

PREPRINT 2013:10

A competitive iterative procedure
using a time-indexed model for solving
flexible job shop scheduling problems

KARIN THÖRNBLAD
ANN-BRITH STRÖMBERG
MICHAEL PATRIKSSON
TORGNY ALMGREN

Department of Mathematical Sciences
Division of Mathematics

CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg Sweden 2013

Preprint 2013:10

A competitive iterative procedure using
a time-indexed model for solving flexible job shop

scheduling problems

Karin Thörnblad, Ann-Brith Strömberg,
Michael Patriksson, Torgny Almgren

Department of Mathematical Sciences
Division of Mathematics

Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg, Sweden
Gothenburg, August 2013

Preprint 2013:10

ISSN 1652-9715

Matematiska vetenskaper

Göteborg 2013

A competitive iterative procedure using a time-indexed

model for solving flexible job shop scheduling problems

Karin Thörnblada,b,1, Ann-Brith Strömberga, Michael Patrikssona, Torgny
Almgrenb

aMathematical Sciences, Chalmers University of Technology and University of
Gothenburg, SE-421 96 Göteborg, Sweden

bGKN Aerospace Engine Systems, Dep. of Logistics Development, SE-461 81
Trollhättan, Sweden

Abstract

We investigate the efficiency of a discretization procedure utilizing a time-

indexed mathematical optimization model for finding accurate solutions to flexible

job shop scheduling problems considering objectives comprising the makespan and

the tardiness of jobs, respectively. The time-indexed model is used to find solu-

tions to these problems by iteratively employing time steps of decreasing length.

The solutions and computation times are compared with results from a known

benchmark formulation and an alternative, slightly enhanced version of the same.

For the largest instances—considering both objectives—the proposed method finds

significantly better solutions than the other models within the same time frame,

although there is a large difference in the performance of the models depending

on which objective is considered. This implies that the evaluation of scheduling

algorithms must be performed with respect to an objective that is suitable for the

real application for which they are intended. The minimization of the makespan

is no such objective, although it is the most widely used objective in research.

We propose an objective incorporating tardiness. The iterative procedure for solv-

ing the time-indexed model outperforms the other models regarding the time to

find the best feasible solution. We conclude that our iterative procedure with the

time-indexed model is competitive with state-of-the-art mathematical optimiza-

tion models. Since the proposed procedure quickly finds solutions of good quality

to large instances, our findings imply that the new procedure is beneficially utilized

for scheduling real flexible job shops.

Keywords: Flexible job shop scheduling, Time-indexed formulation, Mixed
integer linear programming (MILP), Discretization procedure, Benchmark,
Minimize makespan, Tardiness

1

1. Introduction

The job shop scheduling problem is defined as that to find the optimal
sequences of a given set of jobs on a given set of machines. Each job consists
of a number of operations which must be processed in a given order; this is
modeled by so-called precedence constraints. Associated with each operation
is a machine and a processing time. The flexible job shop problem (FJSP) is
an extension of the job shop problem in which each operation may be sched-
uled in more than one of the machines (Brucker and Knust, 2012, Chapter
4).

The purpose of this article is to investigate the competitiveness of an it-
erative discretization procedure utilizing a time-indexed mixed integer linear
programming (MILP) model in finding accurate solutions to flexible job shop
scheduling problems. The MILP models include both binary and continuous
variables, and all the relations between the variables in the objective and
constraints are linear; see Nemhauser and Wolsey (1988). Our iterative solu-
tion procedure is compared with a benchmark model presented by Özgüven
et al. (2010), which yielded the best results in the evaluation by Demir and
İşleyen (2013). In the comparison we have also included a similar alternative
model developed during the work with this article.

2. Related Work

In Manne (1960), the problem of sequencing jobs with precedence con-
straints on a single machine is studied. The jobs’ starting times are repre-
sented by continuous variables, and the decision variables are defined as yjq
equals 1, if job j precedes job q, and 0 otherwise. In the operations research
literature, there are many examples of models for job shops and flexible job
shops employing this type of variables; see, e.g., Özgüven et al. (2010) and
Low et al. (2006).

Email addresses: karin.thornblad@gknaerospace.com (Karin Thörnblad),
anstr@chalmers.se (Ann-Brith Strömberg), mipat@chalmers.se (Michael Patriksson),
torgny.almgren@gknaerospace.com (Torgny Almgren)

1Corresponding author, GKN Aerospace Engine Systems, Dep. of Logistics Develop-
ment, 9510KT, SE-461 81 Trollhättan, Sweden. Tel. +46 520 29 22 66.

August 19, 2013

An alternative means to formulating a MILP model for the flexible job
shop problem is to utilize discrete time-indexed variables. The planning
period is then divided into a number of time steps of equal length. The
decision variables in the time-indexed model are valued 1 if the corresponding
operation is scheduled to start at the beginning of a specific time step in a
specific resource, and 0 otherwise. The resulting formulation results in very
large models in terms of numbers of both variables and constraints, but it
typically yields better optimistic estimates of the optimal objective value
(see Section 3.2) than other MILP formulations of scheduling problems; see
van den Akker et al. (2000). In Berghman (2012), a time-indexed formulation
outperformed three other MILP models for the problem of parallel machine
scheduling when the objective was to minimize a total weighted sum of the
completion times. We obtained a similar result for a special case of the FJSP
in a real production cell with the objective to minimize a weighted sum of
the completion times and the tardiness (Thörnblad, 2011).

The objective that is the most often utilized for scheduling problems is
the minimization of the makespan (Jain and Meeran, 1999). Other common
objectives are related to the jobs’ earliness/tardiness and completion times,
and/or inventory holding costs associated with the jobs. Out of the 22 arti-
cles listed by Demir and İşleyen (2013), which presents mathematical models
(some of the models being non-linear) concerning the FJSP, 16 considered
the objective of minimizing the makespan; only ten considered other objec-
tives, whereof five involving due dates. See Section 4 for a discussion of the
makespan objective and an objective including tardiness, and their respective
suitability for real applications.

Besides MILP, there are many methods devoted to finding good feasible
solutions to scheduling problems. Constraint programming (CP) is an exact
method which seems to yield good results, see, e.g., Sadykov and Wolsey
(2006) for an evaluation of MILP and CP models for solving a multimachine
assignment scheduling problem. There are many metaheuristics proposed
for flexible job shop scheduling problems, such as simulated annealing, tabu
search, and genetic algorithms amongst others, and combinations of these;
see, e.g., Wang et al. (2012), Al-Hinai and ElMekkawy (2011), and Bayka-
soglu and Özbakir (2010). In Section 6, we compare the makespan found
by our models with those found by Behnke and Geiger (2012) and Bagheri
et al. (2010), who employ CP and an artificial immune algorithm (AIA),
respectively.

3

3. Mathematical formulations

3.1. Indices, sets, and parameters

The notation used throughout this article is as follows:

Sets
J the set of jobs; j ∈ J := {1, . . . , n}
Nj the set of operations; i ∈ Nj := {1, . . . , nj}
K the set of resources; k ∈ K := {1, . . . ,m}
Mij the set of resources allowed for operation i of job j (Mij ⊆ K)
T the set of time steps; u ∈ T := {0, . . . , T}

Parameters
pijk the processing time of operation i of job j in resource k
rij the release date of operation i of job j, i.e., its earliest possible

starting time
δij the shortest possible remaining time from the starting time of

operation i of job j to the completion of job j
` the length of the time steps in the time-indexed model
M a big number, at least as large as the makespan of the solution

to be computed

In all test instances considered in this article, the parts to be processed
are assumed to be present in the job shop at the beginning of time step 0, i.e.,
the job release dates are r1j = 0. Due to the precedence relations between the
operations within a job, no operation may be scheduled before the completion
of the previous operation. Therefore, and since the processing time is resource
dependent, the release dates are defined as rij := ri−1,j+mink∈Mi−1,j

{pi−1,j,k},
for i = 2, . . . , nj, j ∈ J . Similarly, the shortest possible remaining time from
the start of operation i to the completion of job j is defined as δij := δi+1,j +
mink∈Mij

{pijk}, for i = nj − 1, . . . , 1, j ∈ J , and δnjj := mink∈Mnjj
{pnjjk}.

3.2. Time-indexed model

The planning horizon is divided into T intervals (i.e., time steps), each of
length ` > 0. The value of the parameter T has to be large enough such that
an optimal schedule is contained within the time horizon [0, T `]. Our time-
indexed model is expressed in terms of the variables xijku, which are valued 1
if operation i of job j is scheduled to start processing in resource k at the start
of time interval u, and 0 otherwise. Throughout the article, for any z ∈ R we

4

define (z)+ := max{z, 0}. We first consider the objective of minimizing the
makespan of the schedule, represented by the variable Cmax ∈ R; in Section 4
we present an alternative objective based on the total (weighted) tardiness.
The model is thus to

minimize Cmax (1a)

subject to
∑
k∈Mij

∑
u∈T

xijku = 1, i ∈ Nj, j ∈ J , (1b)

∑
k∈K\Mij

∑
u∈T

xijku = 0, i ∈ Nj, j ∈ J , (1c)

∑
j∈J

∑
i∈Nj

u∑
µ=(u−pijk+1)+

xijkµ ≤ 1, k ∈ K, u ∈ T , (1d)

∑
k∈Mij

u−pijk∑
µ=rij

xijkµ−
∑

l∈Mi+1,j

u∑
ν=ri+1,j

xi+1,jlν ≥ 0, u=ri+1,j, . . . , T−δi+1,j, (1e)

i = 1, . . . , nj−1, j∈J ,∑
k∈Mnjj

∑
u∈T

(u+ pnjjk)xnjjku ≤ Cmax, j ∈ J , (1f)

xijku = 0, u ∈ T \ {rij, . . . , T−δij}, (1g)

k ∈Mij, i ∈ Nj, j ∈ J ,

xijku ∈ {0,1}, i ∈ Nj, j ∈ J , k ∈ K, (1h)

u ∈ T .

The constraints (1b) ensure that each operation i of job j is scheduled to
be processed exactly once in an allowed resource. The constraints (1c) set
all variables corresponding to an operation to zero for the set of resources
in which the operation is not allowed to be processed; these constraints are
redundant, but they are included since we discovered that the solver (AMPL-
CPLEX12 (Fourer et al., 2002; IBM Corp., 2009)) was able to parallelize the
computations such that they run faster (w.r.t. clocktime) when these con-
straints were included. The constraints (1d) ensure that at most one opera-
tion at a time is scheduled in each resource. The precedence constraints (1e)
make sure that no operation starts processing before the preceding operation
of the same job is completed. The makespan of the schedule is determined by

5

the constraints (1f). The constraints (1g) ensure that operation i of job j is
scheduled neither before its release date nor such that it (or any succeeding
operations) would not be completed by the end of the planning horizon, i.e.,
at time the T`; these constraints are redundant if all the jobs are ready to be
processed at the time 0, but their inclusion reduces the number of variables
in the model. The model (1) will henceforth be referred to as TI-Cmax.

The number of precedence constraints (1e) is in the order of the total
number of operations times the total number of time steps. If an instance
of the model is too large, such that the time to solve its linear programming
(LP) relaxation2 is too long for practical purposes, then an alternative set
of precedence constraints may be used (its number being in the order of the
total number of operations):

∑
k∈Mij

T−δij∑
µ=rij

(µ+ pijk)xijkµ ≤
∑

l∈Mi+1,j

T−δi+1,j∑
ν=ri+1,j

νxi+1,jlν , i=1,. . .,nj−1, j ∈ J . (2)

The LP relaxation of TI-Cmax is a model with the same variables, ob-
jective, and constraints, except for the integrality constraints (1h), which are
substituted by 0 ≤ xijku ≤ 1. The optimal objective value of the LP relax-
ation of a model is called its LP bound, being a lower bound on the optimal
objective value of the original model including integrality constraints. Pro-
vided that the integrality constraints (1h) are fulfilled, the constraints (2)
are equivalent to (1e); they do, however, not yield as tight LP bounds as
do the constraints (1e). The model (1a)–(1d), (2), (1f)–(1h) will henceforth
be referred to as TI-prec-Cmax. In Section 3.3 we present the results for
one test instance regarding the differences in the LP bounds of the models
TI-Cmax and TI-prec-Cmax.

3.3. An alternative model

We next present an alternative model that we have developed, employing
the same type of variables as the benchmark model proposed by Özgüven
et al. (2010). Our model contains fewer variables and constraints than the

2The LP relaxation of a MILP model is a model comprising the same variables, objec-
tive, and constraints except for the integrality constraints which are substituted by the
respective lower and upper bounds of the integer variables; see (Nemhauser and Wolsey,
1988, Chapter II.3, Section 1).

6

benchmark model, since the variables representing the completion times of
operations and jobs employed in the latter model are redundant. The vari-
ables used in our alternative model are

zijk =

{
1, if operation i of job j is processed on resource k,

0, otherwise,

yijpqk =

1, if operation i of job j precedes operation p of job q in

resource k,

0, otherwise,

tijk = the starting time of operation i of job j in resource k, and

Cmax = the completion time for the last job (makespan).

Our alternative model, Alt-Cmax, is then formulated as that to

minimize Cmax, (3a)

subject to
∑
k∈Mij

zijk = 1, i ∈ Nj, j ∈ J , (3b)

tijk −Mzijk ≤ 0, k ∈Mij, i ∈ Nj, j ∈ J , (3c)

tpqk + ppqkzpqk − tijk −Myijpqk ≤ 0, k ∈Mij ∩Mpq, i ∈ Nj, (3d)

p ∈ Nq, j, q ∈ J , j < q,

tijk + pijkzijk − tpqk −M(1− yijpqk) ≤ 0, k ∈Mij ∩Mpq, i ∈ Nj, (3e)

p ∈ Nq, j, q ∈ J , j < q,∑
k∈Mij

(tijk + pijkzijk)−
∑

k∈Mi+1,j

ti+1,jk ≤ 0, i = 1, . . . , nj − 1, j ∈ J , (3f)

∑
k∈Mnjj

(
tnjjk + pnjjkznjjk

)
≤ Cmax, j ∈ J , (3g)

tijk ≥ 0, k ∈Mij, i ∈ Nj, j ∈ J , (3h)

zijk ∈ {0,1}, k ∈Mij, i ∈ Nj, j ∈ J , (3i)

yijpqk ∈ {0,1}, k ∈Mij ∩Mpq, i ∈ Nj, (3j)

p ∈ Nq, j, q ∈ J , j < q.

7

The constraints (3b) ensure that each operation is scheduled in exactly
one resource. If an operation is not scheduled in a resource k, then its starting
time in this resource is set to zero by the constraints (3c). The constraints
(3d) and (3e) make sure that no two operations are processed at the same
time in any common allowed resource. The constraints (3f) ensure that the
precedence relations between the operations of a job are not violated. The
constraints (3g) determine the makespan of the schedule, and the constraints
(3h)–(3j) are the nonnegativity and binary constraints on the variables.

In Table 1 the optimal objective values and the LP bounds of the models
TI-Cmax, TI-prec-Cmax, and Alt-Cmax for the benchmark instance mfjs7
(Fattahi et al., 2007), are listed. The significance of the tightness of the
precedence constraints (1e) compared to (2) is clear for this instance, but
the price of the higher LP bound is paid for by the much longer computation
time.

Table 1: The optimal objective values, the LP bounds, and the corresponding computa-
tion times of the models TI-Cmax, TI-prec-Cmax, and Alt-Cmax for the benchmark test
instance mfjs7 (Fattahi et al., 2007).

Model Optimal LP bound Time to solve LP
objective value relaxation (CPU-s)

TI-Cmax 879 773.43 1430
TI-prec-Cmax 879 765.73 80
Alt-Cmax 879 764.00 0.01

3.4. Relations between the two models

The models TI-Cmax and Alt-Cmax are equivalent for the case when all
instance data are multiples of the discretization interval `, in the sense that
they define equivalent sets of feasible and optimal solutions, respectively.
The variables in Alt-Cmax and TI-Cmax are related according to

zijk =
∑
u∈T

xijku, tijk =
∑
u∈T

uxijku, k ∈Mij, i ∈ Nj, (4a)

j ∈ J ,

yijpqk =

1, if 0 <
∑
u∈T

uxijku <
∑
u∈T

uxpqku,

0, otherwise,

k ∈Mij ∩Mpq,

i ∈ Nj, p ∈ Nq,
j, q ∈ J , j <q,

(4b)

8

xijku =

{
zijk, if u = tijk,

0, if u ∈ T \ {tijk},
i ∈ Nj, j ∈ J , k ∈ K. (4c)

The constraints (1b) are, through the definitions in (4), equivalent to the
constraints (3b). Similarly, the constraints (1d) correspond to (3d)–(3e). As
stated in Section 3.2, the precedence constraints (1e) are equivalent (in a
MILP sense) to (2), which are equivalent to (3f). The constraints (3c) define
the variables tijk.

4. Tardiness versus makespan

The objective most often considered in studies of (flexible) job shop prob-
lems is the minimization of the makespan. According to the survey by Jain
and Meeran (1999), the reason is that this criterion was the first objective
applied by researchers studying scheduling problems in the early 1950s and
that it is easily modelled. In previous work (Thörnblad et al., 2013) we
studied a real flexible job shop being a part of a longer supply chain, in
which a variety of aerospace components are processed. In such a context,
the production must be predictable and according to plan, since subsequent
operations—as well as customers—normally require incoming material at a
planned and steady pace in order to be efficient. An objective that strives to
minimize the tardiness with respect to the due dates (dj) for the respective
jobs, will thus serve to control the flow and stabilize its pace. This setting
is not specific for the flexible job shop studied in this article, but is present
in many job shops in the manufacturing industry. The objective function
(5) proposed below, targeting mainly the due dates, will also enable shorter
production lead times; this is due to the fact that if all jobs can be processed
in due time this objective equals the minimization of the weighted sum of
the completion times. However, if the scheduling procedure is capable of
repeatedly scheduling the job shop with no tardy jobs, then the planner has
the opportunity of setting more challenging due dates, which in turn will
shorten also the planned production lead times. If, on the other hand, the
objective function targets the makespan, there is a risk that the scheduling
algorithm exacerbates an already unreliable flow—instead of performing the
opposite.

In Thörnblad (2011) we studied an objective whose main focus is the
minimization of the total weighted tardiness. Since instances with no tardy
jobs may very well appear in the real world, we chose to include the sum of

9

the completion times in the objective, in order to produce good schedules
also for these scenarios. The objective was hence formulated as that to

minimize
∑
j∈J

(αjCj + βjTj) , (5)

where Cj and Tj = (Cj − dj)+ denote the completion time and the tardiness
of a job, respectively, and αj and βj are positive weight parameters. Note
that the makespan and the completion times are related through Cmax :=
maxj∈J {Cj}. The models TI-Cmax and Alt-Cmax need to be altered in
order to consider the objective (5). Since the completion time of a job in the
model TI-Cmax can be expressed as

Cj =
∑
k∈K

∑
u∈T

(
u+ pnjjk

)
xnjjku, (6)

the objective (5) can be rewritten for the model TI-Cmax as that to

minimize
∑
j∈J

∑
k∈K

∑
u∈T

(
αj(u+ pnjjk) + βj(u+ pnjjk − dj)+

)
xnjjku. (7)

Note that the operator ()+ in this objective is applied only to parameters,
and hence the objective remains linear. As the release dates are already
considered in the model TI-Cmax, no other changes than removing the con-
straints (1f), which define the makespan, are needed in this model in order to
consider the objective (7). The model (7), (1b)–(1e), (1g)–(1h) will hence-
forth be referred to as the model TI-Tard.

In order to prioritize the jobs that are the most delayed in the schedule
resulting from our mathematical model, we define the tardiness weights, βj,
according to

βj := B

(
1− dj

maxj∈J {|dj|}

)
+

, j ∈ J , (8)

where B > 0 denotes the weight employed for the jobs having due date
0, such that 0 ≤ βj ≤ 2B hold for all j ∈ J . In this way, the jobs that
are the most delayed are assigned the highest tardiness weights. Since the
main objective is to minimize the tardiness, the objective weights, αj, for the
completion times must be chosen such that 0 ≤ αj � B, j ∈ J , hold.

10

In order to adjust Alt-Cmax to consider the tardiness objective with
a preserved linearity, the tardiness variables Tj need to be included. The
objective can then be formulated as that to

minimize
∑
j∈J

(
αj

∑
k∈Mnjj

(
tnjjk + pnjjkznjjk

)
+ βjTj

)
. (9)

The following constraints are added to the model Alt-Cmax in order to in-
clude the release dates and to define the tardiness objective function:

rijzijk ≤ tijk, k ∈Mij, i ∈ Nj, j ∈ J , (10a)∑
k∈Mnjj

(
tnjjk + pnjjkznjjk

)
− dj ≤ Tj, j ∈ J , (10b)

Tj ≥ 0, j ∈ J . (10c)

The alternative model with the proposed tardiness objective is thus formu-
lated as that to minimize (9) subject to (3b)–(3f), (3h)–(3j), (10), and will
henceforth be referred to as the model Alt-Tard.

5. The iterative solution procedure

The major disadvantage of the time-indexed model is that the size of the
model grows fast with the number of time steps. We have therefore devel-
oped a solution procedure that solves the time-indexed model for iteratively
smaller time steps, i.e., with an increasingly better accuracy. In this proce-
dure, the best schedule found in one iteration of the procedure is transformed
into a feasible starting solution for the next iteration through a squeezing pro-
cedure. The resulting value of the makespan is used to determine the length
of the next time horizon in order to keep the total number of time steps
required for the model in each iteration of the procedure as small as possible.
In Section 5.1 we describe the squeezing procedure; in Section 5.2 the details
of the complete iterative procedure are described.

5.1. The squeezing procedure

The processing times and release dates for a given iteration s are rounded
up to the nearest respective multiple of the chosen length, `s, of the time
step. In the order of increasing starting times for the operations in the best

11

solution obtained in the previous iteration, the starting time of each operation
is recalculated such that it is scheduled (on the same resource) as early as
possible, without violating any precedence or release date constraints. In the
example illustrated in Figure 1, the completion time of operation i of job j
constrains the starting time of operation p of job q, when the time steps are
large; for the shorter time steps, the squeezing procedure schedules the start
of operation p of job q at its release date, r̃pq.

Figure 1: The output of the time-indexed model from one iteration is squeezed into a
feasible solution for the next iteration possessing shorter time steps.

Since the squeezing procedure retains the ordering of the operations on
each resource, and all precedence and release dates’ constraints are consid-
ered by the squeezing procedure, the resulting schedule represents a feasible
solution to the scheduling problem defined with the shorter time steps. The
makespan of the schedule obtained by the squeezing procedure applied to the
solution from the previous iteration is used as the time horizon, T s, for the
next iteration, for the case when the objective is to minimize the makespan.
When minimizing the tardiness objective (7), the value assigned to the next
time horizon equals the sum of the largest operation processing time and the
makespan obtained by the squeezing procedure, since a smaller value of the
objective function in (7) may correspond to a larger makespan.

5.2. The iterative procedure

The iterative procedure employed for solving a time-indexed model is
described in Algorithm 1.

For each iteration s of the procedure, suitable values are assigned to the
length `s of the time steps and the time horizon T s. In order to determine
a value for `1, the total number, V , of variables required for the smallest
value of the time step, denoted ˜̀ to use in the last iteration is estimated
as V :=

(∑
j∈J

∑
i∈Nj

p̄ij
)(∑

j∈J nj
)
, where p̄ij := |Mij|−1

∑
k∈Mij

pijk for

12

Algorithm 1 Iterative procedure(datfile, `1, T 1, P, wbest, ˜̀)

while `s ≥ ˜̀do
Solve model P;
Squeeze the resulting schedule using original data;
ws ← the objective value of the squeezed schedule;
if ws < wbest then
wbest ← ws;
Store the corresponding solution, xbest;

end if
s← s+ 1;
Update `s;
Squeeze the best solution, xbest, using data defined by (11);
Compute T s;
Generate a datfile with the best solution found as starting solution;
if P = TI-Cmax and troot > trootmax then

P ← TI-prec-Cmax;
end if

end while

operation i of job j denotes the average processing time over all resources
in the set Mij. The threshold values for V used to determine `1 for the
computations described in Section 6 are listed in Table 2.

In our computations, T 1 is determined using a heuristic similar to the one
described in Thörnblad (2011, p. 35). The heuristic finds a feasible schedule
by assigning the operations by order of increasing release dates in an allowed
and available resource; T 1 is then assigned the value of the makespan of this
schedule, expressed in number of time intervals of length `1. Once the value
of `1 is determined, the input data for the first iteration, s = 1, is created,
according to

pijk :=

⌈
p̃ijk
`s

⌉
, rij :=

⌈
r̃ij
`s

⌉
, dj :=

⌊
d̃j
`s

⌋
, i ∈ Nj, j ∈ J , k ∈ K, (11)

where the superscript ∼ indicates the original parameter values.
Algorithm 1 is initialized by letting the model P be TI-Cmax or TI-Tard,

determined by the objective considered, and by assigning a large enough
number to wbest, being an upper bound on the value of the best solution

13

Table 2: The threshold values of V used to determine `1 (the time step for the first
iteration). V is the estimated total number of variables required for the smallest desired
length of the time step. The median of the processing times (in multiples of ˜̀) is denoted
by p̄.

V ∈ `1

(∗1000)

(0, 10) 1
[10, 50) p̄/8
[50, 100) p̄/4
[100, 500) p̄/2
[500,∞) p̄

found so far. The input data required to solve the model P is denoted
datfile in the algorithm.

When considering the minimization of the makespan, the algorithm is
terminated after either (i) the nth (with n = 3) feasible solution is found
(cplex option solutionlim = n [see (IBM Corp., 2009, Chapter 7)]), or (ii) the
mipgap3 is less than a pre-specified number, or (iii) a pre-specified time limit
is exceeded. If the computations were stopped due to the condition (i), then
`s := `s−1, otherwise, `s := round(`s−1/ζ), where ζ > 1. In the computations
we employed ζ = 1.8. [Choosing ζ = 2 may result in an unfavourable data
pattern in the rounding of parameters in (11).] Further, in order to reduce
the total number of iterations, we set `s := ˜̀ = 1 when `s−1/ζ < 5. The
reason for this is that we found in the tests that the best solution is most
often obtained for larger values of `s, and the last iteration, with `s = 1,
is most often used to verify the optimality of a solution already found (or
compute a mipgap) rather than to find better feasible solutions.

The value T s of the time horizon is updated in the iterative procedure as
described in Section 5.1. For some of the largest instances of TI-Cmax, the
CPU time, troot, required to solve the root relaxation (which is essentially the
LP relaxation) exceeded the time limit. Therefore, the model TI-prec-Cmax
was chosen instead of TI-Cmax if the value of troot exceeded a threshold
value, trootmax, in the previous iteration. In our computational testing, trootmax := 1

3The mipgap is defined as the relative difference between the best lower bound LB and
the best objective value z found. The definition used by CPLEX version 12 is mipgap :=
|z−LB|

10−10+|z| · 100%.

14

CPU-second. For the model TI-Tard, the precedence constraints (1e) were
employed in all iterations since they yielded smaller mipgap and shorter com-
putation times.

6. Computational results

As mentioned in Section 3.3, we have chosen to compare the models by
solving the twelve largest benchmark test instances in Fattahi et al. (2007).
We omitted the eight smallest instances out of the original 20, since they
can be computed in just a few seconds and are thus not that interesting for
comparison. All these test instances are available via Behnke and Geiger
(2012), along with other instances for the flexible job shop problem. The
chosen instances range from n = 3, m = 3, and nj ≤ 3, for the smallest
instance sfjs9 to n = 12, m = 8, and nj ≤ 4, for the largest instance mfjs10.

The models compared are the time-indexed models TI-Cmax (TI-prec-
Cmax) and TI-Tard (implemented through Algorithm 1), the alternative
model (Alt-Cmax and Alt-Tard), and a benchmark model4 (BM-Cmax) de-
veloped by Özgüven et al. (2010). The latter model is closely related to the
alternative model; see Section 3.3. BM-Cmax was chosen to be our bench-
mark model since it yielded the best results in the evaluation by Demir and
İşleyen (2013). We also employed the benchmark model considering the tar-
diness objective (9), implemented through the constraints (10a)–(10c). This
model is referred to as BM-Tard.

The computations were carried out using AMPL-CPLEX 12.1.0 (Fourer
et al., 2002; IBM Corp., 2009) on a computer with two 2.66 GHz Intel Xeon
X5650 processors, each with six cores (24 threads), with a total memory of
48 Gbyte of RAM. The time limit for each call to the CPLEX solver from
the iterative procedure was set to 7200 CPU-seconds. Since the iterative
procedure calls the solver once each iteration, the total computation time
may exceed 7200 CPU-seconds.

4We implemented the benchmark model as it is formulated in Özgüven et al. (2010),
except for a possible typo: In the precedence constraints regarding the operations of
the same job, the sum over the completion times for operation i − 1 should, using our
notation, be over k ∈ Mi−1,j ; this is unclear in Özgüven et al. (2010, constraints (6), p.

1542). This mistake is also present in Demir and İşleyen (2013), where the benchmark
model is presented. In ibid., the constraints corresponding to (3d)–(3e) are defined for
j ≤ q rather than for j < q. This is not incorrect, but the redundancy implies longer
computation times (Demir and İşleyen, 2013, constraints (2.5)-(2.6), p. 981)).

15

The squeezing procedure and the generation of input data files in each
iteration were implemented in MATLAB (2011). The total running time for
this Matlab program was around 15 seconds. Since the running time would
only be a fraction of a second if this code was optimized and implemented
in, for example, C, the total running time of the iterative procedure was
calculated as the sum of the computation times used by CPLEX over all the
iterations of Algorithm 1.

Since it is only in the last iteration (with `s = 1) that a lower bound on the
optimal objective value sought is guaranteed, and the mipgap is comparable
with that of the other models, the iterative procedure was run until the last
iteration was terminated due to either the computation time exceeding the
time limit of 7200 seconds, or that the mipgap in the last iteration (with
`s = ˜̀ = 1) being less than 0.0005. This is due to the fact that the optimal
objective value—and the lower bound—in earlier iterations are expressed in
multiples of `s, and the lower bound can not be transformed into a lower
bound valid for the last iteration employing ˜̀. In order to ensure a fair
comparison between the models, for each of the instances the time limits
for solving BM-Cmax and Alt-Cmax (BM-Tard and Alt-Tard) were set to
the total CPU time needed by the iterative procedure implemented with the
model TI-Cmax (TI-Tard).

6.1. Test results for the minimization of the makespan

In Table 3, we present the results from employing the iterative procedure
with TI-Cmax are compared with the results from solving BM-Cmax and
Alt-Cmax for the seven largest instances mfjs4-10. All the smaller instances,
namely sfjs9-10, and mfjs1-3, were solved to optimality within 20 CPU-
seconds by all the three models.

The time limit was reached before the iterative procedure with TI-Cmax
had established optimality for the instances mfjs4 and mfjs6, although the
time to find the best feasible solution (”time to best”) is competitive with
the models BM-Cmax and Alt-Cmax;, see Figure 2. The computation times
used by the iterative procedure to verify optimality were in all cases longer
than that of the other two models. It seems, however, that the Algorithm
1 employing the models TI-Cmax and TI-prec-Cmax works well for the four
largest instances, mfjs7-10, since the best results were found by this itera-
tive procedure—both the value of the shortest makespan found and the time
required to find the corresponding feasible solution. During the computa-
tional tests we found that the iterative procedure indeed found the optimal

16

Table 3: Computational results for the largest instances mfjs4-10. The best results for
each instance are written in bold and ’*’ in the mipgap column indicates that optimality
is verified. The values within parentheses denote the CPU times to compute the best
makespan found by that model, for the cases when a shorter makespan was found by
another model for the corresponding instance.

Iterative procedure

TI-Cmax (TI-prec-Cmax) BM-Cmax Alt-Cmax

Instance CPU Time Cmax mip- CPU Time Cmax mip- CPU Time Cmax mip-

time to best gap time to best gap time to best gap

(s) (s) (%) (s) (s) (%) (s) (s) (%)

mfjs4 7213 3 554 3.2 177 12 554 * 124 23 554 *

mfjs5 82 81 514 * 11 9 514 * 11 11 514 *

mfjs6 7259 54 634 3.2 227 19 634 * 72 51 634 *

mfjs7 14091 2539 879 9.3 14401 (540) 881 9.6 14423 5220 879 8.7

mfjs8 16163 391 884 13.6 16416 (1980) 886 10.0 16527 (6620) 887 13.5

mfjs9 25880 3899 1081 23.1 26318 (7010) 1113 25.0 26154 (6760) 1120 26.1

mfjs10 33325 464 1208 21.9 33881 (6870) 1236 19.5 33600 (2700) 1264 21.8

solutions to the instances mfjs7-8, although their optimality was not verified
within the time limits.

The models BM-Cmax and Alt-Cmax performed equally well, which is not
surprising since the respective reduced models, constructed by the solver in
the presolve phase, comprises the same number of variables, and since BM-
Cmax contained only 5% more constraints than Alt-Cmax. TI-Cmax, on
the other hand, contained 40 times more variables and about 6 times more
constraints than the benchmark model, in the reduced model for `s = 1.
[Note that the optimal value for mfjs4 is 554, and not 564 as stated in
both Özgüven et al. (2010) and Demir and İşleyen (2013).] Both Behnke
and Geiger (2012), and Bagheri et al. (2010) found the makespan of 554 for
this instance when applying constraint programming (CP) and an artificial
immune algorithm (AIA), respectively. To our knowledge, the two latter
articles present the hitherto best results for the Fattahi test instances when
employing these methods.

Behnke and Geiger (2012) found and verified the optimal solution for
the smaller instances sfjs9-10, and mfjs1-3. Within a time limit of 10 min-
utes of computing time, they found the same solutions as TI-Cmax for the
instances mfjs4–6, mfsj8, and mfjs10. For mfjs7 and mfjs9, they found the
makespans of 931 and 1070, respectively; hence CP produces equally good re-
sults as TI-Cmax. Regarding the computation times, we have not been able
to compare the iterative procedure implemented with the model TI-Cmax

17

Figure 2: Computation times for the models TI-Cmax, BM-Cmax, and Alt-Cmax as
applied to the Fattahi test instances. a) The times required for the respective models to
find optimal solutions. For some of the larger instances optimality was not verified within
7200s; these results are hence omitted. b) The time required for the respective model to
find the best feasible solution.

(TI-prec-Cmax) with the CP model by Behnke and Geiger (2012), since the
tests were run using different computers.

Bagheri et al. (2010) propose an AIA for the FJSP. In six out of the
twelve benchmark instances, the shortest makespan found after 10 runs of
AIA was larger than that found by TI-Cmax; the optimal makespan was
found for four instances. As an example, the shortest makespan for mfjs9
and mfjs10 was 1088 and 1267, respectively. The corresponding values found
by our iterative procedure are 1081 and 1208; see Table 3. One run of AIA is
performed in only a few CPU-seconds, but since it is a meta-heuristic there is
no guarantee that a better result would be achieved if it was run repeatedly
during the same amount of CPU time as we have used.

6.2. Test results for the minimization of the tardiness objective

In order to compare the models TI-Tard (implemented in the iterative
procedure), BM-Tard, and Alt-Tard, we generated due dates for all the test
instances, since due dates are not given for the original instances by Fattahi
et al. (2007). Due dates for all jobs were randomly generated in the range
[0.5Cmax,1.5Cmax], where the value of Cmax equals the shortest makespan
found for each instance. The choice of this range is motivated by our ex-
perience from a real flexible job shop (Thörnblad et al., 2013). The test
instances including due dates are denoted by the prefix ’d-’ of the original

18

name of each instance. The objective weights for the completion times used
in the computations are αj = 1, j ∈ J . The tardiness weights βj, j ∈ J ,
are computed according to (8), with B = 10, such that 0 ≤ βj ≤ 20 holds
for all j ∈ J . In Figure 3, the computation times required for the three
models to solve the test instances generated are plotted. For the medium

Figure 3: a) The computation times required for solving the models TI-Tard, BM-Tard,
and Alt-Tard to optimality for the Fattahi test instances including due dates. For some
of the larger instances optimality was not verified within the time limit of 7200s and are
therefore not shown.
b) The time required to find the best feasible solution for the models TI-Tard, BM-Tard,
and Alt-Tard.

sized instances, all three models require almost the same computation times.
As expected, TI-Tard is not competitive for the smallest instances, since it
is solved in several steps. Only Alt-Tard reaches optimality for the instances
d-mfjs7–8.

In Table 4, the results are listed for the four largest instances. As for the
case with the makespan objective, the best objective values were found by
our iterative procedure implemented with TI-Tard. It outperforms the other
models regarding the time to find the best solution for all instances except for
the two smallest ones, see Figure 3b); the iterative procedure with TI-Tard
was on average more than 60 times faster than BM-Tard and Alt-Tard with
respect to the time to find the best solution.

When considering the tardiness objective, the reduced models constructed
by the solver in the presolve phase contain on average 19% more constraints
and 14% more variables for the BM-Tard model compared with the Alt-Tard
model. Hence the presolve phase is not able to reduce all the redundant

19

Table 4: Computational results for the largest instances d-mfjs7-10. The best results for
each instance are written in bold and ’*’ in the mipgap column indicates that optimality
is verified. The values within parentheses denote the CPU times to compute the best
makespan found by that model, for the cases when a shorter makespan was found by
another model for the corresponding instance.

Iterative procedure

TI-Tard BM-Tard Alt-Tard

Instance CPU Time Obj mip- CPU Time Obj mip- CPU Time Obj mip-

time to best value gap time to best value gap time to best value gap

(s) (s) (%) (s) (s) (%) (s) (s) (%)

d-mfjs7 7592 14 35111.1 3.9 7593 (795) 35244.9 2.8 1894 1740 35111.1 *

d-mfjs8 7292 70 25225.3 1.4 7593 (6870) 25240.0 4.2 3801 3710 25225.3 *

d-mfjs9 15568 1142 60159.5 4.4 15569 (7200) 63175.4 24.7 15690 (7200) 60420.3 21.9

d-mfjs10 10260 236 45568.4 2.6 10261 (9600) 46532.4 21.0 10344 (6850) 47215.7 21.1

variables of the BM-Tard model, as was the case for the BM-Cmax model.
On the other hand, TI-Tard contains 17 times more constraints and 77 times
more variables than BM-Tard in the reduced problem for `s = 1. Neverthe-
less, TI-Tard is competitive with the Alt-Tard and BM-Tard regarding the
computation time to verify optimality and outperforms these models regard-
ing the time to find the best solution for all instances tested, except for the
two smallest ones; see Figure 3.

In Figure 4, the best feasible solution found by each of the models is
compared with its best lower bound, for the instances mfjs7–10 and d-mfjs7–
10, respectively. For each instance, the values are divided by the objective
value of the best solution found (by TI-Cmax and TI-Tard, respectively). In
Figure 4, we note that there is a large difference between the lower bounds
found by employing the makepan objective and those found by employing
the tardiness objective. This indicates that the performance of a model is
dependent on the objective used. TI-Cmax performs equally good (or bad)
regarding the lower bounds as do the models BM-Cmax and Alt-Cmax, while
TI-Tard outperforms the models BM-Tard and Alt-Tard for the instances d-
mfjs9-10 by finding significantly better lower bounds.

7. Conclusions

We have demonstrated that there is a large difference in the performance
of the scheduling models depending on which objective is considered. Hence,
it is important to evaluate scheduling models with respect to objectives that
are well suited for the real applications for which they are intended. Since

20

Figure 4: The values of the best feasible solutions (upper marker) and the best lower
bounds (lower marker) found. a) Values for the instances mfjs7–10 found by the models
TI-Cmax, BM-Cmax, and Alt-Cmax, normalized by the value of the best solution found by
TI-Cmax. b) Values for the instances d-mfjs7–10 found by the models TI-Tard, BM-Tard,
and Alt-Tard, normalized by the value of the best solution found by TI-Tard.

most real flexible job shops are parts of longer supply chains with ongoing
production, it must be prioritized that production should be predictable and
according to plan. In Section 4, we argue that an objective that targets due
dates will serve to control the flow and stabilize its pace, while the objective
of minimizing the makespan risk to exacerbate a possibly already unreliable
flow.

We have shown that the time-indexed model (despite its large numbers
of variables and constraints), combined with the iterative algorithm pro-
posed is able to find significantly better feasible solutions for the largest
instances than both the other models, considering both objectives studied.
The scheduling method proposed outperforms the other models regarding the
time required to find the best feasible solution. We have also presented an
alternative model, similar to the benchmark model but with fewer variables
and constraints. This model is the only one that is able to solve two of the
large instances when minimizing the tardiness objective. It seems, however,
worthwhile to implement the iterative algorithm proposed for medium and
large sized instances, since it is able to quickly find solutions of high quality.
The proposed scheduling method typically finds good feasible solutions in an
early iteration, employing relatively long time steps; after squeezing, these
solutions are, actually, often optimal or near-optimal. The verification of op-

21

timality can, however, only be made in a later iteration when all parameter
data can be expressed as multiples of the length of the time steps. Our find-
ings imply that our new procedure can be beneficially utilized for scheduling
real flexible job shops.

8. Acknowledgements

A special thanks to Thomas Ericsson at the Department of Mathematical
Sciences, for all support regarding the computations. Furthermore, we would
like to gratefully acknowledge the financial support from GKN Aerospace En-
gine Systems (formerly Volvo Aero), The Swedish Research Council (grant
no. 621-2007-4716), NFFP (Swedish National Aeronautics Research Pro-
gramme), and VINNOVA (through Chalmers Transport Area of Advance).

References

Al-Hinai, N., ElMekkawy, T. Y., 2011. An efficient hybridized genetic algo-
rithm architecture for the flexible job shop scheduling problem. Flexible
Services and Manufacturing Journal 23, 64–85.

Bagheri, A., Zandieh, M., Mahdavi, I., Yazdani, M., 2010. An artificial im-
mune algorithm for the flexible job-shop scheduling problem. Future Gen-
eration Computer Systems 26 (4), 533–541.

Baykasoglu, A., Özbakir, L., 2010. Analyzing the effect of dispatching rules
in the scheduling performance through grammar based flexible scheduling
system. International Journal of Production Economics 124 (2), 269–381.

Behnke, D., Geiger, M. J., 2012. Test instances for the flexible
job shop scheduling problem with work centers. http://www.nbn-

resolving.de/urn:nbn:de:gbv:705-opus-29827 (Accessed on August 13,
2013).

Berghman, L., 2012. Machine scheduling models for warehousing docking
operations. PhD Thesis, Katholieke Universiteit Leuven, Belgium.

Brucker, P., Knust, S., 2012. Complex Scheduling, 2nd Edition. Springer-
Verlag, Berlin, Germany.

22

Demir, Y., İşleyen, S. K., 2013. Evaluation of mathematical models for flex-
ible job-shop scheduling problems. Applied Mathematical Modelling 37,
977–988.

Fattahi, P., Saidi Mehrabad, M., Jolai, F., 2007. Mathematical modeling and
heuristic approaches to flexible job shop scheduling problems. Journal of
Intelligent Manufacturing 18 (3), 331–342.

Fourer, R., Gay, D. M., Kernighan, B. W., 2002. AMPL: A Modeling Lan-
guage for Mathematical Programming, 2nd Edition. Brooks/Cole Publish-
ing Company/Cengage Learning.

IBM Corp., 2009. IBM ILOG CPLEX V12.1 User’s Manual for CPLEX.

Jain, A. S., Meeran, S., 1999. Deterministic job-shop scheduling: Past,
present and future. European Journal of Operational Research 113 (2),
390–434.

Low, C., Yip, Y., Wu, T., 2006. Modelling and heuristics of FMS scheduling
with multiple objectives. Computers & Operations Research 33 (3), 674–
694.

Manne, A. S., 1960. On the job-shop scheduling problem. Operations Re-
search 8 (2), 219–223.

MATLAB, 2011. Release 2011b. The MathWorks Inc., Natick, MA, United
States.

Nemhauser, G. L., Wolsey, L. A., 1988. Integer and Combinatorial Optimiza-
tion. John Wiley & Sons, Inc., New York, NY, USA.

Özgüven, C., Özbakir, L., Yavuz, Y., 2010. Mathematical models for job-
shop scheduling problems with routing and process plan flexibility. Applied
Mathematical Modelling 34 (2), 1539–1548.

Sadykov, R., Wolsey, L. A., 2006. Integer programming and constraint pro-
gramming in solving a multimachine assignment scheduling problem with
deadlines and release dates. INFORMS Journal on Computing 18, 209–217.

Thörnblad, K., Sep. 2011. On the optimization of schedules of a multitask
production cell. Licentiate Thesis, Chalmers University of Technology and
University of Gothenburg, Göteborg, Sweden.

23

Thörnblad, K., Strömberg, A.-B., Patriksson, M., Almgren, T., 2013.
Scheduling optimization of a real flexible job shop including fixture avail-
ability and preventive maintenance. Revised for publication in European
Journal of Industrial Engineering.

van den Akker, J. M., Hurkens, C. A. J., Savelsberg, M. W. P., 2000. Time-
indexed formulations for machine scheduling problems: Column genera-
tion. INFORMS Journal on Computing 12, 111–124.

Wang, L., Zhou, G., Xu, Y., Wang, S., Liu, M., 2012. An effective artificial
bee colony algorithm for the flexible job-shop scheduling problem. The
International Journal of Advanced Manufacturing Technology 60, 303–315.

24

