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COMBINED DISCRETE-ORDINATES AND STREAMLINE

DIFFUSION FOR A FLOW DESCRIBED BY BGK MODEL

M. ASADZADEH 1,†, E. KAZEMI1,2, AND R. MOKHTARI2

Abstract. A rarefied gas flow through a channel with arbitrary cross section
is studied based on the BGK model. The discrete velocity and streamline

diffusion finite element methods are combined to yield a numerical scheme.
For this method we derive stability and optimal error estimates in the L2

norm. The optimality is due to the maximal available regularity of the exact
solution for the corresponding hyperbolic pde. The potential of the proposed

method is illustrated through implementing some numerical examples.

1. Introduction

In this paper we study the approximate solution for the flow of gas through a
channel with arbitrary cross section, described by the linearized two-dimensional
Bhatnagar-Gross-Krook (BGK) kinetic equation [4] using a discrete velocity model,
in the discrete ordinates (DO) setting approximating in velocity, combined with the
streamline diffusion (SD) finite element discretization in the spatial variable.

The physical problem has diverse applications in, e.g. micro-electromechanical
systems and nanotechnology. Microducts, microturbines or vacuum equipments
are the examples of small industrial devices involving the gas flow at an arbitrary
Knudsen number. Since numerical solution of the Boltzmann equation in general
geometry requires a six dimensional phase space grid (three dimensions in each
physical and velocity domains), the computational effort in full dimensions is seem-
ingly involved. Nevertheless, in certain physical systems due to flow conditions,
certain linearizations of the governing kinetic equation and reducing the number
of space and velocity coordinates can be applicable. Therefore, in general, con-
structing effective numerical methods for this type of multi-dimensional problems
sought for physically relevant assumptions, that might circumvent computational
challenges. In this regard, and in the realm of the discrete ordinates, the discrete
velocity model has been developed as one of the most common techniques for the
numerical solution of the, space homogeneous, Boltzmann equation and related ki-
netic models [6, 7]. This method has been successfully applied to solve mixture
problems [9] and also some more general models including polyatomic gases with
chemical reactions [5]. The discrete velocity scheme is based on replacing the col-
lision integral term by a certain quadrature sum and requires that the resulting,
dicretized, equations are valid only at discrete velocities corresponding to the nu-
merical integration nodes. Then, the scheme is further discretized in the spatial
variable by, e.g. a consistent finite difference method. Additional difficulties arise
for the domains with curved boundaries in space. To deal with such geometries it
is more adequate to employ some versions of the finite element method. In this
regard, e.g. the streamline diffusion (SD) finite element method is a generalized
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form of the standard Galrekin method for the hyperbolic problems having both
good stability and high accuracy properties. The SD-method, used for our purpose
in this paper, is obtained by modifying the test function through adding a multi-
ple (roughly, of the order of the mesh parameter) of the convective term involved
in the equation. This gives a weighted least square control of the residual of the
finite element solution. For a detailed description of the SD method we refer to the
monograph by Hughes and Brooks [13], and papers [14], [15], and the references
therein.

An outline of this paper is as follows. Section 2 contains notation and prelim-
inaries, where we also introduce our continuous kinetic model and describe some
notation used throughout the paper. Section 3 is devoted to construction of some
discrete velocity models as reasonable weak approximations for the Boltzmann col-
lision operator. We also propose a scheme for spatial discretization based on the
SD approach. Finally, we present some results concerning steady kinetic problems.
In our concluding Section 4, we justify the theory through implementing some nu-
merical examples.

2. Notations and preliminaries

Under certain physical constrains, the distribution of gas molecules may be de-
scribed by the Boltzmann equation. Due to the number of unknown variables and
hyperbolic structure of the equation the numerical solution of this equation is rather
involved, one way out is to simplify the collision operators applying a kinetic model
as the one governed by the BGK equation that maintains main properties of the
original equation. Such a model for a steady flow reads as: find f such that

v · ∇f(v ,x ) = J(f), (2.1)

where x = (x, y, z) is the spatial variable and v = (vx, vy, vz) is the velocity vector.
Further

J(f) = ν
(

fM − f
)

, (2.2)

and the gradient is taken with respect to x . The collision frequency ν may depend
on x , and fM is the local Maxwellian distribution with the same density, velocity
and temperature as a gas having the distribution function f . The nonlinearity of
the collision term is exhibited by the fact that the density, velocity and tempera-
ture parameters are functions of f . The BGK model possesses all the collisional
invariants. Let the functions γi, i = 0, . . . , 4 be the collision invariants with γ0 = 1,
(γ1, γ2, γ3) = v and γ4 = |v |2 = |γ1|2 + |γ2|2 + |γ3|2. To derive the linearized BGK
equation, we consider f to be defined as

f = f0(1 + εg), (2.3)

where f0 is the absolute Maxwellian distribution, which by an appropriate choice
of Galilean frame and mass and velocity units, can be assumed to be of the form

f0 =
1

π3/2
e−|v |2 , (2.4)

and g is a certain function described below. Substituting (2.3) into (2.1), we obtain

v · ∇g = ν

[

4
∑

i=0

γi(γi, g)f0
− g

]

, (2.5)

where the collision invariants γi, i = 0, · · · , 4 are normalized by the scalar product

(f, g)f0
=

∫

f(v)g(v)df0. (2.6)
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It can be easily seen that the collision operator defined by

C(g) =

[

4
∑

i=0

γi(γi, g)f0
− g

]

, (2.7)

is symmetric with respect to the inner product (2.6) and satisfies (C(g), g)f0
≤ 0.

Further we have

Ker C =

{

4
∑

i=0

ciγi : ci ∈ R

}

. (2.8)

The Poiseuille flow, i.e. the flow of a gas through a long channel having a
restricted width induced by a density, temperature or pressure gradient, likewise
the Couette flow, i.e. the flow of a gas between parallel plates induced by moving
them with opposite velocities; can be modeled by the linearized BGK equation. In
the case of Poiseuille flow, we may represent the function g in (2.3) by

g(x, y, z, v) = z + ψ(x, y, v), (2.9)

and obtain the following equation for ψ,

vx
∂ψ

∂x
+ vy

∂ψ

∂y
= δ(2vzu− ψ(x, y, v)) − vz, (2.10)

where we used the typical assumption in fluid dynamics for long pipes that the
velocity normal to wall is zero. Here δ is a rarefaction parameter and

u(x, y) =
1

π
3
2

∫

vze
−|v |2ψ(x, y, v)dv . (2.11)

Multiplying equation (2.10) by vz√
π
e−v2

z and integrating with respect to vz we obtain

vx
∂φ

∂x
+ vy

∂φ

∂y
= δ(u− φ(x, y, vx, vy)) − 1

2
, (2.12)

where

φ(x, y, vx, vy) =
1√
π

∫

vze
−v2

zφdvz, (2.13)

and u, corresponding to (2.11) with two-dimensional velocity, is the bulk velocity
defined by

u(x, y) =
1

π

∫ ∫

e−v2
x−v2

yφ(x, y, vx, vy)dvxdvy. (2.14)

Hence, we consider the following two-dimensional integro-differential equation

v · ∇f(v ,x ) = δC(f) + S(v ,x ), (2.15)

with boundary condition

f(v ,x ) = 0, x ∈ Γ−
v , (2.16)

where

C(f) =
1

π

∫

f(v ,x )e−|v |2dv − f(v ,x ), (2.17)

and for each v ∈ R
2,

Γ−
v = {x ∈ ∂Ω : n · v < 0}. (2.18)

Here, x = (x, y), v = (vx, vy), Ω is the spatial domain and n is the outward unit
normal to ∂Ω at the point x ∈ ∂Ω. As we mentioned earlier the two-component
vectors x and v , are defined in the cross section sheet of the channel. S(v ,x ) is an
arbitrary source term and as it is shown, e.g. for recovery of the Poiseuille flow in the
channel, that the source term is S(v ,x ) ≡ − 1

2 . Finally δ, known as the rarefaction
parameter, is an important dimensionless flow quantity which characterizes the
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rarefaction degree of gas. The boundary condition represents particles departing
from the wall. To proceed, we introduce the scalar product

(f, g)ρ =

∫

fgdρ(v), (2.19)

where dρ(v) = 1
π e

−|v |2 . Then, the collision operator C is symmetric with respect
to this inner product. Moreover, Ker C is nontrivial and C is strictly negative on
the orthogonal complement of the vector γ0 = 1 (i.e. orthogonal to the space of
constants). A quantity of practical interest, used later on, is the dimensionless flow
rate

G =
2

|Ω|

∫

Ω

u(x )dx , (2.20)

with |Ω| being the area of the cross section and u(x ) is the bulk velocity for (2.15),
defined by

u(x ) =
1

π

∫

f(v ,x )e−|v |2dv . (2.21)

We set

〈f, g〉Γ±
v

=

∫

Γ±
v

fg(v · n)ds, (2.22)

where
Γ±

v = {x ∈ Γ := ∂Ω : v · n ≷ 0}. (2.23)

Throughout the paper C will denote a constant not necessarily the same at
each occurrence and independent of all involved parameters and functions, unless
otherwise specifically specified. By (. , .)Q we denote the usual L2(Q) scalar product
and by ‖.‖Q the corresponding L2(Q)-norm. Finally, we use the standard notation
for Sobolev spaces together with their norms and seminorms (cf. [1]).

3. Discrete ordinates and Streamline diffusion method

In order to define discrete-ordinates/SD method for the problem (2.15)-(2.18),
we first approximate the integration term appearing in the collision operator (2.17)
using certain quadrature rule. To this end, we write the numerical quadrature to
be used in the form

∫

R2

F (v)dσ ∼
∑

v∈∆

ωvF (v), (3.1)

where ωv are positive weights such that
∑

v∈∆ ωv ≡ 1, and ∆ is a discrete set of
nodes defined below. Using the polar coordinate v = (c cos θ, c sin θ) with c = |v |
in the quadrature rule above, we have that

∫ 2π

0

∫ ∞

0

F (c, θ)e−c2

cdc dθ ∼
∑

v∈∆

ωvF (v). (3.2)

Let now

∆ = {v ij : v ij = ci(cos(θj), sin(θj)), 1 ≤ i ≤ N, 1 ≤ j ≤M}, (3.3)

be the quadrature set, with the uniform angular discretization θj = 2πj/M , and the

radial quadrature points ci = ri/
√

2 where ri are the zeros of Hermite orthogonal

polynomials on (0,∞) associated with the distribution dσ(r) = 1
2π re

− 1
2
r2

dr. The
number of quadrature points in ∆ is then n = MN . Our error analysis for the
discrete-ordinates (DO)/ SD method works for general quadrature rule for (2.21).
For a quadrature rule of the form (3.1), which is exact for polynomials of degree
≤ m, one can prove that, see [2],

∣

∣

∣

∣

∣

∫

R2

F (v)dσ −
∑

v∈∆

ωvF (v)

∣

∣

∣

∣

∣

≤ Cm−α‖F‖α, ∀F ∈ Hα(R2), α ≥ 1. (3.4)
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Note that α, the maximal available regularity of F , can by non-integer. Then the
collision operator C in (2.17) can be approximated by the discretized operator Ĉ
given by

Ĉ(f) = −f(c, θ,x ) +

N
∑

i=1

M
∑

j=1

ωijf(ci, θj ,x ). (3.5)

Using the quadrature rule (3.5), we can discretize (2.15) in the velocity space to
get

{

v ij .∇f ij = δĈ(f ij) + Sij , in ∆ × Ω,
f ij = 0 on Γ−

ij .
(3.6)

Here, f ij is an approximation of f(v ij , ·) and Γ−
ij =: Γ−

vij
is the inflow boundary

with v ij defined in (3.3). The equation system (3.6) is a first-order hyperbolic
problem in the spatial domain, which will be further discretized by the SD method.
We write g := {gij}i,j or simply g := {gij} and define the subspace W by

W = {g : gij(x ) ∈ L2(Ω), v ij · ∇gij(x ) ∈ L2(Ω), with gij |Γ−

ij
= 0}. (3.7)

For f , g ∈W , we define the scalar product

〈〈f , g〉〉 =

N
∑

i=1

M
∑

j=1

ωij

∫

Ω

f ijgijdx . (3.8)

Recalling the definition of the operator Ĉ, we find that for any two distribution
functions f and g ∈W ,

〈〈Ĉ(f ), g〉〉 = 〈〈f , Ĉ(g)〉〉. (3.9)

Now, by the Cauchy-Schwarz inequality and the fact that
∑

i,j

ωij ≤ 1, we find that

〈〈Ĉ(f ), f 〉〉 =
∑

i,j

ωij

∫

Ω

Ĉ(f ij)f ijdx

=

∫

Ω

(

−
∑

i,j

ωij(f
ij)2 +

∑

i,j

ωijf
ij

∑

i,j

ωijf
ij

)

dx ≤ 0.

(3.10)

The relation (3.10) may be referred as the non-positivity property of the discrete
collision operator. It is seen from (3.9) and (3.10) that the discrete collision oper-

ator Ĉ is symmetric, non-positive and, by applying the Cauchy-Schwarz inequality,
bounded in the space W with inner product 〈〈., .〉〉, i.e. for all f , g ∈W we have

−〈〈Ĉ(f ), g〉〉 ≤ 2〈〈Π̂f , Π̂f 〉〉1/2〈〈g , g〉〉1/2. (3.11)

Here, Π̂ is the orthogonal projection onto the complement of the kernel of the
discrete collision operator Ĉ. In order to apply the finite element method, we need
to write a weak formulation for (3.6). To construct our SD finite element method,
we shall use a variational formulation with a test functions consisting of the sum of
a trial function g and an extra streaming term of the form γ(v ·∇g), i.e. we employ
different test and trial function spaces. Then, for the equation (3.6), we define
continuous variational formulation as: Find {f ij} ∈W such that for all {gij} ∈W ,

(v ij · ∇f ij , gij + γij(v ij · ∇gij))Ω − δ(Ĉ(f ij), gij + γij(v ij · ∇gij))Ω

= (Sij , gij + γij(v ij · ∇gij))Ω,
(3.12)

where γij is a positive parameter of the order of the mesh size. Multiplying by
quadrature weights and summing over the quadrature set, the semi-discrete method,
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for the velocity discretization, (3.12) can be written as

∑

i,j

ωij

{

(v ij · ∇f ij , gij + γij(v ij · ∇gij))Ω − δ(Ĉ(f ij), gij + γij(v ij · ∇gij))Ω

}

=
∑

i,j

ωij(S
ij , gij + γij(v ij · ∇gij))Ω.

(3.13)

For the spatial discretization we let Ch = {K} be a finite element subdivisions of Ω
into the elements K with the mesh parameter h = diam K. Further, let Pk(K) be
the set of polynomials of degree at most k on K in x and define the finite element
space, viz,

Vh = {g : g ∈ Pk(K); ∀K ∈ Ch}. (3.14)

We also define, the finite element space associated to the semi-discrete scheme by

V h = {{gij} ∈ (Vh)NM : gij |Γ−

ij
= 0}, (3.15)

and introduce the corresponding bilinear form as

B(f h, g) =
∑

i,j

ωij

{

(v ij · ∇f ij
h , g

ij + γij(v ij · ∇gij))Ω

− δ(Ĉ(f ij
h ), gij + γij(v ij · ∇gij))Ω

}

(3.16)

for all f h, g ∈ V h. Now our objective is to solve the following fully discrete
variational problem: find f h ∈ V h such that

B(f h, g) = L(g), ∀g ∈ V h, (3.17)

where L is a linear form defined by

L(g) =
∑

i,j

ωij(S
ij , gij + γij(v ij · ∇gij))Ω. (3.18)

For the method (3.17), we derive stability estimates and error bounds in the fol-
lowing norm |||.||| over V h,

|||g |||2 =
∑

i,j

ωij

(

γij ‖ v ij · ∇gij ‖2
Ω +δ‖Π̂gij‖2

Ω +

∫

Γij
+

(gij)2(v ij · n)ds
)

,

(3.19)

where Π̂ is the orthogonal projection onto the complement of the kernel of collision
operator in V h. Since the space V h is finite dimensional, we may use a Lax-

Milgram approach and show that there exists a positive constant λ̂0 such that

λ̂0〈〈Π̂f , Π̂f 〉〉 ≤ −〈〈Ĉ(f ), f 〉〉. (3.20)

Below we shall show that the bilinear form B is coercive:

Lemma 3.1. Assume that the SD parameter γij satisfies

γij ∼ λ̂0

δ
, (3.21)

then, there exists a constant α > 0, depending on λ̂0, such that

B(g, g) ≥ α|||g|||2, ∀g ∈ Vh. (3.22)
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Proof. We let f h = g in (3.16), then

B(g , g) =
∑

i,j

ωij

{

(v ij · ∇gij , gij + γij(v ij · ∇gij))Ω

− δ(Ĉ(gij), gij + γij(v ij · ∇gij))Ω

}

.

(3.23)

Using Green’s formula and the zero inflow boundary condition we get

(v ij · ∇gij , gij)Ω =
1

2

∫

Γ+

ij

(gij)2(v ij · n)dv . (3.24)

Further, by (3.20) we have

−
∑

i,j

ωij(Ĉ(gij), gij)Ω ≥ λ̂0

∑

i,j

ωij‖Π̂gij‖2
Ω, (3.25)

and using (3.11) and the Cauchy-Schwarz inequality yields

∑

i,j

ωij

(

Ĉ(gij), γij(v ij ·∇gij)
)

Ω
≤ 2

(

∑

i,j

ωij‖Π̂gij‖2
Ω

)
1
2
(

∑

i,j

ωijγij‖v ij ·∇gij‖2
Ω

)
1
2

.

(3.26)
Hence, we deduce that

∑

i,j

ωijδ(Ĉ(gij), γij(v ij ·∇gij))Ω ≤
∑

i,j

ωij(λ̂0δ‖Π̂gij‖2
Ω+

δγ2
ij

λ̂0

‖v ij ·∇gij‖2
Ω), (3.27)

Choosing γij as in (3.21), the relations (3.23)-(3.27) yield the desired result. �

In the sequel, we shall use the following interpolation error estimates, see Ciarlet
[10]: let f ∈ Hr+1(Ω) then there exists an interpolant, f̃h ∈ Vh, of f such that

‖f − f̃h‖Ω ≤ Chr+1‖f‖r+1,Ω, (3.28)

‖f − f̃h‖1,Ω ≤ Chr‖f‖r+1,Ω, (3.29)

‖f − f̃h‖∂Ω ≤ Chr+1/2‖f‖r+1,Ω. (3.30)

Let {ηij} = {f ij} − {f̃ ij
h } be the interpolation error and set {ξij} = f h − {f̃ ij

h }.
We may write the error as

{eij} = {f ij} − f h = {ηij} − {ξij}. (3.31)

The convergence theorem is now as follows:

Theorem 3.1. Let {f ij} and fh be the solutions of the continuous and discrete

problem satisfying (3.12) and (3.17), respectively. If the SD parameter γij satisfies

γij ∼ min
{ λ̂0

δ
,

h

‖vij‖∞

}

, (3.32)

then, there is a constant C = C(Ω) such that

|||{f ij} − fh||| ≤ Chk+1/2
(

∑

i,j

ωij(δ + ‖vij‖∞)‖f ij‖2
k+1,Ω

)1/2

. (3.33)

Proof. Using the triangle inequality we have

|||{eij}||| ≤ |||{ηij}||| + |||{ξij}|||. (3.34)

The definition of the triple norm |||.||| and the interpolation error estimates (3.28)-
(3.30) yield

|||{ηij}||| ≤ Chk+1/2
(

∑

i,j

ωij(δ + ‖v ij‖∞)‖f ij‖2
k+1,Ω

)1/2

. (3.35)
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Using the Galerkin orthogonality relation B({eij}, {ξij}) = 0, since γij in (3.32)
fulfills (3.21), we have that

|||{ξij}|||2 ≤ B({ξij}, {ξij}) = B({ηij} − {eij}, {ξij}) = B({ηij}, {ξij})

=
∑

i,j

ωij

{

(v ij · ∇ηij , ξij + γij(v ij · ∇ξij))Ω

− δ(Ĉ(ηij), ξij + γij(v ij · ∇ξij))Ω

}

.

(3.36)

Integrating by parts and applying Cauchy-Schwarz inequality we obtain

(v ij · ∇ηij , ξij)Ω = −(ηij , v ij .∇ξij)Ω +
1

2

∫

Γ+

ij

ηijξij(v ij · n) ds

≤ γ−1
ij ‖ηij‖2

Ω +
γij

4
‖v ij .∇ξij‖2

Ω

+

∫

Γ+

ij

|ηij |2(v ij · n) ds+
1

8

∫

Γ+

ij

|ξij |2(v ij · n) ds.

(3.37)

Similarly to bound the second term in (3.36), we have using (3.11), the Cauchy-
Schwarz inequality and (3.9) that

−
∑

i,j

ωijδ
(

Ĉ(ηij), ξij
)

Ω
≤

∑

i,j

ωij

{

Cδ‖ηij‖2
Ω +

δ

4
‖Π̂ξij‖2

Ω

}

, (3.38)

and

−
∑

i,j

ωijδ
(

Ĉ(ηij), γij(v ij · ∇ξij)
)

Ω
≤

∑

i,j

ωij

{

Cδ‖Π̂ηij‖2
Ω +

γ2
ijδ

4λ̂0

‖v ij · ∇ξij‖2
Ω

}

.

(3.39)

Combining the estimates (3.36)-(3.39) and using (3.32), we obtain

|||{ξij}|||2 ≤ B(η, ξ) ≤ 1

4
|||{ξij}|||2 + C

∑

i,j

ωij

[

γ−1
ij ‖ηij‖2

Ω + γij‖v ij · ∇ηij‖2
Ω

+

∫

Γ+

ij

|ηij |2(v ij · n) ds

]

.

(3.40)

Using (3.28)-(3.30), a kick-back argument and (3.32) we deduce that

|||{ξij}||| ≤ Chk+1/2
(

∑

i,j

ωij(δ + ‖v ij‖∞)‖f ij‖2
k+1,Ω

)1/2

. (3.41)

Inserting the inequalities (3.35) and (3.41) into (3.34) we obtain the desired result.
�

To proceed, we decompose the global error as

{f ij
h } − {f(v ij , .)} = {f ij

h } − {f ij} + {f ij} − {f(v ij , .)}. (3.42)

Then by triangle inequality,

|||{f ij
h } − {f(v ij , .)}||| ≤ |||{f ij

h } − {f ij}||| + |||{f ij} − {f(v ij , .)}|||. (3.43)

We now bound the term |||{f ij} − {f(v ij , .)}||| which is related to quadrature
formula (3.1). To this end, we consider(2.15) for v = v ij and subtract the result
from (3.6), to obtain

v ij · ∇χij − δĈ(χij) = ρ(x ), χij = 0 on Γ−
ij , (3.44)



DISCRETE-ORDINATES AND SD METHODS FOR BGK MODEL 9

where χij = f ij − f(v ij , .) and

ρ(x ) =
1

π

∫

f(v ,x )e−|v |2dv −
∑

i,j

ωijf(v ij ,x ). (3.45)

Using the scalar product introduced in (2.6), and multiplying the equation (3.44)
by {γij(v ij · ∇χij)}, we get that

〈〈{v ij · ∇χij}, {γij(v ij · ∇χij)}〉〉 − δ〈〈{Ĉ(χij)}, {γij(v ij · ∇χij)}〉〉
= 〈〈ρ, {γij(v ij · ∇χij)}〉〉.

(3.46)

Now using the Cauchy-Schwarz inequality, (3.11) and (3.32) we end up with

∑

i,j

ωijγij‖v ij · ∇χij‖2
Ω ≤ C

(

‖ρ(x)‖2
Ω + δ2

∑

i,j

ωij‖Π̂χij‖2
Ω

)

. (3.47)

Similarly, taking the inner product of equation (3.44) with {χij}, applying the
Green’s theorem and using the boundary condition in (3.44) we obtain

1

2

∑

i,j

ωij

∫

Γ+

ij

(χij)2v ij · n ds−
∑

i,j

ωijδ

∫

Ω

Ĉ(χij)χijdx =
∑

i,j

ωij

∫

Ω

χijρdx . (3.48)

Using the Cauchy-Schwarz inequality and the inequality (3.20) we deduce that

1

2

∑

i,j

ωij

∫

Γ+

ij

(χij)2v ij · n ds+ δ
∑

i,j

ωij‖Π̂χij‖2
Ω ≤ CZ‖ρ‖Ω, (3.49)

where Z = maxi,j ‖χij‖Ω. Now, it remains to bound the term ‖ρ‖Ω. To this end,
we apply the quadrature error (3.4) to ρ and to get

|ρ(x )| ≤ Cm−α‖f(.,x )‖α. (3.50)

Square integration over Ω yields

‖ρ‖2
Ω ≤ Cm−2α

∫

Ω

‖f(.,x )‖2
αdx . (3.51)

Finally, combining the estimates (3.47), (3.49) and (3.51) we get

|||{f ij} − {f(v ij ,x )}|||2 ≤Cm−2α

∫

Ω

‖f(.,x )‖2
αdx

+ CδZm−α
(

∫

Ω

‖f(.,x )‖2
αdx

)1/2

.

(3.52)

Now we formulate the main result of this paper:

Theorem 3.2. Let f be the exact solution satisfying the equations (2.15)-(2.18).
Assume that f ∈ Hα(R2,Hk+1(Ω)) and the quadrature approximation (3.4) is valid.

Then, there is a constant C > 0, independent of h and m, such that for the fully

discrete problem (3.17)-(3.18) the following estimate holds true

|||{f ij
h (x)} − {f(vij ,x)}|||2 ≤ Ch2k+1

∑

i,j

ωij(δ + ‖vij‖∞)‖f ij‖2
k+1,Ω

+m−2α

∫

Ω

‖f(.,x)‖2
αdx + (δZm−α)

(

∫

Ω

‖f(.,x)‖2
αdx

)1/2

.

(3.53)

Proof. Using the triangle inequality (3.43), Theorem 3.1 and the estimate (3.52)
yield the desired result. �
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Remark 3.1. Here are some features of the problem (2.15)-(2.18): lack of absorption
term in equation (2.15) yields to stability with no explicit L2-norm control. Actually
we obtain the L2-norm stability of orthogonal projection onto the complement of the
kernel of the discrete collision operator. By some transformation (an exponential
variable substitution), we may obtain an equation having an absorption term, then
the kernel of the integral operator will be changed. We may also consider some
properties of the operator v ij · ∇ leading to an L2(Ω) estimate. Since ∇ · v ij = 0,
the convection operator v ij · ∇ : W → L2(Ω) is an isomorphism (see, e.g., [11] and
the references therein) and we have that

α‖g‖Ω ≤ ‖v ij · ∇g‖Ω, ∀g ∈W, (3.54)

for some constant α > 0. Note that in all the above estimates the semi-norm, (L2-

norm of partial derivatives), appears with a coefficient of order O(
√
h). Combining

this and Theorem 3.2, the coefficients γij will appear in the L2-norm estimates as
well. Therefore, in implementations, one should expect to get an actual rate of
convergence of order O(hk + m−αh−

1
2 ), i.e. a rate reduced by the order of h1/2,

compared to the theory. Based on this phenomena, we may remove the last term
in (3.53) and improve the error estimate.

As a result of the Theorem 3.2 and Remark 3.1, we may obtain an order of
convergence for the mass flow rate G introduced by (2.20).

Corollary 3.3. Assume that G is the mass flow rate defined by (2.20), and its

approximation, Gh, is given by

Gh =
1

|Ω|
∑

i,j

ωij

∫

Ω

f ij
h (x)dx. (3.55)

Then we have

|G−Gh| ∼ C−1
δ O(δ1/2hk+1/2 +m−α + δ1/2m−α/2). (3.56)

where Cδ = min{δ, 1
δ , γij}.

Proof. By the triangle inequality we may write

|G−Gh| ≤ |G− Ĝ| + |Ĝ−Gh|, (3.57)

where

Ĝ =
1

|Ω|
∑

i,j

ωij

∫

Ω

f(v ij ,x )dx . (3.58)

Applying the quadrature error (3.4), for the first term in (3.57) we have

|G− Ĝ| ≤ Cm−α

∫

Ω

‖f(.,x )‖αdx . (3.59)

In addition, using Hölder inequality, for the second term in (3.57) we obtain

|Ĝ−Gh| ≤
∑

i,j

ωij‖f(v ij , .) − f ij
h ‖Ω. (3.60)

Now, by Theorem 3.2 and Remark 3.1 we deduce that

|Ĝ−Gh| ∼ C−1
δ O(δ1/2hk+1/2 +m−α + δ1/2m−α/2), (3.61)

where Cδ = min{δ, 1
δ , γij}. Then inserting (3.59) and (3.61) into (3.57), and using

the regularity assumption on f , we obtain the desired result. �



DISCRETE-ORDINATES AND SD METHODS FOR BGK MODEL 11

4. Numerical investigations

To justify the theoretical results, in this section, we compute the mass flow rates
in the wide range of rarefaction parameter δ for rectangular, triangular and circular
cross sections. The results are compared with those in the literature: [16], [17], [20]
and [21]. We also investigate the performance of the proposed method on numerical
convergence order in the norm |||.||| defined by (3.19). In the considered examples,
we have used piecewise linear polynomials with the mish size h = 0.07. We have also
used the quadrature formula with M = 15 and N = 15, i.e. 225 ordinates. Since

−Ĉ is a symmetric positive semi-definite operator, the parameter λ̂0 in (3.32) may

be approximated by Rayleigh quotient and thus we have λ̂0 ≤ mini,j(1−ωij), where
ωij are the weights in the quadrature formula (3.1). We choose γ0 of the streamline-
diffusion parameter: γ = γ0h to be equals to 0.01 for δ ≤ 5, and 0.001 for δ > 5, and
subject to the constraint (3.32). Finally, for the case of δ < 10 the resulting linear
algebraic system of equations is solved using a successive over-relaxation solver and
the stopping criterion on the convergence of the iterative procedure is set equal to
10−12. Since for δ ≫ 1, the convergence of the iteration method slows down, we
have employed direct method in solving the discretized systems. In the Table 1
we present the results of calculating the flow rate G in rectangular channels and
compare these results with the corresponding data from [17] and [18] for different
aspect ratios a/b, where 2a is the maximum tube length in the x direction and 2b
is the maximum tube length in the y direction. In Table 2 the computed results for
the circular and elliptical cross sections are presented. These results are generally
in good (within 1%) agreement with the published results in [12] and [16] over the
entire δ range. Some exceptions appear for the cases δ ≫ 1 and δ ≪ 1, where the
difference between the results is slightly larger than 1%. This is due to the presence
of δ in approximation error formula (3.53). We may use higher order quadrature
rule, and finer mesh parameter in the physical domain for the cases of δ ≪ 1 and
δ ≫ 1, respectively. Table 3 is for flows in triangular channels. The computed
results are compared with those in [20], which are only presented for the δ-vales up
to δ = 50.
These results are demonstrated through some plots, where in the Figure 1 the
velocity distributions in a rectangular channel are plotted for different values of
the rarefaction parameter δ = 0.01, 0.1, 1 and 10. In the Figures 2 and 4, the u
level sets in a circular and an equilateral triangular channel are plotted for different
values of γ0 and for the rarefaction parameters δ = 0.1 and δ = 1, respectively.
One may see the smoothing effects of the SD-parameter on corresponding Figures.
In the Figure 3 we also present the velocity level sets for a right-angle triangular
cross-section and for different values of δ.

We now present a numerical example for solving the boundary value problem
and illustrate the performance of the proposed method on numerical convergence.

Example 4.1. In this example, we study our problem considering the spatial domain
to be the unit square [0, 1] × [0, 1] and with the source function given by

S(v ,x ) =w(θ,x ) + cw(θ,x ) cos(θ)
(

θy sin(πx) sin(πy) + πθxy cos(πx) sin(πy)
)

+ cw(θ,x ) sin(θ)
(

θxsin(πx)sin(πy) + πθxy cos(πy) sin(πx)
)

− (
1

2π
(e2πxy sin(πx) sin(πy) − 1))/(xy sin(πx) sin(πy)),

where
w(θ,x ) = eθxy sin(πx) sin(πy). (4.1)

This example is particularly designed, so that the exact solution is given by

u(v ,x ) = w(θ,x ) − 1. (4.2)
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Table 1. Reduced flow rate G in rectangular channels vs rarefac-
tion parameter δ and aspect ratio a/b.

δ G
a/b=1 a/b=2 a/b=10

[17, 18] (3.17) [18] (3.17) [18] (3.17)
.01 0.8281 0.8201 1.137 1.1229 1.910 1.9407
.02 0.8213 0.8160 1.125 1.1145 1.858 1.8896
.05 0.8076 0.8055 1.099 1.0944 1.759 1.7880
.1 0.7934 0.7925 1.073 1.0716 1.665 1.6876
.2 0.7766 0.7765 1.046 1.0462 1.563 1.5785
.5 0.7622 0.7603 1.026 1.0243 1.454 1.4568
.8 0.7614 0.7609 1.031 1.0288 1.425 1.4246
1 0.7678 0.7652 1.041 1.0377 1.424 1.4213

1.5 0.7861 0.7827 1.074 1.0700 1.448 1.4419
2 0.8076 0.8056 1.115 1.1100 1.491 1.4834
5 0.9885 0.9787 1.413 1.3977 1.870 1.8633
10 1.329 1.3161 1.955 1.9559 2.599 2.5981
15 1.705 1.6591 2.511 2.5166 3.357 3.3636
20 2.000 2.0066 3.077 3.0831 4.121 4.1405
30 2.7071 4.2219 5.7088
40 3.4102 5.3616 7.2861
50 4.1136 6.4991 8.8677
100 7.6136 12.1268 16.7988
200 14.4824 23.0328 32.6890

Table 2. Reduced flow rate G in elliptical channels vs rarefaction
parameter δ and aspect ratio a/b.

δ G
a/b=1 a/b=1.1 a/b=2 a/b=10

[16] (3.17) [12] (3.17) [12] (3.17) [12] (3.17)
.01 1.4760 1.4650 1.548 1.5360 2.066 2.0025 3.314 3.3414
.02 1.4598 1.4538 1.529 1.5237 2.015 1.9802 3.198 3.2208
.05 1.4295 1.4280 1.497 1.4958 1.985 1.9335 2.994 3.0048
.1 1.4026 1.4018 1.469 1.4680 1.935 1.8912 2.817 2.8169
.2 1.3816 1.3790 1.446 1.4447 1.893 1.8587 2.651 2.6427
.5 1.3864 1.3835 1.499 1.4525 1.881 1.8777 2.534 2.5158
.8 1.4252 1.4214 1.499 1.4958 1.951 1.9473 2.565 2.5419
1 1.4583 1.4540 1.536 1.5323 2.009 2.0040 2.614 2.5877

1.5 1.5532 1.5477 1.641 1.6365 2.170 2.1629 2.780 2.7457
2 1.6576 1.6507 1.757 1.7505 2.344 2.3345 2.976 2.9337
5 2.3483 2.3301 2.516 2.5138 3.471 3.4677 4.331 4.3242
10 3.5633 3.5619 3.850 3.8488 5.430 5.4299 6.738 6.7717
20 6.0411 6.0453 6.565 6.5689 9.402 9.4135 11.65 9.2620
30 8.5333 8.5416 9.294 9.3015 13.39 13.4086 16.58 16.7387
40 11.0295 11.0378 12.03 12.0334 17.39 17.3983 21.52 21.6815
50 13.5269 13.5303 14.76 14.7608 21.38 21.3777 26.46 26.5811
100 26.0214 25.9028 28.2975 41.0770 50.4005
200 51.0254 50.1348 54.8049 79.4233 94.8108
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Table 3. Reduced flow rate G in various triangular channels vs
rarefaction parameter δ.

G
δ equilateral scalene orthogonal isosceles

[20] (3.17) [20] (3.17) [20] (3.17)
0.001 0.929 0.9109 0.935 0.9162 0.965 0.9464
0.01 0.919 0.9054 0.925 0.9106 0.954 0.9400
0.1 0.872 0.8692 0.878 0.8734 0.902 0.8985
0.5 0.831 0.8277 0.835 0.8303 0.854 0.8501
0.75 0.829 0.8259 0.833 0.8279 0.851 0.8465
1 0.834 0.8301 0.837 0.8317 0.854 0.8494

1.5 0.851 0.8475 0.855 0.8484 0.870 0.8651
2 0.876 0.8711 0.879 0.8716 0.894 0.8877
5 1.06 1.0581 1.07 1.0584 1.08 1.0744
10 1.41 1.4083 1.42 1.4090 1.43 1.4278
20 2.14 2.1408 2.14 2.1443 2.17 2.1709
30 2.88 2.8858 2.89 2.8929 2.92 2.9278
40 3.62 3.6350 3.63 3.6456 3.67 3.6889
50 4.37 4.3857 4.38 4.3994 4.43 4.4512
100 8.1352 8.1565 8.2501
200 15.5503 15.5442 15.7193
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Figure 1. Velocity contours in the cross section of a square chan-
nel: (a-d) related to δ = 0.01, 0.1, 1 and 10.

To compute the spatial errors, we will use the standard strategy considering higher
order approximations in the quadrature rule (3.1) and then compute the conver-
gence order of the space discretization. In Tables 4-5 and Figure 5, we show these
convergence results in the L2-norm, as well as the |||.|||-norm defined by (3.19). We
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Figure 2. Comparison of the velocity contours for the unit circle
with δ = 0.1 : (a-c) related to γ0 = 0, 0.001 and 0.01.
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Figure 3. Velocity contours for the orthogonal triangle: (a-d)
related to δ = 0.01, 0.1, 1 and 10.

also present the error of the mass flow rate G, defined by (2.20), in Table 6 and
Figure 6, for the different values of γ0.
To see the influence of the numerical quadrature error on the solution accuracy, we
also use the less refined numerical quadrature with M = 5 and N = 5, i.e. only

25 ordinates. For instance, corresponding to h =
√

2
20 the errors for the numerical



DISCRETE-ORDINATES AND SD METHODS FOR BGK MODEL 15

0 0.5 1 1.5 2
0

0.5

1

1.5

0 0.5 1 1.5 2
0

0.5

1

1.5

0 0.5 1 1.5 2
0

0.5

1

1.5

(a) (b)

(c)

Figure 4. Comparison of the velocity contours for the equilateral
triangle with δ = 1 : (a-c) related to γ0 = 0, 0.001 and 0.01.

Table 4. Error ‖u− uh‖ for Example 4.1.

h γ0 = 0 γ0 = 0.001 γ0 = 0.01 γ0 = 0.1 γ0 = 0.5
√

2
5 0.247206982 0.244798006 0.227213803 0.178063742 0.216327675√
2

10 0.026715009 0.02652664 0.025652036 0.030466757 0.0759276√
2

15 0.011670016 0.01150648 0.010821089 0.013734404 0.045281935√
2

20 0.006162771 0.006065313 0.005766944 0.008593496 0.032996712

Table 5. Error |||u− uh||| for Example 4.1.

h γ0 = 0 γ0 = 0.001 γ0 = 0.01 γ0 = 0.1 γ0 = 0.5
√

2
5 0.303022935 0.304333116 0.316307008 0.420452474 0.718022365√
2

10 0.029895327 0.032654345 0.051285278 0.132921852 0.284534964√
2

15 0.013185436 0.014826665 0.025414045 0.070742315 0.16144478√
2

20 0.006925584 0.008218338 0.01572285 0.045652177 0.107539983

Table 6. Error |G−Gh| for Example 4.1.

h γ0 = 0 γ0 = 0.001 γ0 = 0.01 γ0 = 0.1 γ0 = 0.5
√

2
5 0.086942268 0.086250263 0.080363851 0.044469892 0.007591975√
2

10 0.006840345 0.006843534 0.007019878 0.007931986 0.007860636√
2

15 0.003764336 0.003679156 0.003300136 0.003239473 0.004556734√
2

20 0.001084447 0.00109074 0.001217363 0.001589597 0.002807666

solution in the L2-norm: ‖u−uh‖ for the different (see the Tables 4-6) values for the
parameter γ0 are, respectively, 0.00681873, 0.006722791, 0.006416259, 0.009199408,
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Figure 5. ‖u − uh‖ vs. h2 (left) and |||u − uh||| vs. h3/2 (right)
for Example 4.1.
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Figure 6. |G−Gh| vs. h2 for Example 4.1.

0.033521166 and those for |||u − uh||| are, respectively, 0.007871414, 0.007699679,
0.007173271, 0.010485591, 0.037295534. Thus the errors in the numerical solution
are mainly due to the spatial discretization. We have varied γ0 in the SD-parameter
γ = γ0h in (3.32) to check the influence of stabilization parameter on the fully
discrete solution. In Table 4 we see that increasing γ0 further, L2 error increases
due to smearing.

Conclusion. The fully developed flow of a rarefied gas in a channel with arbi-
trary cross section, due to an imposed pressure gradient, is described by a BGK
model. This paper concerns stability and convergence of a fully discrete scheme
for a linear BGK equation. The discretization is based on a discrete-ordinates
method for the velocity variable combined with the streamline diffusion finite ele-
ment method in the spatial domain. We derive optimal convergence rates due to the
maximal available regularity of the exact solution. In the numerical investigations,
results for the velocity profiles and the flow rate have been provided for various
geometries for the flow channel with the rectangular, circular and triangular cross
sections, in the whole range of rarefaction parameter δ. The convergence rates in
both L2- and the triple-norm, |||·|||, are justified for a generic example in a square
spatial domain.

In contrast to the previous published results, the solution herein is extended
easily into the near continuum regime. In addition, it seems that the present
method can be used to solve other physically relevant models derived from the
Boltzmann equation.
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