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1 RECONSTRUCTION FROM BLIND EXPERIMENTAL DATA FOR ANINVERSE PROBLEM FOR A HYPERBOLIC EQUATIONLARISA BEILINA1,∗, NGUYEN TRUNG THÀNH◦, MICHAEL V. KLIBANOV⋄, AND MICHAEL A. FIDDY†Abstra
t. We 
onsider the problem of re
onstru
tion of diele
tri
s from blind ba
ks
atteredexperimental data. Experimental data were 
olle
ted by a devi
e, whi
h was built at University ofNorth Carolina at Charlotte. This devi
e sends ele
tri
al pulses into the medium and 
olle
ts thetime resolved ba
ks
attered data on a part of a plane. The spatially distributed diele
tri
 
onstant
εr (x) , x ∈ R

3 is the unknown 
oe�
ient of a wave-like PDE. This 
oe�
ient is re
onstru
tedfrom those data in blind 
ases. To do this, a globally 
onvergent numeri
al method is used.1. Introdu
tionWe 
onsider the problem of re
onstru
tion of refra
tive indi
es or diele
tri
 
onstants of unknowntargets pla
ed in a homogeneous domain from blind ba
ks
attered experimental data. We workwith time resolved ba
ks
attering experimental data of wave propagation for a 3-d hyperboli

oe�
ient inverse problem (CIP). Our data are generated by a single lo
ation of the point sour
e.The ba
ks
attering signal is measured on a part of a plane. We present a 
ombination of theapproximately globally 
onvergent method of [3℄ with a Finite Element Method (FEM) for thenumeri
al solution of this CIP. Given a 
ertain fun
tion 
omputed by the te
hnique of [3℄, the FEMre
onstru
ts the unknown 
oe�
ient in an expli
it form. As a result, we 
an re
onstru
t refra
tiveindi
es and lo
ations of targets. In addition, we estimate their sizes. We believe that these results
an be used as initial guesses for lo
ally 
onvergent methods in order to obtain better shapes, see,e.g. se
tion 5.9 in [3℄, where the image obtained by the globally 
onvergent method for transmittedexperimental data was re�ned via a lo
ally 
onvergent adaptivity te
hnique.Experimental data were 
olle
ted by the devi
e whi
h was re
ently built at University of NorthCarolina at Charlotte. In our experiments we image targets standing in the air. A potentialappli
ation of our experiments is in imaging of explosives. Note that explosives 
an be lo
ated inthe air [13℄, e.g. improvised explosive devi
es (IEDs). The work on real data for the 
ase whentargets are hidden in a soil is ongoing.We have 
olle
ted ba
ks
attering time resolved experimental data of ele
tri
al waves propagationin a non-attenuating medium. As it was pointed out in [3, 13℄, the main di�
ulty of working with1∗ Corresponding author, Department of Mathemati
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h data is 
aused by a huge mismat
h between these data and ones produ
ed by 
omputationalsimulations. Conventional data denoising te
hniques do not help in this 
ase. Therefore, it isunlikely that any numeri
al method would su

essfully invert the raw data. To get the data, whi
hwould look somewhat similar with ones obtained in 
omputational simulations, a heuristi
 datapre-pro
essing pro
edure should be applied. The pre-pro
essed data are used as the input for theglobally 
onvergent method.Previously our resear
h group has applied the method of [3℄ to the simpler 
ase of transmittedexperimental data whi
h were produ
ed by a similar devi
e (
hapter 5 of [3℄). The ba
ks
atteringreal data are mu
h harder to work with than transmitted ones sin
e the ba
ks
attered signal issigni�
antly weaker than the transmitted one, as well as be
ause some unwanted signals are mixedup with the true one, see Figure 2-a) for the latter. We refer to our resear
h in [13℄ and se
tion6.9 of [3℄ for the 
ase of ba
ks
attering real data in 1-d. In the 
urrent paper we present results ofre
onstru
tion of the 3-d version of the method of [3℄.The approximately globally 
onvergent method of [3℄ relies on the stru
ture of the underlyingPDE operator and does not use optimization te
hniques. Ea
h iterative step 
onsists of solutionsof two problems: the Diri
hlet boundary value problem for an ellipti
 PDE and the Cau
hy prob-lem for the underlying hyperboli
 PDE. �Approximate global 
onvergen
e" (global 
onvergen
e inshort) means that we use a 
ertain reasonable approximate mathemati
al model. Approximationis used be
ause of one inevitably fa
es with substantial 
hallenges when trying to develop globally
onvergent numeri
al methods for multidimensional CIPs for hyperboli
 PDEs with single sour
e.It is rigorously established in the framework of this model that the method of [3℄ results in ob-taining some points in a small neighborhood of the exa
t 
oe�
ient without a priori knowledge ofany point in this neighborhood, see Theorem 2.9.4 in [3℄ and Theorem 5.1 in [4℄. The distan
ebetween those points and the exa
t solution depends on the error in the data, the step size h ofa 
ertain dis
retization of the pseudo-frequen
y interval and the 
omputational domain Ω wherethe inverse problem is solved (see se
tion 4.3 for de�nition of h). A knowledge of the ba
kgroundmedium in Ω is also not required by this method. Be
ause of these theorems, 
onvergen
e analysisis not presented here. A rigorous de�nition of the approximate global 
onvergen
e property 
anbe found in se
tion 1.1.2 of [3℄ and in [4℄. We use a mild approximation, sin
e it amounts only tothe trun
ation of a 
ertain asymptoti
 series, and it is used only on the �rst iterative step (se
tion4.2). The validity of this approximate model was veri�ed 
omputationally on both syntheti
 andtransmitted experimental data in [3, 4℄ as well as in the 
urrent work in the 
ase of experimentalba
ks
attering data.Di�erent imaging methods are used to 
ompute geometri
al information of targets, su
h as theirshapes, sizes and lo
ations, see, e.g. [11, 16℄. On the other hand, refra
tive indi
es, whi
h is ourmain interest, 
hara
terize 
onstituent materials of targets, and they are mu
h more di�
ult to
ompute. As to the gradient-like methods, we refer to, e.g. [1, 7, 8, 17℄ and referen
es therein.Convergen
e of these methods is guaranteed only if the starting point of iterations is 
hosen to besu�
iently 
lose to the 
orre
t solution. On the other hand, it was shown in se
tion 5.8.4 of [3℄that the gradient method failed to work for transmitted experimental data of [3℄ in the 
ase whenits starting point was the ba
kground medium.An outline of this paper is as follows. In se
tion 2 we state forward and inverse problems. Inse
tion 3 we des
ribe the experimental data and brie�y outline the data pre-pro
essing pro
edure.In se
tion 4 we brie�y outline the method of [3℄: for reader's 
onvenien
e. In se
tion 5 we des
ribea version of the FEM whi
h works for our 
ase. In se
tion 6 we des
ribe our algorithm. In se
tion
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al implementation. Results are presented in se
tion 8 andsummary is in se
tion 9.2. Statements of Forward and Inverse ProblemsLet Ω ⊂ R3 be a 
onvex bounded domain with the boundary ∂Ω ∈ C3. Denote by x = (x, y, z) ∈
R3. We model the ele
tromagneti
 wave propagation in an isotropi
 and non-magneti
 spa
e R3with the dimensionless 
oe�
ient εr(x), whi
h des
ribes the spatially distributed diele
tri
 
onstantof the medium. We 
onsider the following Cau
hy problem for the hyperboli
 equation(2.1) εr(x)utt = ∆u in R3 × (0,∞) ,(2.2) u (x, 0) = 0, ut (x, 0) = δ (x − x0) .We assume that the 
oe�
ient εr(x) of equation (2.1) is su
h that(2.3) εr(x) ∈ Cα

(
R3

)
, εr(x) ∈ [1, b], εr(x) = 1 for x ∈ R3�Ω,where b = const. > 1. We a priori assume knowledge of the 
onstant b, whi
h amounts to theknowledge of the set of admissible 
oe�
ients in (2.3). However, we do not assume that the number

b−1 is small, i.e. we do not impose smallness assumptions on the unknown 
oe�
ient εr(x). Below
Ck+α are Hölder spa
es, where k ≥ 0 is an integer and α ∈ (0, 1) . Let Γ ⊂ ∂Ω be a part of theboundary ∂Ω. Later we will designate Γ as the ba
ks
attering side of Ω and will explain how wedeal with the absen
e of the data at ∂Ω \ Γ.Coe�
ient Inverse Problem (CIP). Suppose that the 
oe�
ient εr (x) satis�es (2.3). De-termine the fun
tion εr (x) for x ∈ Ω, assuming that the following fun
tion g(x, t) is known for asingle sour
e position x0 /∈ Ω(2.4) u (x, t) = g (x, t) , ∀ (x, t) ∈ Γ × (0,∞) .The fun
tion g(x, t) in (2.4) models time dependent measurements of the wave �eld at the part
Γ of the boundary ∂Ω of the domain of interest Ω. We assume below that the sour
e position is�xed and x0 /∈ Ω. This assumption allows us to simplify the resulting integral-di�erential equationbe
ause δ(x − x0) = 0 in Ω. The assumption εr(x) = 1 for x ∈ R3�Ω means that the 
oe�
ient
εr(x) has a known 
onstant value outside of the domain of interest Ω.This is a CIP with single measurement data. Uniqueness theorem for su
h CIPs in the mul-tidimensional 
ase are 
urrently known only if the fun
tion δ (x − x0) in (2.2) is repla
ed with afun
tion f (x) su
h that ∆f (x) 6= 0 ∀x ∈ Ω. A proper example of su
h fun
tion f is a narrowGaussian 
entered around x0, whi
h approximates the fun
tion δ (x− x0) in the distribution sense.From the Physi
s standpoint this Gaussian is equivalent to δ (x − x0) . That uniqueness theorem
an be proved by the method, whi
h was originated in [6℄. This method is based on Carlemanestimates, also see, e.g. se
tions 1.10, 1.11 of the book [3℄ about this method. The authors believethat, be
ause of appli
ations, it still makes sense to develop numeri
al methods for this CIP without
ompletely addressing the uniqueness question.The fun
tion u (x, t) in (2.1) represents the voltage of one 
omponent of the ele
tri
 �eld
E (x, t) = (Ex, Ey, Ez) (x, t) . In our 
omputer simulations the in
ident �eld has only one non-zero
omponent Ey. This 
omponent propagates along the z−axis until it rea
hes the target, where it iss
attered. So, we assume that in our experiment u (x, t) = Ey (x, t) .We now 
omment on �ve maindis
repan
ies between our mathemati
al model (2.1)- (2.3) and the reality. The �rst dis
repan
ywhi
h 
auses the main di�
ulties, is the aforementioned huge mismat
h between experimental dataand 
omputational simulations. The se
ond one is that, although we realize that equation (2.1)
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an be derived from Maxwell equations only in the 2-d 
ase, we use it to model the full 3-d 
ase.The reason is that our 
urrent re
eiver 
an measure only one of the polarization 
omponents ofthe s
attered ele
tri
 �eld E. In addition, if using a more 
ompli
ated mathemati
al model thanthe one of (2.1), for example the one that in
ludes ve
tor s
attering and thus depolarization ef-fe
ts on s
attering, then one would need to develop a globally 
onvergent inverse method for this
ase. The latter is a quite time 
onsuming task with yet unknown out
ome. Equation (2.1) wasused in Chapter 5 of [3℄ for the 
ase of transmitted experimental data, and a

urate solutions wereobtained. A partial explanation of the latter 
an be found in [5℄, where the Maxwell's system ina non-magneti
 and non-
ondu
tive medium was solved numeri
ally in time domain. It was shownnumeri
ally in se
tion 7.2.2 of [5℄ that the 
omponent of the ve
tor E (x, t) = (Ex, Ey, Ez) (x, t) ,whi
h was initially in
ident upon the medium, dominates two other 
omponents. This is true for atleast a rather simple medium su
h as ours. Therefore, the fun
tion u (x, t) in (2.1) represents thevoltage of the 
omputed 
omponent Ey (x, t) of the ele
tri
 �eld, whi
h is emitted and measuredby our antennas.The third dis
repan
y is that the 
ondition εr(x) ∈ C3
(
R3

) is violated on the in
lusion/ba
kgroundinterfa
e in our experiments. The fourth dis
repan
y is that formally equation (2.1) is invalid forthe 
ase when metalli
 targets are present. On the other hand, it was demonstrated 
omputation-ally in [13℄ that one 
an treat metalli
 targets as diele
tri
s with large diele
tri
 
onstants, whi
hwe 
all appearing diele
tri
 
onstant,(2.5) εr (metalli
 target) ∈ (10, 30) .Modeling metalli
 targets as integral parts of the unknown 
oe�
ient εr (x) is 
onvenient for theabove appli
ation to imaging of explosives. Indeed, IEDs usually 
onsist of mixtures of some di-ele
tri
s with a number of metalli
 parts. Su
h targets are heterogeneous ones, and we 
onsiderthree heterogeneous 
ases in se
tion 8.2. On the other hand, modeling metalli
 parts of heteroge-neous targets as a separate matter than the rest of an a priori unknown ba
kground medium wouldresult in signi�
ant additional 
ompli
ations of the already di�
ult problem with yet unknownout
ome.The �fth dis
repan
y is that we use the in
ident plane wave instead of the point sour
e in our
omputations. We have dis
overed that the plane wave 
ase works better in image re
onstru
tionsthan the point sour
e, while the point sour
e 
ase is more 
onvenient for the 
onvergen
e analysisin [3, 4℄. In addition, sin
e the distan
e between our measurement plane and targets is mu
h largerthan the wavelength of our signal, it is reasonable to approximate the in
ident wave as a planewave.Thus, our results of se
tion 8.2 demonstrate the well known fa
t that 
omputational results areoften less pessimisti
 than the theory, sin
e the theory 
annot grasp all nuan
es of the reality. Insummary, we believe that a

urate solutions of the above CIP for experimental data justify ourmathemati
al model. 3. Experimental Data3.1. Data 
olle
tion. Figure 1-a) is a photograph explaining the data 
olle
tion. The data 
olle
-tion is done in a regular room, whi
h 
ontains o�
e furniture, 
omputers, et
. Keeping in mind ourdesired appli
ation (see Introdu
tion), we intentionally did not arrange a spe
ial waveguide, whi
hwould prote
t our data from unwanted signals 
aused by re�e
tions from various obje
ts in theroom. Below x and y are horizontal and verti
al axis respe
tively and the z axis is perpendi
ularto the measurement plane, the positive dire
tion of z axis is in the dire
tion from the target to
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a)
b) 
)Figure 1: a) A photograph explaining our data 
olle
tion pro
ess. The distan
e between the target(wooden blo
k) and the measurement plane is about 0.8 m, whi
h is about 26 wave lengths. b)Pi
ose
ond Pulse Generator. 
) Textronix Os
illos
ope.the measurement plane. We dimensionalize our 
oordinates as x

′ = x/(1m), where �m" stands formeter. However, we do not 
hange notations of 
oordinates for brevity. Hen
e, below, e.g. 0.05 oflength a
tually means 5 
entimeters.Two main pie
es of our devi
e are Pi
ose
ond Pulse Generator (Figure 1-b)) and TextronixOs
illos
ope (Figure 1-
)). The Pi
ose
ond Pulse Generator generates ele
tri
 pulses. The durationof ea
h pulse is 300 pi
ose
onds. This pulse goes to the transmitter, whi
h is a horn antenna(sour
e).The transmitter sends the pulse into the medium whi
h 
ontains targets of interest. The ele
tri
wave 
aused by the pulse is s
attered by the targets, and the ba
ks
attered signal is dete
ted by thedete
tor. The dete
ted signal is re
orded by the real time os
illos
ope. The os
illos
ope produ
esa digitized time resolved signal with the step size in time of 10 pi
ose
onds. The total time ofmeasurements for one pulse is 10 nanose
onds=104 pi
ose
onds=10−8 se
ond.To de
rease the measurement noise, the pulse is generated 800 times for ea
h position of thedete
tor, the ba
ks
attering signal is also measured 800 times and resulting signals are aver-aged. The dete
tor moves in both horizontal and verti
al dire
tions 
overing the square SQ =
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{−0.5 < x, y < 0.5} on the measurement plane. We have 
hosen the step size of this movement tobe 0.02. Although we 
an 
hoose any step size, we found that 0.02 provides a good 
ompromisebetween the pre
ision of measurements and the total time spent on data 
olle
tion.The distan
e between our targets and the measurement plane is approximately 0.8 with about0.05 deviations, and the wavelength of our signal is about 0.03. Therefore, the distan
e betweenthe measurement plane and our targets is of about 26 wavelengths. This is in the far �eld zone.3.2. Data pre-pro
essing. The main di�
ulty working with experimental data is that there is ahuge mismat
h between these data and 
omputationally simulated ones. Indeed, Figure 2-a) depi
tsa sample of experimentally measured data for a wooden blo
k at one position of the dete
tor, seeFigure 1-a) for data 
olle
tion s
heme. On this �gure, the dire
t signal is the signal going dire
tlyto the re
eiver. We use this dire
t signal as the time referen
e for data pre-pro
essing. Unwantedsignals are due to re�e
tions of the ele
tri
 wave from several obje
ts present in the room. Figure2-b) presents the 
omputationally simulated data for the same target, see se
tion 7.1 for datasimulations. These �gures show a huge mismat
h between real and 
omputationally simulated data.Therefore, data pre-pro
essing is ne
essary. We refer to [15℄ for details of our data pre-pro
essingpro
edure. The main steps of this pro
edure in
lude:(1) Time-zero 
orre
tion. The time-zero 
orre
tion is to shift the measured data in time. So thatits starting time is the same as when the in
ident pulse is emitted from the transmitter. Thisis done using the dire
t signals from the transmitter to the dete
tor as the time referen
e.(2) Extra
tion of s
attered signals. Apart from the ba
ks
attered wave by the targets, ourmeasured data also 
ontain various types of signals, e.g. dire
t signals from the horn to thedete
tor, s
attered signals from stru
tures inside the room, et
. What we need, however,is the s
attered signals by the targets only. To obtain them, we single out the s
atteredsignals 
aused by the targets only and remove all unwanted signals.(3) Data propagation. After getting the s
attered signals, the next step of data pre-pro
essingis to propagate the data 
loser to the targets, i.e. to approximate the s
attered wave ona plane whi
h is mu
h 
loser to the targets then the measurement plane. The distan
ebetween that propagated plane and the front surfa
e of a target is usually between 0.02 and0.06 (
ompare with the 0.8 distan
e from the measurement plane). There are two reasons fordoing this. The �rst one is that the method of [3℄ works with the Lapla
e transform of thefun
tion u (x, t) (se
tion 4). That Lapla
e transform de
ays exponentially in terms of thetime delay, whi
h is proportional to the distan
e from the target to the measurement plane.Hen
e, the amplitude of the Lapla
e transformed experimental data on the measurementplane is very small and 
an be dominated by 
omputational round-o� error. The se
ondreason is that this propagation pro
edure helps to substantially redu
e the 
omputational
ost sin
e the 
omputational domain for the inverse problem is redu
ed.(4) Data 
alibration. Finally, sin
e the amplitudes of the experimental in
ident and s
atteredwaves are usually signi�
antly di�erent from simulations, we need to bring the former tothe same level of the amplitude as the latter. This is done using a known target referred toas 
alibrating obje
t.In this paper, the result of data pre-pro
essing is used as the measured data g (x, t) on theba
ks
attering boundary Γ of our 
omputational domain Ω for the inverse problem.
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a) b)Figure 2: Typi
al samples of real and 
omputationally simulated data. a) The measured data atone of dete
tors. The dire
t signal goes from the transmitter (Fig. 1-b)) to the dete
tor be
ause thetransmitter emits the ele
tri
 �eld in all dire
tions. We use the dire
t signal as the time referen
e inour data pre-pro
essing pro
edure. Unwanted signals are due to re�e
tions from a variety of obje
tsin the room. b) The 
omputationally simulated data for the same target as the one of a) and at thesame dete
tor. A signi�
ant di�eren
e between a) and b) is evident.4. The Approximately Globally Convergent Method in BriefIn this se
tion we brie�y outline the globally 
onvergent method for reader's 
onvenien
e. Werefer to se
tions 2.3, 2.5, 2.6.1 and 2.9.2 of [3℄ as well as [4℄ for details.The �rst step of our inverse algorithm is the Lapla
e transform of the fun
tion u (x, t) ,(4.1) w(x, s) =

∞∫

0

u(x, t)e−stdt, for s > s = const. > 0,where s is a 
ertain number. We assume that the number s is su�
iently large, and we 
all theparameter s pseudo frequen
y. It follows from (2.1), (2.2) and (4.1) that the fun
tion w is thesolution of the following problem(4.2) ∆w − s2εr(x)w = −δ (x − x0) , x ∈ R3,(4.3) lim
|x|→∞

w (x, s) = 0.The limit (4.3) is proved in Theorem 2.7.1 of [3℄. In addition, it was proven in Theorem 2.7.2 of[3℄ that for the fun
tion εr (x) satisfying (2.3) there exists unique solution w (x, s) of the problem(4.2), (4.3) for every s > 0 su
h that
w (x, s) = w0 (x, s) + w (x, s) , w (x, s) ∈ C2+α

(
R3

)
,where w0 (x, s) is the solution of the problem (4.2), (4.3) for the 
ase εr(x) ≡ 1,

w0 (x, s) =
exp (−s |x − x0|)

4π |x− x0|
.



8 LARISA BEILINA1,∗, NGUYEN TRUNG THÀNH◦, MICHAEL V. KLIBANOV⋄, AND MICHAEL A. FIDDY†4.1. The integral di�erential equation. It follows from Theorem 2.7.2 of [3℄ that w(x, s) > 0.Hen
e, we 
an 
onsider the fun
tions v(x, s), q(x, s),(4.4) v (x, s) =
lnw (x, s)

s2
, q (x, s) =

∂v (x, s)

∂s
.Substituting w = exp

(
s2v

) in (4.2) and keeping in mind that the sour
e x0 /∈ Ω, we obtain(4.5) ∆v + s2|∇v|2 = εr(x),x ∈ Ω.Using (4.4) we obtain(4.6) v (x, s) = −
s∫

s

q (x, τ) dτ + V (x, s) ,where the trun
ation pseudo frequen
y s > s is a large number, whi
h is 
hosen numeri
ally, seese
tion 8 for details. We 
all V (x, s) the tail fun
tion, and it is unknown. It follows from (4.4) and(4.6) that(4.7) V (x, s) = v (x, s) =
lnw (x, s)

s2
.It follows from [3℄ (se
tion 2.3) that, under some 
onditions, there exists a fun
tion p (x) ∈ C2+α

(
Ω

)su
h that the following asymptoti
 behavior with respe
t to s→ ∞ holds for fun
tions V and q(4.8) V (x, s) =
p (x)

s
+O

(
1

s2

)
, s→ ∞,(4.9) q (x, s) = ∂sV (x, s) = −p (x)

s2
+O

(
1

s3

)
, s→ ∞.Di�erentiating both sides of equation (4.5) with respe
t to s then using (4.4) and (4.6), we obtainthe following nonlinear integral di�erential equation

∆q − 2s2∇q
s∫

s

∇q (x, τ) dτ + 2s




s∫

s

∇q (x, τ) dτ




2

+ 2s2∇q∇V − 4s∇V
s∫

s

∇q (x, τ) dτ + 2s (∇V )
2

= 0,x ∈ Ω, s ∈ [s, s] .

(4.10)In addition, (2.4) and (4.4) lead to the following Diri
hlet boundary 
ondition for the fun
tion q(4.11) q (x, s) = ψ̃ (x, s) , ∀ (x, s) ∈ Γ × [s, s] ,(4.12) ψ̃ (x, s) =
∂s (lnϕ)

s2
− 2

lnϕ

s3
.Here ϕ (x, s) is the Lapla
e transform (4.1) of the fun
tion g (x, t) in (2.4). We now need to
omplement the boundary data (4.11) at the ba
ks
attering side Γ with the boundary data at therest of the boundary ∂Ω. Using 
omputationally simulated data, it was shown numeri
ally in se
tion6.8.5 of [3℄ as well as in [4℄ that it is reasonable to approximate the boundary data on ∂Ω\Γ by thesolution of the forward problem for the homogeneous medium for the 
ase εr (x) = 1: re
all that



RECONSTRUCTION FROM BLIND EXPERIMENTAL DATA 9this equality holds outside of the domain Ω, see (2.3). Thus, we use below the following Diri
hletboundary 
ondition for the fun
tion q (x, s)(4.13) q (x, s) = ψ (x, s) , ∀ (x, s) ∈ ∂Ω × [s, s] ,(4.14) ψ (x, s) =

{
ψ̃ (x, s) , ∀ (x, s) ∈ Γ × [s, s] ,

ψ0 (x, s) , ∀ (x, s) ∈ (∂Ω \ Γ) × [s, s] .where the fun
tion ψ0 (x, s) is the fun
tion ψ̃ (x, s) in (4.12) 
omputed for the 
ase εr(x) ≡ 1.Even though equation (4.10) with the boundary 
ondition (4.13) has two unknown fun
tions qand V , we 
an approximate both of them be
ause approximation pro
edures for them are di�erent,see se
tion 7.1. Suppose for a moment that fun
tions q and V are approximated in Ω together withtheir derivatives Dα
x
q,Dα

x
V, |α| ≤ 2. Then the 
orresponding approximation for the 
oe�
ient εr(x)
an be found via ba
kwards 
al
ulation using (4.5).4.2. The �rst approximation for the tail fun
tion. To start iterations, we need the �rstapproximation V1,0 (x) for the tail fun
tion. In this se
tion we show how to 
al
ulate V1,0 (x) . Thisis the same 
hoi
e as the one in se
tion 2.9.2 of the book [3℄ as well as in [4℄.Let the fun
tion ε∗r(x) satisfying (2.3) be the exa
t solution of our CIP for the exa
t data g∗ in(2.4). Let V ∗ (x, s) be the exa
t �tail fun
tion� de�ned as(4.15) V ∗ (x, s) =

lnw∗ (x, s)

s2
.Let q∗ (x, s) ∈ C2+α

(
Ω

)
× C [s, s] be the 
orresponding exa
t fun
tion q (x, s) satisfying equation(4.10). Let ψ∗ (x, s) ∈ C2+α

(
Ω

)
×C [s, s] be the 
orresponding exa
t Diri
hlet boundary 
onditionfor q∗ (x, s) as de�ned in (4.13). Following (4.14), we assume that ψ∗ (x, s) = ψ0 (x, s) for (x, s) ∈

(∂Ω \ Γ)× [s, s] .Hen
e, (4.10) and (4.13) hold for fun
tions q∗, ψ∗. Setting in (4.10) s = s, we obtain
∆q∗ + 2s2∇q∗∇V ∗ + 2s (∇V ∗)

2
= 0, x ∈ Ω,

q∗ |∂Ω = ψ∗ (x, s̄) , x ∈ ∂Ω.
(4.16)Next, trun
ating the se
ond term in ea
h of the asymptoti
s (4.8) and (4.9), we obtain that thereexists a fun
tion p∗ (x) ∈ C2+α

(
Ω

) su
h that
V ∗ (x, s) ≈ p∗ (x)

s
, s→ ∞,

q∗ (x, s) = ∂sV
∗ (x, s) ≈ −p

∗ (x)

s2
, s→ ∞.

(4.17)Substituting formulae (4.17) into (4.16), we obtain the following approximate Diri
hlet boundaryvalue problem for the fun
tion p∗ (x)(4.18) ∆p∗ = 0 in Ω, p∗ ∈ C2+α
(
Ω

)
,(4.19) p∗|∂Ω = −s2ψ∗ (x, s) .Thus, using (4.15) and (4.17), we obtain the following approximate mathemati
al model.Approximate mathemati
al model.We assume that there exists a fun
tion p∗ (x) ∈ C2+α

(
Ω

) su
h that the exa
t tail fun
tion
V ∗ (x, s) has the form(4.20) V ∗ (x, s) =

p∗ (x)

s
=

lnw∗ (x, s)

s2
, ∀s ≥ s,
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tion q∗ (x, s) is
q∗ (x, s) = −p

∗ (x)

s2
.Be
ause of (4.18), (4.19) and (4.20), we set for the �rst tail(4.21) V1,0 (x) =

p (x)

s
,where the fun
tion p(x) is the solution of the following Diri
hlet boundary value problem(4.22) ∆p = 0 in Ω, p ∈ C2+α

(
Ω

)
,(4.23) p|∂Ω = −s2ψ (x, s) .We point out that we 
al
ulate V1,0 (x) without any advan
ed knowledge of a small neighborhoodof the exa
t 
oe�
ient ε∗r(x). Using (4.17)-(4.23) and S
hauder theorem [14℄, we obtain(4.24) ‖V1,0 (x) − V ∗ (x, s)‖

C2+α(Ω) ≤ Cs ‖ψ∗ (x, s) − ψ (x, s)‖C2+α(∂Ω) ,where the number C = C (Ω) > 0 depends only from the domain Ω. Hen
e, the error in the
al
ulation of V1,0 (x) depends only on the error in the boundary data ψ (x, s) . On the other hand,sin
e the boundary fun
tion ψ (x, s) is generated by the fun
tion g(x, t) in (2.4), then the error in
ψ (x, s) is generated by the error in measurements. The estimate (4.24) is one of elements of theproof of the approximate global 
onvergen
e theorem for this numeri
al method, see Theorem 2.9.4in [3℄ and Theorem 5.1 in [4℄. Although a good approximation for the exa
t solution ε∗r(x) 
an bederived from the fun
tion V1,0 (x) , we have observed 
omputationally that better approximationsare delivered via iterations des
ribed below in se
tions 6.1, 6.2.4.3. Dis
retization with respe
t to the pseudo-frequen
y. To approximate both fun
tions
q and V using (4.10) and (4.13), we 
onsider the layer stripping pro
edure with respe
t to s. Wedivide the interval [s, s] into N small subintervals with the uniform step size h = sn−1 − sn. Here,
s = sN < sN−1 < ... < s0 = s.We approximate the fun
tion q(x, s) as a pie
ewise 
onstant fun
tionwith respe
t to s, i.e. we assume that q(x, s) = qn(x) for s ∈ [sn, sn−1) . Hen
e, using (4.6), weapproximate the fun
tion v (x, sn) as(4.25) v (x, sn) = −h

n∑

j=0

qj (x) + V (x, s) , q0 (x) :≡ 0.To obtain a sequen
e of Diri
hlet boundary value problems for ellipti
 PDEs for fun
tions qn(x),we introdu
e the s−dependent Carleman Weight Fun
tion (CWF) Cn,µ (s) = exp [µ (s− sn−1)] ,where µ >> 1 is a large parameter. In our numeri
al studies we take µ = 20. This fun
tionmitigates the in�uen
e of the nonlinear term in the resulting integral-di�erential equations on everypseudo-frequen
y interval (sn, sn−1).



RECONSTRUCTION FROM BLIND EXPERIMENTAL DATA 11Multiply both sides of equation (4.10) by Cn,µ (s) and integrate with respe
t to s ∈ (sn, sn−1) .We obtain
∆qn −A1,n


h

n−1∑

j=0

∇qj −∇Vn


∇qn

= Bn (∇qn)
2 −A2,nh

2




n−1∑

j=0

∇qj




2

+ 2A2,n∇Vn


h

n−1∑

j=0

∇qj


 −A2,n (∇Vn)

2
,

qn (x) |∂Ω= ψn(x) :=
1

h

sn−1∫

sn

ψ (x, s) ds, n = 1, ..., N.

(4.26)
Here Vn (x) is su
h an approximation of the tail fun
tion V (x) whi
h 
orresponds to the fun
-tion qn (x) (se
tion 6.1). Numbers A1,n, A2,n, Bn are 
omputed expli
itly. Furthermore, Bn =
O (1/µ) , µ→ ∞. For this reason we ignore the nonlinear term in (4.26), thus setting(4.27) Bn (∇qn)

2
:= 0.Note that (4.27) is not a linearization, sin
e (4.26) 
ontains produ
ts ∇qj∇qi and also be
ause thetail fun
tion Vn depends nonlinearly on fun
tions qj , see (4.7) and step 6 in se
tion 6.1.5. A Finite Element Method for the Re
onstru
tion of εr (x)In this se
tion we explain how we 
ompute fun
tions εrn(x) on every pseudo-frequen
y interval

(sn, sn−1) using the FEM. On
e the fun
tions qj , j = 1, ...n along with the fun
tion Vn in (4.26)are 
al
ulated, we 
ompute the fun
tion vn (x) using the dire
t analog of (4.25),
vn (x) = −h

n∑

j=0

qj (x) + Vn (x) , x ∈ Ω.Using (4.4), we set(5.1) wn (x) = exp
[
s2nvn (x)

]
.To �nd the fun
tion εrn (x) , we note that the fun
tion wn (x, sn) is the solution of the followinganalog of the problem (4.2), (4.3)(5.2) ∆wn − s2nεrn (x)wn = 0 in Ω,(5.3) ∂nwn |∂Ω= fn (x) ,where(5.4) fn (x) = ∂n exp

[
s2nvn (x)

] for x ∈ ∂Ω.To 
ompute the fun
tion εrn (x) from (5.2), (5.3) and (5.4), we apply a version of the FEM asdes
ribed below in se
tions 5.1, 5.2.



12 LARISA BEILINA1,∗, NGUYEN TRUNG THÀNH◦, MICHAEL V. KLIBANOV⋄, AND MICHAEL A. FIDDY†5.1. Spa
es of �nite elements. Following [12℄ we dis
retize in 
omputations our bounded domain
Ω ⊂ R3 by an unstru
tured tetrahedral mesh T using non-overlapping tetrahedral elementsK ∈ R3.The elements K are su
h that T = {K1, ...,Km}, where m is the total number of elements in Ω,and

Ω = ∪K∈TK = K1 ∪K2... ∪Km.We asso
iate with the mesh T the mesh fun
tion h = h(x) as a pie
ewise-
onstant fun
tion su
hthat
h(x) = hK , ∀K ∈ T,where hK is the diameter of K whi
h we de�ne as the longest side of K. We impose the followingshape regularity assumption of the mesh T for every element K ∈ T(5.5) a1 ≤ hK ≤ r′a2, a1, a2 = const. > 0,where r′ is the radius of the maximal sphere 
ontained in the element K.De�ne the set of polynomials Pr(K) as(5.6) Pr(K) =

{
v : v(x, y, z) =

∑

0≤i+j+l≤r

cijlx
iyjzl, (x, y, z) ∈ K, cijl ∈ R, ∀K ∈ T

}
.We introdu
e now the �nite element spa
e Vh as

Vh =
{
v(x) ∈ H1 (Ω) : v ∈ C(Ω), v|K ∈ P1(K) ∀K ∈ T

}
,where P1(K) denotes the set of linear fun
tions on K de�ned by (5.6) for r = 1. Hen
e, the �niteelement spa
e Vh 
onsists of 
ontinuous pie
ewise linear fun
tions in Ω. To approximate fun
tions

εrn, we introdu
e the spa
e of pie
ewise 
onstant fun
tions Ch,
Ch := {u ∈ L2(Ω) : u|K ∈ P0(K), ∀K ∈ T },where P0(K) is the pie
ewise 
onstant fun
tion on K de�ned by (5.6) for r = 0.5.2. A �nite element method. To 
ompute the fun
tion εrn from (5.2), we formulate the �niteelement method for the problem (5.3)-(5.4) as: Find the fun
tion εrn ∈ Ch for the known fun
tion

wn ∈ Vh su
h that(5.7) (εrnwn, v) = − 1

s2n
(∇wn,∇v) +

1

s2n
(fn, v)∂Ω, ∀v ∈ Vh,where (·, ·) is the s
alar produ
t in L2 (Ω).We expand wn in terms of the standard 
ontinuous pie
ewise linear fun
tions {ϕl}P

l=1 in thespa
e Vh as(5.8) wn(x) =

P∑

l=1

wn,lϕl(x),where wn,l denote the nodal values of the fun
tion wn at the nodes l of the elements K in the mesh
T . We 
an determine wn,l by knowing already 
omputed fun
tions vn,l using the following analogof (5.1)

wn (x) = exp
[
s2nvn,l (x)

]
, ∀x ∈ Ω.



RECONSTRUCTION FROM BLIND EXPERIMENTAL DATA 13Substitute (5.8) into (5.7) and 
hoose v(x) = ϕj(x). Then we obtain the following linear algebrai
system of equations(5.9) P∑

l,j=1

εrn,l(wn,lϕl, ϕj) = − 1

s2n

P∑

l,j=1

wn,l(∇ϕl,∇ϕj) +
1

s2n

P∑

j=1

[fn, ϕj ] ,where [·, ·] is the s
alar produ
t in L2 (∂Ω) . The system (5.9) 
an be rewritten in the matrix formfor the unknown ve
tor εrn = {εrn,l}P

l=1 and known ve
tor wn = {wn,l}P

l=1 as(5.10) Mεrn = − 1

s2n
Gwn +

1

s2n
F.Here M is the blo
k mass matrix in spa
e, G is the sti�ness matrix 
orresponding to the term
ontaining (∇ϕl,∇ϕj) in (5.9) and F is the load ve
tor. At the element K the matrix entries in(5.10) are expli
itly given by:

MK
l,j = (wn,l ϕl, ϕj)K , G

K
l,j = (∇ϕl,∇ϕj)K , F

K
n,j = (fn, ϕj)K .To obtain an expli
it s
heme for the 
omputation of 
oe�
ients εrn, we approximate the matrix

M by the lumped mass matrix ML in spa
e, i.e., the diagonal approximation is obtained by takingthe row sum of M [3℄. We obtain(5.11) εrn = − 1

s2n
(ML)−1Gwn +

1

s2n
(ML)−1F.Note that for the 
ase of linear Lagrange elements whi
h are used in our 
omputations in se
tion8 we have M = ML. Thus, the lumping pro
edure does not in
lude approximation errors in this
ase. 6. The Approximately Globally Convergent AlgorithmWe present now our algorithm for the numeri
al solution of equations (4.26) and 
omputing thefun
tions εrn using the equation(5.11). In this algorithm the index i denotes the number of inneriterations inside every pseudo-frequen
y interval (sn, sn−1) when we update tails.6.1. The algorithm.Step 0: Set q0 = 0. Compute the initial tail fun
tion V1,0(x, s) ∈ C2+α(Ω) as in (4.21)-(4.23).Step 1: Here we des
ribe iterations whi
h update tails inside every pseudo-frequen
y interval

(sn, sn−1). Let n ≥ 1, i ≥ 1. Suppose that fun
tions qj , j = 1, ..., n−1, Vn,i−1 are 
omputed.Solve the Diri
hlet boundary value problem for the fun
tion qn,i (x) ∈ C2+α
(
Ω

)
,

∆qn,i −A1n


h

n−1∑

j=1

∇qj


 · ∇qn,i +A1n∇qn,i · ∇Vn,i−1 =

−A2nh
2




n−1∑

j=1

∇qj




2

+ 2A2n∇Vn,i−1 ·


h

n−1∑

j=1

∇qj


 −A2n (∇Vn,i−1)

2
,

qn,i (x) = ψn (x) , x ∈ ∂Ω.

(6.1)
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tions vn,i (x) and wn,i (x) ,

vn,i (x) = −hqn,i (x) − h

n−1∑

j=0

qj (x) + Vn,i (x) ,

wn,i (x) = exp
[
s2nvn,i (x)

]
.Step 3: Compute the fun
tion εr,n,i ∈ Ch via ba
kwards 
al
ulations, using the �nite elementformulation of equation (5.11) as

εrn,i (x) = − 1

s2n
(ML)−1Gwn,i +

1

s2n
(ML)−1F.Sin
e by (2.3) we should have εr (x) ≥ 1, ∀x ∈ R3, and also sin
e we need to extend thefun
tion εr,n,i (x) outside of the domain Ω by unity, we set(6.2) εrn,i (x) =

{
εrn,i (x) if εr,n,i (x) ≥ 1,

1 if either εrn,i (x) < 1, or x ∈ R3�Ω.Step 4: Solve the forward problem (2.1)-(2.2) with εr(x) := εrn,i (x) and 
ompute the Lapla
etransform (4.1) for s = sn. We obtain the fun
tion wn,i (x, sn).Step 5: Update the tail fun
tion as(6.3) Vn,i(x) =
lnwn,i (x, sn)

sn
2

.Continue inner iterations with respe
t to i until the stopping 
riterion of Step 1 of se
tion6.2 is met at i = mn.Step 6: Set for the pseudo-frequen
y interval [sn, sn−1)(6.4) qn(x) := qn,mn
(x), εrn(x) := εrn,mn

(x), Vn+1,0 (x) :=
lnwn,mn

(x, sn)

sn
2

:= Vn (x) .Step 7: If either the stopping 
riterion with respe
t to n of Step 4 of se
tion 6.2 is met, or
n = N, then set the resulting fun
tion εrn(x) as the solution of our CIP. Otherwise, set
n := n+ 1 and go to Step 1.6.2. The stopping 
riterion. When testing the algorithm of se
tion 6.1 on experimental data,we have developed a reliable stopping 
riterion for iterations (n, i) in this algorithm. On everypseudo-frequen
y interval (sn, sn−1) we de�ne ��rst norms� Dn,0 as(6.5) Dn,0 = ||Vn,0 − Ṽn||L2(Ω).In (6.5) the fun
tion Vn,0 is the 
omputed tail fun
tions at the inner iteration i = 0 as in (6.4).Fun
tions Ṽn in (6.5) are obtained from the known measured fun
tion g(x, t) in (2.4) as(6.6) Ṽn (x) =

lnW (x, sn)

s2n
,where W (x, sn) is the Lapla
e transform of the fun
tion g(x, t) at s = sn.We have observed that 
omputed ��rst norms� Dn,0 always a
hieve only one minimum at a
ertain n = n, where the number n depends on the spe
i�
 set of experimental data. Furthermore,in non-blind 
ases of non-metalli
 targets, the 
orresponding values of maxΩ εrn,0(x) were in a goodagreement with a priori known ones. However, in the 
ases of non-blind metalli
 targets we haveobserved that 5 ≤ maxΩ εrn,0(x) ≤ 10. This 
ontradi
ts with (2.5). Therefore, we have developedthe following stopping 
riterion whi
h 
onsists of four steps.
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riterion is for stopping inner iterations with respe
t to i in step 5 of se
tion6.1. As to Steps 2-4, they are for stopping outer iterations with respe
t to n (Step 7 in se
tion 6.1).First, we de�ne numbers Bn,i and Dn,i as
Bn,i =

||εrn,i − εrn,i−1||L2(Ω)

||εrn,i−1||L2(Ω)
,(6.7) Dn,i = ||Vn,i − Ṽn||L2(Ω),In (6.7) fun
tions Vn,i are 
omputed tail fun
tions 
orresponding to εrn,i (step 6 in se
tion 6.1) andfun
tions Ṽn = Ṽn(x, sn) are 
al
ulated using (6.6).

• Step 1. Iterate with respe
t to i and stop iterations at i = mn ≥ 1 su
h that(6.8) either Bn,i ≥ Bn,i−1 or Bn,i ≤ η,or(6.9) either Dn,i ≥ Dn,i−1 or Dn,i ≤ η,where η = 10−6 is a 
hosen toleran
e.
• Step 2. For every n 
ompute ��nal norms� Dn,mn

as(6.10) Dn,mn
= ||Vn+1,0 − Ṽn||L2(Ω).In (6.10) fun
tions Vn+1,0 (x) are 
omputed as in (6.4).

• Step 3. Compute the number N of the pseudo frequen
y interval su
h that the �rst norms
Dn,0 in (6.5) a
hieve its �rst minimum with respe
t to n and get 
orresponding εrN,0(x)on this interval. Compute the number M of the pseudo frequen
y interval su
h that the�nal norms Dn,mn

in (6.10) a
hieve its �rst minimum or they are stabilized with respe
t to
n, and get 
orresponding εrM,0(x) on this interval. Next, 
ompute the number ε̃r,(6.11) ε̃r =

{
maxΩ εrM,0 (x) , if M < N,

maxΩ εrN,0 (x) , if M ≥ N.

• Step 4. If ε̃r < 5 or ε̃r > 10, then take the �nal re
onstru
ted value of the refra
tive index
n =

√
ε̃r. As the 
omputed fun
tion εr (x) , take(6.12) εr,comp (x) =

{
εrM,0 (x) , if M < N,

εrN,0 (x) , if M ≥ N.and stop iterations. However, if 5 ≤ ε̃r ≤ 10, then 
ontinue iterations and 
ompute thenumber Ñ ∈
(
N + 1, N

] of the pseudo frequen
y interval su
h that the global minimumwith respe
t to n of �nal norms Dn,mn
in (6.10) is a
hieved. Then, similarly with (6.11),
ompute the number ε

r eN
,(6.13) ε

r eN
= max

Ω
ε

r eN,0 (x)and take n =
√
ε

r eN
as the �nal re
onstru
ted value of the refra
tive index. Also, take thefun
tion εr,comp (x) = ε

r eN,0 (x) as the 
omputed 
oe�
ient εr (x) and stop iterations.
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urve) and Dn,mn
(dashed 
urve) for obje
t 1.We have observed in all our 
omputations that 
onditions of our stopping 
riterion are alwaysa
hieved. More pre
isely, one of 
onditions (6.8), (6.9) is always a
hieved for iterations with respe
tto i and the minimal values mentioned in Steps 3 and 4 are always a
hieved. Figure 3 displays atypi
al n−dependen
e of sequen
es Dn,0 and Dn,mn

.7. Some Details of the Numeri
al ImplementationIn this se
tion we present some additional details of our numeri
al implementation. Be
ause of(2.5), we de�ne in all our tests the upper value of the fun
tion εr (x) as b = 15, see (2.3). Thus, weset lower and upper bounds for the re
onstru
ted fun
tion εr(x) in Ω as(7.1) Mεr
= {εr(x) : εr (x) ∈ [1, 15]}.As to the lower bound, we ensure it via (6.2). We ensure the upper bound 15 similarly via trun
atingto 15 those values of εr,comp (x) whi
h ex
eed this number. To solve Diri
hlet boundary valueproblems (6.1), we use FEM. We re
onstru
t refra
tive indi
es rather than diele
tri
 
onstants ofmaterial sin
e they 
an be dire
tly measured.To 
ompare our 
omputational results with dire
tly measured refra
tive indi
es n =

√
εr ofdiele
tri
 targets and with appearing diele
tri
 
onstants of metalli
 targets (see (2.5)), we 
onsidermaximal values of 
omputed fun
tions εr,comp (x),(7.2) ε
ompr = max

Ω
εr,comp (x) , n
omp =

√
ε
ompr ,see Step 4 of se
tion 6.2 for the de�nition of εr,comp (x) . Using experimental data for non-blindtargets and 
omparing re
onstru
tion results with 
ases of syntheti
 data, we have found that ouralgorithm provided a

urate results with the following pseudo frequen
y interval, whi
h we use inall our 
omputations

s ∈ [8, 10], s = 8, s = 10, h = 0.05.



RECONSTRUCTION FROM BLIND EXPERIMENTAL DATA 177.1. Computations of the forward problem. As it is 
lear from Step 4 of se
tion 6.1, we needto solve the forward problem (2.1), (2.2) on ea
h iterative step of inner iterations to update the tailvia (6.3). Sin
e it is impossible to 
omputationally solve equation (2.1) in the in�nite spa
e R3, wework with a trun
ated domain. Namely, we 
hoose the domain G as
G = {x =(x, y, z) ∈ (−0.56, 0.56)× (−0.56, 0.56)× (−0.16, 0.1)} .We use the hybrid FEM/FDM method des
ribed in [2℄ and the software pa
kage WavES [18℄. Wesplit G into two subdomains GFEM = Ω and GFDM so that G = GFEM ∪ GFDM . We solve theforward problem in G and the inverse problem via the algorithm of se
tion 6.1 in Ω. The spa
emesh in GFEM and in GFDM 
onsists of tetrahedral and 
ubes, respe
tively. Below(7.3) GFEM = Ω = {x =(x, y, z) ∈ (−0.5, 0.5)× (−0.5, 0.5)× (−0.1, 0.04)} .Sin
e by (2.3) εr(x) = 1 in GFDM , then it is 
omputationally e�
ient to use FDM in GFDM andto use FEM in GFEM = Ω, as it is done in the hybrid method of [2℄.The front and ba
k sides of the re
tangular prism G are {z = 0.1} and {z = −0.16}, respe
tively.The boundary of the domain G is ∂G = ∂1G ∪ ∂2G ∪ ∂3G. Here, ∂1G and ∂2G are, respe
tively,front and ba
k sides of the domain G, and ∂3G is the union of left, right, top and bottom sidesof this domain. The front side Γ of the re
tangular prism Ω where the propagated data g (x, t) in(2.4) are given, is(7.4) Γ = {x ∈ ∂Ω : z = 0.04}Now we des
ribe the forward problem whi
h is used in our 
omputations. To 
ompute tailfun
tions Vn,i via Steps 4, 5 of the algorithm of se
tion 6.1, we 
omputationally solve the followingforward problem in our tests:

εr (x)utt − ∆u = 0, in G× (0, T ),

u(x, 0) = 0, ut(x, 0) = 0, in G,
∂nu = f (t) , on ∂1G× (0, t1],

∂nu = −∂tu, on ∂1G× (t1, T ),

∂nu = −∂tu, on ∂2G× (0, T ),

∂nu = 0, on ∂3G× (0, T ),

(7.5)where f(t) is the amplitude of the initialized plane wave,
f(t) = sinωt, 0 ≤ t ≤ t1 :=

2π

ω
.We use ω = 30 and T = 1.2. We solve the problem (7.5) using the expli
it s
heme with the timestep size τ = 0.003, whi
h satis�es the CFL 
ondition.7.2. Two stages. Our re
onstru
tion pro
edure is done in two stages des
ribed in this se
tion.7.2.1. First stage. In the �rst stage we follow the algorithm of se
tion 6.1. We have observedthat this stage provides a

urate lo
ations of targets of interest. It also provides a

urate values ofrefra
tive indi
es n =

√
εrN of diele
tri
 targets and large values of appearing diele
tri
 
onstants

ε
r eN

for metalli
 targets, see (6.11) and (6.13). However, the algorithm of se
tion 6.1 does notre
onstru
t well sizes/shapes of targets. Thus, we need a postpro
essing pro
edure, whi
h is donein the se
ond stage.
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t number Name of the obje
t1 a pie
e of oak2 a pie
e of pine3 a metalli
 sphere4 a metalli
 
ylinder5 blind target6 blind target7 blind target8 doll, air inside, blind target9 doll, metal inside, blind target10 doll, sand inside, blind target11 two metalli
 blind targetsTable 1: Obje
t names.7.2.2. The se
ond stage: postpro
essing. Let εrn,i (x) be the fun
tion in (6.2). Then we set(7.6) ε̃rn,i(x) =

{
εrn,i(x) if εrn,i(x) > 0.5 max

Ω
εrn,i(x),

1, otherwise.Next, we determine minimal xmin, ymin and maximal xmax, ymax values in x and y dire
tions, wherethe fun
tion ε̃rn,i(x) > 1. Next, we set
εrn,i (x) :=

{
ε̃rn,i(x) if x ∈ [xmin, xmax] , y ∈ [ymin, ymax] ,

1 otherwiseand pro
eed with Step 5 of the algorithm of se
tion 6.1. In this se
ond stage we perform the samenumber of iterations with respe
t to both indi
es n, i as ones of the �rst stage. We are 
on
ernedin the se
ond stage only with sized and shapes of targets, and we are not 
on
erned with valuesof ε
ompr , n
omp. Rather, we take these values from the �rst stage. Let ε̃r (x) be the fun
tion εr (x)obtained at the last iteration of the se
ond stage. Then we form the image of the target based onthe fun
tion εr,image (x) ,

εr,image (x) =

{
ε̃r (x) if ε̃r (x) ≥ 0.9 maxΩ ε̃r (x) ,
1 otherwise.8. ResultsGoals of our 
omputational studies are: (1) To di�erentiate between diele
tri
 and metalli
targets, (2) To re
onstru
t refra
tive indi
es of diele
tri
 targets and appearing diele
tri
 
onstantsof metalli
 targets, (3) To image lo
ations of targets, their sizes and sometimes their shapes. It ismore 
hallenging to 
ompute sizes of targets in the z−dire
tion (i.e. depth) than in x, y dire
tions.8.1. Three tests. To see how sensitive the algorithm is to x, y sizes of the prism Ω as well as tothe mesh step size hx in 
omputations of both forward and inverse problems, we run the abovenumeri
al pro
edure for all our targets for the following three tests:



RECONSTRUCTION FROM BLIND EXPERIMENTAL DATA 19Target number 1 2 5 8 10 Average errorblind/non-blind (yes/no) no no yes yes yesMeasured n, error 2.11, 19% 1.84, 18% 2.14, 28% 1.89, 30% 2.1, 26% 24%
n
omp of Test 1, error 1.92, 10% 1.8, 2% 1.83, 17% 1.86, 2% 1.92, 9% 8%
n
omp of Test 2, error 2.07, 2% 2.01, 10% 2.21, 3% 1.83, 3% 2.2, 5% 4.6%
n
omp of Test 3, error 2.017, 5% 2.013, 9% 2.03, 5% 1.97, 4% 2.02, 4% 5%Table 2: Computed n
omp and dire
tly measured refra
tive indi
es of diele
tri
 targets togetherwith both measurement and 
omputational errors as well as the average error. Note that the average
omputing errors are at least three times less than the average error of dire
t measurements.Test 1. The domain Ω for the 
omputation of the CIP is as in (7.3) and the mesh step size is hx =

0.02. Re
all that the distan
e between neighboring positions of our dete
tor on the measurementplane Pm is also 0.02.Test 2. The domain Ω is as in (7.3). But the mesh step size here is hx = 0.01.Test 3. In this test we shrink the domain Ω in x, y dire
tions, while keeping the same mesh size
hx = 0.02 as in Test 1. In this test(8.1) GFEM = Ω = {x =(x, y, z) ∈ (−0.2, 0.2)× (−0.2, 0.2)× (−0.1, 0.04)} ,(8.2) Mεr

= {εr(x) : εr (x) ∈ [1, 15]}.8.2. Re
onstru
tions. We 
olle
ted experimental data for 11 targets presented in Table 1. Fivetargets were diele
tri
s, �ve were metalli
 ones, and one was a metal 
overed by a diele
tri
. Wehad total 7 blind 
ases: three diele
tri
, three metalli
 targets and one target was the above mixtureof the metal and a diele
tri
. Three out of eleven targets were heterogeneous ones, all three wereblind ones. Heterogeneous targets model explosive devi
es in whi
h explosive materials are maskedby diele
tri
s.When pro
eeding with the algorithm of se
tion 6.1, we �rst assign the Diri
hlet boundary 
on-dition ψ (x, s) at ∂Ω for the fun
tion q (x, s) following (4.11), (4.13) and (4.14), in whi
h 
ase Γ isas in (8.1). Next, we 
al
ulate fun
tions ψn (x) as in (4.26). Figure 4 presents typi
al behavior offun
tions ψn(x) at ∂Ω for some obje
ts of Table 1. To have a better visualization, these �gures arezoomed to 0.4 × 0.4 square from the 1 × 1 square.Table 2 lists both 
omputed n
omp and dire
tly measured refra
tive indi
es n of diele
tri
 targetsfor tests 1-3, see (7.2) for n
omp. This table also shows the measurement error in dire
t measurementsof n. These measurements were performed by the 
lassi
al os
illos
ope method [10℄. Table 3 lists
omputed appearing diele
tri
 
onstants ε
ompr of metalli
 targets. Re
all that εr = n2. We seefrom Table 2 that (n
omp)2 < 4.9 for all diele
tri
 targets. This is going along well with the Step 4of the stopping 
riterion. On the other hand, in Table 3 ε
ompr > 12 for all metalli
 targets. Thus,our algorithm 
an 
on�dently di�erentiate between diele
tri
 and metalli
 targets.One 
an derive several important observations from Table 2. First, in all three tests and for alltargets the 
omputational error is signi�
antly less than the error of dire
t measurements. Thus,the average 
omputational error is signi�
antly less than the average measurement error in all threetests. Se
ond, 
omputed refra
tive indi
es are within trust intervals in all 
ases. The a

ura
y ofall three tests is about the same.
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a) obje
t 1 b) obje
t 2


) obje
t 3 d) obje
t 4

e) obje
t 5 f) obje
t 6Figure 4: Behavior of fun
tions ψn(x) at ∂Ω for some obje
ts of Table 1 at pseudo-frequen
y s = 9.2.Table 3 provides information about 
omputed appearing diele
tri
 
onstants ε
ompr of metalli
targets, see (2.5) and (7.2). Note that in Test 3 �rst four numbers ε
ompr = 15. This 
oin
ideswith the upper bound in (8.2). On the other hand, ε
ompr = 14 < 15 for the target number 9.This is probably be
ause target number 9 is a mixture of a metal and a diele
tri
. An important



RECONSTRUCTION FROM BLIND EXPERIMENTAL DATA 21Target number 3 4 6 7 9 11blind/non-blind (yes/no) no no yes yes yes yes
ε
ompr of Test 1 14.4 15.0 15 13.6 13.6 13.1
ε
ompr of Test 2 15 15 15 14.1 14.1 15
ε
ompr of Test 3 15 15 15 15 14 14.06Table 3: Computed appearing diele
tri
 
onstants ε
ompr of metalli
 targets number 3,4,6,7,11 aswell as of the target number 9 whi
h is a metal 
overed by a diele
tri
.

a) Test 1 (diele
tri
), obje
t 1, �rst stage b) Test 1 (diele
tri
), obje
t 1, se
ond stage

) Test 1 (diele
tri
), obje
t 5, �rst stage d) Test 1 (diele
tri
), obje
t 5, se
ond stageFigure 5: Computed images of targets numbers 1,5 of Table 1. Thin lines indi
ate 
orre
t shapes. Tohave better visualization we have zoomed images of Tests 1,2 from the domain Ω de�ned by (7.3) to thedomain (8.1).observation, whi
h 
an be derived from Table 2, is that our algorithm 
on�dently 
omputes largein
lusion/ba
kground 
ontrasts ex
eeding 10:1. It is well known that optimization methods of
onventional least squares residual fun
tionals usually 
annot image large 
ontrasts.All targets, ex
ept of targets number 8, 9, 10, were homogeneous ones 
omprised from a singlesubstan
e only. However, targets number 8-10 were inhomogeneous ones, see Table 1 for des
riptionof all targets. The target number 8 was a wooden doll whi
h was empty inside. In the 
ase of targetnumber 9, a pie
e of a metal was inserted inside that doll. Thus, only the metal was imaged,
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ause its re�e
tion is mu
h stronger than the wood. In the 
ase of target number 10, sand waspartly inserted inside that doll.Figures 5 display 3-d images of some targets for Test 1 after the �rst and the se
ond (postpro-
essing) stages des
ribed in se
tion 7.2. Figures 6, 7 display 3-d images of targets 8,9,10 and 11 forall three tests.Note that it is hard to estimate well the size of a target in the z−dire
tion. Nevertheless, one
an observe that rather good shapes and sizes of targets are 
omputed in the 
ase of prisms and
ylinders, see Figure 5. As to the doll, neither of tests images shapes of targets 8-10 a

urately.Still, the lo
ation of the doll as well as its sizes in x, y dire
tions are well estimated, see Figures 6.9. SummaryWe 
olle
ted experimental ba
ks
attering time resolved data of ele
tri
al wave propagation andhave applied the approximately globally 
onvergent numeri
al method of [3℄ to these data. Re-sults for four non-blind and seven blind 
ases show a good a

ura
y of re
onstru
tion of refra
tiveindi
es of diele
tri
 targets and appearing diele
tri
 
onstants of metalli
 targets. In the 
ase ofdiele
tri
s, the average re
onstru
tion error is at least three times less than the error of dire
t mea-surements. We 
on�dently di�erentiate between metalli
 and diele
tri
 targets. In parti
ular, wehave a

urately 
omputed maximal values of refra
tive indi
es/diele
tri
 
onstants of three blindheterogeneous targets. These targets represent simpli�ed models of improvised explosive devi
esIEDs, whi
h are heterogeneous ones.Lo
ations of targets and their sizes in x, y dire
tions are a

urately re
onstru
ted. The mostdi�
ult 
ases of sizes in the z−dire
tion (depth) are well re
onstru
ted in some 
ases. In addition,shapes of some targets are well re
onstru
ted in some 
ases. We believe that a follow up appli
ationof the lo
ally 
onvergent adaptivity te
hnique might improve re
onstru
tions of shapes of targets.The adaptivity takes the solution obtained by the approximately globally 
onvergent method as thestarting point for the minimization of the Tikhonov fun
tional on a sequen
e of adaptively re�nedmeshes. A signi�
ant re�nement via the adaptivity was demonstrated in se
tion 5.9 of [3℄ for the
ase of transmitted experimental data, see Figures 5.13 and 5.16 in [3℄.A
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