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hp-CLOUD APPROXIMATION OF THE DIRAC EIGENVALUE PROBLEM: THE
WAY OF STABILITY

HASAN ALMANASREH

Abstract. We apply hp-cloud method to the radial Dirac eigenvalue problem. The difficulty of occur-

rence of spurious values among the genuine eigenvalues is treated. The method of treatment is based

on assuming hp-cloud Petrov-Galerkin scheme to construct the weak formulation of the problem which

adds a consistent diffusivity to the variational formulation without deforming the equation. The size of

the artificially added diffusion term is controlled by a derived stability parameter (τ). The derivation of

τ considers the limit behavior of the eigenvalues at infinity. The importance of τ is of being applicable

for generic basis functions. This is together with choosing appropriate intrinsic enrichments in the con-

struction of the cloud shape functions.

Introduction.

In the last decades, several numerical methods have been derived to compute the eigenvalues of opera-
tors. The need of accurate computations of eigenvalues are intensively considered due to their significant
applications in many disciplines of science: Mathematically, if a matrix or a linear operator is diagonal-
ized, then by the spectral theorem, it can be analyzed by studying their corresponding eigenvalues, i.e.
transforming the matrix or operator to a set-basis of eigenfunctions which can be easily studied. From
physical point of view, the eigenvalues could have wide range of information about the behavior of the
desired system governed by an operator. This information might be all what is needed to answer many
questions regarding the system properties such as stability, positivity, boundedness, asymptotic behavior,
etc. Psychologically, one of the brain duties is the processing of visual data, which is the eigenvalues’
major treatment. Of course, eigenvalues have the functionality of this biological trait, they convert the
abstract notions of operator to the corresponding picture in the complex plane. In mechanics, they play
an important role in many branches as determining whether the automobile is noisy, or whether a bridge
will collapse by the water waves, etc. Also, the eigenvalues describe how the quantum state of a physical
system changes in time (Schrödinger equation). They represent the electron energies in the atomic levels,
this is the well-known Dirac equation, which is the core of the present work.

The calculation of energy levels in Helium-like ions, where the interaction between two electrons takes
place, can be determined by studying the electrons correlation which is part of quantum electrodynamic
(QED) effects. A scheme of calculating QED effects [29, 33, 38, 40] is based on a basis set of relativistic
Hydrogen-like ion wave functions (of the Dirac operator). Meanwhile, the numerical computation of the
finite basis set of wave functions encounters nonphysical values (do not match the physical observations)
called spurious eigenvalues or spectrum pollution. The spurious eigenvalues result in rapid oscillations in

Key words and phrases. Dirac operator, spurious eigenvalues, meshfree method, clouds, moving least-squares, intrinsic

enrichment, Petrov-Galerkin, stability parameter.
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2 HASAN ALMANASREH

the wave functions, hence, in many cases, ruining the computation reliability of the basis set (partially
or or might be completely) in the practical atomic calculations.

The spurious solution is an effect of the numerical methods and are found in the computational solution
of many problems rather than the Dirac equation. For general eigenvalue problems, spurious eigenvalues
are reported [45], the occurrence of the spuriousity is related to mismatching of desired properties of
the original solution in the numerical formulation. Also in the computation of electromagnetic problems
the spuriousity is perceived [34, 39]. In the computation of Dirac eigenvalues, the spuriousity has been
reported [1, 2, 37, 41]. Two leading approaches are derived to solve this difficulty completely; Shabaev et
al. [41] have related the spuriousity to the same treatment of the large and small Dirac radial functions,
their remedy is based on deriving dual kinetic-balance (DKB) basis functions for the large and small
components. Almanasreh et al. [2] have allied the occurrence of spurious values to the same treatment of
the trial and test functions in the finite element method (FEM), they proposed stability scheme based on
creating a consistent diffusivity by modifying the test function to include a balanced derivative-correction
term.

In this work, we apply hp-cloud method [15, 46] to the radial Dirac equation. The technique is known
as one of the meshfree methods (MMs) [6, 18, 30, 31, 35] that allows to two different enrichments, intrinsic
and extrinsic, to be built in the construction of the basis functions. The method was previously applied
for different problems e.g. Schrödinger equation [10], Mindlin’s thick plate model [19], and Timoshenko
beam problems [32], etc. Here, in order to treat the spuriousity problem, we stabilize the computation
by considering instead hp-cloud Petrov-Galerkin (hp-CPG) method which can be considered as a new
technique of the general meshfree local Petrov-Galerkin (MLPG) [4, 17, 28]. The stability scheme is
based on adding consistent diffusion terms without deforming the structure of the equation, i.e. the
original solution also satisfies the weak formulation. The size of the additional diffusivity is controlled by
a derived stability parameter.

Consider the radial Dirac equation HκΦ(x) = λΦ(x), where Φ(x) = (F (x), G(x))t is the radial wave
function and λ is the electron energy. The weak formulation of the problem is to find λ ∈ R and Φ in
a specified functional space such that for every test function Ψ living in some suitable space we have∫
Ω

ΨtHκΦdx = λ
∫
Ω

ΨtΦdx. The usual hp-cloud Galerkin approximation is to let Ψ to be (ψ, 0)t and
(0, ψ)t where ψ lives in the same space as of the two components of Φ. To discretize the weak form, the
components of the trial function Φ and the weight test function ψ are chosen from a finite set of hp-cloud
basis functions which inherits the properties of the proposed functional space and, is constructed using
moving least-squares method on a set of arbitrary nodes in the domain Ω. Since the Dirac operator is
dominated by advection (convection) terms, hp-cloud approximation will be upset by spurious eigenvalues.

To stabilize hp-cloud approximation, hp-CPG is used instead to formulate the problem. In this formu-
lation, the test function Ψ is assumed to live in a functional space differs from that of the trial function Φ,
i.e. Ψ is chosen in the form (ψ, τψ′)t and (τψ′, ψ)t where ψ belongs to the same space as the components
of Φ. The correction term τψ′ is used to add artificial diffusivity to stabilize the convection terms. The
size of the diffusion terms is controlled by the stability parameter τ . The derivation of τ follows the prin-
ciple used in [2] for FEM, but a generalization of it. Two simplified leading assumptions are considered
in deriving τ ; the operator limit as the radial variable x tends to infinity, thus a comparison can be held
with the theoretical limit point of eigenvalues, along with considering the dominant terms with respect
to the speed of light c.

The work is organized as follows; in Section 1, some preliminaries about the Dirac equation are
presented, also we shed some light on the spuriousity and its causality. In Section 2, the construction of
hp-cloud functions is provided, also coupling with FEM to impose essential boundary conditions (EBCs)
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is explained. hp-CPG and the derivation of the stability parameter are treated in Section 3. In the last
section, Section 4, we present some numerical results and provide necessary discussion about the stability
scheme.

1. The radial Dirac equation and the problem of spurious values

The free Dirac space-time equation is

(1) ı }
∂

∂t
u(t,x) = H0u(t,x) ,

where } is the Planck constant divided by 2π, and H0 : H1(R3;C4) −→ L2(R3;C4) is the free Dirac
operator acting on the four-component vector u, given by

(2) H0 = −ı }cα · ∇+ mc2β ,

where m is the electron mass, the constant c is the speed of light, and α = (α1, α2, α3) and β are the
4× 4 Dirac matrices given by

αi =
(

0 σi

σi 0

)
and β =

(
I 0
0 −I

)
,

I and 0 are the 2× 2 unity and zeros matrices respectively, and σi’s are the 2× 2 Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −ı

ı 0

)
, and σ3 =

(
1 0
0 −1

)
.

Note that separation of variable yields the Dirac eigenvalue problem, i.e. by assuming u(x, t) = u(x)θ(t)
in (1) one gets

(3) H0u(x) = λu(x) ,

H0 is self adjoint on H1(R3;C4), the space of all continuous vectors which compose of four complex
valued functions such that each of which and its first derivative are square integrable in R3

H1(R3;C4) = H1(R3)⊕H1(R3)⊕H1(R3)⊕H1(R3) ,

H1(R3) =
{
φ : R3 → C; ‖φ‖H1(R3) < ∞}

,

The free Dirac operator H0 describes the motion of the electron that moves freely without external
forces. The free Dirac operator with Coulomb potential is read as

(4) H = H0 + V (x)I4 ,

where V (x) = −Z
x , and I4 is the 4 × 4 identity matrix. The spectrum, denoted by σ, of the Coulomb-

Dirac operator is σ(H) = (−∞,−mc2] ∪ {λk}k∈N ∪ [mc2, +∞), where {λk}k∈N is a discrete sequence of
eigenvalues in the gap (−mc2, mc2) of the continuous spectrum.

The radial Coulomb-Dirac operator can be obtained by separation of variables in the radial and angular

parts, i.e. by assuming u(x) =
1
x

(
F (x)χκ,m($, Θ)

ıG(x)χ−κ,m($, Θ)

)
, where x represents the radial variable. The

spherical symmetry property of the angular function χ is the key observation point in the derivation of
the radial part. Thus, the radial Dirac equation is given as

(5) HκΦ(x) = λΦ(x), where Φ(x) =
(

F (x)
G(x)

)
and

(6) Hκ =
(

mc2 + V (x) c
(−Dx + κ

x

)

c
(
Dx + κ

x

) −mc2 + V (x)

)
.
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The radial functions F (x) and G(x) are respectively the large and small components of the wave function
Φ(x), λ is the relativistic energy and κ is the spin-orbit coupling parameter defined as κ = (−1)+`+ 1

2 (+
1
2 ), where  and ` are the total and the orbital angular momentum quantum numbers respectively.

The well-known difficulty of solving the radial Dirac equation numerically is the presence of spurious
eigenvalues among the genuine ones that disturb the solution and consequently affect the reliability of the
approximated eigenstates. Here we follow [2] for the classification of the spurious values; the first category
is the so-called instilled spuriousity, and the second category is the unphysical coincidence phenomenon.
The first type is those spurious values that may occur within the true eigenvalues (i.e. they occur
between the true energy levels), this type of spuriousity appears for all values of κ. The second type is
the unphysical assigning of almost same first energy for 2s1/2(κ = −1) and 2p1/2(κ = 1), 3p3/2(κ = −2)
and 3d3/2(κ = 2), 4d5/2(κ = −3) and 4f5/2(κ = 3), and so on. This phenomenon is deeply studied in
[42] from theoretical aspect, also, from numerical point of view we refer to [43].

Apparently, most authors [1, 2, 37, 41] agree that the incorrect balancing and the symmetric treatment
of the large and small components of the wave function or of the test and trial functions in the numerical
methods are the core of the problem. In the present work, we relate the occurrence of spuriousity (for
both categories) to the unsuitable functional spaces and to the symmetric treatment of the trial and test
functions in the weak formulation of the equation. To clarify, we rewrite (5) to obtain an explicit formula
for each of the two radial functions, so by defining w±(x) = ±mc2 + V (x) we have

(7) F ′′(x) + γ1(x, λ)F ′(x) + γ2(x, λ)F (x) = 0 ,

(8) G′′(x) + θ1(x, λ)G′(x) + θ2(x, λ)G(x) = 0 ,

where

γ1(x, λ) = − V ′(x)
w−(x)− λ

, θ1(x, λ) = − V ′(x)
w+(x)− λ

,

γ2(x, λ) =

(
w+(x)− λ

)(
w−(x)− λ

)

c2
− κ2 + κ

x2
− κV ′(x)

x
(
w−(x)− λ

) ,

and

θ2(x, λ) =

(
w+(x)− λ

)(
w−(x)− λ

)

c2
− κ2 − κ

x2
+

κV ′(x)
x
(
w+(x)− λ

) .

According to (7) and (8), the components F and G should be continuous and have continuous first
derivatives. Thus, the suitable choices of functional spaces for the computation of the Dirac eigenvalue
problem are those that possessing these properties. Assuming appropriate spaces helps in partial elimi-
nation of spurious values, and does not help overcoming the coincidence phenomenon. In [2], the same
argument is accounted, where FEM is applied to approximate the eigenvalues using linear basis functions

Table 1. This table, taken from [2], shows the first computed eigenvalues of the electron
in the Hydrogen atom.

Level κ = 1 κ = −1 Rel. Form. κ = −1

1 -0.50000665661 -0.50000665659 -0.50000665659
2 -0.12500208841 -0.12500208839 -0.12500208018
3 -0.05555631532 -0.05555631532 -0.05555629517
V -0.03141172061 -0.03141172060 Spurious Eigenvalue
4 -0.03118772526 -0.03118772524 -0.03125033803
5 -0.01974434510 -0.01974434508 -0.02000018105
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In Table 1, 400 nodal points are used to discretize the domain, and the computation is performed for
point nucleus. The shaded left corner value is what meant by the unphysical coincidence phenomenon,
and the fourth row elements are the so-called instilled spuriousity. If the basis functions are chosen to be,
in addition, C1 functions, then some instilled spurious values are avoided as indicated in [2]. Therefore,
after applying the boundary conditions, zero Dirichlet conditions are assumed for both radial functions at
the lower and upper boundaries, the proposed space is H(Ω) := C1(Ω)∩H1

0 (Ω). Also, the radial functions
are mostly-like to vanish at the boundaries in a damping way (except some states), consequently zero
Neumann boundary conditions should be taken into account. The exceptional states are 1s1/2 and 2p1/2,
in this case at the upper boundary the same treatment is considered, but the derivative of these states at
the lower boundary is not zero. Here we will assume general boundary conditions, that is, homogeneous
Dirichlet boundary conditions. Thus, from now on, the space H(Ω) is considered.

What deserves to dwell upon is that most of numerical methods when they are applied to convection
dominant problem the solution is disturbed by unreal oscillations. This instability is getting worse as the
convection size increases. The following two numbers are considered as tools to measure the dominance
of the convection term

(9) Pej =
|uj |hj

2K
and Daj =

sjhj

|uj | ,

where Pej and Daj are known as the grid Peclet and Damköhler numbers respectively, hj is the size
of the element interval Ij , uj and sj are respectively the coefficients of the convection and the reaction
terms corresponding to Ij , and K is the diffusivity size. The difficulty is addressed when either the
convection coefficient or the source term is larger than the diffusive coefficient, i.e. when Pej > 1 or

when 2PejDaj =
sjh

2
j

K
> 1 respectively, then the associated equation is governed by the convection

dominant case.
For the simplified equations (7) and (8), it is easy to check that 2PeDa admits very large values

if small number of nodal points is considered regardless the sizes of |λ|, Z, and κ. Even with mesh
refinement, 2PeDa still admits very large values at some positions (2PejDaj >> 1 for some j). The
Peclet number, Pe, for the equation that involves the function F , is always less than 1. But for the
equation that corresponds to G, Pe admits a value greater than one, exactly at the nodal point where
uj changes its sign, here refining the mesh does not bring Pe below one for all choices of λ, Z, and κ.
Hence, (7) and (8) are dominated by convection terms. Thus the approximated solutions F and G, will
be upset by unphysical oscillations. Drawing back, these oscillations in the eigenfunctions result in some
unreal eigenvalues, the spurious values. For detailed materials about convection dominant problems we
refer to [7, 8].

2. Moving least-squares (MLS) approximation

To build hp-cloud functions, moving least-squares (MLS) method is applied which allows easily p-
enrichment to be implemented and to desired fundamental characters to be enriched in the approximation
function. MLS is a well-known approximation technique for constructing meshfree shape functions in
general. It applies certain least square approach to get the best local approximation, then the local
variable is let to ’move’ to cover the whole domain.
Consider an open bounded domain Ω ⊂ R with boundary ∂Ω, assume X = {x1, x2, . . . xn} is a set of n

arbitrary points in Ω. Let W be a set of open covering of Ω defined by X such that W = {wi}n
i=1 where

wi is centered at xi and Ω ⊂ ∪n
i=1wi.

Definition 1. A set of functions {ψi}n
i=1 is called a partition of unity (PU) subordinated to the cover W

if
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(1)
∑n

i=1 ψi(x) = 1, for all x ∈ Ω.
(2) ψ ∈ Cs

0(wi), for i = 1, 2 . . . n, where s ≥ 0.

Let P = {p1(x), p2(x), . . . pm(x)} be a set of basis of polynomials (or any basis of suitable intrinsic
enrichments). Suppose that Ψ(x) is a continuous function defined on Ω and that its values, Ψi, at
the points xi ∈ Ω, i = 1, 2, . . . n, are given. To approximate Ψ(x) globally by Ψh(x), firstly Ψ(x) is
approximated locally at x̃ ∈ Ω by Jx̃Ψ defined in terms of the given basis set P as

(10) Jx̃Ψ(x) = P t(x)a(x̃),

where t denotes for the usual transpose. The unknown coefficients a(x̃) are chosen so that Jx̃Ψ is the
best approximation of Ψ in a certain least squares sense, this is achieved if a is selected to minimize the
following weighted least squares L2-error norm

(11) Ix̃(a) =
n∑

i=1

ϕi(
x− xi

ρi
)(P t(xi)a(x̃)−Ψi)2,

where ϕi are the weight functions introduced to insure the locality of the approximation, and ρi are the
dilation parameters which control the support radius of ϕi at xi. To minimize Ix̃ with respect to the
vector a, the first derivative test is applied, i.e. we set ∂Ix̃

∂a = 0 which gives

∂Ix̃

∂a1
=

n∑

i=1

ϕi(
x− xi

ρi
)2p1(xi)(P t(xi)a(x̃)−Ψi) = 0.

∂Ix̃

∂a2
=

n∑

i=1

ϕi(
x− xi

ρi
)2p2(xi)(P t(xi)a(x̃)−Ψi) = 0.

...
∂Ix̃

∂am
=

n∑

i=1

ϕi(
x− xi

ρi
)2pm(xi)(P t(xi)a(x̃)−Ψi) = 0.

The above system can be written as

(12) M(x)a(x̃)−B(x)Ψ = 0,

where M(x) = PtΥ(x)P, B(x) = PtΥ(x), Ψt = [Ψ1, Ψ2, . . . Ψn], at(x̃) = [a1(x̃), a2(x̃), . . . am(x̃)], and P

and Υ(x) are defined respectively as

P =




p1(x1) p2(x1) . . . pm(x1)
p1(x2) p2(x2) . . . pm(x2)

...
...

. . .
...

p1(xn) p2(xn) . . . pm(xn)


 and Υ(x) =




ϕ1(x−x1
ρ1

) 0 . . . 0
0 ϕ2(x−x2

ρ2
) . . . 0

...
...

. . .
...

0 0 . . . ϕn(x−xn

ρn
)




.

We proceed from equation (12) to get

(13) a(x̃) = M−1(x)B(x)Ψ.

Thus

Jx̃Ψ(x) = P t(x)a(x̃)
= P t(x)M−1(x)B(x)Ψ.
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The global approximations is then obtained by assuming x̃ arbitrary, i.e. by letting x̃ move over the
domain, viz, the solution is globalized by considering Ψ(x) ≈ lim

x̃→x
Jx̃Ψ(x) =: Ψh(x), thus

(14) Ψh(x) =
n∑

i=1

ψi(x)Ψi

with ψi(x) = P t(x)M−1(x)Bi(x), and Bi(x) = ϕi(x−xi

ρi
)P (xi). In the sum form Ψh is written as

(15) Ψh(x) = P t(x)
( n∑

i=1

ϕi(
x− xi

ρi
)P (xi)P t(xi)

)−1 n∑

i=1

ϕi(
x− xi

ρi
)P (xi)Ψi.

The first derivative of ψi is given as ψi,x = dψi(x)
dx = P t

xM−1Bi − P tM−1MxM−1Bi + P tM−1Bi,x. To
increase the order of consistency (a set of functions {ui(x)} is consistent of order m if

∑m
i=1 ui(x)P(xi) =

P(x) for all x ∈ Ω, where P(x) = {xς ; |ς| ≤ m}) of the approximation, the complete representation of
the hp-cloud functions consists of the set of PU functions ψi(x) and monomial extrinsic enrichment basis
functions P as

Ψh(x) =
n∑

i=1

ψi(x)
( n0∑

j=1

Pj(x)Ψj
i

)

=
n∑

i=1

n0∑

j=1

ψi(x)Pj(x)Ψj
i .

Note that P is chosen to be a set of monomials, also it can be other types of basis functions, but the most
used choice is monomials since they provide good approximation for smooth functions. The monomials
Pj(x), according to [46], should be normalized by the measure of the grid size at xj to prevent numerical
instability. Nevertheless, in applying hp-cloud approximation for the Dirac eigenvalue problem, we will
use a stability scheme based on MLPG method, for that we will not be interested in concerning extrinsic
enrichments in the computation (P = {1}, a monomial of degree zero). The point of this setting follows
[4], where six different realizations of MLPG restricted only to intrinsic enrichment basis are considered.
It is found that extrinsic enrichment in MLPG causes numerical stability problems, because the behavior
of their derivatives has large oscillations, which is not the case in the usual MMs. Hence, in the present
work, only intrinsic enrichments, P (x), are considered, and thus the approximation with hp-clouds is
given by (14).

The weight functions ϕi play the most important role in hp-cloud shape function definition, they are
defined locally on the covers wi around xi. The functions ϕi can also be chosen the same for all nodes,
in this case we write ϕi = ϕ, which is the case assumed in this work. The hp-clouds, ψi, inherit the
properties of the weight function ϕ such as continuity, smoothness, and others. I.e. if ϕ is continuous
with continuous derivatives, then so are ψi, provided that the continuity of the enrichment basis P (x)
and its derivatives is ensured. As for the Dirac large and small components, F and G, the proposed space
is H, thus ,and therefore, the weight function ϕ should be at least C1-function. For this purpose, we will
consider quartic splines (which are C2, sufficiently enough) as weight functions defined as

(16) ϕ(r) =
{

1− 6r2 + 8r3 − 3r4 , r ≤ 1,

0 , r > 1,

where r = |x−xi|
ρi

.
The set functions {ψi}n

i=1 builds a PU, also the set of their derivatives {ψi,x}n
i=1 builds a partition

of nullity (PN) (
∑n

i=1 ψi,x(x) = 0 for all x ∈ Ω), see Figure 1. The computational effort of evaluating
integrals in the weak form in hp-cloud approximation is more time consuming compared to mesh-based
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methods (the shape functions are of the form ϕi only), this is due to the fact that the derivative of
the shape function ψi tends to have non-polynomial characters, also due to the time needed for matrix
inversion in evaluating the shape functions.
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Figure 1. PU hp-clouds (to the left) and their PN first derivatives (to the right).
Quartic splines are used as weight functions, and linear intrinsic enrichment, P t(x) =
[1 , x], is assumed.

Since the Kronecker delta property is not being a character of ψi (ψi(xj) 6= δij), then at each node
there are at least two nonzero shape functions. Thus, to have the value of the approximated function at a
node, all nonzero shape functions effect should be added. The missing of this property causes a problem
in imposing essential boundary conditions, and thus other techniques are used to solve this difficulty, this
is coming soon.

The intrinsic enrichment P (x) has an important effect in the approximation definition, it serves as the
chromosomes in inheriting the crucial features of organisms. All known fundamental characters such as
discontinuities and singularities about the sought solution can be loaded on the intrinsic functions. Con-
sequently, more time is saved (it is not needed, in general, to assume very large nodal points to capture
a desired behavior of the approximated function while most of the solution features are inserted in the
approximation itself), on the other hand, stability is enhanced particularly when there are some crucial
characters that can not be captured by usual numerical methods, for example solving the equations with
rough coefficients that appear e.g. in composites and materials with micro-structure, or problems with
high oscillatory solutions, or eigenvalue problems that admit nonphysical (spurious) values in the com-
putation of the discrete spectrum.

Imposition of essential boundary conditions (EBCs).

The Dirac eigenvalue problem assumes homogeneous EBCs, while it is known that hp-cloud approxi-
mation (MMS in general) can not treat these conditions naturally, this because, as it is mentioned before,
the lack of the Kronecker delta property of the shape function. This is in contrast with most mesh-based
methods, where the basis set functions admits this property, and thus applying these boundary conditions
is straightforward (as in FEM) by omitting the first and the last basis functions.

In MMs in general, the widely applied techniques for imposing EBCs are Lagrangian multipliers,
penalty condition, and coupling with finite element shape functions. Lagrangian multiplier is a general
approach and provides good results. The disadvantage of this technique, see e.g. [18, 44], is that the result
discrete equations for a self-adjoint operator are not positive definite (contains zero at the main diagonal)
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nor banded, also the structure of the system becomes awkward, i.e. instead of having M as a result

matrix of the computations, the system
(

M Lm

Lm 0

)
is obtained, where Lm is the EBC-enforcement

vector. EBCs can also be imposed by penalty condition [18, 36], the problem of applying this technique
is the negative effect on the condition number of of the resulting discrete equations.

The most powerful and safe method to enforce EBCs is coupling MMs with FEM, known for first time
by [26]. With this approach, the meshfree shape functions of the nodes along boundaries are replaced by
finite element basis functions. In one dimensional case, hp-cloud functions at the first two and last two
nodes are replaced by finite element functions, and imposing EBCs, as the usual way in FEM, is simply
by eliminating the first and the last added FEM functions, see Figure 2.
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Figure 2. Coupled hp-cloud and finite element functions: general coupling (to the left),
and coupling for the purpose of imposing EBCs (to the right) (two finite element shape
functions are sufficient). Linear (hat) functions are used as finite element functions, and
quartic splines as weight functions in the hp-clouds. The clouds are enriched with linear
basis functions.

Two efficient ways of coupling MMs with FEM; coupling with a Ramp function [5]. In this approach
the derivative of the resulting coupled approximation function along the nodes in the interface region
is discontinuous and the consistency is of first order. To ensure the continuity of the derivative of the
coupled function and to obtain consistency of any order, we consider the second type; coupling with
reproducing conditions [23]. Using MLS approximation method as before, the coupled hp-cloud and
finite element functions with the reproducing conditions type are given as (see e.g. [18])

Ψh(x) =
∑

xi∈ΩMM

ψi(x)Ψi +
∑

xi∈ΩFEM

Gi(x)Ψi

=
∑

xi∈ΩMM

(
P t(x)−

∑

xi∈ΩFEM

Gi(x)P t(xi)
)(

ϕi(
x− xi

ρi
)P (xi)P t(xi)

)−1

ϕi(
x− xi

ρi
)P (xi)Ψi +

∑

xi∈ΩFEM

Gi(x)Ψi,

where Gi are the finite element shape functions. From Figure 2, it can be seen that finite element
functions are only complete in ΩFEM , and that in ΩMM only hp-clouds are present. In the transition
interface region, Ωtsn, the existence of incomplete finite element functions modifies the exist hp-clouds
there, and thus coupled hp-clouds and finite element functions are obtained.

3. The scheme and the stability parameter

Since the Dirac equation is dominated by convection terms, hp-cloud method will be unstable. As
most of numerical methods where their modifications are used to stabilize solutions [2, 3, 7, 8, 12, 25],
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instead of considering hp-cloud method, we will apply hp-CPG technique to create diffusion terms to
stabilize the approximation. hp-CPG is a consistent method in the sense that the solution of the original
problem is also a solution to the weak form. The size of the added diffusivity is controlled by a stability
parameter. To set the scheme, consider the radial Dirac equation HκΦ = λΦ, the usual hp-cloud method
is formalized by multiplying this equation by a test function Ψ and integrate over the domain Ω

(17)
∫

Ω

ΨtHκΦdx = λ

∫

Ω

ΨtΦdx .

To discretize (17) let Ψ be (ψi, 0)t and (0, ψi)t where i = 1, 2, . . . n, and

(18) Φ(x) =
(

F (x)
G(x)

)
=

(
ΦF :=

∑n
j=1 fjψj(x)

ΦG :=
∑n

j=1 gjψj(x)

)
,

the elements fj and gj are the nodal values of F and G respectively, and ψj are the hp-cloud basis
functions. This yields

(19)
n∑

j=1

(
w+(x)ψj(x) , ψi(x)

)
fj +

n∑

j=1

(− cψ′j(x) +
cκ

x
ψj(x) , ψi(x)

)
gj = λ

n∑

j=1

(
ψj(x) , ψi(x)

)
fj

and

(20)
n∑

j=1

(
cψ′j(x) +

cκ

x
ψj(x) , ψi(x)

)
fj +

n∑

j=1

(
w−(x)ψj(x) , ψi(x)

)
gj = λ

n∑

j=1

(
ψj(x) , ψi(x)

)
gj ,

the bracket (· , ·) is the usual L2(Ω) scalar product. After simplifying, equations (19) and (20) lead to
the symmetric generalized eigenvalue problem

(21) AX = λBX .

The block matrices A and B are defined by

(22) A =

(
mc2M000 + MV

000 −cM010 + cκM001

cM010 + cκM001 −mc2M000 + MV
000

)
, and B =

(
M000 0

0 M000

)
,

where Mq
rst are n× n matrices given as

(23) (Mq
rst)ij =

∫

Ω

ψ
(s)
j ψ

(r)
i x−t q(x) dx ,

(
ψ(r)(x) =

dr

dxr
ψ(x)

)
.

The vector X is the unknown defined as (f , g)t, where f = (f1, f2, . . . , fn) and g = (g1, g2, . . . , gn).
To formulate hp-CPG, the test function Ψ is modified to include the first derivative of the basis function

to introduce the required diffusivity. This leads to assume Ψ as (ψ, τψ′)t and (τψ′, ψ)t in (17), where τ

is the stability parameter that controls the size of the diffusion terms, ψ = ψi, and the functions F and
G are given as above, thus we get

(24)
(
w+F , ψ

)
+

(− cG′ +
cκ

x
G , ψ

)
+

(
Re2(F, G) , τψ′

)
= λ

(
F , ψ

)

and

(25)
(
cF ′ +

cκ

x
F , ψ

)
+

(
w−G , ψ

)
+

(
Re1(F, G) , τψ′

)
= λ

(
G , ψ

)
,

The functionals Re1
(
F, G

)
(x) and Re2

(
F,G

)
(x) are the residuals of the Dirac two-equation system defined

as

(26) Re1
(
F,G

)
(x) =

(
W+F − cG′ +

cκ

x
G

)
(x) ,
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(27) Re2
(
F, G

)
(x) =

(
W−G + cF ′ +

cκ

x
F

)
(x) ,

where W±(x) = w±(x) − λ. This results in the usual hp-cloud approximation with addition to pertur-
bations sized by τ as follows

(28) AX = λBX .

The perturbed block matrices, A and B, are respectively in the forms A = A + τA and B = B + τB,
where A and B are given by (22), and

(29) A =

(
cM110 + cκM101 −mc2M100 + MV

100

mc2M100 + MV
100 −cM110 + cκM101

)
, and B =

(
0 M100

M100 0

)
.

The system above is not symmetric, thus some complex eigenvalues may appear if the size of τ is
relatively large. In the FEM case, an explicit representation for τ can be obtained [2], where the basis
functions have the Kronecker delta property, hence the basis functions have regular distribution a long
the domain and only the adjacent basis functions intersect in one and only one subinterval. Thus the
result system consists of tridiagonal matrices, which makes the derivation of τ easier and an explicit
representation is possible. In meshfree methods in general, the basis function is represented by cloud
over the nodal point, with domain of influence, ρ, that may cover many nodal points. So the result
matrices can be filled with many nonzero elements, hence the number of diagonals in the matrices is
arbitrary (greater than 3) depending on the size of ρ. Therefore we can not write explicit representation
that depends only and completely on a given mesh (where no mesh is assumed) for τ . Instead, τ will be
mainly represented by some of the computed matrices obtained from the usual hp-cloud method.

The derivation of τ assumes the limit Dirac operator in the vicinity of x at infinity. This presumable
simplification is inevitable and justifiable; the derivation leads to an approximation of the limit point
eigenvalue which depends on τ , where, by [20], information about the theoretical limit is available, hence
we can minimize the error between the theoretical and the approximated limits to get τ . By considering
the limit operator at infinity, we consider the troublesome part (that includes the convection terms) of
the operator which is mostly needed to be stabilized. Besides that, one is obliged to assume that the
stability parameter should be applicable at all radial positions x, particularly the large values.

Theorem 1. Let M000 and M100 be the n× n computed matrices in the generalized system (22), and let
σji and ηji be the corresponding entries respectively. Define ϑ as

ϑji =





−
j∑

k=i+1

hk , i < j,

0 , i = j,
i∑

k=j+1

hk , i > j,

where hk is the displacement between the nodes xk and xk−1. Then the stability parameter, τj, for an
arbitrary jth row of the matrices in A and B is given by

(30) τj =
∣∣∣

n∑

i=1

σjiϑji

/ n∑

i=1

ηjiϑji

∣∣∣.

Proof . Consider the limit operator of the Dirac eigenvalue problem in the vicinity of x at infinity

(31)
(

mc2 −cDx

cDx −mc2

)(
F (x)
G(x)

)
= λ

(
F (x)
G(x)

)
.
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The hp-CPG variational formulation of (31) (which is equivalent to assume a limit passage as x →∞ of
the equations (24) and (25)) provides

(mc2 − λ)M000f + τcM110f − (τmc2 − c + τλ)M100g = 0(32)

and

(τmc2 − c− τλ)M100f − τcM110g − (mc2 + λ)M000g = 0 ,(33)

where, as defined before, f = (f1, f2, . . . , fn) and g = (g1, g2, . . . , gn). Let σk, ηk, and %k, for k = 1, 2, . . . n,
be the corresponding jth row entries of M000, M100, and M110 respectively. To obtain τj , we consider the
jth row in (32) and (33), this together with the lemma below give

(
mc2 − λ

)( n∑

k=1

σkfj +
n∑

k=1

σk

(
mcϑk + (ϑk/c)λ

)
gj

)
+ τc

( n∑

k=1

%kfj +
n∑

k=1

%k

(
mcϑk +(34)

+(ϑk/c)λ
)
gj

)
−

(
τmc2 − c + τλ

)( n∑

k=1

ηkgj +
n∑

k=1

ηk

(
mcϑk − (ϑk/c)λ

)
fj

)
= 0

and
(
τmc2 − c− τλ

)( n∑

k=1

ηkfj +
n∑

k=1

ηk

(
mcϑk + (ϑk/c)λ

)
gj

)
− τc

( n∑

k=1

%kgj +(35)

+
n∑

k=1

%k

(
mcϑk − (ϑk/c)λ

)
fj

)
− (mc2 + λ)

( n∑

k=1

σkgj +
n∑

k=1

σk

(
mcϑk − (ϑk/c)λ

)
fj

)
= 0 .

Lemma 1. Let fi and gi be respectively the ith nodal values of F and G of the limit equation (31). Freeze
j, and let ϑi be given as in the theorem above for the given j. Then for i = 1, 2, . . . n

fi
∼= fj +

(
mcϑi + (ϑi/c)λ

)
gj .

gi
∼= gj +

(
mcϑi − (ϑi/c)λ

)
fj .

Proof . Consider the limit equation (31) which can be written as

mc2F (x)− cG′(x) = λF (x) and cF ′(x)−mc2G(x) = λG(x) .(36)

If i = j, then the result is obvious. So let i 6= j, we treat the case i < j, where the proof for i > j goes
through mutatis mutandis by using forward difference approximations for derivatives. Assume i < j, also
we prove the first argument of the lemma, the proof of the second argument is similar. Consider the
second part of (36) for xj

(37) cF ′(xj)−mc2G(xj) = λG(xj) .

Using backward difference approximations for derivatives we can write

(38) F ′|xj
∼= F (xj)− F (xi)

−
j∑

k=i+1

hk

=
fj − fi

−
j∑

k=i+1

hk

.

Substituting (38) in (37) completes the proof. ¥
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We consider the dominant parts with respect to c, so let c →∞ in (34) and (35) and simplify to get
[ n∑

k=1

((− σk − ηkϑk

)
λ +

(
c%k −m2c3ηkϑk

)
τj +

(
mc2σk + mc2ηkϑk

))]
fj +(39)

+
[ n∑

k=1

((
τj%kϑk − τjηk

)
λ +

(
mc2%kϑk −mc2ηk

)
τj +

(
m2c3σkϑk + cηk

))]
gj = 0

and

+
[ n∑

k=1

((− τjηk + τj%kϑk

)
λ +

(
mc2ηk −mc2%kϑk

)
τj +

(− cηk −m2c3σkϑk

))]
fj +(40)

+
[ n∑

k=1

((− ηkϑk − σk

)
λ +

(
m2c3ηkϑk − c%k

)
τj +

(−mc2ηkϑk −mc2σk

))]
gj = 0.

To make the derivation simpler, the following notations are introduced

a =
∑n

k=1 ak =
∑n

k=1(−σk − ηkϑk), b = cb1 −m2c3b2 =
∑n

k=1(c%k −m2c3ηkϑk),
d = mc2d1 =

∑n
k=1 mc2(σk + ηkϑk), e =

∑n
k=1 ek =

∑n
k=1(%kϑk − ηk),

q = mc2q1 =
∑n

k=1 mc2(%kϑk − ηk), ω = m2c3ω1 + cω2 =
∑n

k=1(m
2c3σkϑk + cηk).

By these notations, equations (39) and (40) can be written as

(41)
(

aλ + bτj + d eτjλ + qτj + ω

eτjλ− qτj − ω aλ− bτj − d

)(
fj

gj

)
=

(
0
0

)
.

Since fj and gj are not identically zero for all j, then we expect

(42) det

(
aλ + bτj + d eτjλ + qτj + ω

eτjλ− qτj − ω aλ− bτj − d

)
= 0,

where det(·) is the determinant of matrix. After simplifying, equation (42) leads to

(43) λ±(τj) = ±
√

(bτj + d)2 − (qτj + ω)2

a2 − e2τ2
j

.

By [20], the only accumulation point for the eigenvalue for the radial Coulomb-Dirac operator in the
vicinity of x at infinity is mc2. So, we like to have

|λ+ −mc2| = 0

⇐⇒ m2c4(a2 − e2τ2
j ) = (bτj + d)2 − (qτj + ω)2

= (cb1τj −m2c3b2τj + mc2d1)2 − (mc2q1τj + m2c3ω1 + cω2)2.

Letting m = 1, dividing both sides by c6, and taking the limit as c →∞, we get

(44) b2
2τ

2
j − ω2

1 = 0.

Substituting back the values of b2 and ω1, the desired consequence is obtained for the fixed j as

(45) τj =
∣∣∣

n∑

k=1

σkϑk

/ n∑

k=1

ηkϑk

∣∣∣.

The above result can be generalized for arbitrary j as

(46) τj =
∣∣∣

n∑

i=1

σjiϑji

/ n∑

i=1

ηjiϑji

∣∣∣,

and this ends the proof. ¥
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The hp-cloud functions depend strongly on the dilation parameter ρj . As ρj getting smaller and
smaller, i.e. ρj → max{hj , hj+1} (= hj+1 for exponentially distributed nodal points), the shape functions
of MLS in general become more and more equal to the standard FEM functions, see Figure 3. In this
case the FEM stability parameter might be applicable for MMs [17]

τFEM
j → τMMs

j , as ρj → hj+1.
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Figure 3. PU hp-clouds with four different domains of influence: ρj = 4 · hj+1 (up
to the left), ρj = 2 · hj+1 (up to the right), ρj = 1.5 · hj+1 (below to the left), and
ρj = 1.2 · hj+1 (below to the right). Quartic splines are used as weight functions, and
linear enrichment is considered.

On the other hand, one should be careful about the invertibility of the matrix M , i.e. we can not
approach ρj = hj+1 which makes M singular. In Lemma 2, we derive the stability parameter for the
computation of the eigenvalues of the Dirac operator, Hκ, using FEM with quartic spline. The proof of
the lemma is simple and uses the same technique as of the theorem above, thus we utilize the result of
this theorem with minor modifications. In Table 7, the result of applying τFEM

j for stabilizing hp-cloud
method with ρj = 1.1 · hj+1 is obtained, the approximation is good enough and the spuriousity seems to
be eliminated. But a difficulty arises, that is, the end of the spectrum (the spectrum tail) behaves in a
strange way, which may be regarded as spurious solutions.

Lemma 2. The FEM stability parameter for the computation of the Dirac eigenvalues using quartic
spline as a basis has the form

(47) τFEM
j =

3
17

hj+1
(hj+1 − hj)
(hj+1 + hj)

.
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Proof . Consider the general formula derived in Theorem 1

(48) τj =
∣∣∣

n∑

i=1

σjiϑji

/ n∑

i=1

ηjiϑji

∣∣∣,

where ϑji is as defined above, and rji and tji are respectively the jth row elements of M000 and M100.
Note that in FEM, M000 and M100 are tridiagonal matrices with jth row elements as in Table 2.

Table 2. The element integrals of the matrices M000 and M100.

PPPPPPPPMatrix
Index

j − 1 j j + 1

jth row of M000
3
70hj+1

20
70 (hj + hj+1) 3

70hj+1

jth row of M100
17
70 0 − 17

70

By Substituting the values of rji and tji from Table 2 in (48) and using the definition of ϑji, we get
the desired consequence. ¥

4. Results and discussions

Since the main goal of this work is applying hp-cloud method with the stability scheme, most of the
discussion (all figures and tables except Table 7) provided here will be about the main stability parameter
(30) given by the theorem above. However, only Table 7 sheds some light on the FEM stability parameter
given by Lemma 2, this discussion takes a form of comparison with the main stability parameter.

For point nucleus, the relativistic formula is used to compare our results

(49) λnr,κ =
mc2

√
1 + Z2α2

(nr−1+
√

κ2−Z2α2)2

,

where α is the fine structure constant which has, in atomic unit, the value 1/c, and the quantum number
nr takes the values 1, 2, . . .. To ease performing the comparison, the exact eigenvalues λnr,κ and the
positive computed eigenvalues are shifted by −mc2. All computations are run for the Hydrogen-like
Ununoctium ion, where the atomic number and atomic weight for the Ununoctium element are 118
and 294 respectively. Consequently, and since the electron in the Hydrogen-like Ununoctium ion admits
relatively large magnitude energies, for better measuring of the approximation accuracy we use the relative
error through out all computations. To treat the singularity of the pure Coulomb potential at x = 0,
extended nucleus is assumed to treat the difficulty by modifying the potential to fit the finite nuclear
size. The modified Coulomb potential considers another distribution of the charge along the nucleus (in
the region [0 , R] where R is the nucleus radius) and pure Coulomb potential in the rest of domain, where
the continuity and the smooth property (at least C1) should be saved for the total modified potential.
For the distribution of charge along nucleus, one can consider e.g. uniform or Fermi distributions, in this
work we consider uniformly distributed charge.

The boundary conditions are generally treated, i.e. homogeneous Dirichlet conditions are assumed.
Note that for better approximation of the eigenstates 1s1/2 and 2p1/2, suitable Neumann boundary
conditions should also be considered, see [2]. However, here, we do not treat these individuals, instead,
general computations are performed to account for the essence of discussion. The general boundary
conditions are simply implemented, after coupling with FEM, by omitting the two finite element functions
at the lower and upper boundaries. For coupling with FEM, two finite element linear functions are added
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to the hp-cloud functions, where two other functions are omitted to treat the boundary conditions (see
Figure 2, the graph to the right).

As discussed before, the computation for the Dirac eigenvalues requires exponential distribution of the
nodal points to capture desired behavior of the radial functions near the origin. The following formula is
used in the computation below for this purpose

(50) xi = exp
(
ln(Ia + ε) +

( ln(Ib + ε)− ln(Ia + ε)
n

)
i
)
− ε , i = 0, 1, 2, · · · , n,

where n is the total number of nodal points and ε ∈ [0 , 1] is the nodes intensity parameter. The role of
ε is to control the intensity of the nodal points close to origin, as smaller ε as more nodes are dragged
toward the origin, see discussion below. As for other approximation methods, increasing the number of
nodal points provides better approximation, but this, of course, on the account of the computational time.
However, we still can obtain better approximation with relatively less time compared with increasing the
nodal points if the number of integration points is increased (the same size of the generalized matrices for
fixed number of nodal points, where increasing number of integration points means more time is needed
for functions evaluation but the same time is used for eigenvalues computation of the generalized system).
This never means that we do not need to increase the nodal points so that more computed eigenvalues are
obtained, but to get better rate of convergence with less time, increasing both the numbers of integration
points and nodal points is sufficient. Here, in the computation, we fix the number of integration points
at 10 · n.

Table 3 shows the approximated energies of the electron in the Hydrogen-like Ununoctium ion obtained
using the usual and the stabilized hp-cloud methods, where the dilation parameter is ρj = 2.2hj+1

and the nodes intensity parameter is ε = 10−5 with 600 nodes. The clouds are enriched by P t(x) =
[1 , x(1 − x/2) exp(−x/2)]. In the usual hp-cloud method, the instilled spurious eigenvalues appear for
both positive and negative κ (the two shaded values in the fourteenth level of the second and third
columns), also the the so-called unphysical coincidence phenomenon occurs for the positive κ (the first
shaded value in the second column). Note that these spuriousity of both categories are removed by the
stability scheme.

Table 3. The first computed eigenvalues of the electron in the Hydrogen-like Ununoc-
tium ion using the usual and the stabilized hp-cloud methods for point nucleus.

Level Usual hp-cloud Usual hp-cloud Exact solution Stabilized hp-cloud Stabilized hp-cloud

κ = 2 κ = −2 κ = −2 κ = −2 κ = 2

1 -1829.630750899 -1829.630750902 -1829.630750908 -1829.628309112

2 -826.7698136330 -826.7698136329 -826.7683539069 -826.7714785272 -826.7738882959

3 -463.1214970564 -463.1214970566 -463.1183252634 -463.1247150569 -463.1261170024

4 -294.4552367950 -294.4552367952 -294.4509801141 -294.4591541031 -294.4600671778

5 -203.2468937049 -203.2468937047 -203.2419549027 -203.2511517040 -203.2517946674

6 -148.5588260984 -148.5588260983 -148.5534402360 -148.5632453116 -148.5637243357

7 -113.2536099083 -113.2536099084 -113.2479180697 -113.2580871797 -113.2584595495

8 -89.16385480233 -89.16385480237 -89.15794547564 -89.16832365853 -89.16862284813

9 -72.00453396071 -72.00453396065 -71.99846504808 -72.00894720487 -72.00919403005

10 -59.35481340095 -59.35481340100 -59.34862423729 -59.35913470352 -59.35934276227

11 -49.76429096817 -49.76429096819 -49.75800915710 -49.76849047005 -49.76866900765

12 -42.32147184311 -42.32147184312 -42.31511730902 -42.32552373918 -42.32567925216

13 -36.43039621976 -36.43039621984 -36.42398370073 -36.43427738957 -36.43441456989

14 -33.96502895994 -33.96502895893 -31.68173025393 -31.69187884728 -31.69200116063

15 -31.68818961940 -31.68818961935 -27.80813459180 -27.81810976712 -27.81821982418
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4.1. Integration of hp-cloud functions.

To approximate the integrals of the weak form in the Galerkin MMs in general, we use Gaussian
quadrature rules (namely two-point rule). These techniques are the most used to evaluate the integrals
in MMs due to their exact integration of polynomials of degree 2mq − 1, where mq is the number of
quadrature points [18]. However, using Gaussian quadrature rules yields integration error when the grids
are not coincident with the clouds covers, and thus instabilities and spurious modes start to appear. Also
for non-uniform distributed points (the case we assume in this work), Gaussian rules do not pass patch
test (fail in consistency). Therefore, stabilizing conforming nodal integration (SCNI) [9] is introduced to
overcome these difficulties. The main feature of SCNI is using the divergence theorem to substitute the
derivative, i.e. the derivative d

dxΨh in the sub-domain Ωj = [xj , xj+1] is replaced by a smooth derivative
(averaging derivative) d

dxΨh at x̂ ∈ Ωj

d

dx
Ψh(x) ∼= d

dx
Ψh(x̂) =

1
xj+1 − xj

∫ xj+1

xj

d

dx
Ψh(x)dx =

Ψh(xj+1)−Ψh(xj)
xj+1 − xj

.

This definition helps stabilizing the integration, on the other hand, it saves time in the computation by
not calculating the derivative of the cloud functions, thus no need to evaluate (M−1)′ = −M−1M ′M−1

which is expensive to calculate. For integrating and programming the weak form in MMs, [13, 14] are
useful.

The cloud shape functions are evaluated at the integration points (digital evaluation), since , practi-
cally, it is somehow impossible to write the cloud functions explicitly without matrix inversion. Also, it is
not recommended to obtain the inverse of M directly, instead, LU factorization is better to be used from
cost (less time consumption) and numerical stability point of views. Moreover, in MMs generally, to en-
hance the stability of the computation and to maintain the accuracy (that may be affected or lost due to
the round-off error), and to get better conditioning of the matrix M (lower condition number), the origin
should be shifted to the evaluation point [18, 24, 27], i.e. x is replaced by the transformation x = x−xorig,

consequently ψi(x) = P t(0)M−1(x)Bi(x) where M(x) =
n∑

i=1

ϕi(
x− xi

ρi
)P (xi − xorig)P t(xi − xorig) and

Bi(x) = ϕi(x−xi

ρi
)P (xi − xorig).

4.2. Enrichment basis functions P (x) .

For the reason discussed before, only intrinsic enrichment, P (x), is considered for the computation
of the eigenvalues of the Dirac operator. The number and the type of enrichment functions in the basis
set P (x) can be chosen arbitrary for each cloud [19, 32], but for practical reasons (lowering both the
condition number of M and the computational time) we assume P (x) = [1, p1(x)]. For the approxima-
tion of the Dirac eigenvalues, to enrich the cloud with a suitable basis P (x), two main properties should
be considered; firstly, and sufficient one, the elements of P (x) ought to have the continuity properties
(continuous with continuous first derivatives) of the space H so that for all j, the cloud ψj belongs to H,
provided that ϕj ∈ H. Secondly, global behavior and fundamental characters about the electron motion
of the Hydrogen-like ion systems should be embedded in P (x). Slater type orbital functions (STOs) and
Gaussian type orbital functions (GTOs) provide good description of the electron motion [10, 21]. The
quadratic term in the exponent of GTOs causes numerical difficulty, that is, with GTOs the matrix M

rapidly becomes poorly conditioned, this is also what is observed when applying quadratic basis enrich-
ments, see [6]. Consequently, STOs are considered as the enrichment of the hp-cloud functions, thus
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p1(x) can have, e.g. the following forms

exp(−x), x exp(−x/2), x(1− x/2) exp(−x/2), . . . etc.

Note that, these functions should be multiplied by normalization parameters, but, computationally, there
is no effects of multiplication by these parameters.

Since the global behavior of the eigenstates for Hydrogen-like ions in the relativistic case (Dirac equa-
tion) does not differ much from that of the non-relativistic case (Schrödinger equation), one can also
assume the solution of the radial Coulomb-Schrödinger equation as an enrichment (see e.g. [22])

Rn`(x) = Nn` (2Zx/na0)`L2`+1
n+` (2Zx/na0) exp(−Zx/na0),

where L2`+1
n+` (x) =

n+∑̀

k=0

(−1)k

k!

(
n + 3` + 1
n + `− k

)
xk is the Laguerre polynomial, a0 is the Bohr radius, n is

the orbital level, and ` is, as defined before, the orbital angular momentum number given to be zero for
s-states, one for p-states, two for d-states, . . . etc. For a general enrichment, it is, somehow, tedious to
apply the above formula for each level n, instead, good results are still achievable even with, e.g. n equals
the first possible level of the given state (i.e. n = 1 for all s-states, n = 2 for all p-states, n = 3 for
all d-states, . . . etc.). Moreover, it is also possible to consider enrichment based on the solution of the
radial Coulomb-Dirac equation, see e.g. [11], but the above enrichments are simpler from practical point
of view. However, in the coming discussion, the enrichment basis P t(x) = [1 , x(1 − x/2) exp(−x/2)] is
assumed in all computations.

4.3. Dilation Parameter ρ .

The dilation parameter, ρ, plays crucial role in the approximation accuracy and stability, it serves
as the element size in FEM. The parameter ρ can be chosen fixed or arbitrary, but it is often assumed
to be constant for all hp-clouds. In this work, exponentially distributed nodal points are assumed to get
enough knowledge of the radial functions near the origin where they oscillate heavily relative to a region
away from it, thus we consider

ρj = ν ·max{hj , hj+1} = νhj+1,

where the maximum is considered to get sufficient region where the cloud function is defined so that less
possibility for singularity of the matrix M to happen, and ν is the dimensionless size of influence domain
[27]. Also ν for non-uniform mesh can be locally chosen, i.e. ν = νj , here we assume fixed ν for all nodes.
It remains to determine the value\values of ν taking into account that ρj should be large enough (ν > 1)
to ensure the invertibility of M (to ensure that any region is covered by at least two clouds). On the other
hand, ρj should not be very large to guarantee local character of the approximation. As discussed before
(see also Figure 3, the case ν = 1.2), if ν → 1, then ψj will act as finite element shape function, and
thus the features of the hp-clouds are gradually lost, also a very large value of ν makes ψj to behave like
polynomial of higher degree (see Figure 3, the case ν = 4). To conclude, ν should be chosen moderately
and such that it guarantees that no integration point is covered by only one cloud [27, 32].

The optimal choice of ν can be determined individually for each problem by carrying out numerical
experiments. In [30, 47], it is shown that ν ∈ [2 , 3] provides nice results for elasticity problem. For
the computation of the Dirac eigenvalues with the stability scheme, for ν ∈ [2.2 , 2.7] good results are
obtained and the spurious values are completely eliminated. Also as small as ν in [2.2 , 2.7] as better
approximation is obtained, see Table 4.

For the first five eigenvalues in Table 4, we study the convergence behavior of the approximation in
Figure 4. It is clear how the smaller ν gives better approximation. One argues, as it is clear from the
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Table 4. The first computed eigenvalues of the electron in the Hydrogen-like Ununoc-
tium ion for κ = −2 for point nucleus with different values of ν, where n = 600 and
ε = 10−5 are used.

Level ν = 2.0 ν = 2.2 ν = 2.5 ν = 2.7 Exact solution

1 -1829.6287 -1829.6283 -1829.6276 -1829.6270 -1829.6307

2 -826.77119 -826.77147 -826.77197 -826.77233 -826.76835

3 -463.12417 -463.12471 -463.12567 -463.12638 -463.11832

4 -294.45850 -294.45915 -294.46033 -294.46120 -294.45098

5 -203.25046 -203.25115 -203.25244 -203.25340 -203.24195

6 -148.56255 -148.56324 -148.56460 -148.56562 -148.55344

7 -113.25741 -113.25808 -113.25949 -113.26054 -113.24791

8 -89.167688 -89.168323 -89.169756 -89.170831 -89.157945

9 -72.008358 -72.008947 -72.010396 -72.011489 -71.998465

10 -59.358602 -59.359134 -59.360592 -59.361700 -59.348624

11 -49.768025 -49.768490 -49.769950 -49.771070 -49.758009

12 -42.325133 -42.325523 -42.326981 -42.328113 -42.315117

13 -36.433970 -36.434277 -36.435728 -36.436870 -36.423983

14 -31.691663 -31.691878 -31.693318 -31.694472 -31.681730

15 -27.817992 -27.818109 -27.819533 -27.820699 -27.808134

figure, that ν can be e.g. some value less than 2 to achieve better rate of convergence, however, this will
be on the account of spuriousity elimination (the cloud is not stretched enough to capture the desired
behavior of the approximated solution) and on the account of the invertibility of the matrix M (for small
ν some regions are covered with one cloud).
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Figure 4. Studying the convergence rate with respect to the influence domain factor
ν. The comparison is carried out for the first five eigenvalues in Table 4.

As in FEM, one can apply h-refinement in hp-cloud method (see e.g. [16, 47]), this can be done by
decreasing the value of the dilation parameter ρj (keeping ν fixed and making hj+1 smaller), thus as ρj

getting smaller then more clouds of smaller size are added.

The intensity of the exponentially distributed nodal points near the origin has an influence on the
convergence rate of the approximation. The intensity of the nodes near the origin or away from it is
controlled by the nodes intensity parameter, ε, via formula (50). As smaller value of ε is considered as
more concentration of nodes near the origin is obtained, see Figure 5 the graph to the left.



20 HASAN ALMANASREH

Table 5 shows the computation of the eigenvalues with different values of ε with 600 nodal points. The
computation with ε smaller than 10−7 is almost the same as of ε = 10−7, thus it is not required to study
smaller values of ε than ε = 10−7.

Table 5. The first computed eigenvalues of the electron in the Hydrogen-like Ununoc-
tium ion for κ = −2 for point nucleus with different values of ε, where n = 600 and
ν = 2.2 are used.

Level ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7 Exact solution

1 -1829.6289 -1829.6283 -1829.6280 -1829.6280 -1829.6307

2 -826.77073 -826.77147 -826.77170 -826.77173 -826.76835

3 -463.12322 -463.12471 -463.12517 -463.12523 -463.11832

4 -294.45726 -294.45915 -294.45973 -294.45981 -294.45098

5 -203.24904 -203.25115 -203.25180 -203.25188 -203.24195

6 -148.56101 -148.56324 -148.56393 -148.56402 -148.55344

7 -113.25578 -113.25808 -113.25879 -113.25888 -113.24791

8 -89.165992 -89.168323 -89.169039 -89.169131 -89.157945

9 -72.006610 -72.008947 -72.009662 -72.009755 -71.998465

10 -59.356811 -59.359134 -59.359844 -59.359936 -59.348624

11 -49.766195 -49.768490 -49.769189 -49.769279 -49.758009

12 -42.323268 -42.325523 -42.326208 -42.326296 -42.315117

13 -36.432073 -36.434277 -36.434943 -36.435030 -36.423983

14 -31.689734 -31.691878 -31.692524 -31.692607 -31.681730

15 -27.816033 -27.818109 -27.818732 -27.818812 -27.808134

In Figure 5, the first computed eigenvalues of Table 5 are studied. It is clear that as ε gets larger (up to
some limit) the better approximation is obtained. However, as mentioned before, the rate of convergence
is almost the same when ε ∈ (0 , 10−7) (ε = 0 is excluded to avoid log(0) when extended nucleus is
assumed), also ε does not admit relatively large values in order to get enough nodes close to origin, where
the radial functions oscillate relatively more, without increasing the total nodal points. Therefore, the
most appropriate values of ε, which provides good results, are somewhere in [10−6 , 10−4].

Different exponential distributions of fifty nodes
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Figure 5. To the left, different exponentially distributed nodal points are plotted using
the mesh formula (50). To the right, the effect of nodes intensity near the origin on the
convergence rate, the comparison is carried out for the first five eigenvalues in Table 5.

The approximation of the stabilized hp-cloud scheme with different numbers of nodal points is given
in Table 6. The rate of convergence of the corresponding first five eigenvalues is studied in Figure 6,
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where h is the maximum of all distances between the adjacent nodes which equals to hn = xn − xn−1,
the distance between the last two nodes for exponentially distributed nodes.

Table 6. The first computed eigenvalues of the electron in the Hydrogen-like Ununoc-
tium ion for κ = −2 for point nucleus with different number of nodes, where ν = 2.2 and
ε = 10−5 are used.

Level n = 200 n = 400 n = 600 n = 800 n = 1000 Exact solution

1 -1829.5628 -1829.6224 -1829.6283 -1829.6297 -1829.6302 -1829.6307

2 -826.82670 -826.77726 -826.77147 -826.76987 -826.76923 -826.76835

3 -463.23292 -463.13630 -463.12471 -463.12146 -463.12016 -463.11832

4 -294.59147 -294.47367 -294.45915 -294.45503 -294.45336 -294.45098

5 -203.39386 -203.26721 -203.25115 -203.24654 -203.24466 -203.24195

6 -148.70878 -148.58009 -148.56324 -148.55835 -148.55635 -148.55344

7 -113.40170 -113.27527 -113.25808 -113.25304 -113.25096 -113.24791

8 -89.306709 -89.185557 -89.168323 -89.163201 -89.161076 -89.157945

9 -72.139617 -72.026008 -72.008947 -72.003802 -72.001653 -71.998465

10 -59.480154 -59.375861 -59.359134 -59.354006 -59.351849 -59.348624

11 -49.878353 -49.784751 -49.768490 -49.763410 -49.761256 -49.758009

12 -42.423104 -42.341207 -42.325523 -42.320517 -42.318374 -42.315117

13 -36.518814 -36.449288 -36.434277 -36.429365 -36.427242 -36.423983

14 -31.762955 -31.706134 -31.691878 -31.687081 -31.684984 -31.681730

15 -27.875610 -27.831538 -27.818109 -27.813442 -27.811376 -27.808134

The lack of error estimates of the Dirac operator due to the boundedness problem (neither bounded
from above nor from below) results in incomplete picture about the convergence analysis. Nevertheless,
from Figure 6, the convergence rates of the approximation of the first five eigenvalues, λ1, λ2, . . . λ5,
are nearly 3.09, 2.66, 2.62, 2.59, and 2.56 respectively, which takes a slight decreasing pattern as we go
higher in the spectrum levels, see the corresponding table.
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Figure 6. Study the convergence rate of the first computed five eigenvalues in Table 6.

With the stability parameter τFEM , the computation is presented in Table 7. The computation is
obtained with 600 nodal points at ν = 1.1 and ε = 10−5. The result is compared with the same stability
scheme but with the stability parameter τ at the same parameters but ν = 2.2, the comparison is also
obtained in the non-relativistic limit (very large c).
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Table 7. The first computed eigenvalues of the electron in the Hydrogen-like Ununoc-
tium ion for κ = −2 for point nucleus using the stabilized scheme with the main stability
parameter τ and the finite element stability parameter τFEM .

The speed of light 100×The speed of light

Level τ τFEM Exact values τ τFEM Exact values

1 -1829.6283 -1829.6304 -1829.6307 -1740.2372 -1740.4777 -1740.5080

2 -826.77147 -826.76993 -826.76835 -773.73860 -773.57259 -773.56033

3 -463.12471 -463.12174 -463.11832 -435.46054 -435.14787 -435.12752

4 -294.45915 -294.45551 -294.45098 -278.88245 -278.49775 -278.48144

5 -203.25115 -203.24715 -203.24195 -193.82362 -193.39522 -193.38978

6 -148.56324 -148.55905 -148.55344 -142.53145 -142.07261 -142.08222

7 -113.25808 -113.25377 -113.24791 -109.23625 -108.75140 -108.78165

8 -89.168323 -89.163916 -89.157945 -86.404375 -85.894382 -85.950912

9 -72.008947 -72.004478 -71.998465 -70.067886 -69.534118 -69.620219

10 -59.359134 -59.354644 -59.348624 -57.975599 -57.420335 -57.537357

11 -49.768490 -49.764010 -49.758009 -48.773149 -48.197640 -48.347352

12 -42.325523 -42.321064 -42.315117 -41.606088 -41.009232 -41.195370

13 -36.434277 -36.429826 -36.423983 -35.913753 -35.292096 -35.520492

14 -31.691878 -31.687405 -31.681730 -31.315908 -30.664671 -30.942291

15 -27.818109 -27.813579 -27.808134 -27.547311 -26.861865 -27.195369

As it is noted from Table 7, the convergence property with τFEM is slightly better. Unfortunately,
the approximation with τFEM seems to behave strangely at the end of the spectrum, that is, only the
spectrum tail has the following behavior (the tail of the spectrum of the computation in Table 7 with
τFEM for the relativistic case)

λ+ −mc2 λ− + mc2

207072481.0215 -215565247.3448

211429663.4158* -220006205.1800*

226003907.3130 -235294474.7992

231896256.0483* -241138935.9851*

246890583.9362 -257366374.4374

257292411.7094* -267386241.2969*

267659710.2673* -279193268.7275*

291928112.6166 -303237209.5231

296228215.8873* -308029351.9019*

This behavior occurs only for few values at the end of the spectrum, and no such effect is revealed in
the rest of the spectrum. Up to our knowledge, the values marked with ∗ might be spurious values for
some unknowns origin in higher levels, which, in calculating the correlation energy, seem to have not any
significant effect.

Table 8 shows the computation of the eigenvalues of the Dirac operator for Hydrogen-like Ununoctium
ion with κ = −2. The computation is for extended nucleus obtained using the stability approach, where



hp-CLOUD APPROXIMATION OF THE DIRAC EIGENVALUE PROBLEM: THE WAY OF STABILITY 23

the first and the last computed eigenvalues are presented. The number of nodes used is 1000, also the
used values of ν and ε are respectively 2.2 and 10−5.

Table 8. The first and the last computed eigenvalues of the electron in the Hydrogen-
like Ununoctium ion for κ = −2 for extended nucleus using the stabilized scheme.

Level λ+ −mc2 λ− + mc2 Level λ+ −mc2 λ− + mc2

1 -1829.630099296 -2.434417024833 956 586688854.9879 -592440657.5171

2 -826.7693836687 -2.627617735663 957 598438233.4986 -604235496.3134

3 -463.1204703095 -2.797844649762 958 610919226.3899 -616906339.6739

4 -294.4537598806 -2.957820323769 959 623291095.2201 -629316989.3797

5 -203.2451112716 -3.112227360954 960 636480181.4813 -642726428.9931

6 -148.5568310625 -3.263408080529 961 649524826.4034 -655799753.0246

7 -113.2514598678 -3.412742089389 962 663483591.3527 -670016495.9307

8 -89.16158600002 -3.561138820860 963 677258040.9295 -683804920.4801

9 -72.00216968256 -3.709254718702 964 692056051.2167 -698907640.1176

10 -59.35236884621 -3.857601123902 965 706625519.7561 -713470210.1966

11 -49.76177611950 -4.006600112632 966 722341703.9586 -729549529.5797

12 -42.31889320986 -4.156612122006 967 737781471.5140 -744953276.6295

13 -36.42775793119 -4.307947863723 968 754505800.5837 -762114239.5911

14 -31.68549413213 -4.460872692773 969 770903696.8948 -778435989.9532

15 -27.81188079379 -4.615608997468 970 788739250.6668 -796801160.7705

16 -24.60715078621 -4.772339706105 971 806198985.1845 -814129982.6368

17 -21.92579810728 -4.931213787881 972 825264528.2332 -833843359.2405

18 -19.65981495410 -5.092353196094 973 843910220.2386 -852283956.3394

19 -17.72767091768 -5.255860198286 974 864343472.0411 -873515941.8428

20 -16.06689248232 -5.421824189525 975 884325905.7234 -893193487.1967

21 -14.62895927631 -5.590327472124 976 906287797.8413 -916147241.8477

22 -13.37572611330 -5.761449842514 977 927793189.6390 -937214464.1559

23 -12.27687110094 -5.935272041930 978 951473602.6651 -962134060.6197

24 -11.30804689661 -6.111878218067 979 974736078.1642 -984781962.7117

25 -10.44952215915 -6.291357562437 980 1000361933.873 -1011962889.837

26 -9.685170122048 -6.473805266356 981 1025681563.220 -1036437526.155

27 -9.001706528736 -6.659322921776 982 1053528920.945 -1066240230.486

28 -8.388109077412 -6.848018469445 983 1081298213.911 -1092869973.210

29 -7.835170608265 -7.040005799103 984 1111711637.956 -1125737288.414

30 -7.335151949937 -7.235404092542 985 1142455141.979 -1154979024.500

31 -6.881509811941 -7.434337004637 986 1175881200.913 -1191458619.345

32 -6.468681741462 -7.636931764649 987 1210315776.667 -1223979724.299

33 -6.091914867255 -7.843318267751 988 1247366017.754 -1264753730.099

34 -5.747128531017 -8.053628212296 989 1286494208.919 -1301585190.310

35 -5.430803353698 -8.267994317084 990 1328074902.403 -1347514563.183

36 -5.139891080678 -8.486549638106 991 1373330615.013 -1390354085.681

37 -4.871740872106 -8.709426988262 992 1420940894.294 -1442573015.641

38 -4.624038699727 -8.936758453401 993 1474405770.317 -1494428385.378

39 -4.394757252718 -9.168674990411 994 1530930196.971 -1554661710.974

40 -4.182114320607 -9.405306088338 995 1595537987.175 -1621361454.883

41 -3.984538053675 -9.646779469269 996 1667868144.599 -1693349701.469

42 -3.800637833043 -9.893220807513 997 1746516931.180 -1787808061.719

43 -3.629179737774 -10.14475343997 998 1858171146.415 -1885927735.358

44 -3.469065800899 -10.40149804032 999 1944896072.579 -2040151500.838

45 -3.319316399200 -10.66357222412 1000 2551096858.208 -2992548052.333
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Conclusion.

The scheme developed in this work, hp-CPG, for stabilizing the hp-cloud approximation for solving
the single-electron Dirac-Coulomb operator ensures complete treatment of the spuriousity problem. The
scheme depends strongly on the derived stability parameter τ , which is simple to implement and applicable
for general finite basis functions. The elimination of the spurious values is affected also by the influence
domain factor ν, for ν less than 2, spuriousity starts to appear. The convergence rate is high for the
first energy levels, while it decreases slowly as the level gets higher. Whereas, comparable to the finite
element stability approach [2], the scheme convergence rate is less. Also, which can be regarded as the
main disadvantage of MMs computation in general, hp-cloud method is more expensive due to the time
consumption while evaluating the shape function which demands more integration point as ν gets larger
to obtain the desired accuracy. The number of integration point used here is ten times number of nodal
points (this large number of integration points is assumed in order to study the effects of the other
parameters in a comparative point of view), which can be made smaller, i.e. ν ≥ 2 is enough to get a
sufficient accuracy.
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[29] I. Lindgren, S. Salomonson, and B. Åsén, The covariant-evolution-operator method in bound-state QED,

Physics Reports, 389(2004), pp. 161-261.

[30] G. R. Liu, Mesh free methods: Moving beyond the finite element method, CRC press, 2003.

[31] Y. Y. Lu, T. Belytschko, and L. Gu, A new implementation of the element free Galerkin method, Comput.

Methods Appl. Mech. Engng, 113(1994), pp. 397-414.

[32] P. de T. R. Mendonça, C. S. de Barcellos, A. Duarte, Investigations on the hp-cloud method by solving

Timoshenko beam problems, Comput. Mech., 25(2000), pp. 286-295.

[33] P. J. Mohr, G. Plunien, and G. Soff, QED corrections in heavy atoms, Physics Reports, 293(1998), pp. 227-369.

[34] G. Mur, On the causes of spurious solutions in electromagnetics, Electromagnetic, 22(2002), pp. 357-367.

[35] V. P. Nguyen, T. Rabczuk, S. Bordas, and M. Duflot, Meshless methods: A review and computer implemen-

tation aspects, Math. Comput. Simulat., 79(2008), pp. 763-813.

[36] H. Noguchi, T. Kawashima, and T. Miyamura, Element free analyses of shell and spatial strucures, Int. J.

Numer. methods Engng., 47(2000), pp. 1215-1240.

[37] G. Pestka, Spurious roots in the algebraic Dirac equation, Chem. Phys. Lett. 376(2003), pp. 659-661.

[38] L. Rosenberg, Virtual-pair effects in atomic structure theory, Phys. Rev. A, 39(1989), pp. 4377-4386.

[39] W. Schroeder and I. Wolf, The origin of spurious modes in numerical solutions of electromagnetic field eigen-

value problems, IEEE Tran. on Micr. Theory and Tech., 42(1994), pp. 644-653.



26 HASAN ALMANASREH

[40] V. M. Shabaev, Two-time Green’s function method in quantum electrodynamics of high-Z few-electron atoms,

Physics Reports, 356(2002), pp. 119-228.

[41] V. M. Shabaev, I. I. Tupitsyn, V. A. Yerokhin, G. Plunien, and G. Soff, Dual kinetic balance approach to

basis-set expansions for the Dirac equation, Phys. Rev. Lett., 93(2004).

[42] B. Thaller, The Dirac equation, Springer-Verlag, Berlin, 1993.

[43] I. I. Tupitsyn and V. M. Shabaev, Spurious states of the Dirac equation in a finite basis set, Optika i Spek-

troskopiya, 105(2008), pp. 203-209.

[44] X. Zhang, X. Liu, M. Lu, and Y. Chen, Imposition of essential boundary conditions by displacement constraint

equations in meshless methods, Commun. Numer. Meth. Engng., 17(2001), pp. 165-178.

[45] S. Zhao, On the spurious solutions in the high-order finite difference methods for eigenvalue problems, Comput.

Methods Appl. Mech. Engng., 196(2007), pp. 5031-5046.

[46] C. Zuppa, Modified Taylor reproducing formulas and h-p clouds, Math. Comput., 77(2008), pp. 243-264.

[47] Y. You, J. S. Chen, and H. Lu Filters, reproducing kernel, and adaptive meshfree method, Comput. Mech.,

31(2003), pp. 316-326.


