
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PREPRINT 2013:14 
 

On the Linear Boltzmann Equation 
with Rough Granular Collisions  
and Spin 
 
 
 

ROLF PETTERSSON 
 
 
 
 
 

Department of Mathematical Sciences 
Division of Mathematics 

CHALMERS UNIVERSITY OF TECHNOLOGY 
UNIVERSITY OF GOTHENBURG 
Gothenburg Sweden 2013 





 
 

 

Preprint 2013:14 
 
 
 
 
 

On the Linear Boltzmann Equation with Rough 
Granular Collisions and Spin 

 
Rolf Pettersson 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Department of Mathematical Sciences 
Division of Mathematics 

Chalmers University of Technology and University of Gothenburg 
SE-412 96  Gothenburg, Sweden 
Gothenburg, September 2013 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Preprint 2013:14 

ISSN 1652-9715 
 

 

Matematiska vetenskaper 

Göteborg 2013 



On the Linear Boltzmann Equation with Rough Granular
Collisions and Spin

Rolf Pettersson

Department of Mathematics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

Abstract. This paper considers the time- and space-dependent linear Boltzmann equation with general boundary conditions
in the case of inelastic rough granular collisions. First, in the angular cut-off case or hard sphere case, mildL

1-solutions are
constructed as limits of the iterate functions and boundedness of higher velocity moments are discussed in the case of hard
inverse power collisions or hard sphere collisions. Furthermore, convergence of solutions to a stationary state, whentime goes
to infinity, is discussed, using a generalized H-theorem.
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INTRODUCTION

The linear Boltzmann equation is frequently used for mathematical modelling in physics, (e.g. for describing the
neutron distribution in reactor physics, cf. [1]–[3]). In our earlier papers [4]–[6] we have studied the linear Boltzmann
equation (different from the linearized equation), both inthe angular cut-off case and the infinite range case, for a
functionf(x,v, t) representing the distribution of particles with massm undergoing elastic binary collision with other
particles with massm∗ and with a given (known) distribution functionY (x,v∗). In recent years there has been a
significant interest in the study of kinetic models for granular flows, mostly with the non-linear Boltzmann equation;
see ref. [7] for an overview, with many further references, and also [8]–[9]. Our papers [10]-[14] consider the time-
dependent and the stationary linear Boltzmann equations for inelastic (granular) collisions, all papers in the angular
cut-off case, but the paper [15] studies the (granular) infinite range case.

The purpose of this paper is to generalize our earlier results to the case of rough granular collisions with spin, cf.
[16]-[18]. (For details, see our earlier papers, e.g. [10].)

So we will study collisions between particles with massm and particles with massm∗, such that momentum is
conserved,mv+m∗v∗ = mv

′ +m∗v
′

∗
, wherev,v∗ are velocities before andv′,v′

∗
are velocities after a collision,

and such that also the angular momentum for the two particlesare conserved, cf. [16]-[18].
In the elastic case, where also kinetic energy is conserved,one finds that the velocities after a binary collision

terminate on two concentric spheres, cf Figure 1 in [4].
In the granular, inelastic rough case we assume the following relation between the relative velocity components

normal to a plane of contact of the two particles,

w
′ ·u = −a(w ·u), (1)

wherea is a constant, called the normal restitution coefficient,0 < a≤ 1, andw = v−v∗,w
′ = v

′−v
′

∗
are the relative

velocities before and after the collision, andu is a unit vector, witha = 1 in the elastic case.
Furthermore, in the rough granular case, the vector productsatisfies the relation

w
′×u = −b(w×u) (2)

with the tangential restitution coefficientb, −1 ≤ b ≤ 1, whereb = −1 for smooth collisions. Let also the unit vector
u be given in spherical coordinates,

u = (sinθ cosφ,sinθ sinφ,cosθ), 0 ≤ θ ≤ π/2, 0 ≤ φ < 2π. (3)

In the case of hard sphere collisions, cf. [18], with for simplicity equal massesm∗ = m, then the pre-collisional contact
velocities are

ṽ = v−u× s, ṽ∗ = v∗ +u× s∗ (4)



and the corresponding relative velocity
w̃ = w−u× (s+ s∗) (5)

with spin vectorss = ρω,s∗ = ρω∗, whereω,ω∗ are the angular velocity vectors andρ is the radius of the spheres.
Then the post-collisional velocities will be, cf. [16]-[18].

v
′ = v−δ v

′

∗
= v∗ +δ, (6)

wheremδ is the impulse of particle 1 on particle 2, so the post-collisional relative velocity and contact relative
velocities are, cf. [18],w′ = w−2δ and

w̃
′ = w̃−2δ+

2

κ
(u× (u×δ)) (7)

with a constantκ = 2/5 for spheres with uniform masses. One finds, cf. [18], that

δ = ã(w ·u)u+ b̃(w− (w ·u)u−u× (s+ s∗)) (8)

with constants̃a = (1+a)/2, b̃ = κ(1+b)
2(κ+1) , and finally for the normal and tangential relative velocities after and before

collision, that
u · w̃′ = −ã(u · w̃), u× w̃

′ = −b̃(u× w̃). (9)

Moreover, if we change notations and let′
v,′v∗ be the velocities before, andv,v∗ the velocities after a binary

rough inelastic collision, then by (8)
′
v = v− δ̄

′
v∗ = v∗ + δ̄, (10)

with

δ̄ =
(1+a)

2a
(w ·u)u+

κ(1+ b)

(κ+1)2b
(w− (w ·u)u−u× (s+ s∗)) , (11)

cf. [18].

PRELIMINARIES

We consider the time-dependent transport equation for a distribution functionf(x,v,s, t), depending on a space
variablex = (x1,x2,x3) in a bounded convex bodyD with (piece-wise)C1-boundaryΓ = ∂D, and depending on a
velocity variablev = (v1,v2,v3) ∈ V = R

3, a spin variables = (s1,s2,s3) ∈ S, and a time variablet ∈ R+. Then the
linear Boltzmann equation is in the strong form

∂f

∂t
(x,v,s, t)+v ·grad

x
f(x,v,s, t) = (Qf)(x,v,s, t),

x ∈ D, v ∈ V = R
3, s ∈ S, t ∈ R+,

(12)

supplemented by initial data
f(x,v,s,0) = f0(x,v,s), x ∈ D, v ∈ V, s ∈ S. (13)

The collision term can, in the case of inelastic (granular) collision, be written, cf. [7]–[12],

(Qf)(x,v,s, t) =

∫

V

∫

S

∫

Ω

[

Ja,b(θ,w)Y (x,′v∗,
′
s∗)f(x,′v, ′s, t)−Y (x,v∗,s∗)f(x,v,s, t)

]

B(θ,w) dv∗ds∗dθdφ

(14)
with w = |v−v∗|, whereY ≥ 0 is a known distribution,B ≥ 0 is given by the collision process, and finallyJa,b is
a factor depending on the granular process (and giving mass conservation, if the gain and the loss integrals converge
separately). Furthermore,′

v, ′v∗ in (10) are the velocities before andv, v∗ the velocities after the binary collision, cf.
(10)-(11), andΩ = {(θ,φ) : 0 ≤ θ < θ̂, 0 ≤ φ < 2π} represents the impact plane, whereθ̂ < π

2 in the angular cut-off

case, and̂θ = π
2 in the infinite range case. The collision functionB(θ,w) is in the physically interesting case with

inverse k-th power collision forces given by

B(θ,w) = b(θ)wγ , γ =
k−5

k−1
, w = |v−v∗|, (15)



with hard forces fork > 5, Maxwellian fork = 5, and soft forces for3 < k < 5, whereb(θ) has a non-integrable
singularity forθ = π

2 , of orderα = −(k +1)/(k− 1). But in the case of hard sphere collisions, then (forγ = 1) the
collision function is given by

B(θ,w) = const.w sinθ cosθ (16)

So in the angular cut-off case one can chooseθ̂ < π
2 , and then the gain and the loss terms can be separated

(Qf)(x,v,s, t) = (Q+f)(x,v,s, t)− (Q−f)(x,v,s, t), where the gain term can be written (with a kernelKa,b)

(Q+f)(x,v,s, t) =

∫

V

∫

S

Ka,b(x, ′
v, ′s→ v,s)f(x,′v, ′s, t) d ′

vd ′
s, (17)

and the loss term is written with the collision frequencyL(x,v,s) as(Q−f)(x,v,s, t) = L(x,v,s)f(x,v,s, t). In the
case of non-absorbing body we have thatL(x,v,s) =

∫

V

∫

S Ka,b(x,v,s → v
′,s′) dv′ds′. Furthermore, equation (12)

is in the space-dependent case supplemented by ( general) boundary conditions

f−(x,v,s, t) =

∫ ∫

|n · ṽ|

|n ·v|
R(x, ṽ, s̃ → v,s)f+(x, ṽ, s̃, t)dṽds̃,

n ·v < 0, n · ṽ > 0, x ∈ Γ = ∂D, t ∈ R+, s ∈ S, s̃ ∈ S,

(18)

wheren = n(x) is the unit outward normal atx ∈ Γ = ∂D. The functionR ≥ 0 satisfies (in the non-absorbing
boundary case)

∫

V

∫

S R(x, ṽ, s̃ → v,s)dvds ≡ 1, andf− andf+ represent the ingoing and outgoing trace functions
corresponding tof . In the specular reflection case the functionR is represented by a Dirac measureR(x, ṽ → v) =
δ(v− ṽ+2(n · ṽ)n), and in the diffuse reflection caseR(x, ṽ→ v) = |n ·v|W (x,v) with some given functionW ≥ 0,
(e.g. Maxwellian function).

Let tb ≡ tb(x,v) = infτ∈R+
{τ : x− τv /∈ D}, andxb ≡ xb(x,v) = x− tbv, wheretb represents the time for a

particle going with velocityv from the boundary pointxb to the pointx.
Then, using differentiation along the characteristics, equation (12) can formally be transformed to amild equation,

and also to anexponentialform of equation in the angular cut-off or hard sphere cases.

CONSTRUCTION OF SOLUTIONS

We constructL1-solutions to our problems as limits of iterate functionsfn, whenn→∞. Let firstf−1(x,v,s, t) ≡
0. Then define for givenfn−1 the next iteratefn, n≥ 0, first at the ingoing boundary (using the appropriate boundary
condition), and then insideD and at the outgoing boundary (using the exponential form of the equation),

fn
−

(x,v,s, t) =

∫

V

∫

S

|n · ṽ|

|n ·v|
R(x, ṽ, s̃→ v,s)fn−1

+ (x, ṽ, s̃, t)dṽds̃, (19)

fn(x,v,s, t) = f̄n(x,v,s, t)exp
[

−

∫ t

0

L(x− ηv,v,s)dη
]

+

∫ t

0

exp
[

−

∫ τ

0

L(x− ηv,v,s)dη
]

∫

V

∫

S

Ka,b(x− τv, ′
v, ′s→ v,s)fn−1(x− τv, ′

v, ′s, t− τ) d ′
vd ′

sdτ,

(20)

where

f̄n(x,v,s, t) =

{

f0(x− tv,v,s), 0 ≤ t ≤ tb,
fn
−

(xb,v,s, t− tb), t > tb.
(21)

Let alsofn(x,v,s, t) ≡ 0 for x ∈ R
3 \D. Now we get a strong pointwise monotonicity lemma,fn(x,v,s, t) ≥

fn−1(x,v,s, t), which is essential and can be proved by induction.
Then, by differentiation along the characteristics and integration (with Green’s formula), we find (using the equa-

tions above, cf. [10]), that
∫

D

∫

V

∫

S

fn(x,v,s, t) dxdvds ≤

∫

D

∫

V

∫

S

f0(x,v,s) dxdvds, (22)



so Levi’s theorem (on monotone convergence) gives existence of (mild)L1-solutions

f(x,v,s, t) = lim
n→∞

fn(x,v,s, t) (23)

to our problem with rough granular gases (almost in the same way as for the elastic collision case). Furthermore, if
L(x,v,s)f(x,v,s, t) ∈L1(D×V ×S), then we get equality in (22) for the limit functionf , giving mass conservation
together with uniqueness in the relevant function space (cf[4]–[6], [10], [11], and also Proposition 3.3, chapter 11 in
[3]).

Theorem 1. (Existence)
Assume for inelastic rough granular collisions (or elasticcollisions) that the functionB is given by (16), or (15) with
angular cut-off, and thatKa,b, L andR are non-negative, measurable functions, such thatL∈L1

loc(D×V ×S). Then
for everyf0 ∈L1(D×V ×S) there exists a mildL1-solutionf(x,v,s, t) to the problem (12)-(14) with (18), satisfying
the corresponding inequality in (22). Furthermore, ifLf ∈L1(D×V ×S), then equality holds in (22) for the limiting
functionf , giving mass conservation together with uniqueness in the relevant function space.

Remark 1The assumptionLf ∈ L1(D×V ×S) is, for instance, satisfied for the solutionf in the case of hard
inverse power forces or hard sphere collisions, together with e.g. specular or diffuse boundary reflections. This follows
from a statement on global boundedness (in time) of higher velocity moments, (cf. [12] and [14]), and see also the
results in the next section.

Remark 2There holds also in the granular inelastic collision case anH-theoremfor a general relative entropy
(Lyapunov) functional, cf [6],

HΦ
F (f)(t) =

∫

D

∫

V

∫

S

Φ
(f(x,v,s, t)

F (x,v,s)

)

F (x,v,s) dxdvds, (24)

giving that this H-functional is non-increasing in time, ifΦ = Φ(z), R+ → R, is a convexC1-function, and if there
exists a corresponding stationary solutionF (x,v,s) with the same total mass as the initial dataf0(x,v,s); cf. Theorem
5.1 in [10]. By using this H-functional one can prove that every time-dependent solutionf(x,v,s, t) converges to the
corresponding stationary solutionF (x,v,s), as time goes to infinity; cf. Remark 5.1 in [10] and further references.

BOUNDEDNESS OF HIGHER VELOCITY MOMENTS

In this section we will generalize a result on global boundedness of higher velocity moments to the case of rough
granular collisions with hard potentials or hard spheres. Then we start with some (old) velocity estimates for a binary
collision, and also give the corresponding moment estimates, cf. Propositions 1.1 and 1.2 in [4].

Proposition 2. If v andv
′

a(θ,φ) are the velocities before and after a (granular) binary collision, then, withw =
|v−v∗|,

|v′

a(θ,φ)|2 −|v|2 ≤ 2(a+1)
m∗

m+m∗

wcosθ

[

3|v∗|−
m

m+m∗

|v|cosθ

]

.

Proposition 3. If σ > 0, there exist constantsc1 > 0, c2 > 0 (depending onσ, m, m∗ anda) such that

(

1+ |v′

a(θ,φ)|2
)σ/2

−
(

1+ |v|2
)σ/2

≤ c1wcosθ
(

1+ |v∗|
)max(1,σ−1)(

1+ |v|2
)

σ−2
2 − c2wcos2 θ

(

1+ |v|2
)

σ−1
2 .

By using these propositions we have earlier got results on boundedness of higher velocity moments for hard inverse
collision forces,0≤ γ < 1, and also, by using a Jensen inequality to get the analogous results for hard sphere collisions,
γ = 1, in the space-dependent case with e.g. specular or diffuse reflection boundary.

We start with an elementary lemma (used in the theorem below)for the velocities in a binary collision, where
v = |v|, v∗ = |v∗|, andw = |w|, cf. [10].

Lemma 4. For γ ≥ 0 it holds that−wγ+1 ≤ (1+v∗)
γ+1−2−γ(1+v2)

γ+1
2 , wherew = v−v∗ is the relative velocity.



In the case of rough granular collisions with hard spheres, then the collision change of total (translational and
rotational) kinetic energy, i.e. moment of order 2, is givenby, cf. [18],∆E = E′−E = ∆Etr +∆Erot, where

∆Etr = −
m

4
(1−a2)(u ·w)2 (25)

and

∆Erot = −
m

4

κ(1− b2)

1+κ
(w−u× (s+ s∗)− (w ·u)u)

2 (26)

with the total energy

E =
m

2
v2 +

m

2
v2
∗
+

I

2
ω2 +

I

2
ω2
∗
,

wheres = ρω is the spin variable (andI is the moment inertia).
Then the total energy change in a collision is less or equal tothe change of translational energy,∆E ≤ ∆Etr, so we

will study boundedness of higher velocity moments, because∆Erot ≤ 0.
Now we can formulate our main result on global boundedness (in time) for hard potentials or hard sphere collisions,

i.e. with 0 ≤ γ ≤ 1, in the case of rough granular collisions, together with diffuse or specular reflection boundary
conditions, in the following theorem. Compare Theorem 4.1 in [4] for the case of hard inverse forces.

Let the velocity moments (for the iteratefn) be defined by

Mσ(t) ≡ Mn
σ (t) =

∫

D

∫

V

∫

S

(1+ v2)σ/2fn(x,v,s, t)dxdvds, (27)

and let also (for simplicity) the spin variable be bounded.

Theorem 5. Assume for rough granular collisions with hard potentials or hard spheres,0 ≤ γ ≤ 1, that the function
B(θ,w) is given by equation (15) or (16), and suppose that the functionY (x,v∗,s∗) satisfies the following conditions:

∫

V

(1+ v∗)
γ+max(2,σ) sup

x∈D
Y (x,v∗,s∗)dv∗ < ∞

∫

V

inf
x∈D

Y (x,v∗,s∗)dv∗ > 0.

(28)

Let the boundary conditions (18) be given by specular or diffuse (Maxwell) reflections.
Then the higher velocity moments belonging to the mild solution f(x,v,s, t) given by (23) are all bounded (globally

in time),
∫

D

∫

V

∫

S

(1+ v2)σ/2f(x,v,s, t)dxdvds ≤ Cσ < ∞, σ > 0, t > 0, 0 < a ≤ 1, −1 ≤ b ≤ 1 (29)

if (1+ v2)σ/2f0(x,v,s) ∈ L1(D×V ×S), and the spin variables ∈ S is bounded.

Sketch of proof:Start from the definition of the iterate functionfn(x,v,s, t) in equations (19)-(21), and differentiate
along the characteristics, using the corresponding mild form of the equation, and then multiply by(1+ v2)σ/2, where
v = |v|, σ > 0. Continuing in the same manner as in our earlier papers, see [12] and [14], where we used a Jensen
inequality in the case of hard spheres (forγ = 1), then the theorem follows, ifn →∞.

CONCLUSIONS

In the paper we generalize our earlier results for the Boltzmann equation on elastic or smooth granular collision (of
two different particles) to the case of rough granular collisions with spin. As a background we first study hard sphere
collisions, cf. ref. [16]-[18] for details. In our method construction of iterate functions, eq. (19)-(21), is essential,
giving a monotonicity lemma, which can be proved by induction. Then we get an existence result for our linear
Boltzmann equation with spin (almost in the same manner as inour earlier theorems) using Levi’s theorem on
monotone convergence. And we also get massconservation anduniqueness in the case of specular or diffuse (Maxwell)
boundary conditions, cf. [12] and [14]. Finally we study global boundedness in time for higher velocity moments
in the case of hard potentials or hard sphere collisions, using our old estimates for binary collisions (of elastic or
granular smooth particles). We also discuss the use of H-theorem for studying convergence to a stationary solution.
To summarizing, our earlier results for smooth granular collisions are generalized to rough collisions in a model with
similar collision functions.
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