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1 RECONSTRUCTION FROM BLIND EXPERIMENTAL DATA FOR ANINVERSE PROBLEM FOR A HYPERBOLIC EQUATIONLARISA BEILINA1,∗, NGUYEN TRUNG THÀNH◦, MICHAEL V. KLIBANOV⋄, AND MICHAEL A. FIDDY†Abstrat. We onsider the problem of reonstrution of dieletris from blind baksatteredexperimental data. Experimental data were olleted by a devie, whih was built at University ofNorth Carolina at Charlotte. This devie sends eletrial pulses into the medium and ollets thetime resolved baksattered data on a part of a plane. The spatially distributed dieletri onstant
εr (x) , x ∈ R

3 is the unknown oe�ient of a wave-like PDE. This oe�ient is reonstrutedfrom those data in blind ases. To do this, a globally onvergent numerial method is used.1. IntrodutionWe onsider the problem of reonstrution of refrative indies or dieletri onstants of unknowntargets plaed in a homogeneous domain from blind baksattered experimental data. We workwith time resolved baksattering experimental data of wave propagation for a 3-d hyperbolioe�ient inverse problem (CIP). Our data are generated by a single loation of the point soure.The baksattering signal is measured on a part of a plane. We present a ombination of theapproximately globally onvergent method of [3℄ with a Finite Element Method (FEM) for thenumerial solution of this CIP. Given a ertain funtion omputed by the tehnique of [3℄, the FEMreonstruts the unknown oe�ient in an expliit form. As a result, we an reonstrut refrativeindies and loations of targets. In addition, we estimate their sizes. We believe that these resultsan be used as initial guesses for loally onvergent methods in order to obtain better shapes, see,e.g. setion 5.9 in [3℄, where the image obtained by the globally onvergent method for transmittedexperimental data was re�ned via a loally onvergent adaptivity tehnique.Experimental data were olleted by the devie whih was reently built at University of NorthCarolina at Charlotte. In our experiments we image targets standing in the air. A potentialappliation of our experiments is in imaging of explosives. Note that explosives an be loated inthe air [13℄, e.g. improvised explosive devies (IEDs). The work on real data for the ase whentargets are hidden in a soil is ongoing.We have olleted baksattering time resolved experimental data of eletrial waves propagationin a non-attenuating medium. As it was pointed out in [3, 13℄, the main di�ulty of working with1∗ Corresponding author, Department of Mathematial Sienes, Chalmers University of Tehnology and Gothen-burg University, SE-42196 Gothenburg, Sweden, larisa�halmers.se
◦ Department of Mathematis and Statistis University of North Carolina at Charlotte, Charlotte, NC 28223, USA,tnguy152�un.edu
⋄ Department of Mathematis and Statistis University of North Carolina at Charlotte, Charlotte, NC 28223, USA,mklibanv�un.edu
† Optoeletronis and Optial Communiations Center, Univeristy of North Carolina at Charlotte, Charlotte NC28223, USA, mafiddy�un.edu1991 Mathematis Subjet Classi�ation. 65N15, 65N30, 35J25.Key words and phrases. Coe�ient inverse problem (CIP), �nite element method, globally onvergent numerialmethod for CIP, experimental baksattered data. 1



2 LARISA BEILINA1,∗, NGUYEN TRUNG THÀNH◦, MICHAEL V. KLIBANOV⋄, AND MICHAEL A. FIDDY†suh data is aused by a huge mismath between these data and ones produed by omputationalsimulations. Conventional data denoising tehniques do not help in this ase. Therefore, it isunlikely that any numerial method would suessfully invert the raw data. To get the data, whihwould look somewhat similar with ones obtained in omputational simulations, a heuristi datapre-proessing proedure should be applied. The pre-proessed data are used as the input for theglobally onvergent method.Previously our researh group has applied the method of [3℄ to the simpler ase of transmittedexperimental data whih were produed by a similar devie (hapter 5 of [3℄). The baksatteringreal data are muh harder to work with than transmitted ones sine the baksattered signal issigni�antly weaker than the transmitted one, as well as beause some unwanted signals are mixedup with the true one, see Figure 2-a) for the latter. We refer to our researh in [13℄ and setion6.9 of [3℄ for the ase of baksattering real data in 1-d. In the urrent paper we present results ofreonstrution of the 3-d version of the method of [3℄.The approximately globally onvergent method of [3℄ relies on the struture of the underlyingPDE operator and does not use optimization tehniques. Eah iterative step onsists of solutionsof two problems: the Dirihlet boundary value problem for an ellipti PDE and the Cauhy prob-lem for the underlying hyperboli PDE. �Approximate global onvergene" (global onvergene inshort) means that we use a ertain reasonable approximate mathematial model. Approximationis used beause of one inevitably faes with substantial hallenges when trying to develop globallyonvergent numerial methods for multidimensional CIPs for hyperboli PDEs with single soure.It is rigorously established in the framework of this model that the method of [3℄ results in ob-taining some points in a small neighborhood of the exat oe�ient without a priori knowledge ofany point in this neighborhood, see Theorem 2.9.4 in [3℄ and Theorem 5.1 in [4℄. The distanebetween those points and the exat solution depends on the error in the data, the step size h ofa ertain disretization of the pseudo-frequeny interval and the omputational domain Ω wherethe inverse problem is solved (see setion 4.3 for de�nition of h). A knowledge of the bakgroundmedium in Ω is also not required by this method. Beause of these theorems, onvergene analysisis not presented here. A rigorous de�nition of the approximate global onvergene property anbe found in setion 1.1.2 of [3℄ and in [4℄. We use a mild approximation, sine it amounts only tothe trunation of a ertain asymptoti series, and it is used only on the �rst iterative step (setion4.2). The validity of this approximate model was veri�ed omputationally on both syntheti andtransmitted experimental data in [3, 4℄ as well as in the urrent work in the ase of experimentalbaksattering data.Di�erent imaging methods are used to ompute geometrial information of targets, suh as theirshapes, sizes and loations, see, e.g. [11, 16℄. On the other hand, refrative indies, whih is ourmain interest, haraterize onstituent materials of targets, and they are muh more di�ult toompute. As to the gradient-like methods, we refer to, e.g. [1, 7, 8, 17℄ and referenes therein.Convergene of these methods is guaranteed only if the starting point of iterations is hosen to besu�iently lose to the orret solution. On the other hand, it was shown in setion 5.8.4 of [3℄that the gradient method failed to work for transmitted experimental data of [3℄ in the ase whenits starting point was the bakground medium.An outline of this paper is as follows. In setion 2 we state forward and inverse problems. Insetion 3 we desribe the experimental data and brie�y outline the data pre-proessing proedure.In setion 4 we brie�y outline the method of [3℄: for reader's onveniene. In setion 5 we desribea version of the FEM whih works for our ase. In setion 6 we desribe our algorithm. In setion



RECONSTRUCTION FROM BLIND EXPERIMENTAL DATA 37 we outline some details of our numerial implementation. Results are presented in setion 8 andsummary is in setion 9.2. Statements of Forward and Inverse ProblemsLet Ω ⊂ R3 be a onvex bounded domain with the boundary ∂Ω ∈ C3. Denote by x = (x, y, z) ∈
R3. We model the eletromagneti wave propagation in an isotropi and non-magneti spae R3with the dimensionless oe�ient εr(x), whih desribes the spatially distributed dieletri onstantof the medium. We onsider the following Cauhy problem for the hyperboli equation(2.1) εr(x)utt = ∆u in R3 × (0,∞) ,(2.2) u (x, 0) = 0, ut (x, 0) = δ (x − x0) .We assume that the oe�ient εr(x) of equation (2.1) is suh that(2.3) εr(x) ∈ Cα

(
R3

)
, εr(x) ∈ [1, b], εr(x) = 1 for x ∈ R3�Ω,where b = const. > 1. We a priori assume knowledge of the onstant b, whih amounts to theknowledge of the set of admissible oe�ients in (2.3). However, we do not assume that the number

b−1 is small, i.e. we do not impose smallness assumptions on the unknown oe�ient εr(x). Below
Ck+α are Hölder spaes, where k ≥ 0 is an integer and α ∈ (0, 1) . Let Γ ⊂ ∂Ω be a part of theboundary ∂Ω. Later we will designate Γ as the baksattering side of Ω and will explain how wedeal with the absene of the data at ∂Ω \ Γ.Coe�ient Inverse Problem (CIP). Suppose that the oe�ient εr (x) satis�es (2.3). De-termine the funtion εr (x) for x ∈ Ω, assuming that the following funtion g(x, t) is known for asingle soure position x0 /∈ Ω(2.4) u (x, t) = g (x, t) , ∀ (x, t) ∈ Γ × (0,∞) .The funtion g(x, t) in (2.4) models time dependent measurements of the wave �eld at the part
Γ of the boundary ∂Ω of the domain of interest Ω. We assume below that the soure position is�xed and x0 /∈ Ω. This assumption allows us to simplify the resulting integral-di�erential equationbeause δ(x − x0) = 0 in Ω. The assumption εr(x) = 1 for x ∈ R3�Ω means that the oe�ient
εr(x) has a known onstant value outside of the domain of interest Ω.This is a CIP with single measurement data. Uniqueness theorem for suh CIPs in the mul-tidimensional ase are urrently known only if the funtion δ (x − x0) in (2.2) is replaed with afuntion f (x) suh that ∆f (x) 6= 0 ∀x ∈ Ω. A proper example of suh funtion f is a narrowGaussian entered around x0, whih approximates the funtion δ (x− x0) in the distribution sense.From the Physis standpoint this Gaussian is equivalent to δ (x − x0) . That uniqueness theoreman be proved by the method, whih was originated in [6℄. This method is based on Carlemanestimates, also see, e.g. setions 1.10, 1.11 of the book [3℄ about this method. The authors believethat, beause of appliations, it still makes sense to develop numerial methods for this CIP withoutompletely addressing the uniqueness question.The funtion u (x, t) in (2.1) represents the voltage of one omponent of the eletri �eld
E (x, t) = (Ex, Ey, Ez) (x, t) . In our omputer simulations the inident �eld has only one non-zeroomponent Ey. This omponent propagates along the z−axis until it reahes the target, where it issattered. So, we assume that in our experiment u (x, t) = Ey (x, t) .We now omment on �ve maindisrepanies between our mathematial model (2.1)- (2.3) and the reality. The �rst disrepanywhih auses the main di�ulties, is the aforementioned huge mismath between experimental dataand omputational simulations. The seond one is that, although we realize that equation (2.1)



4 LARISA BEILINA1,∗, NGUYEN TRUNG THÀNH◦, MICHAEL V. KLIBANOV⋄, AND MICHAEL A. FIDDY†an be derived from Maxwell equations only in the 2-d ase, we use it to model the full 3-d ase.The reason is that our urrent reeiver an measure only one of the polarization omponents ofthe sattered eletri �eld E. In addition, if using a more ompliated mathematial model thanthe one of (2.1), for example the one that inludes vetor sattering and thus depolarization ef-fets on sattering, then one would need to develop a globally onvergent inverse method for thisase. The latter is a quite time onsuming task with yet unknown outome. Equation (2.1) wasused in Chapter 5 of [3℄ for the ase of transmitted experimental data, and aurate solutions wereobtained. A partial explanation of the latter an be found in [5℄, where the Maxwell's system ina non-magneti and non-ondutive medium was solved numerially in time domain. It was shownnumerially in setion 7.2.2 of [5℄ that the omponent of the vetor E (x, t) = (Ex, Ey, Ez) (x, t) ,whih was initially inident upon the medium, dominates two other omponents. This is true for atleast a rather simple medium suh as ours. Therefore, the funtion u (x, t) in (2.1) represents thevoltage of the omputed omponent Ey (x, t) of the eletri �eld, whih is emitted and measuredby our antennas.The third disrepany is that the ondition εr(x) ∈ C3
(
R3

) is violated on the inlusion/bakgroundinterfae in our experiments. The fourth disrepany is that formally equation (2.1) is invalid forthe ase when metalli targets are present. On the other hand, it was demonstrated omputation-ally in [13℄ that one an treat metalli targets as dieletris with large dieletri onstants, whihwe all appearing dieletri onstant,(2.5) εr (metalli target) ∈ (10, 30) .Modeling metalli targets as integral parts of the unknown oe�ient εr (x) is onvenient for theabove appliation to imaging of explosives. Indeed, IEDs usually onsist of mixtures of some di-eletris with a number of metalli parts. Suh targets are heterogeneous ones, and we onsiderthree heterogeneous ases in setion 8.2. On the other hand, modeling metalli parts of heteroge-neous targets as a separate matter than the rest of an a priori unknown bakground medium wouldresult in signi�ant additional ompliations of the already di�ult problem with yet unknownoutome.The �fth disrepany is that we use the inident plane wave instead of the point soure in ouromputations. We have disovered that the plane wave ase works better in image reonstrutionsthan the point soure, while the point soure ase is more onvenient for the onvergene analysisin [3, 4℄. In addition, sine the distane between our measurement plane and targets is muh largerthan the wavelength of our signal, it is reasonable to approximate the inident wave as a planewave.Thus, our results of setion 8.2 demonstrate the well known fat that omputational results areoften less pessimisti than the theory, sine the theory annot grasp all nuanes of the reality. Insummary, we believe that aurate solutions of the above CIP for experimental data justify ourmathematial model. 3. Experimental Data3.1. Data olletion. Figure 1-a) is a photograph explaining the data olletion. The data olle-tion is done in a regular room, whih ontains o�e furniture, omputers, et. Keeping in mind ourdesired appliation (see Introdution), we intentionally did not arrange a speial waveguide, whihwould protet our data from unwanted signals aused by re�etions from various objets in theroom. Below x and y are horizontal and vertial axis respetively and the z axis is perpendiularto the measurement plane, the positive diretion of z axis is in the diretion from the target to
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a)
b) )Figure 1: a) A photograph explaining our data olletion proess. The distane between the target(wooden blok) and the measurement plane is about 0.8 m, whih is about 26 wave lengths. b)Pioseond Pulse Generator. ) Textronix Osillosope.the measurement plane. We dimensionalize our oordinates as x

′ = x/(1m), where �m" stands formeter. However, we do not hange notations of oordinates for brevity. Hene, below, e.g. 0.05 oflength atually means 5 entimeters.Two main piees of our devie are Pioseond Pulse Generator (Figure 1-b)) and TextronixOsillosope (Figure 1-)). The Pioseond Pulse Generator generates eletri pulses. The durationof eah pulse is 300 pioseonds. This pulse goes to the transmitter, whih is a horn antenna(soure).The transmitter sends the pulse into the medium whih ontains targets of interest. The eletriwave aused by the pulse is sattered by the targets, and the baksattered signal is deteted by thedetetor. The deteted signal is reorded by the real time osillosope. The osillosope produesa digitized time resolved signal with the step size in time of 10 pioseonds. The total time ofmeasurements for one pulse is 10 nanoseonds=104 pioseonds=10−8 seond.To derease the measurement noise, the pulse is generated 800 times for eah position of thedetetor, the baksattering signal is also measured 800 times and resulting signals are aver-aged. The detetor moves in both horizontal and vertial diretions overing the square SQ =
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{−0.5 < x, y < 0.5} on the measurement plane. We have hosen the step size of this movement tobe 0.02. Although we an hoose any step size, we found that 0.02 provides a good ompromisebetween the preision of measurements and the total time spent on data olletion.The distane between our targets and the measurement plane is approximately 0.8 with about0.05 deviations, and the wavelength of our signal is about 0.03. Therefore, the distane betweenthe measurement plane and our targets is of about 26 wavelengths. This is in the far �eld zone.3.2. Data pre-proessing. The main di�ulty working with experimental data is that there is ahuge mismath between these data and omputationally simulated ones. Indeed, Figure 2-a) depitsa sample of experimentally measured data for a wooden blok at one position of the detetor, seeFigure 1-a) for data olletion sheme. On this �gure, the diret signal is the signal going diretlyto the reeiver. We use this diret signal as the time referene for data pre-proessing. Unwantedsignals are due to re�etions of the eletri wave from several objets present in the room. Figure2-b) presents the omputationally simulated data for the same target, see setion 7.1 for datasimulations. These �gures show a huge mismath between real and omputationally simulated data.Therefore, data pre-proessing is neessary. We refer to [15℄ for details of our data pre-proessingproedure. The main steps of this proedure inlude:(1) Time-zero orretion. The time-zero orretion is to shift the measured data in time. So thatits starting time is the same as when the inident pulse is emitted from the transmitter. Thisis done using the diret signals from the transmitter to the detetor as the time referene.(2) Extration of sattered signals. Apart from the baksattered wave by the targets, ourmeasured data also ontain various types of signals, e.g. diret signals from the horn to thedetetor, sattered signals from strutures inside the room, et. What we need, however,is the sattered signals by the targets only. To obtain them, we single out the satteredsignals aused by the targets only and remove all unwanted signals.(3) Data propagation. After getting the sattered signals, the next step of data pre-proessingis to propagate the data loser to the targets, i.e. to approximate the sattered wave ona plane whih is muh loser to the targets then the measurement plane. The distanebetween that propagated plane and the front surfae of a target is usually between 0.02 and0.06 (ompare with the 0.8 distane from the measurement plane). There are two reasons fordoing this. The �rst one is that the method of [3℄ works with the Laplae transform of thefuntion u (x, t) (setion 4). That Laplae transform deays exponentially in terms of thetime delay, whih is proportional to the distane from the target to the measurement plane.Hene, the amplitude of the Laplae transformed experimental data on the measurementplane is very small and an be dominated by omputational round-o� error. The seondreason is that this propagation proedure helps to substantially redue the omputationalost sine the omputational domain for the inverse problem is redued.(4) Data alibration. Finally, sine the amplitudes of the experimental inident and satteredwaves are usually signi�antly di�erent from simulations, we need to bring the former tothe same level of the amplitude as the latter. This is done using a known target referred toas alibrating objet.In this paper, the result of data pre-proessing is used as the measured data g (x, t) on thebaksattering boundary Γ of our omputational domain Ω for the inverse problem.
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a) b)Figure 2: Typial samples of real and omputationally simulated data. a) The measured data atone of detetors. The diret signal goes from the transmitter (Fig. 1-b)) to the detetor beause thetransmitter emits the eletri �eld in all diretions. We use the diret signal as the time referene inour data pre-proessing proedure. Unwanted signals are due to re�etions from a variety of objetsin the room. b) The omputationally simulated data for the same target as the one of a) and at thesame detetor. A signi�ant di�erene between a) and b) is evident.4. The Approximately Globally Convergent Method in BriefIn this setion we brie�y outline the globally onvergent method for reader's onveniene. Werefer to setions 2.3, 2.5, 2.6.1 and 2.9.2 of [3℄ as well as [4℄ for details.The �rst step of our inverse algorithm is the Laplae transform of the funtion u (x, t) ,(4.1) w(x, s) =

∞∫

0

u(x, t)e−stdt, for s > s = const. > 0,where s is a ertain number. We assume that the number s is su�iently large, and we all theparameter s pseudo frequeny. It follows from (2.1), (2.2) and (4.1) that the funtion w is thesolution of the following problem(4.2) ∆w − s2εr(x)w = −δ (x − x0) , x ∈ R3,(4.3) lim
|x|→∞

w (x, s) = 0.The limit (4.3) is proved in Theorem 2.7.1 of [3℄. In addition, it was proven in Theorem 2.7.2 of[3℄ that for the funtion εr (x) satisfying (2.3) there exists unique solution w (x, s) of the problem(4.2), (4.3) for every s > 0 suh that
w (x, s) = w0 (x, s) + w (x, s) , w (x, s) ∈ C2+α

(
R3

)
,where w0 (x, s) is the solution of the problem (4.2), (4.3) for the ase εr(x) ≡ 1,

w0 (x, s) =
exp (−s |x − x0|)

4π |x− x0|
.



8 LARISA BEILINA1,∗, NGUYEN TRUNG THÀNH◦, MICHAEL V. KLIBANOV⋄, AND MICHAEL A. FIDDY†4.1. The integral di�erential equation. It follows from Theorem 2.7.2 of [3℄ that w(x, s) > 0.Hene, we an onsider the funtions v(x, s), q(x, s),(4.4) v (x, s) =
lnw (x, s)

s2
, q (x, s) =

∂v (x, s)

∂s
.Substituting w = exp

(
s2v

) in (4.2) and keeping in mind that the soure x0 /∈ Ω, we obtain(4.5) ∆v + s2|∇v|2 = εr(x),x ∈ Ω.Using (4.4) we obtain(4.6) v (x, s) = −
s∫

s

q (x, τ) dτ + V (x, s) ,where the trunation pseudo frequeny s > s is a large number, whih is hosen numerially, seesetion 8 for details. We all V (x, s) the tail funtion, and it is unknown. It follows from (4.4) and(4.6) that(4.7) V (x, s) = v (x, s) =
lnw (x, s)

s2
.It follows from [3℄ (setion 2.3) that, under some onditions, there exists a funtion p (x) ∈ C2+α

(
Ω

)suh that the following asymptoti behavior with respet to s→ ∞ holds for funtions V and q(4.8) V (x, s) =
p (x)

s
+O

(
1

s2

)
, s→ ∞,(4.9) q (x, s) = ∂sV (x, s) = −p (x)

s2
+O

(
1

s3

)
, s→ ∞.Di�erentiating both sides of equation (4.5) with respet to s then using (4.4) and (4.6), we obtainthe following nonlinear integral di�erential equation

∆q − 2s2∇q
s∫

s

∇q (x, τ) dτ + 2s




s∫

s

∇q (x, τ) dτ




2

+ 2s2∇q∇V − 4s∇V
s∫

s

∇q (x, τ) dτ + 2s (∇V )
2

= 0,x ∈ Ω, s ∈ [s, s] .

(4.10)In addition, (2.4) and (4.4) lead to the following Dirihlet boundary ondition for the funtion q(4.11) q (x, s) = ψ̃ (x, s) , ∀ (x, s) ∈ Γ × [s, s] ,(4.12) ψ̃ (x, s) =
∂s (lnϕ)

s2
− 2

lnϕ

s3
.Here ϕ (x, s) is the Laplae transform (4.1) of the funtion g (x, t) in (2.4). We now need toomplement the boundary data (4.11) at the baksattering side Γ with the boundary data at therest of the boundary ∂Ω. Using omputationally simulated data, it was shown numerially in setion6.8.5 of [3℄ as well as in [4℄ that it is reasonable to approximate the boundary data on ∂Ω\Γ by thesolution of the forward problem for the homogeneous medium for the ase εr (x) = 1: reall that



RECONSTRUCTION FROM BLIND EXPERIMENTAL DATA 9this equality holds outside of the domain Ω, see (2.3). Thus, we use below the following Dirihletboundary ondition for the funtion q (x, s)(4.13) q (x, s) = ψ (x, s) , ∀ (x, s) ∈ ∂Ω × [s, s] ,(4.14) ψ (x, s) =

{
ψ̃ (x, s) , ∀ (x, s) ∈ Γ × [s, s] ,

ψ0 (x, s) , ∀ (x, s) ∈ (∂Ω \ Γ) × [s, s] .where the funtion ψ0 (x, s) is the funtion ψ̃ (x, s) in (4.12) omputed for the ase εr(x) ≡ 1.Even though equation (4.10) with the boundary ondition (4.13) has two unknown funtions qand V , we an approximate both of them beause approximation proedures for them are di�erent,see setion 7.1. Suppose for a moment that funtions q and V are approximated in Ω together withtheir derivatives Dα
x
q,Dα

x
V, |α| ≤ 2. Then the orresponding approximation for the oe�ient εr(x)an be found via bakwards alulation using (4.5).4.2. The �rst approximation for the tail funtion. To start iterations, we need the �rstapproximation V1,0 (x) for the tail funtion. In this setion we show how to alulate V1,0 (x) . Thisis the same hoie as the one in setion 2.9.2 of the book [3℄ as well as in [4℄.Let the funtion ε∗r(x) satisfying (2.3) be the exat solution of our CIP for the exat data g∗ in(2.4). Let V ∗ (x, s) be the exat �tail funtion� de�ned as(4.15) V ∗ (x, s) =

lnw∗ (x, s)

s2
.Let q∗ (x, s) ∈ C2+α

(
Ω

)
× C [s, s] be the orresponding exat funtion q (x, s) satisfying equation(4.10). Let ψ∗ (x, s) ∈ C2+α

(
Ω

)
×C [s, s] be the orresponding exat Dirihlet boundary onditionfor q∗ (x, s) as de�ned in (4.13). Following (4.14), we assume that ψ∗ (x, s) = ψ0 (x, s) for (x, s) ∈

(∂Ω \ Γ)× [s, s] .Hene, (4.10) and (4.13) hold for funtions q∗, ψ∗. Setting in (4.10) s = s, we obtain
∆q∗ + 2s2∇q∗∇V ∗ + 2s (∇V ∗)

2
= 0, x ∈ Ω,

q∗ |∂Ω = ψ∗ (x, s̄) , x ∈ ∂Ω.
(4.16)Next, trunating the seond term in eah of the asymptotis (4.8) and (4.9), we obtain that thereexists a funtion p∗ (x) ∈ C2+α

(
Ω

) suh that
V ∗ (x, s) ≈ p∗ (x)

s
, s→ ∞,

q∗ (x, s) = ∂sV
∗ (x, s) ≈ −p

∗ (x)

s2
, s→ ∞.

(4.17)Substituting formulae (4.17) into (4.16), we obtain the following approximate Dirihlet boundaryvalue problem for the funtion p∗ (x)(4.18) ∆p∗ = 0 in Ω, p∗ ∈ C2+α
(
Ω

)
,(4.19) p∗|∂Ω = −s2ψ∗ (x, s) .Thus, using (4.15) and (4.17), we obtain the following approximate mathematial model.Approximate mathematial model.We assume that there exists a funtion p∗ (x) ∈ C2+α

(
Ω

) suh that the exat tail funtion
V ∗ (x, s) has the form(4.20) V ∗ (x, s) =

p∗ (x)

s
=

lnw∗ (x, s)

s2
, ∀s ≥ s,



10 LARISA BEILINA1,∗, NGUYEN TRUNG THÀNH◦, MICHAEL V. KLIBANOV⋄, AND MICHAEL A. FIDDY†and the funtion q∗ (x, s) is
q∗ (x, s) = −p

∗ (x)

s2
.Beause of (4.18), (4.19) and (4.20), we set for the �rst tail(4.21) V1,0 (x) =

p (x)

s
,where the funtion p(x) is the solution of the following Dirihlet boundary value problem(4.22) ∆p = 0 in Ω, p ∈ C2+α

(
Ω

)
,(4.23) p|∂Ω = −s2ψ (x, s) .We point out that we alulate V1,0 (x) without any advaned knowledge of a small neighborhoodof the exat oe�ient ε∗r(x). Using (4.17)-(4.23) and Shauder theorem [14℄, we obtain(4.24) ‖V1,0 (x) − V ∗ (x, s)‖

C2+α(Ω) ≤ Cs ‖ψ∗ (x, s) − ψ (x, s)‖C2+α(∂Ω) ,where the number C = C (Ω) > 0 depends only from the domain Ω. Hene, the error in thealulation of V1,0 (x) depends only on the error in the boundary data ψ (x, s) . On the other hand,sine the boundary funtion ψ (x, s) is generated by the funtion g(x, t) in (2.4), then the error in
ψ (x, s) is generated by the error in measurements. The estimate (4.24) is one of elements of theproof of the approximate global onvergene theorem for this numerial method, see Theorem 2.9.4in [3℄ and Theorem 5.1 in [4℄. Although a good approximation for the exat solution ε∗r(x) an bederived from the funtion V1,0 (x) , we have observed omputationally that better approximationsare delivered via iterations desribed below in setions 6.1, 6.2.4.3. Disretization with respet to the pseudo-frequeny. To approximate both funtions
q and V using (4.10) and (4.13), we onsider the layer stripping proedure with respet to s. Wedivide the interval [s, s] into N small subintervals with the uniform step size h = sn−1 − sn. Here,
s = sN < sN−1 < ... < s0 = s.We approximate the funtion q(x, s) as a pieewise onstant funtionwith respet to s, i.e. we assume that q(x, s) = qn(x) for s ∈ [sn, sn−1) . Hene, using (4.6), weapproximate the funtion v (x, sn) as(4.25) v (x, sn) = −h

n∑

j=0

qj (x) + V (x, s) , q0 (x) :≡ 0.To obtain a sequene of Dirihlet boundary value problems for ellipti PDEs for funtions qn(x),we introdue the s−dependent Carleman Weight Funtion (CWF) Cn,µ (s) = exp [µ (s− sn−1)] ,where µ >> 1 is a large parameter. In our numerial studies we take µ = 20. This funtionmitigates the in�uene of the nonlinear term in the resulting integral-di�erential equations on everypseudo-frequeny interval (sn, sn−1).



RECONSTRUCTION FROM BLIND EXPERIMENTAL DATA 11Multiply both sides of equation (4.10) by Cn,µ (s) and integrate with respet to s ∈ (sn, sn−1) .We obtain
∆qn −A1,n


h

n−1∑

j=0

∇qj −∇Vn


∇qn

= Bn (∇qn)
2 −A2,nh

2




n−1∑

j=0

∇qj




2

+ 2A2,n∇Vn


h

n−1∑

j=0

∇qj


 −A2,n (∇Vn)

2
,

qn (x) |∂Ω= ψn(x) :=
1

h

sn−1∫

sn

ψ (x, s) ds, n = 1, ..., N.

(4.26)
Here Vn (x) is suh an approximation of the tail funtion V (x) whih orresponds to the fun-tion qn (x) (setion 6.1). Numbers A1,n, A2,n, Bn are omputed expliitly. Furthermore, Bn =
O (1/µ) , µ→ ∞. For this reason we ignore the nonlinear term in (4.26), thus setting(4.27) Bn (∇qn)

2
:= 0.Note that (4.27) is not a linearization, sine (4.26) ontains produts ∇qj∇qi and also beause thetail funtion Vn depends nonlinearly on funtions qj , see (4.7) and step 6 in setion 6.1.5. A Finite Element Method for the Reonstrution of εr (x)In this setion we explain how we ompute funtions εrn(x) on every pseudo-frequeny interval

(sn, sn−1) using the FEM. One the funtions qj , j = 1, ...n along with the funtion Vn in (4.26)are alulated, we ompute the funtion vn (x) using the diret analog of (4.25),
vn (x) = −h

n∑

j=0

qj (x) + Vn (x) , x ∈ Ω.Using (4.4), we set(5.1) wn (x) = exp
[
s2nvn (x)

]
.To �nd the funtion εrn (x) , we note that the funtion wn (x, sn) is the solution of the followinganalog of the problem (4.2), (4.3)(5.2) ∆wn − s2nεrn (x)wn = 0 in Ω,(5.3) ∂nwn |∂Ω= fn (x) ,where(5.4) fn (x) = ∂n exp

[
s2nvn (x)

] for x ∈ ∂Ω.To ompute the funtion εrn (x) from (5.2), (5.3) and (5.4), we apply a version of the FEM asdesribed below in setions 5.1, 5.2.



12 LARISA BEILINA1,∗, NGUYEN TRUNG THÀNH◦, MICHAEL V. KLIBANOV⋄, AND MICHAEL A. FIDDY†5.1. Spaes of �nite elements. Following [12℄ we disretize in omputations our bounded domain
Ω ⊂ R3 by an unstrutured tetrahedral mesh T using non-overlapping tetrahedral elementsK ∈ R3.The elements K are suh that T = {K1, ...,Km}, where m is the total number of elements in Ω,and

Ω = ∪K∈TK = K1 ∪K2... ∪Km.We assoiate with the mesh T the mesh funtion h = h(x) as a pieewise-onstant funtion suhthat
h(x) = hK , ∀K ∈ T,where hK is the diameter of K whih we de�ne as the longest side of K. We impose the followingshape regularity assumption of the mesh T for every element K ∈ T(5.5) a1 ≤ hK ≤ r′a2, a1, a2 = const. > 0,where r′ is the radius of the maximal sphere ontained in the element K.De�ne the set of polynomials Pr(K) as(5.6) Pr(K) =

{
v : v(x, y, z) =

∑

0≤i+j+l≤r

cijlx
iyjzl, (x, y, z) ∈ K, cijl ∈ R, ∀K ∈ T

}
.We introdue now the �nite element spae Vh as

Vh =
{
v(x) ∈ H1 (Ω) : v ∈ C(Ω), v|K ∈ P1(K) ∀K ∈ T

}
,where P1(K) denotes the set of linear funtions on K de�ned by (5.6) for r = 1. Hene, the �niteelement spae Vh onsists of ontinuous pieewise linear funtions in Ω. To approximate funtions

εrn, we introdue the spae of pieewise onstant funtions Ch,
Ch := {u ∈ L2(Ω) : u|K ∈ P0(K), ∀K ∈ T },where P0(K) is the pieewise onstant funtion on K de�ned by (5.6) for r = 0.5.2. A �nite element method. To ompute the funtion εrn from (5.2), we formulate the �niteelement method for the problem (5.3)-(5.4) as: Find the funtion εrn ∈ Ch for the known funtion

wn ∈ Vh suh that(5.7) (εrnwn, v) = − 1

s2n
(∇wn,∇v) +

1

s2n
(fn, v)∂Ω, ∀v ∈ Vh,where (·, ·) is the salar produt in L2 (Ω).We expand wn in terms of the standard ontinuous pieewise linear funtions {ϕl}P

l=1 in thespae Vh as(5.8) wn(x) =

P∑

l=1

wn,lϕl(x),where wn,l denote the nodal values of the funtion wn at the nodes l of the elements K in the mesh
T . We an determine wn,l by knowing already omputed funtions vn,l using the following analogof (5.1)

wn (x) = exp
[
s2nvn,l (x)

]
, ∀x ∈ Ω.



RECONSTRUCTION FROM BLIND EXPERIMENTAL DATA 13Substitute (5.8) into (5.7) and hoose v(x) = ϕj(x). Then we obtain the following linear algebraisystem of equations(5.9) P∑

l,j=1

εrn,l(wn,lϕl, ϕj) = − 1

s2n

P∑

l,j=1

wn,l(∇ϕl,∇ϕj) +
1

s2n

P∑

j=1

[fn, ϕj ] ,where [·, ·] is the salar produt in L2 (∂Ω) . The system (5.9) an be rewritten in the matrix formfor the unknown vetor εrn = {εrn,l}P

l=1 and known vetor wn = {wn,l}P

l=1 as(5.10) Mεrn = − 1

s2n
Gwn +

1

s2n
F.Here M is the blok mass matrix in spae, G is the sti�ness matrix orresponding to the termontaining (∇ϕl,∇ϕj) in (5.9) and F is the load vetor. At the element K the matrix entries in(5.10) are expliitly given by:

MK
l,j = (wn,l ϕl, ϕj)K , G

K
l,j = (∇ϕl,∇ϕj)K , F

K
n,j = (fn, ϕj)K .To obtain an expliit sheme for the omputation of oe�ients εrn, we approximate the matrix

M by the lumped mass matrix ML in spae, i.e., the diagonal approximation is obtained by takingthe row sum of M [3℄. We obtain(5.11) εrn = − 1

s2n
(ML)−1Gwn +

1

s2n
(ML)−1F.Note that for the ase of linear Lagrange elements whih are used in our omputations in setion8 we have M = ML. Thus, the lumping proedure does not inlude approximation errors in thisase. 6. The Approximately Globally Convergent AlgorithmWe present now our algorithm for the numerial solution of equations (4.26) and omputing thefuntions εrn using the equation(5.11). In this algorithm the index i denotes the number of inneriterations inside every pseudo-frequeny interval (sn, sn−1) when we update tails.6.1. The algorithm.Step 0: Set q0 = 0. Compute the initial tail funtion V1,0(x, s) ∈ C2+α(Ω) as in (4.21)-(4.23).Step 1: Here we desribe iterations whih update tails inside every pseudo-frequeny interval

(sn, sn−1). Let n ≥ 1, i ≥ 1. Suppose that funtions qj , j = 1, ..., n−1, Vn,i−1 are omputed.Solve the Dirihlet boundary value problem for the funtion qn,i (x) ∈ C2+α
(
Ω

)
,

∆qn,i −A1n


h

n−1∑

j=1

∇qj


 · ∇qn,i +A1n∇qn,i · ∇Vn,i−1 =

−A2nh
2




n−1∑

j=1

∇qj




2

+ 2A2n∇Vn,i−1 ·


h

n−1∑

j=1

∇qj


 −A2n (∇Vn,i−1)

2
,

qn,i (x) = ψn (x) , x ∈ ∂Ω.

(6.1)



14 LARISA BEILINA1,∗, NGUYEN TRUNG THÀNH◦, MICHAEL V. KLIBANOV⋄, AND MICHAEL A. FIDDY†Step 2: Compute funtions vn,i (x) and wn,i (x) ,

vn,i (x) = −hqn,i (x) − h

n−1∑

j=0

qj (x) + Vn,i (x) ,

wn,i (x) = exp
[
s2nvn,i (x)

]
.Step 3: Compute the funtion εr,n,i ∈ Ch via bakwards alulations, using the �nite elementformulation of equation (5.11) as

εrn,i (x) = − 1

s2n
(ML)−1Gwn,i +

1

s2n
(ML)−1F.Sine by (2.3) we should have εr (x) ≥ 1, ∀x ∈ R3, and also sine we need to extend thefuntion εr,n,i (x) outside of the domain Ω by unity, we set(6.2) εrn,i (x) =

{
εrn,i (x) if εr,n,i (x) ≥ 1,

1 if either εrn,i (x) < 1, or x ∈ R3�Ω.Step 4: Solve the forward problem (2.1)-(2.2) with εr(x) := εrn,i (x) and ompute the Laplaetransform (4.1) for s = sn. We obtain the funtion wn,i (x, sn).Step 5: Update the tail funtion as(6.3) Vn,i(x) =
lnwn,i (x, sn)

sn
2

.Continue inner iterations with respet to i until the stopping riterion of Step 1 of setion6.2 is met at i = mn.Step 6: Set for the pseudo-frequeny interval [sn, sn−1)(6.4) qn(x) := qn,mn
(x), εrn(x) := εrn,mn

(x), Vn+1,0 (x) :=
lnwn,mn

(x, sn)

sn
2

:= Vn (x) .Step 7: If either the stopping riterion with respet to n of Step 4 of setion 6.2 is met, or
n = N, then set the resulting funtion εrn(x) as the solution of our CIP. Otherwise, set
n := n+ 1 and go to Step 1.6.2. The stopping riterion. When testing the algorithm of setion 6.1 on experimental data,we have developed a reliable stopping riterion for iterations (n, i) in this algorithm. On everypseudo-frequeny interval (sn, sn−1) we de�ne ��rst norms� Dn,0 as(6.5) Dn,0 = ||Vn,0 − Ṽn||L2(Ω).In (6.5) the funtion Vn,0 is the omputed tail funtions at the inner iteration i = 0 as in (6.4).Funtions Ṽn in (6.5) are obtained from the known measured funtion g(x, t) in (2.4) as(6.6) Ṽn (x) =

lnW (x, sn)

s2n
,where W (x, sn) is the Laplae transform of the funtion g(x, t) at s = sn.We have observed that omputed ��rst norms� Dn,0 always ahieve only one minimum at aertain n = n, where the number n depends on the spei� set of experimental data. Furthermore,in non-blind ases of non-metalli targets, the orresponding values of maxΩ εrn,0(x) were in a goodagreement with a priori known ones. However, in the ases of non-blind metalli targets we haveobserved that 5 ≤ maxΩ εrn,0(x) ≤ 10. This ontradits with (2.5). Therefore, we have developedthe following stopping riterion whih onsists of four steps.



RECONSTRUCTION FROM BLIND EXPERIMENTAL DATA 15The Stopping CriterionThe �rst step in our riterion is for stopping inner iterations with respet to i in step 5 of setion6.1. As to Steps 2-4, they are for stopping outer iterations with respet to n (Step 7 in setion 6.1).First, we de�ne numbers Bn,i and Dn,i as
Bn,i =

||εrn,i − εrn,i−1||L2(Ω)

||εrn,i−1||L2(Ω)
,(6.7) Dn,i = ||Vn,i − Ṽn||L2(Ω),In (6.7) funtions Vn,i are omputed tail funtions orresponding to εrn,i (step 6 in setion 6.1) andfuntions Ṽn = Ṽn(x, sn) are alulated using (6.6).

• Step 1. Iterate with respet to i and stop iterations at i = mn ≥ 1 suh that(6.8) either Bn,i ≥ Bn,i−1 or Bn,i ≤ η,or(6.9) either Dn,i ≥ Dn,i−1 or Dn,i ≤ η,where η = 10−6 is a hosen tolerane.
• Step 2. For every n ompute ��nal norms� Dn,mn

as(6.10) Dn,mn
= ||Vn+1,0 − Ṽn||L2(Ω).In (6.10) funtions Vn+1,0 (x) are omputed as in (6.4).

• Step 3. Compute the number N of the pseudo frequeny interval suh that the �rst norms
Dn,0 in (6.5) ahieve its �rst minimum with respet to n and get orresponding εrN,0(x)on this interval. Compute the number M of the pseudo frequeny interval suh that the�nal norms Dn,mn

in (6.10) ahieve its �rst minimum or they are stabilized with respet to
n, and get orresponding εrM,0(x) on this interval. Next, ompute the number ε̃r,(6.11) ε̃r =

{
maxΩ εrM,0 (x) , if M < N,

maxΩ εrN,0 (x) , if M ≥ N.

• Step 4. If ε̃r < 5 or ε̃r > 10, then take the �nal reonstruted value of the refrative index
n =

√
ε̃r. As the omputed funtion εr (x) , take(6.12) εr,comp (x) =

{
εrM,0 (x) , if M < N,

εrN,0 (x) , if M ≥ N.and stop iterations. However, if 5 ≤ ε̃r ≤ 10, then ontinue iterations and ompute thenumber Ñ ∈
(
N + 1, N

] of the pseudo frequeny interval suh that the global minimumwith respet to n of �nal norms Dn,mn
in (6.10) is ahieved. Then, similarly with (6.11),ompute the number ε

r eN
,(6.13) ε

r eN
= max

Ω
ε

r eN,0 (x)and take n =
√
ε

r eN
as the �nal reonstruted value of the refrative index. Also, take thefuntion εr,comp (x) = ε

r eN,0 (x) as the omputed oe�ient εr (x) and stop iterations.
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(dashed urve) for objet 1.We have observed in all our omputations that onditions of our stopping riterion are alwaysahieved. More preisely, one of onditions (6.8), (6.9) is always ahieved for iterations with respetto i and the minimal values mentioned in Steps 3 and 4 are always ahieved. Figure 3 displays atypial n−dependene of sequenes Dn,0 and Dn,mn

.7. Some Details of the Numerial ImplementationIn this setion we present some additional details of our numerial implementation. Beause of(2.5), we de�ne in all our tests the upper value of the funtion εr (x) as b = 15, see (2.3). Thus, weset lower and upper bounds for the reonstruted funtion εr(x) in Ω as(7.1) Mεr
= {εr(x) : εr (x) ∈ [1, 15]}.As to the lower bound, we ensure it via (6.2). We ensure the upper bound 15 similarly via trunatingto 15 those values of εr,comp (x) whih exeed this number. To solve Dirihlet boundary valueproblems (6.1), we use FEM. We reonstrut refrative indies rather than dieletri onstants ofmaterial sine they an be diretly measured.To ompare our omputational results with diretly measured refrative indies n =

√
εr ofdieletri targets and with appearing dieletri onstants of metalli targets (see (2.5)), we onsidermaximal values of omputed funtions εr,comp (x),(7.2) εompr = max

Ω
εr,comp (x) , nomp =

√
εompr ,see Step 4 of setion 6.2 for the de�nition of εr,comp (x) . Using experimental data for non-blindtargets and omparing reonstrution results with ases of syntheti data, we have found that ouralgorithm provided aurate results with the following pseudo frequeny interval, whih we use inall our omputations

s ∈ [8, 10], s = 8, s = 10, h = 0.05.



RECONSTRUCTION FROM BLIND EXPERIMENTAL DATA 177.1. Computations of the forward problem. As it is lear from Step 4 of setion 6.1, we needto solve the forward problem (2.1), (2.2) on eah iterative step of inner iterations to update the tailvia (6.3). Sine it is impossible to omputationally solve equation (2.1) in the in�nite spae R3, wework with a trunated domain. Namely, we hoose the domain G as
G = {x =(x, y, z) ∈ (−0.56, 0.56)× (−0.56, 0.56)× (−0.16, 0.1)} .We use the hybrid FEM/FDM method desribed in [2℄ and the software pakage WavES [18℄. Wesplit G into two subdomains GFEM = Ω and GFDM so that G = GFEM ∪ GFDM . We solve theforward problem in G and the inverse problem via the algorithm of setion 6.1 in Ω. The spaemesh in GFEM and in GFDM onsists of tetrahedral and ubes, respetively. Below(7.3) GFEM = Ω = {x =(x, y, z) ∈ (−0.5, 0.5)× (−0.5, 0.5)× (−0.1, 0.04)} .Sine by (2.3) εr(x) = 1 in GFDM , then it is omputationally e�ient to use FDM in GFDM andto use FEM in GFEM = Ω, as it is done in the hybrid method of [2℄.The front and bak sides of the retangular prism G are {z = 0.1} and {z = −0.16}, respetively.The boundary of the domain G is ∂G = ∂1G ∪ ∂2G ∪ ∂3G. Here, ∂1G and ∂2G are, respetively,front and bak sides of the domain G, and ∂3G is the union of left, right, top and bottom sidesof this domain. The front side Γ of the retangular prism Ω where the propagated data g (x, t) in(2.4) are given, is(7.4) Γ = {x ∈ ∂Ω : z = 0.04}Now we desribe the forward problem whih is used in our omputations. To ompute tailfuntions Vn,i via Steps 4, 5 of the algorithm of setion 6.1, we omputationally solve the followingforward problem in our tests:

εr (x)utt − ∆u = 0, in G× (0, T ),

u(x, 0) = 0, ut(x, 0) = 0, in G,
∂nu = f (t) , on ∂1G× (0, t1],

∂nu = −∂tu, on ∂1G× (t1, T ),

∂nu = −∂tu, on ∂2G× (0, T ),

∂nu = 0, on ∂3G× (0, T ),

(7.5)where f(t) is the amplitude of the initialized plane wave,
f(t) = sinωt, 0 ≤ t ≤ t1 :=

2π

ω
.We use ω = 30 and T = 1.2. We solve the problem (7.5) using the expliit sheme with the timestep size τ = 0.003, whih satis�es the CFL ondition.7.2. Two stages. Our reonstrution proedure is done in two stages desribed in this setion.7.2.1. First stage. In the �rst stage we follow the algorithm of setion 6.1. We have observedthat this stage provides aurate loations of targets of interest. It also provides aurate values ofrefrative indies n =

√
εrN of dieletri targets and large values of appearing dieletri onstants

ε
r eN

for metalli targets, see (6.11) and (6.13). However, the algorithm of setion 6.1 does notreonstrut well sizes/shapes of targets. Thus, we need a postproessing proedure, whih is donein the seond stage.



18 LARISA BEILINA1,∗, NGUYEN TRUNG THÀNH◦, MICHAEL V. KLIBANOV⋄, AND MICHAEL A. FIDDY†Objet number Name of the objet1 a piee of oak2 a piee of pine3 a metalli sphere4 a metalli ylinder5 blind target6 blind target7 blind target8 doll, air inside, blind target9 doll, metal inside, blind target10 doll, sand inside, blind target11 two metalli blind targetsTable 1: Objet names.7.2.2. The seond stage: postproessing. Let εrn,i (x) be the funtion in (6.2). Then we set(7.6) ε̃rn,i(x) =

{
εrn,i(x) if εrn,i(x) > 0.5 max

Ω
εrn,i(x),

1, otherwise.Next, we determine minimal xmin, ymin and maximal xmax, ymax values in x and y diretions, wherethe funtion ε̃rn,i(x) > 1. Next, we set
εrn,i (x) :=

{
ε̃rn,i(x) if x ∈ [xmin, xmax] , y ∈ [ymin, ymax] ,

1 otherwiseand proeed with Step 5 of the algorithm of setion 6.1. In this seond stage we perform the samenumber of iterations with respet to both indies n, i as ones of the �rst stage. We are onernedin the seond stage only with sized and shapes of targets, and we are not onerned with valuesof εompr , nomp. Rather, we take these values from the �rst stage. Let ε̃r (x) be the funtion εr (x)obtained at the last iteration of the seond stage. Then we form the image of the target based onthe funtion εr,image (x) ,

εr,image (x) =

{
ε̃r (x) if ε̃r (x) ≥ 0.9 maxΩ ε̃r (x) ,
1 otherwise.8. ResultsGoals of our omputational studies are: (1) To di�erentiate between dieletri and metallitargets, (2) To reonstrut refrative indies of dieletri targets and appearing dieletri onstantsof metalli targets, (3) To image loations of targets, their sizes and sometimes their shapes. It ismore hallenging to ompute sizes of targets in the z−diretion (i.e. depth) than in x, y diretions.8.1. Three tests. To see how sensitive the algorithm is to x, y sizes of the prism Ω as well as tothe mesh step size hx in omputations of both forward and inverse problems, we run the abovenumerial proedure for all our targets for the following three tests:



RECONSTRUCTION FROM BLIND EXPERIMENTAL DATA 19Target number 1 2 5 8 10 Average errorblind/non-blind (yes/no) no no yes yes yesMeasured n, error 2.11, 19% 1.84, 18% 2.14, 28% 1.89, 30% 2.1, 26% 24%
nomp of Test 1, error 1.92, 10% 1.8, 2% 1.83, 17% 1.86, 2% 1.92, 9% 8%
nomp of Test 2, error 2.07, 2% 2.01, 10% 2.21, 3% 1.83, 3% 2.2, 5% 4.6%
nomp of Test 3, error 2.017, 5% 2.013, 9% 2.03, 5% 1.97, 4% 2.02, 4% 5%Table 2: Computed nomp and diretly measured refrative indies of dieletri targets togetherwith both measurement and omputational errors as well as the average error. Note that the averageomputing errors are at least three times less than the average error of diret measurements.Test 1. The domain Ω for the omputation of the CIP is as in (7.3) and the mesh step size is hx =

0.02. Reall that the distane between neighboring positions of our detetor on the measurementplane Pm is also 0.02.Test 2. The domain Ω is as in (7.3). But the mesh step size here is hx = 0.01.Test 3. In this test we shrink the domain Ω in x, y diretions, while keeping the same mesh size
hx = 0.02 as in Test 1. In this test(8.1) GFEM = Ω = {x =(x, y, z) ∈ (−0.2, 0.2)× (−0.2, 0.2)× (−0.1, 0.04)} ,(8.2) Mεr

= {εr(x) : εr (x) ∈ [1, 15]}.8.2. Reonstrutions. We olleted experimental data for 11 targets presented in Table 1. Fivetargets were dieletris, �ve were metalli ones, and one was a metal overed by a dieletri. Wehad total 7 blind ases: three dieletri, three metalli targets and one target was the above mixtureof the metal and a dieletri. Three out of eleven targets were heterogeneous ones, all three wereblind ones. Heterogeneous targets model explosive devies in whih explosive materials are maskedby dieletris.When proeeding with the algorithm of setion 6.1, we �rst assign the Dirihlet boundary on-dition ψ (x, s) at ∂Ω for the funtion q (x, s) following (4.11), (4.13) and (4.14), in whih ase Γ isas in (8.1). Next, we alulate funtions ψn (x) as in (4.26). Figure 4 presents typial behavior offuntions ψn(x) at ∂Ω for some objets of Table 1. To have a better visualization, these �gures arezoomed to 0.4 × 0.4 square from the 1 × 1 square.Table 2 lists both omputed nomp and diretly measured refrative indies n of dieletri targetsfor tests 1-3, see (7.2) for nomp. This table also shows the measurement error in diret measurementsof n. These measurements were performed by the lassial osillosope method [10℄. Table 3 listsomputed appearing dieletri onstants εompr of metalli targets. Reall that εr = n2. We seefrom Table 2 that (nomp)2 < 4.9 for all dieletri targets. This is going along well with the Step 4of the stopping riterion. On the other hand, in Table 3 εompr > 12 for all metalli targets. Thus,our algorithm an on�dently di�erentiate between dieletri and metalli targets.One an derive several important observations from Table 2. First, in all three tests and for alltargets the omputational error is signi�antly less than the error of diret measurements. Thus,the average omputational error is signi�antly less than the average measurement error in all threetests. Seond, omputed refrative indies are within trust intervals in all ases. The auray ofall three tests is about the same.
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a) objet 1 b) objet 2

) objet 3 d) objet 4

e) objet 5 f) objet 6Figure 4: Behavior of funtions ψn(x) at ∂Ω for some objets of Table 1 at pseudo-frequeny s = 9.2.Table 3 provides information about omputed appearing dieletri onstants εompr of metallitargets, see (2.5) and (7.2). Note that in Test 3 �rst four numbers εompr = 15. This oinideswith the upper bound in (8.2). On the other hand, εompr = 14 < 15 for the target number 9.This is probably beause target number 9 is a mixture of a metal and a dieletri. An important



RECONSTRUCTION FROM BLIND EXPERIMENTAL DATA 21Target number 3 4 6 7 9 11blind/non-blind (yes/no) no no yes yes yes yes
εompr of Test 1 14.4 15.0 15 13.6 13.6 13.1
εompr of Test 2 15 15 15 14.1 14.1 15
εompr of Test 3 15 15 15 15 14 14.06Table 3: Computed appearing dieletri onstants εompr of metalli targets number 3,4,6,7,11 aswell as of the target number 9 whih is a metal overed by a dieletri.

a) Test 1 (dieletri), objet 1, �rst stage b) Test 1 (dieletri), objet 1, seond stage
) Test 1 (dieletri), objet 5, �rst stage d) Test 1 (dieletri), objet 5, seond stageFigure 5: Computed images of targets numbers 1,5 of Table 1. Thin lines indiate orret shapes. Tohave better visualization we have zoomed images of Tests 1,2 from the domain Ω de�ned by (7.3) to thedomain (8.1).observation, whih an be derived from Table 2, is that our algorithm on�dently omputes largeinlusion/bakground ontrasts exeeding 10:1. It is well known that optimization methods ofonventional least squares residual funtionals usually annot image large ontrasts.All targets, exept of targets number 8, 9, 10, were homogeneous ones omprised from a singlesubstane only. However, targets number 8-10 were inhomogeneous ones, see Table 1 for desriptionof all targets. The target number 8 was a wooden doll whih was empty inside. In the ase of targetnumber 9, a piee of a metal was inserted inside that doll. Thus, only the metal was imaged,



22 LARISA BEILINA1,∗, NGUYEN TRUNG THÀNH◦, MICHAEL V. KLIBANOV⋄, AND MICHAEL A. FIDDY†beause its re�etion is muh stronger than the wood. In the ase of target number 10, sand waspartly inserted inside that doll.Figures 5 display 3-d images of some targets for Test 1 after the �rst and the seond (postpro-essing) stages desribed in setion 7.2. Figures 6, 7 display 3-d images of targets 8,9,10 and 11 forall three tests.Note that it is hard to estimate well the size of a target in the z−diretion. Nevertheless, onean observe that rather good shapes and sizes of targets are omputed in the ase of prisms andylinders, see Figure 5. As to the doll, neither of tests images shapes of targets 8-10 aurately.Still, the loation of the doll as well as its sizes in x, y diretions are well estimated, see Figures 6.9. SummaryWe olleted experimental baksattering time resolved data of eletrial wave propagation andhave applied the approximately globally onvergent numerial method of [3℄ to these data. Re-sults for four non-blind and seven blind ases show a good auray of reonstrution of refrativeindies of dieletri targets and appearing dieletri onstants of metalli targets. In the ase ofdieletris, the average reonstrution error is at least three times less than the error of diret mea-surements. We on�dently di�erentiate between metalli and dieletri targets. In partiular, wehave aurately omputed maximal values of refrative indies/dieletri onstants of three blindheterogeneous targets. These targets represent simpli�ed models of improvised explosive deviesIEDs, whih are heterogeneous ones.Loations of targets and their sizes in x, y diretions are aurately reonstruted. The mostdi�ult ases of sizes in the z−diretion (depth) are well reonstruted in some ases. In addition,shapes of some targets are well reonstruted in some ases. We believe that a follow up appliationof the loally onvergent adaptivity tehnique might improve reonstrutions of shapes of targets.The adaptivity takes the solution obtained by the approximately globally onvergent method as thestarting point for the minimization of the Tikhonov funtional on a sequene of adaptively re�nedmeshes. A signi�ant re�nement via the adaptivity was demonstrated in setion 5.9 of [3℄ for thease of transmitted experimental data, see Figures 5.13 and 5.16 in [3℄.AknowledgmentsThis researh was supported by US Army Researh Laboratory and US Army Researh O�egrants W911NF-11-1-0325 and W911NF-11-1-0399, the Swedish Researh Counil, the SwedishFoundation for Strategi Researh (SSF) through the Gothenburg Mathematial Modelling Centre(GMMC) and by the Swedish Institute, Visby Program. The authors are grateful to Mr. StevenKithin for his exellent work on data olletion.Referenes[1℄ A.B. Bakushinsky and M.Yu. Kokurin, Iterative Methods for Approximate Solutions of Inverse Problems,Springer, New York, 2004.[2℄ L. Beilina, K. Samuelsson and K. Ahlander, E�ieny of a hybrid method for the wave equation. InInternational Conferene on Finite Element Methods, Gakuto International Series Mathematial Sienes andAppliations, Gakkotosho CO., LTD, 2001.[3℄ L. Beilina and M.V. Klibanov, Approximate Global Convergene and Adaptivity for Coe�ient InverseProblems, Springer, New York, 2012.[4℄ L. Beilina and M.V. Klibanov, A new approximate mathematial model for global onvergene for a oe�ientinverse problem with baksattering data, J. Inverse and Ill-Posed Problems, 20, 513-565, 2012.
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a) Test 1, objet 8 b) Test 2, objet 8 ) Test 3, objet 8
d) Test 1, objet 9 e) Test 2, objet 9 f) Test 3, objet 9
g) Test 1, objet 10 h) Test 2, objet 10 i) Test 3, objet 10Figure 6: Computed images of targets numbers 8,9,10 (see Table 1). Thin lines indiate orret shapes.To have better visualization we have zoomed images of Tests 1,2 from the domain Ω de�ned by (7.3) to thedomain (8.1).[5℄ L. Beilina, Energy estimates and numerial veri�ation of the stabilized domain deomposition �niteelement/�nite di�erene approah for the Maxwell's system in time domain, Central European Journal ofMathematis, 11, 702-733, 2013.
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