CHALMERS )) UNIVERSITY OF GOTHENBURG

PREPRINT 2013:14

On the Linear Boltzmann Equation
with Rough Granular Collisions
and Spin

ROLF PETTERSSON

Department of Mathematical Sciences
Division of Mathematics

CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg Sweden 2013






Preprint 2013:14

On the Linear Boltzmann Equation with Rough
Granular Collisions and Spin

Rolf Pettersson

Department of Mathematical Sciences
Division of Mathematics

Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg, Sweden
Gothenburg, September 2013



Preprint 2013:14
ISSN 1652-9715

Matematiska vetenskaper
Goteborg 2013



On the Linear Boltzmann Equation with Rough Granular
Collislonsand Spin
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Abstract. This paper considers the time- and space-dependent lirdenBann equation with general boundary conditions
in the case of inelastic rough granular collisions. Finsthie angular cut-off case or hard sphere case, filéolutions are
constructed as limits of the iterate functions and boundssirof higher velocity moments are discussed in the caserdf ha
inverse power collisions or hard sphere collisions. Furti@e, convergence of solutions to a stationary state, wihengoes

to infinity, is discussed, using a generalized H-theorem.
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INTRODUCTION

The linear Boltzmann equation is frequently used for mathtgral modelling in physics, (e.g. for describing the
neutron distribution in reactor physics, cf. [1]-[3]). Incearlier papers [4]-[6] we have studied the linear Boltama
equation (different from the linearized equation), boththe angular cut-off case and the infinite range case, for a
function f (x, v, t) representing the distribution of particles with massindergoing elastic binary collision with other
particles with massn.. and with a given (known) distribution functio¥i(x,v.). In recent years there has been a
significant interest in the study of kinetic models for griamdlows, mostly with the non-linear Boltzmann equation;
see ref. [7] for an overview, with many further references] also [8]-[9]. Our papers [10]-[14] consider the time-
dependent and the stationary linear Boltzmann equatiansdtastic (granular) collisions, all papers in the angula
cut-off case, but the paper [15] studies the (granular) itefiange case.

The purpose of this paper is to generalize our earlier resalthe case of rough granular collisions with spin, cf.
[16]-[18]. (For details, see our earlier papers, e.g. [L0].

So we will study collisions between particles with massand particles with mass:,, such that momentum is
conservedinv +m.v, = mv’ +m.v’,, wherev,v, are velocities before and’, v/, are velocities after a collision,
and such that also the angular momentum for the two partickesonserved, cf. [16]-[18].

In the elastic case, where also kinetic energy is conserweel finds that the velocities after a binary collision
terminate on two concentric spheres, cf Figure 1 in [4].

In the granular, inelastic rough case we assume the follpwétation between the relative velocity components
normal to a plane of contact of the two patrticles,

w u=—a(w-u), 1)

whereq is a constant, called the normal restitution coefficiént,a < 1, andw = v —v,, w’ = v/ — v/, are the relative
velocities before and after the collision, ands a unit vector, withu = 1 in the elastic case.
Furthermore, in the rough granular case, the vector proshicifies the relation

w xu=—b(wxu) 2

with the tangential restitution coefficieat—1 < b < 1, whereb = —1 for smooth collisions. Let also the unit vector
u be given in spherical coordinates,

u = (sinfcos¢,sinfsing,cosd), 0<0<7/2, 0<¢ < 2. ?3)

In the case of hard sphere collisions, cf. [18], with for slitipy equal masses:,. = m, then the pre-collisional contact
velocities are
V=v—-uxs, Ve = Vet uxs, (4)



and the corresponding relative velocity
W=w-—-ux(s+s,) (5)

with spin vectors = pw, s, = pw,, Wherew,w, are the angular velocity vectors apds the radius of the spheres.
Then the post-collisional velocities will be, cf. [16]-[[L8

vV=v-4 vl =v,+9, (6)

wheremd is the impulse of particle 1 on particle 2, so the post-cialial relative velocity and contact relative
velocities are, cf. [18]w’ = w — 24 and

v~v’:v~v—2(5+%(u><(u><6)) )

with a constank = 2/5 for spheres with uniform masses. One finds, cf. [18], that

d=a(w-u)u+b(w—(w-u)u—ux(s+sy)) (8)
with constants, = (14 a)/2,b = % and finally for the normal and tangential relative velastafter and before
collision, that B

u-w=—-a(u-w), uxw =—buxw). 9)

Moreover, if we change notations and let’ v, be the velocities before, and v, the velocities after a binary
rough inelastic collision, then by (8)

'v=v—20 ' :v*—i-(_i, (20)
wih (1+a) (1+b)
é= 2aa (W-u)u—i—ﬁ(w—(w-u)u—ux(S—i—s*)), (11)
cf. [18].

PRELIMINARIES

We consider the time-dependent transport equation fortaldifion function f (x,v,s,t), depending on a space
variablex = (x1,z2,73) in a bounded convex body with (piece-wise)C!-boundaryl’ = D, and depending on a
velocity variablev = (vq,v2,v3) € V = R3, a spin variable = (s, s2,s3) € S, and a time variablé € R, . Then the
linear Boltzmann equation is in the strong form

O (xovss.t) v rad (. v.5.1) = (@), v.5.1). W
xeD, veV=R3 sec8, tecRy,
supplemented by initial data
f(x,v,s,0) = fo(x,v,s), x€D, veV, se€Ss. (13)

The collision term can, in the case of inelastic (granulatlision, be written, cf. [7]-[12],

(Qf)(x,v,s,t) = /// [Ja_,b(t?,w)Y(X,/v*,'s*)f(x,/v,'s,t) — Y(x,v*,s*)f(x,v,s,t)]B(G,w) dv.ds.dfdo
VJSJIQ (14)
with w = |v — v, |, whereY > 0 is a known distribution3 > 0 is given by the collision process, and finally ; is
a factor depending on the granular process (and giving n@ssecvation, if the gain and the loss integrals converge
separately). Furthermorgy, v, in (10) are the velocities before ang v, the velocities after the binary collision, cf.
(10)-(11),and2 = {(0,¢) : 0 <O < 6,0< ¢ < 27} represents the impact plane, whére 5 in the angular cut-off
case, and = Z in the infinite range case. The collision functid{d,w) is in the physically interesting case with

. 2 .. .
inverse k-th power collision forces given by

o

)
-1

B8, w) =b(O)w, v= , w=|v—v,, (15)

=



with hard forces fork > 5, Maxwellian fork = 5, and soft forces foB < k < 5, whereb(#) has a non-integrable
singularity forf = 7, of ordera = —(k +1)/(k —1). But in the case of hard sphere collisions, then (for 1) the
collision function is given by

B(6,w) = constawsin cosf (16)

So in the angular cut-off case one can choése 5, and then the gain and the loss terms can be separated
(Qf)(x,v,s,t) = (QT f)(x,v,s,t) — (Q~ f)(x,V,s,t), where the gain term can be written (with a kerig ;)
QT )(x,v,s,t) = // Kap(x, 'v,'s = v,8) f(x,'v,’s,t) d'vd’s, 17
vJs

and the loss term is written with the collision frequeroik, v,s) as(Q~ f)(x,v,s,t) = L(x,v,s) f(x,v,s,t). In the
case of non-absorbing body we have thék,v,s) = [|.[¢ Kas(x,v,s — Vv/,s") dv'ds’. Furthermore, equation (12)
is in the space-dependent case supplemented by ( genenallény conditions

[n-9] R(x,9,5 — v,8) f1(x,7,5,t)dvds,

roeven= [ [0 (18)

nv<0,n-v>0xell'=0D,teR;,s€5,s€S5

wheren = n(x) is the unit outward normal at € I' = 0D. The functionR > 0 satisfies (in the non-absorbing
boundary casefv fSR(x,\?,é — v,s)dvds = 1, and f_ and f represent the ingoing and outgoing trace functions
corresponding tgf. In the specular reflection case the functi®ris represented by a Dirac measwéx, v — v) =
d(v—v+2(n-v)n), and in the diffuse reflection cag¥x, v — v) = |n- v|W (x, v) with some given functioMl” > 0,
(e.g. Maxwellian function).

Lett, = ty(x,v) = inf g, {7:x—7Vv ¢ D}, andx, = x(x,v) = x — t,v, Wheret;, represents the time for a
particle going with velocityw from the boundary point, to the pointx.

Then, using differentiation along the characteristicsjagipn (12) can formally be transformed tordld equation,
and also to amxponentiaform of equation in the angular cut-off or hard sphere cases.

CONSTRUCTION OF SOLUTIONS

We construct.!-solutions to our problems as limits of iterate functigifs whenn — oco. Let first f ~1(x,v,s,t) =
0. Then define for giverf™" ! the next iteratef™, n > 0, first at the ingoing boundary (using the appropriate bounda
condition), and then insid® and at the outgoing boundary (using the exponential forrheftuation),

n-v|

Frxv,8,1) :/

R(x,v,8 = v,s) [ (x,V,8,t)dvds, (19)
v)s n-v|

t
fn(X,V,S,t) = f"(x,v,s,t)exp |:_/ L(X_nvvvas)dn}
0

(20)
t T
+/ exp[—/ L(x—nv,v,s)dn] //Ka,b(X—TV, Vs = v,s)f"Hx—1v, v,’s,t —7) d'vd'sdr,
0 0 v)s
where
rm _ fo(X—tV,V,S), OStStb,
fr(x,v,s,t) = { w8 t—ty), >t (21)

Let also f™(x,v,s,t) = 0 for x € R*\ D. Now we get a strong pointwise monotonicity lemnyf&,(x,v,s,t) >
f"1(x,v,s,t), which is essential and can be proved by induction.

Then, by differentiation along the characteristics andgnation (with Green’s formula), we find (using the equa-
tions above, cf. [10]), that

/D/V/an(X,V,S,t) dXdVdSS/D/V/Sfo(X,V,S) dxdvds, (22)



so Levi's theorem (on monotone convergence) gives existeh(mild) L'-solutions

f(x,v,s,t) = lim f"(x,v,s,t) (23)
to our problem with rough granular gases (almost in the same ag for the elastic collision case). Furthermore, if
L(x,v,8)f(x,v,s,t) € L}(D xV x S), then we get equality in (22) for the limit functigh giving mass conservation
together with uniqueness in the relevant function spacg{ef6], [10], [11], and also Proposition 3.3, chapter 11 in

[3D.

Theorem 1. (Existence)

Assume for inelastic rough granular collisions (or elastallisions) that the functio® is given by (16), or (15) with
angular cut-off, and thak(, ;, L and R are non-negative, measurable functions, such IhatL,loc(D xV x S). Then
for everyfo € L(D x V x S) there exists a mild.!-solutionf (x, v, s, ) to the problem (12)-(14) with (18), satisfying
the corresponding inequality in (22). FurthermoreLif € L'(D x V x S), then equality holds in (22) for the limiting
function f, giving mass conservation together with uniqueness ingteant function space.

Remark 1The assumptiod.f € L'(D x V x S) is, for instance, satisfied for the solutighin the case of hard
inverse power forces or hard sphere collisions, togethtr &g. specular or diffuse boundary reflections. This fefio
from a statement on global boundedness (in time) of highkercity moments, (cf. [12] and [14]), and see also the
results in the next section.

Remark 2There holds also in the granular inelastic collision caseHatmeoremfor a general relative entropy
(Lyapunov) functional, cf [6],

f X,V,S,t)

Hg(f)(t):AJAA@(m)F(x’V’S) dxdvds, (24)

giving that this H-functional is non-increasing in time dif= ®(z), R, — R, is a convexC'*-function, and if there
exists a corresponding stationary soluti(x, v,s) with the same total mass as the initial da{éx, v,s); cf. Theorem

5.1in [10]. By using this H-functional one can prove thatguwme-dependent solutiofi(x, v,s,t) converges to the
corresponding stationary solutidi(x, v,s), as time goes to infinity; cf. Remark 5.1 in [10] and furthderences.

BOUNDEDNESS OF HIGHER VELOCITY MOMENTS

In this section we will generalize a result on global bountess of higher velocity moments to the case of rough
granular collisions with hard potentials or hard spherdmrmwe start with some (old) velocity estimates for a binary
collision, and also give the corresponding moment estimate Propositions 1.1 and 1.2 in [4].

Proposition 2. If v andv/ (6,¢) are the velocities before and after a (granular) binary @én, then, withw =
v —v.l,
My

Vi (0,0)° = [v]* <2(a+1)

wcosh |3|v,| —
m—+m. m—+ms

|v|cosé| .
Proposition 3. If o > 0, there exist constants > 0, ¢z > 0 (depending ow, m, m. anda) such that
/ 2\0/2 2\0/2 max(1l,0—1) 2 ‘7772 2 9 anl
(1+ve(0,0)°)"" = 1+ v[*)"" < crwcosf(1+ |v.]) (1+v]?) —coweos”O(1+|v]?) 2.
By using these propositions we have earlier got results emtedness of higher velocity moments for hard inverse
collision forces) <y < 1, and also, by using a Jensen inequality to get the analogsuks for hard sphere collisions,
~ =1, in the space-dependent case with e.g. specular or diféflsetion boundary.

We start with an elementary lemma (used in the theorem belomthe velocities in a binary collision, where
v =|v|, v = |v4|, andw = |w]|, cf. [10].

Lemmad4. Forv > 0it holds that—w? ™! < (1 +v,)7 Tt —277(1 +v2)L§1 , Wherew = v — v, is the relative velocity.



In the case of rough granular collisions with hard spheresntthe collision change of total (translational and
rotational) kinetic energy, i.e. moment of order 2, is givsncf. [18],AE = E' — E = AE,, + AFE,,;, Where

AE,, = —%(1 —a?)(u-w)? (25)

and 2
AE,, — M=t

2
YR (Ww—ux(s+s,) —(w-u)u) (26)

with the total energy
mo, m o I 5 I,
E= 5 ¥ + 211*+2w +2w*,
wheres = pw is the spin variable (andlis the moment inertia).

Then the total energy change in a collision is less or equiidchange of translational energyF’ < AE,,., SO we
will study boundedness of higher velocity moments, becauseg,; < 0.

Now we can formulate our main result on global boundednesinie) for hard potentials or hard sphere collisions,
i.e. with 0 <~ <1, in the case of rough granular collisions, together withugié or specular reflection boundary
conditions, in the following theorem. Compare Theorem A.[4j for the case of hard inverse forces.

Let the velocity moments (for the iteraf&) be defined by

Mg(t):MQ(t)_/D/V/S(l+v2)"/2f"(x,v,s,t)dxdvds, (27)

and let also (for simplicity) the spin variable be bounded.

Theorem 5. Assume for rough granular collisions with hard potentiatshard spheres) < ~ < 1, that the function
B(8,w) is given by equation (15) or (16), and suppose that the fandfi(x, v., s.) satisfies the following conditions:

/ (1 —|—v*)7+max(2"’) sup Y (X, Vi, 8. )dv, < 00

1% xeD (28)
/ inf Y (x,V.,s.)dv. > 0.

v xeD

xe
Let the boundary conditions (18) be given by specular oudéf(Maxwell) reflections.
Then the higher velocity moments belonging to the mild molyt(x, v,s, t) given by (23) are all bounded (globally
in time),

///(1—l—vz)”/zf(x,v,s,t)dxdvdsgCU<oo, c>0,t>0,0<a<1, -1<b<1 (29)
DJvJs

if (1+02)7/2fy(x,v,s) € L'(D x V x S), and the spin variabls € S is bounded.

Sketch of proofStart from the definition of the iterate functigit (x, v,s,t) in equations (19)-(21), and differentiate
along the characteristics, using the corresponding milahfof the equation, and then multiply By + v2)°/2, where
v = |v|, o > 0. Continuing in the same manner as in our earlier papers,isfeahd [14], where we used a Jensen
inequality in the case of hard spheres (for 1), then the theorem follows, # — oco.

CONCLUSIONS

In the paper we generalize our earlier results for the Badtamequation on elastic or smooth granular collision (of
two different particles) to the case of rough granular satis with spin. As a background we first study hard sphere
collisions, cf. ref. [16]-[18] for details. In our method mstruction of iterate functions, eq. (19)-(21), is essa@nti
giving a monotonicity lemma, which can be proved by indutti®hen we get an existence result for our linear
Boltzmann equation with spin (almost in the same manner asuimearlier theorems) using Levi's theorem on
monotone convergence. And we also get massconservatiamégueness in the case of specular or diffuse (Maxwell)
boundary conditions, cf. [12] and [14]. Finally we study lggb boundedness in time for higher velocity moments
in the case of hard potentials or hard sphere collisionsigusiur old estimates for binary collisions (of elastic or
granular smooth particles). We also discuss the use of Bréime for studying convergence to a stationary solution.
To summarizing, our earlier results for smooth granulalisioins are generalized to rough collisions in a model with
similar collision functions.



REFERENCES

N. Bellomo, A. Palczewski, and G. Toscaliathematical topics in Nonlinear Kinetic Thegiyorld Scientific, 1989.
C. CercignaniThe Boltzmann Equation and its Applicatio&pringer-Verlag, 1988.

W. Greenberg, C. van der Mee and V. ProtopopeBoundary Value Problems in Abstract Kinetic The®irkhauser-Verlag,

1987.

R. PetterssonMA J. Appl. Math.38, 151-166 (1987).

R. Pettersson. Stat. Phys59, 403-440 (1990).

R. Petterssod, Stat. Phys72, 355-380 (1993).

C. Villani, J. Stat. Phys124, 781-822 (2006).

J. J. Brey, J. W. Dufty and A. Santas,Stat. Phys87, 1051-1068 (1997).
J. J. Brey, J. W. Dufty and A. Santas,Stat. Phys97, 281-322 (1999).
R. Petterssofransp. Th. Stat. Phy83, 527-543 (2004).

R. PetterssomyIP Conf. Proc.762, RGD24, 252-257 (2005).

R. Petterssoml, Nuovo Ciment®3, 189-197 (2010).

R. PetterssomyIP Conf. Proc1333, RGD27, 111-116 (2011).

R. Pettersson, (to appearTiransp. Th. Stat. Phy2012).

R. PetterssomyIP Conf. Proc.1084, RGD26, 135-139 (2008).

A. Santos, G. M. Kremer and V. GarZerog. Th. Phys. Suppl84, 33-48 (2010).

. A. SantosAIP Conf. Proc1333, RGD27, 41-48 (2011).
. A. Santos, G. M. Kremer and M. dos Sanfkys. Fluids23 (2011).



