a) and 8.7-b)
display computational results for first and second stages, respectively. The rest of comments are the same
as ones for Test 2. Note that the shape is now reconstructed better than in Test 2. This can be heuristically
explained as follows. The wavelength of our electromagnetic wave was µ = 3 cm. Thus, the size of the side
of Cube 1 is 4 cm=1.33µ. One the other hand, the size of the side of Cube 2 is 6 cm=2µ, which is larger.
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a) max nglob = max
√

εr,glob = max
√

cglob = 1.79 b) maxn = max
√

εr = max
√

c = 1.73

Fig. 8.7: Case 6 of Table 8.1 was tested for the two-stage numerical procedure. a) The computational result of the
first stage. Both location of the inclusion and refractive index nglob = 1.79 are accurately reconstructed. However,
the shape of the inclusion is not reconstructed accurately. b) The computational result of the second (refinement)
stage. All three components of the inclusion are accurately reconstructed: location, refractive index, and shape. In
addition, values of the function εr (x) := c (x) = 1 outside of the imaged inclusion are computed accurately. Original
source: L. Beilina and M.V. Klibanov, Reconstruction of dielectrics from experimental data via a hybrid globally
convergent/adaptive inverse algorithm, Inverse Problems, 26, 125009, doi:10.1088/0266-5611/26/12/125009, 2010.
c©IOP Publishing. Reprinted with permission.

REFERENCES

[1] M. Asadzadeh and L. Beilina, A posteriori error analysis in a globally convergent numerical method for a hyperbolic
coefficient inverse problem, Inverse Problems, 26, 115007, 2010.

[2] A.B. Bakushinskii and M.Yu. Kokurin, Iterative Methods for Approximate Solution of Inverse Problems, Springer, New
York, 2004.

[3] W. Bangerth and A. Joshi, Adaptive finite element methods for the solution of inverse problems in optical tomography,
Inverse Problems 24, 034011, 2008.

[4] R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element method,
Acta Numerica, 10, 1-102, 2001.
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